Deletion of PIN4 Suppresses the Protein Transport Defects Caused by sec12-4 Mutation in Saccharomyces cerevisiae
Newly synthesized secretory proteins are released into the lumen of the endoplasmic reticulum (ER). The secretory proteins are surrounded by coat protein complex II (COPII) vesicles, and transported from the ER and reach their destinations through the Golgi apparatus. Sec12p is a guanine nucleotide...
Saved in:
| Published in | Microbial Physiology Vol. 30; no. 1-6; pp. 25 - 35 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel, Switzerland
S. Karger AG
01.12.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2673-1665 2673-1673 |
| DOI | 10.1159/000509633 |
Cover
| Abstract | Newly synthesized secretory proteins are released into the lumen of the endoplasmic reticulum (ER). The secretory proteins are surrounded by coat protein complex II (COPII) vesicles, and transported from the ER and reach their destinations through the Golgi apparatus. Sec12p is a guanine nucleotide exchange factor for Sar1p, which initiates COPII vesicle budding from the ER. The activation of Sar1p by Sec12p and the subsequent COPII coat assembly have been well characterized, but the events that take place upstream of Sec12p remain unclear. In this study, we isolated the novel extragenic suppressor of sec12-4, PIN4/MDT1, a cell cycle checkpoint target. A yeast two-hybrid screening was used to identify Pin4/Mdt1p as a binding partner of the casein kinase I isoform Hrr25p, which we have previously identified as a modulator of Sec12p function. Deletion of PIN4 suppressed both defects of temperature-sensitive growth and the partial protein transport observed in sec12-4 mutants. The results of this study suggest that Pin4p provides novel aspects of Sec12p modulations. |
|---|---|
| AbstractList | Newly synthesized secretory proteins are released into the lumen of the endoplasmic reticulum (ER). The secretory proteins are surrounded by coat protein complex II (COPII) vesicles, and transported from the ER and reach their destinations through the Golgi apparatus. Sec12p is a guanine nucleotide exchange factor for Sar1p, which initiates COPII vesicle budding from the ER. The activation of Sar1p by Sec12p and the subsequent COPII coat assembly have been well characterized, but the events that take place upstream of Sec12p remain unclear. In this study, we isolated the novel extragenic suppressor of sec12-4, PIN4/MDT1, a cell cycle checkpoint target. A yeast two-hybrid screening was used to identify Pin4/Mdt1p as a binding partner of the casein kinase I isoform Hrr25p, which we have previously identified as a modulator of Sec12p function. Deletion of PIN4 suppressed both defects of temperature-sensitive growth and the partial protein transport observed in sec12-4 mutants. The results of this study suggest that Pin4p provides novel aspects of Sec12p modulations. Newly synthesized secretory proteins are released into the lumen of the endoplasmic reticulum (ER). The secretory proteins are surrounded by coat protein complex II (COPII) vesicles, and transported from the ER and reach their destinations through the Golgi apparatus. Sec12p is a guanine nucleotide exchange factor for Sar1p, which initiates COPII vesicle budding from the ER. The activation of Sar1p by Sec12p and the subsequent COPII coat assembly have been well characterized, but the events that take place upstream of Sec12p remain unclear. In this study, we isolated the novel extragenic suppressor of sec12-4, PIN4/MDT1, a cell cycle checkpoint target. A yeast two-hybrid screening was used to identify Pin4/Mdt1p as a binding partner of the casein kinase I isoform Hrr25p, which we have previously identified as a modulator of Sec12p function. Deletion of PIN4 suppressed both defects of temperature-sensitive growth and the partial protein transport observed in sec12-4 mutants. The results of this study suggest that Pin4p provides novel aspects of Sec12p modulations. Keywords: Yeast, Membrane traffic, Protein transport, Cell cycle checkpoint |
| Audience | Academic |
| Author | Sekimata, Masayuki Sato, Natsumi Murakami-Sekimata, Akiko Hayasaka, Yuto Nakano, Akihiko |
| Author_xml | – sequence: 1 givenname: Akiko surname: Murakami-Sekimata fullname: Murakami-Sekimata, Akiko email: *Akiko Murakami-Sekimata, Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585 (Japan), s.akiko@med.id.yamagata-u.ac.jp – sequence: 2 givenname: Masayuki surname: Sekimata fullname: Sekimata, Masayuki email: *Akiko Murakami-Sekimata, Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585 (Japan), s.akiko@med.id.yamagata-u.ac.jp – sequence: 3 givenname: Natsumi surname: Sato fullname: Sato, Natsumi – sequence: 4 givenname: Yuto surname: Hayasaka fullname: Hayasaka, Yuto – sequence: 5 givenname: Akihiko surname: Nakano fullname: Nakano, Akihiko |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32958726$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkU1LHTEUhkOxVGtddC8ScNXFaD4mmZml3NtWQa2gXQ8nyYlG73yQzBXuv2_a0QsWCSQhed5n8Z7PZKcfeiTkK2cnnKvmlDGmWKOl_ED2hK5kwfO2s71rtUsOUnrMmCi5qCv1iexK0ai6EnqPjEtc4RSGng6e3lxcl_R2PY4RU8JEpwekN3GYMPT0LkKfxiFOdIke7ZToAtYJHTUbmtByUZT0aj3BP1fmb8HaB4hDt7HZZDHic0gB8Av56GGV8ODl3Ce_f3y_W5wXl79-XizOLgtbymYqjAbw2nqJZeVrLrDWBkyjoAKoq8o4K71yzkjjWCm1Kxk6DqW1XgsvTSX3yfHsvYcVtqH3wxTBdiHZ9qxWdcNZLVSmTt6h8nLYBZuL9iG_vwkczYFxbTp07RhDB3HTvjaagdMZsHFIKaJvbZhbyeawajlr_46t3Y4tJ779l3iVvscezuwTxHuMW_Ll-w-3x58h |
| CitedBy_id | crossref_primary_10_1016_j_jff_2024_106311 crossref_primary_10_3390_genes16010094 |
| Cites_doi | 10.1126/science.1176495 10.15252/embr.201438932 10.1016/j.ceb.2010.04.003 10.1016/j.febslet.2009.10.038 10.1074/jbc.M112.420141 10.1073/pnas.76.4.1858 10.1007/s00438-003-0807-5 10.1038/415180a 10.1016/0092-8674(80)90128-2 10.1126/science.1887218 10.1073/pnas.94.2.581 10.1128/MCB.00471-07 10.1038/386296a0 10.1016/s0091-679x(08)61165-6 10.1016/j.febslet.2014.09.032 10.1016/j.ccr.2011.03.022 10.1073/pnas.1814810115 10.1093/hmg/ddu246 10.1002/yea.1730 10.1016/s0092-8674(03)01079-1 10.1038/nature04840 10.1083/jcb.107.3.851 10.4161/cc.7.17.6593 10.1074/jbc.274.6.3804 10.1016/s0006-291x(02)00922-1 10.1016/s0014-5793(02)03068-5 10.1074/jbc.270.21.12665 10.1080/15548627.2017.1413521 10.1111/j.1432-1033.1993.tb18410.x 10.1016/j.febslet.2007.01.091 10.1073/pnas.89.15.7008 10.1038/365347a0 10.1083/jcb.109.6.2677 10.1371/journal.pgen.1001170 10.1002/dvdy.21874 10.1111/j.1365-2958.2009.06811.x 10.1038/sj.emboj.7600704 10.7554/eLife.21167 10.1091/mbc.5.8.877 10.1128/mcb.24.7.2779-2788.2004 10.1242/jcs.200634 10.1371/journal.pgen.1004931 10.1074/jbc.271.14.8488 10.1083/jcb.201408075 10.1016/0014-5793(95)00618-j 10.1083/jcb.201402128 10.1083/jcb.200106039 10.1074/jbc.M710294200 10.1038/nature09969 10.1534/genetics.109.101105 10.1101/gad.1140603 |
| ContentType | Journal Article |
| Copyright | 2020 S. Karger AG, Basel 2020 S. Karger AG, Basel. COPYRIGHT 2020 S. Karger AG |
| Copyright_xml | – notice: 2020 S. Karger AG, Basel – notice: 2020 S. Karger AG, Basel. – notice: COPYRIGHT 2020 S. Karger AG |
| DBID | AAYXX CITATION NPM |
| DOI | 10.1159/000509633 |
| DatabaseName | CrossRef PubMed |
| DatabaseTitle | CrossRef PubMed |
| DatabaseTitleList | CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2673-1673 |
| EndPage | 35 |
| ExternalDocumentID | A858910825 32958726 10_1159_000509633 509633 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GroupedDBID | 53G ABPAZ AFJJK ALDHI ALMA_UNASSIGNED_HOLDINGS AZPMC EBS EMOBN M-- O1H RKO AAYXX ABBTS AHFRZ CITATION CYUIP GROUPED_DOAJ IAO IHR INH ITC OK1 NPM M~E |
| ID | FETCH-LOGICAL-c439t-b6aaf6cf3e47f812e86bab95a7aa877bdc3f5ddb3bd0436d40ed1a4ccf62f3b73 |
| ISSN | 2673-1665 |
| IngestDate | Sat Oct 25 04:59:39 EDT 2025 Tue Oct 14 03:51:15 EDT 2025 Wed Feb 19 02:27:37 EST 2025 Wed Oct 01 06:33:07 EDT 2025 Thu Apr 24 22:58:06 EDT 2025 Thu Aug 29 12:04:13 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-6 |
| Keywords | Cell cycle checkpoint Membrane traffic Yeast Protein transport |
| Language | English |
| License | Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. https://www.karger.com/Services/SiteLicenses 2020 S. Karger AG, Basel. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c439t-b6aaf6cf3e47f812e86bab95a7aa877bdc3f5ddb3bd0436d40ed1a4ccf62f3b73 |
| PMID | 32958726 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1159_000509633 gale_infotracmisc_A858910825 pubmed_primary_32958726 crossref_primary_10_1159_000509633 karger_primary_509633 gale_infotracacademiconefile_A858910825 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel, Switzerland |
| PublicationPlace_xml | – name: Basel, Switzerland – name: Switzerland |
| PublicationTitle | Microbial Physiology |
| PublicationTitleAlternate | Microb Physiol |
| PublicationYear | 2020 |
| Publisher | S. Karger AG |
| Publisher_xml | – name: S. Karger AG |
| References | Pfaffenwimmer T, Reiter W, Brach T, Nogellova V, Papinski D, Schuschnig M, . Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19. EMBO Rep. 2014;15(8):862–70. Yuan L, Kenny SJ, Hemmati J, Xu K, Schekman R. TANGO1 and SEC12 are copackaged with procollagen I to facilitate the generation of large COPII carriers. Proc Natl Acad Sci U S A. 2018;115(52):E12255–64. Rothblatt J, Schekman R. A hitchhiker’s guide to analysis of the secretory pathway in yeast. Methods Cell Biol. 1989;32:3–36. Murakami A, Kimura K, Nakano A. The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum. J Biol Chem. 1999;274(6):3804–10. Davis S, Wang J, Zhu M, Stahmer K, Lakshminarayan R, Ghassemian M, . Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation. eLife. 2016;5:5. Copic A, Dorrington M, Pagant S, Barry J, Lee MC, Singh I, . Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modification and quality control. Genetics. 2009;182(3):757–69. d’Enfert C, Barlowe C, Nishikawa S, Nakano A, Schekman R. Structural and functional dissection of a membrane glycoprotein required for vesicle budding from the endoplasmic reticulum. Mol Cell Biol. 1991;11(11):5727–34. doi:10.1128/mcb.11.11.5727. https://mcb.asm.org/content/11/11/5727. Miller EA, Barlowe C. Regulation of coat assembly: sorting things out at the ER. Curr Opin Cell Biol. 2010;22(4):447–53. Heierhorst J. Mdt1/ASCIZ: a new DNA damage response protein family. Cell Cycle. 2008;7(17):2654–60. Jurado S, Smyth I, van Denderen B, Tenis N, Hammet A, Hewitt K, . Dual functions of ASCIZ in the DNA base damage response and pulmonary organogenesis. PLoS Genet. 2010;6(10):e1001170. Sun J, Yu S, Zhang X, Capac C, Aligbe O, Daudelin T, . A Wntless-SEC12 complex on the ER membrane regulates early Wnt secretory vesicle assembly and mature ligand export. J Cell Sci. 2017;130(13):2159–71. Nakano A, Muramatsu M. A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol. 1989;109(6):2677–91. Pike BL, Heierhorst J. Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeres. Mol Cell Biol. 2007;27(18):6532–45. Wang J, Davis S, Menon S, Zhang J, Ding J, Cervantes S, . Ypt1/Rab1 regulates Hrr25/CK1δ kinase activity in ER-Golgi traffic and macroautophagy. J Cell Biol. 2015;210(2):273–85. Goggolidou P, Hadjirin NF, Bak A, Papakrivopoulou E, Hilton H, Norris DP, . Atmin mediates kidney morphogenesis by modulating Wnt signaling. Hum Mol Genet. 2014;23(20):5303–16. Nakano A. Identification and characterization of extragenic suppressors of the yeast sec12 ts mutation. J Biochem. 1996;120(3):642–46. Mehlgarten C, Schaffrath R. Mutant casein kinase I (Hrr25p/Kti14p) abrogates the G1 cell cycle arrest induced by Kluyveromyces lactiszymocin in budding yeast. Mol Genet Genomics. 2003;269(2):188–96. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, . Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002;415(6868):180–3. Traven A, Lo TL, Pike BL, Friesen H, Guzzo J, Andrews B, . Dual functions of Mdt1 in genome maintenance and cell integrity pathways in Saccharomyces cerevisiae. Yeast. 2010;27(1):41–52. Ermakov A, Stevens JL, Whitehill E, Robson JE, Pieles G, Brooker D, . Mouse mutagenesis identifies novel roles for left-right patterning genes in pulmonary, craniofacial, ocular, and limb development. Dev Dyn. 2009;238(3):581–94. Barlowe C, Schekman R. SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature. 1993;365(6444):347–349. Schäfer T, Maco B, Petfalski E, Tollervey D, Böttcher B, Aebi U, . Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature. 2006;441(7093):651–5. Huang M, Weissman JT, Beraud-Dufour S, Luan P, Wang C, Chen W, . Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. J Cell Biol. 2001;155(6):937–48. Tanaka C, Tan LJ, Mochida K, Kirisako H, Koizumi M, Asai E, . Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins. J Cell Biol. 2014;207(1):91–105. Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 1997;386(6622):296–9. Kafadar KA, Zhu H, Snyder M, Cyert MS. Negative regulation of calcineurin signaling by Hrr25p, a yeast homolog of casein kinase I. Genes Dev. 2003;17(21):2698–708. Sato M, Sato K, Nakano A. Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response. Biochem Biophys Res Commun. 2002;296(3):560–7. Barlowe C. COPII: a membrane coat that forms endoplasmic reticulum-derived vesicles. FEBS Lett. 1995;369(1):93–6. McMahon C, Studer SM, Clendinen C, Dann GP, Jeffrey PD, Hughson FM. The structure of Sec12 implicates potassium ion coordination in Sar1 activation. J Biol Chem. 2012;287(52):43599–606. McNees CJ, Conlan LA, Tenis N, Heierhorst J. ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage. EMBO J. 2005;24(13):2447–57. Mochida K, Ohsumi Y, Nakatogawa H. Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of α-mannosidase under nitrogen starvation conditions. FEBS Lett. 2014;588(21):3862–9. Lord C, Bhandari D, Menon S, Ghassemian M, Nycz D, Hay J, . Sequential interactions with Sec23 control the direction of vesicle traffic. Nature. 2011;473(7346):181–6. Pike BL, Yongkiettrakul S, Tsai MD, Heierhorst J. Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae. Mol Cell Biol. 2004;24(7):2779–88. Futai E, Hamamoto S, Orci L, Schekman R. GTP/GDP exchange by Sec12p enables COPII vesicle bud formation on synthetic liposomes. EMBO J. 2004;23:4146–55. doi:10.1038/sj.emboj.7600428. https://doi.org/10.1038/sj.emboj.7600428. Ray P, Basu U, Ray A, Majumdar R, Deng H, Maitra U. The Saccharomyces cerevisiae 60 S ribosome biogenesis factor Tif6p is regulated by Hrr25p-mediated phosphorylation. J Biol Chem. 2008;283(15):9681–91. McLaughlin MM, Kumar S, McDonnell PC, Van Horn S, Lee JC, Livi GP, . Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem. 1996;271(14):8488–92. Hoekstra MF, Liskay RM, Ou AC, Demaggio AJ, Burbee DG, Heffron F. HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA. Science. 1991;253(5023):1031–4. Zhou G, Bao ZQ, Dixon JE. Components of a new human protein kinase signal transduction pathway. J Biol Chem. 1995;270(21):12665–9. Loizou JI, Sancho R, Kanu N, Bolland DJ, Yang F, Rada C, . ATMIN is required for maintenance of genomic stability and suppression of B cell lymphoma. Cancer Cell. 2011;19(5):587–600. Sato K, Nakano A. Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett. 2007;581(11):2076–82. Mehlgarten C, Jablonowski D, Breunig KD, Stark MJ, Schaffrath R. Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Mol Microbiol. 2009;73(5):869–81. Zientara-Rytter K, Ozeki K, Nazarko TY, Subramani S. Pex3 and Atg37 compete to regulate the interaction between the pexophagy receptor, Atg30, and the Hrr25 kinase. Autophagy. 2018;14(3):368–84. Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell. 2004;116(2):153–66. Nakano A, Brada D, Schekman R. A membrane glycoprotein, Sec12p, required for protein transport from the endoplasmic reticulum to the Golgi apparatus in yeast. J Cell Biol. 1988;107(3):851–63. Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, . A global protein kinase and phosphatase interaction network in yeast. Science. 2010;328(5981):1043–6. Finger A, Knop M, Wolf DH. Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur J Biochem. 1993;218(2):565–74. James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996;144(4):1425–36. Budnik A, Stephens DJ. ER exit sites: localization and control of COPII vesicle formation. FEBS Lett. 2009;583(23):3796–803. Abdel-Fattah W, Jablonowski D, Di Santo R, Thüring KL, Scheidt V, Hammermeister A, . Phosphorylation of Elp1 by Hrr25 is required for elongator-dependent tRNA modification in yeast. PLoS Genet. 2015;11(1):e1004931. Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980;21(1):205–15. Demaggio AJ, Lindberg RA, Hunter T, Hoekstra MF. The budding yeast HRR25 gene product is a casein kinase I isoform. Proc Natl Acad Sci U S A. 1992;89(15):7008–12. Chardin P, Callebaut I. The yeast Sar exchange factor Sec12, and its higher organism orthologs, fold as beta-propellers. FEBS Lett. 2002;525(1–3):171–3. Novick P, Schekman R. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae.Proc Natl Acad Sci U S A. 1979;76(4):1858–62. Hoekstra MF, Dhillon N, Carmel G, Demaggio AJ, Lindberg RA, Hunter T, . Budding and fission yeast casein kinase I isoforms have dual-specificity protein kinase activity. Mol Biol Cell. 1994;5(8):877–86. Ho Y, Mason S, Kobayashi R, Hoekstra M, Andrews B. Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997;94(2):581–6. ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – reference: d’Enfert C, Barlowe C, Nishikawa S, Nakano A, Schekman R. Structural and functional dissection of a membrane glycoprotein required for vesicle budding from the endoplasmic reticulum. Mol Cell Biol. 1991;11(11):5727–34. doi:10.1128/mcb.11.11.5727. https://mcb.asm.org/content/11/11/5727. – reference: Novick P, Schekman R. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae.Proc Natl Acad Sci U S A. 1979;76(4):1858–62. – reference: McLaughlin MM, Kumar S, McDonnell PC, Van Horn S, Lee JC, Livi GP, . Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem. 1996;271(14):8488–92. – reference: Loizou JI, Sancho R, Kanu N, Bolland DJ, Yang F, Rada C, . ATMIN is required for maintenance of genomic stability and suppression of B cell lymphoma. Cancer Cell. 2011;19(5):587–600. – reference: James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996;144(4):1425–36. – reference: Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980;21(1):205–15. – reference: Sato M, Sato K, Nakano A. Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response. Biochem Biophys Res Commun. 2002;296(3):560–7. – reference: Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell. 2004;116(2):153–66. – reference: Nakano A, Brada D, Schekman R. A membrane glycoprotein, Sec12p, required for protein transport from the endoplasmic reticulum to the Golgi apparatus in yeast. J Cell Biol. 1988;107(3):851–63. – reference: Abdel-Fattah W, Jablonowski D, Di Santo R, Thüring KL, Scheidt V, Hammermeister A, . Phosphorylation of Elp1 by Hrr25 is required for elongator-dependent tRNA modification in yeast. PLoS Genet. 2015;11(1):e1004931. – reference: Davis S, Wang J, Zhu M, Stahmer K, Lakshminarayan R, Ghassemian M, . Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation. eLife. 2016;5:5. – reference: Futai E, Hamamoto S, Orci L, Schekman R. GTP/GDP exchange by Sec12p enables COPII vesicle bud formation on synthetic liposomes. EMBO J. 2004;23:4146–55. doi:10.1038/sj.emboj.7600428. https://doi.org/10.1038/sj.emboj.7600428. – reference: Wang J, Davis S, Menon S, Zhang J, Ding J, Cervantes S, . Ypt1/Rab1 regulates Hrr25/CK1δ kinase activity in ER-Golgi traffic and macroautophagy. J Cell Biol. 2015;210(2):273–85. – reference: Hoekstra MF, Dhillon N, Carmel G, Demaggio AJ, Lindberg RA, Hunter T, . Budding and fission yeast casein kinase I isoforms have dual-specificity protein kinase activity. Mol Biol Cell. 1994;5(8):877–86. – reference: Mehlgarten C, Schaffrath R. Mutant casein kinase I (Hrr25p/Kti14p) abrogates the G1 cell cycle arrest induced by Kluyveromyces lactiszymocin in budding yeast. Mol Genet Genomics. 2003;269(2):188–96. – reference: Huang M, Weissman JT, Beraud-Dufour S, Luan P, Wang C, Chen W, . Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. J Cell Biol. 2001;155(6):937–48. – reference: Sato K, Nakano A. Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett. 2007;581(11):2076–82. – reference: Miller EA, Barlowe C. Regulation of coat assembly: sorting things out at the ER. Curr Opin Cell Biol. 2010;22(4):447–53. – reference: Nakano A, Muramatsu M. A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol. 1989;109(6):2677–91. – reference: Pike BL, Yongkiettrakul S, Tsai MD, Heierhorst J. Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae. Mol Cell Biol. 2004;24(7):2779–88. – reference: Ho Y, Mason S, Kobayashi R, Hoekstra M, Andrews B. Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997;94(2):581–6. – reference: Sun J, Yu S, Zhang X, Capac C, Aligbe O, Daudelin T, . A Wntless-SEC12 complex on the ER membrane regulates early Wnt secretory vesicle assembly and mature ligand export. J Cell Sci. 2017;130(13):2159–71. – reference: Nakano A. Identification and characterization of extragenic suppressors of the yeast sec12 ts mutation. J Biochem. 1996;120(3):642–46. – reference: Copic A, Dorrington M, Pagant S, Barry J, Lee MC, Singh I, . Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modification and quality control. Genetics. 2009;182(3):757–69. – reference: Demaggio AJ, Lindberg RA, Hunter T, Hoekstra MF. The budding yeast HRR25 gene product is a casein kinase I isoform. Proc Natl Acad Sci U S A. 1992;89(15):7008–12. – reference: Ray P, Basu U, Ray A, Majumdar R, Deng H, Maitra U. The Saccharomyces cerevisiae 60 S ribosome biogenesis factor Tif6p is regulated by Hrr25p-mediated phosphorylation. J Biol Chem. 2008;283(15):9681–91. – reference: Barlowe C. COPII: a membrane coat that forms endoplasmic reticulum-derived vesicles. FEBS Lett. 1995;369(1):93–6. – reference: McMahon C, Studer SM, Clendinen C, Dann GP, Jeffrey PD, Hughson FM. The structure of Sec12 implicates potassium ion coordination in Sar1 activation. J Biol Chem. 2012;287(52):43599–606. – reference: Barlowe C, Schekman R. SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature. 1993;365(6444):347–349. – reference: Heierhorst J. Mdt1/ASCIZ: a new DNA damage response protein family. Cell Cycle. 2008;7(17):2654–60. – reference: Rothblatt J, Schekman R. A hitchhiker’s guide to analysis of the secretory pathway in yeast. Methods Cell Biol. 1989;32:3–36. – reference: Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, . A global protein kinase and phosphatase interaction network in yeast. Science. 2010;328(5981):1043–6. – reference: Yuan L, Kenny SJ, Hemmati J, Xu K, Schekman R. TANGO1 and SEC12 are copackaged with procollagen I to facilitate the generation of large COPII carriers. Proc Natl Acad Sci U S A. 2018;115(52):E12255–64. – reference: Kafadar KA, Zhu H, Snyder M, Cyert MS. Negative regulation of calcineurin signaling by Hrr25p, a yeast homolog of casein kinase I. Genes Dev. 2003;17(21):2698–708. – reference: Mehlgarten C, Jablonowski D, Breunig KD, Stark MJ, Schaffrath R. Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Mol Microbiol. 2009;73(5):869–81. – reference: Pike BL, Heierhorst J. Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeres. Mol Cell Biol. 2007;27(18):6532–45. – reference: Schäfer T, Maco B, Petfalski E, Tollervey D, Böttcher B, Aebi U, . Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature. 2006;441(7093):651–5. – reference: Jurado S, Smyth I, van Denderen B, Tenis N, Hammet A, Hewitt K, . Dual functions of ASCIZ in the DNA base damage response and pulmonary organogenesis. PLoS Genet. 2010;6(10):e1001170. – reference: Finger A, Knop M, Wolf DH. Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur J Biochem. 1993;218(2):565–74. – reference: Lord C, Bhandari D, Menon S, Ghassemian M, Nycz D, Hay J, . Sequential interactions with Sec23 control the direction of vesicle traffic. Nature. 2011;473(7346):181–6. – reference: Pfaffenwimmer T, Reiter W, Brach T, Nogellova V, Papinski D, Schuschnig M, . Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19. EMBO Rep. 2014;15(8):862–70. – reference: Tanaka C, Tan LJ, Mochida K, Kirisako H, Koizumi M, Asai E, . Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins. J Cell Biol. 2014;207(1):91–105. – reference: Hoekstra MF, Liskay RM, Ou AC, Demaggio AJ, Burbee DG, Heffron F. HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA. Science. 1991;253(5023):1031–4. – reference: Chardin P, Callebaut I. The yeast Sar exchange factor Sec12, and its higher organism orthologs, fold as beta-propellers. FEBS Lett. 2002;525(1–3):171–3. – reference: McNees CJ, Conlan LA, Tenis N, Heierhorst J. ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage. EMBO J. 2005;24(13):2447–57. – reference: Budnik A, Stephens DJ. ER exit sites: localization and control of COPII vesicle formation. FEBS Lett. 2009;583(23):3796–803. – reference: Ermakov A, Stevens JL, Whitehill E, Robson JE, Pieles G, Brooker D, . Mouse mutagenesis identifies novel roles for left-right patterning genes in pulmonary, craniofacial, ocular, and limb development. Dev Dyn. 2009;238(3):581–94. – reference: Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, . Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002;415(6868):180–3. – reference: Murakami A, Kimura K, Nakano A. The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum. J Biol Chem. 1999;274(6):3804–10. – reference: Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 1997;386(6622):296–9. – reference: Traven A, Lo TL, Pike BL, Friesen H, Guzzo J, Andrews B, . Dual functions of Mdt1 in genome maintenance and cell integrity pathways in Saccharomyces cerevisiae. Yeast. 2010;27(1):41–52. – reference: Zhou G, Bao ZQ, Dixon JE. Components of a new human protein kinase signal transduction pathway. J Biol Chem. 1995;270(21):12665–9. – reference: Mochida K, Ohsumi Y, Nakatogawa H. Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of α-mannosidase under nitrogen starvation conditions. FEBS Lett. 2014;588(21):3862–9. – reference: Goggolidou P, Hadjirin NF, Bak A, Papakrivopoulou E, Hilton H, Norris DP, . Atmin mediates kidney morphogenesis by modulating Wnt signaling. Hum Mol Genet. 2014;23(20):5303–16. – reference: Zientara-Rytter K, Ozeki K, Nazarko TY, Subramani S. Pex3 and Atg37 compete to regulate the interaction between the pexophagy receptor, Atg30, and the Hrr25 kinase. Autophagy. 2018;14(3):368–84. – ident: ref5 doi: 10.1126/science.1176495 – ident: ref37 doi: 10.15252/embr.201438932 – ident: ref30 doi: 10.1016/j.ceb.2010.04.003 – ident: ref6 doi: 10.1016/j.febslet.2009.10.038 – ident: ref26 doi: 10.1074/jbc.M112.420141 – ident: ref36 doi: 10.1073/pnas.76.4.1858 – ident: ref29 doi: 10.1007/s00438-003-0807-5 – ident: ref16 doi: 10.1038/415180a – ident: ref35 doi: 10.1016/0092-8674(80)90128-2 – ident: ref19 doi: 10.1126/science.1887218 – ident: ref17 doi: 10.1073/pnas.94.2.581 – ident: ref38 doi: 10.1128/MCB.00471-07 – ident: ref14 doi: 10.1038/386296a0 – ident: ref41 doi: 10.1016/s0091-679x(08)61165-6 – ident: ref31 doi: 10.1016/j.febslet.2014.09.032 – ident: ref23 doi: 10.1016/j.ccr.2011.03.022 – ident: ref49 doi: 10.1073/pnas.1814810115 – ident: ref13 doi: 10.1093/hmg/ddu246 – ident: ref47 doi: 10.1002/yea.1730 – ident: ref4 doi: 10.1016/s0092-8674(03)01079-1 – ident: ref44 doi: 10.1038/nature04840 – ident: ref33 doi: 10.1083/jcb.107.3.851 – ident: ref15 doi: 10.4161/cc.7.17.6593 – ident: ref32 doi: 10.1074/jbc.274.6.3804 – ident: ref43 doi: 10.1016/s0006-291x(02)00922-1 – ident: ref7 doi: 10.1016/s0014-5793(02)03068-5 – ident: ref50 doi: 10.1074/jbc.270.21.12665 – ident: ref51 doi: 10.1080/15548627.2017.1413521 – ident: ref12 doi: 10.1111/j.1432-1033.1993.tb18410.x – ident: ref42 doi: 10.1016/j.febslet.2007.01.091 – ident: ref10 doi: 10.1073/pnas.89.15.7008 – ident: ref3 doi: 10.1038/365347a0 – ident: ref34 doi: 10.1083/jcb.109.6.2677 – ident: ref21 doi: 10.1371/journal.pgen.1001170 – ident: ref11 doi: 10.1002/dvdy.21874 – ident: ref28 doi: 10.1111/j.1365-2958.2009.06811.x – ident: ref27 doi: 10.1038/sj.emboj.7600704 – ident: ref9 doi: 10.7554/eLife.21167 – ident: ref18 doi: 10.1091/mbc.5.8.877 – ident: ref39 doi: 10.1128/mcb.24.7.2779-2788.2004 – ident: ref45 doi: 10.1242/jcs.200634 – ident: ref1 doi: 10.1371/journal.pgen.1004931 – ident: ref25 doi: 10.1074/jbc.271.14.8488 – ident: ref48 doi: 10.1083/jcb.201408075 – ident: ref2 doi: 10.1016/0014-5793(95)00618-j – ident: ref46 doi: 10.1083/jcb.201402128 – ident: ref20 doi: 10.1083/jcb.200106039 – ident: ref40 doi: 10.1074/jbc.M710294200 – ident: ref24 doi: 10.1038/nature09969 – ident: ref8 doi: 10.1534/genetics.109.101105 – ident: ref22 doi: 10.1101/gad.1140603 |
| SSID | ssj0002412875 ssib054421879 |
| Score | 2.1513374 |
| Snippet | Newly synthesized secretory proteins are released into the lumen of the endoplasmic reticulum (ER). The secretory proteins are surrounded by coat protein... |
| SourceID | gale pubmed crossref karger |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 25 |
| SubjectTerms | B cells Genetic aspects Proteins Research Article |
| Title | Deletion of PIN4 Suppresses the Protein Transport Defects Caused by sec12-4 Mutation in Saccharomyces cerevisiae |
| URI | https://karger.com/doi/10.1159/000509633 https://www.ncbi.nlm.nih.gov/pubmed/32958726 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2673-1673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib054421879 issn: 2673-1665 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWwoELAlFgoSALIYFUuWwc5-tYlaIKKVWltlI5rWzHkaK0u1U3OSwHfgk_lpnY8SZtD4VLtHIcJ5t5Ox7PPr8h5JOcmUDDMoPJJEuZiMWMpaVIWcEl5vkBVB2bMD-Oj87Fj4voYjL5M2AttY3a07_u3VfyP1aFNrAr7pL9B8v6QaEBPoN94QgWhuODbPzNoHS2jfhgeS52sUZnpwa-6gLKExRhqBYbBXNwL5a-cSDblY09V0YHnIndvHW8Q-h_KjXuxlperZGvpTsq8KqSI9ZQXnUSTriRC009ys6D9WQtryp2auoKQmKbu62reukTOoMTuVzJdVtX_pzsSjshjxpeZrXxkWvoWHeX_Gyb5TBfwYfcj86t8TgJWRDbChF7Zthmi5r0ftn9X-Pwx0ZuNhpM2Fbu5O5UEGWWO4kCN1ZsYyy3fWsa9OTEblkUZXN_6SPymMOcgYVB8t-HvbeKhOBYqt1n9CAWguUncmb9V3RSVjDaVz_aKAByYcCTGmn_N7eWNl2Ic_acPHNrE7pvgfaCTMziJbnuQUaXJUWQ0Q3IKICMOpBRDzLqQEYtyKhaUwcy2oOMQv8RyOgGZNvk_Pvh2cERc2U6mIZotmEqlrKMdRkakZQQL5o0VlJlkUykTJNEFToso6JQoSqw3kEhZqYIpNC6jHkZqiR8RbYWy4V5Q2ikOQpnB4EMChFrmZrYiEzxhCNZ3qRT8qV_d3PtNOyxlMrl_I7RpuSj73pthVvu6_QZDTBH4MA4Wro9KfA0KIs230-x6CZmUaZkZ9QTnLAend62JvT36m_w2lrUt4c8i9KEx28f8nzvyNPNT2iHbDU3rXkPQXCjPnRYhOPxSf4XBfuvGQ |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deletion+of+PIN4+Suppresses+the+Protein+Transport+Defects+Caused+by+sec12-4+Mutation+in+Saccharomyces+cerevisiae&rft.jtitle=Microbial+physiology&rft.au=Murakami-Sekimata%2C+Akiko&rft.au=Sekimata%2C+Masayuki&rft.au=Sato%2C+Natsumi&rft.au=Hayasaka%2C+Yuto&rft.date=2020-12-01&rft.issn=2673-1665&rft.eissn=2673-1673&rft.volume=30&rft.issue=1-6&rft.spage=25&rft.epage=35&rft_id=info:doi/10.1159%2F000509633&rft.externalDBID=n%2Fa&rft.externalDocID=10_1159_000509633 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-1665&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-1665&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-1665&client=summon |