Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses
Mechanical properties of wheat straw, barley straw, corn stover and switchgrass were determined at different compressive forces, particle sizes and moisture contents. Ground biomass samples were compressed with five levels of compressive forces (1000, 2000, 3000, 4000 and 4400 N) and three levels of...
Saved in:
Published in | Biomass & bioenergy Vol. 30; no. 7; pp. 648 - 654 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.07.2006
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0961-9534 1873-2909 |
DOI | 10.1016/j.biombioe.2005.01.004 |
Cover
Abstract | Mechanical properties of wheat straw, barley straw, corn stover and switchgrass were determined at different compressive forces, particle sizes and moisture contents. Ground biomass samples were compressed with five levels of compressive forces (1000, 2000, 3000, 4000 and 4400
N) and three levels of particle sizes (3.2, 1.6 and 0.8
mm) at two levels of moisture contents (12% and 15% (wet basis)) to establish compression and relaxation data. Compressed sample dimensions and mass were measured to calculate pellet density. Corn stover produced the highest pellet density at low pressure during compression. Compressive force, particle size and moisture content significantly affected the pellet density of barley straw, corn stover and switchgrass. However, different particle sizes of wheat straw did not produce any significant difference on pellet density. The relaxation data were analyzed to determine the asymptotic modulus of biomass pellets. Barley straw had the highest asymptotic modulus among all biomass indicating that pellets made from barley straw were more rigid than those of other pellets. Asymptotic modulus increased linearly with an increase in compressive pressure. A simple linear model was developed to relate asymptotic modulus and maximum compressive pressure. |
---|---|
AbstractList | Mechanical properties of wheat straw, barley straw, corn stover and switchgrass were determined at different compressive forces, particle sizes and moisture contents. Ground biomass samples were compressed with five levels of compressive forces (1000, 2000, 3000, 4000 and 4400
N) and three levels of particle sizes (3.2, 1.6 and 0.8
mm) at two levels of moisture contents (12% and 15% (wet basis)) to establish compression and relaxation data. Compressed sample dimensions and mass were measured to calculate pellet density. Corn stover produced the highest pellet density at low pressure during compression. Compressive force, particle size and moisture content significantly affected the pellet density of barley straw, corn stover and switchgrass. However, different particle sizes of wheat straw did not produce any significant difference on pellet density. The relaxation data were analyzed to determine the asymptotic modulus of biomass pellets. Barley straw had the highest asymptotic modulus among all biomass indicating that pellets made from barley straw were more rigid than those of other pellets. Asymptotic modulus increased linearly with an increase in compressive pressure. A simple linear model was developed to relate asymptotic modulus and maximum compressive pressure. Mechanical properties of wheat straw, barley straw, corn stover and switchgrass were determined at different compressive forces, particle sizes and moisture contents. Ground biomass samples were compressed with five levels of compressive forces (1000, 2000, 3000, 4000 and 4400 N) and three levels of particle sizes (3.2, 1.6 and 0.8 mm) at two levels of moisture contents (12% and 15% (wet basis)) to establish compression and relaxation data. Compressed sample dimensions and mass were measured to calculate pellet density. Corn stover produced the highest pellet density at low pressure during compression. Compressive force, particle size and moisture content significantly affected the pellet density of barley straw, com stover and switchgrass. However, different particle sizes of wheat straw did not produce any significant difference on pellet density. The relaxation data were analyzed to determine the asymptotic modulus of biomass pellets. Barley straw had the highest asymptotic modulus among all biomass indicating that pellets made from barley straw were more rigid than those of other pellets. Asymptotic modulus increased linearly with an increase in compressive pressure. A simple linear model was developed to relate asymptotic modulus and maximum compressive pressure. |
Author | Mani, Sudhagar Tabil, Lope G. Sokhansanj, Shahab |
Author_xml | – sequence: 1 givenname: Sudhagar surname: Mani fullname: Mani, Sudhagar email: msudhagar@chml.ubc.ca organization: Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3 – sequence: 2 givenname: Lope G. surname: Tabil fullname: Tabil, Lope G. organization: Department of Agricultural and Bioresource Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada, S7N 5A9 – sequence: 3 givenname: Shahab surname: Sokhansanj fullname: Sokhansanj, Shahab organization: Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17915934$$DView record in Pascal Francis |
BookMark | eNqFkVFrHCEUhaUk0E3Sv1B8aZ860-s6zir0oSWkTSDQl-RZXOfauszo1DsbSH593W5KoS9BRJDvHI_3nLGTlBMy9lZAK0D0H3ftNuapbmzXAKoF0QJ0r9hK6I1s1gbMCVuB6UVjlOxeszOiHYDooBMr9ngVAvqFeA7c52kuSBQfkIdcPH7gsytL9CNyik_IXRr4lCMt-4KVTgumhefEJ_Q_XYrejXwuecaqwT-Oh2COiM84jlgfCSVP_EepV0gX7DS4kfDN83nO7r9e3V1eN7ffv91cfrltfCfN0mz73qlOadn5gFspdb91eiMG1dfgTgsZlAFce5SDGIZBK-2k0loqcAMID_KcvT_61mi_9kiLnSL5GsglzHuya-hMXbqC755BR_UrobjkI9m5xMmVRys2Rigju8r1R86XTFQw_EPAHhqxO_u3EXtoxIKwtZEq_PSf0MfFLbEOsrg4viz_fJRjndZDxGLJR0weh1hqhXbI8SWL3zG1sLk |
CitedBy_id | crossref_primary_10_1016_j_fuel_2021_122728 crossref_primary_10_3168_jds_2018_15334 crossref_primary_10_1016_j_biombioe_2012_12_025 crossref_primary_10_1016_j_indcrop_2012_11_009 crossref_primary_10_1080_14328917_2021_2022372 crossref_primary_10_1016_j_fuel_2019_03_141 crossref_primary_10_3390_ma7096686 crossref_primary_10_4028_www_scientific_net_AMR_156_157_94 crossref_primary_10_1016_j_fuel_2014_09_033 crossref_primary_10_1016_j_fuproc_2015_08_023 crossref_primary_10_4155_bfs_13_14 crossref_primary_10_1002_aic_14755 crossref_primary_10_1007_s11356_022_20218_w crossref_primary_10_1007_s13399_016_0206_x crossref_primary_10_1016_j_rser_2019_109506 crossref_primary_10_1016_j_biombioe_2017_05_005 crossref_primary_10_1016_j_biombioe_2010_08_052 crossref_primary_10_1016_j_biombioe_2019_02_013 crossref_primary_10_1007_s13399_020_00844_5 crossref_primary_10_1007_s11356_019_06115_9 crossref_primary_10_1007_s13399_021_01805_2 crossref_primary_10_1016_j_fuel_2018_03_097 crossref_primary_10_1155_2015_719042 crossref_primary_10_2134_agronj2012_0190 crossref_primary_10_1016_j_renene_2015_08_043 crossref_primary_10_1016_j_ces_2014_05_012 crossref_primary_10_1007_s12649_023_02133_4 crossref_primary_10_1016_j_biombioe_2013_05_001 crossref_primary_10_1016_j_renene_2024_120805 crossref_primary_10_29136_mediterranean_427730 crossref_primary_10_1016_j_fuel_2020_119145 crossref_primary_10_1016_j_biombioe_2018_07_025 crossref_primary_10_1016_j_rser_2019_109414 crossref_primary_10_1016_j_renene_2016_02_006 crossref_primary_10_1016_j_biombioe_2019_105368 crossref_primary_10_1016_j_apenergy_2015_05_019 crossref_primary_10_14710_ijred_2023_53994 crossref_primary_10_1021_acs_energyfuels_7b00097 crossref_primary_10_4236_jsbs_2015_51002 crossref_primary_10_3389_fenrg_2021_699657 crossref_primary_10_1016_j_petrol_2017_11_001 crossref_primary_10_1016_j_indcrop_2016_11_028 crossref_primary_10_1016_j_biombioe_2014_07_029 crossref_primary_10_1016_j_biosystemseng_2015_04_005 crossref_primary_10_1016_j_rser_2019_01_053 crossref_primary_10_1007_s12155_014_9495_8 crossref_primary_10_1016_j_bcab_2022_102315 crossref_primary_10_3390_su152316489 crossref_primary_10_1080_17597269_2017_1368060 crossref_primary_10_1016_j_renene_2021_06_094 crossref_primary_10_1080_11358120809487623 crossref_primary_10_1016_j_biortech_2007_12_065 crossref_primary_10_1016_j_biteb_2021_100686 crossref_primary_10_1080_17597269_2017_1368061 crossref_primary_10_1002_cite_201700097 crossref_primary_10_1016_j_biortech_2013_01_169 crossref_primary_10_1007_s42108_023_00268_7 crossref_primary_10_1007_s11356_022_22823_1 crossref_primary_10_1016_j_applthermaleng_2017_06_007 crossref_primary_10_1016_j_powtec_2018_08_042 crossref_primary_10_1080_09593330_2013_833639 crossref_primary_10_1016_j_enconman_2014_04_071 crossref_primary_10_3389_fenrg_2022_754811 crossref_primary_10_24326_as_2021_1_7 crossref_primary_10_1007_s43938_023_00036_3 crossref_primary_10_1016_j_biosystemseng_2023_04_009 crossref_primary_10_3390_app10186383 crossref_primary_10_1007_s12155_015_9588_z crossref_primary_10_1016_j_biosystemseng_2023_12_007 crossref_primary_10_1007_s12649_016_9742_7 crossref_primary_10_1115_1_4003475 crossref_primary_10_1007_s13196_025_00367_4 crossref_primary_10_1007_s12155_011_9169_8 crossref_primary_10_1016_j_biortech_2014_05_077 crossref_primary_10_1007_s40831_024_00825_2 crossref_primary_10_1016_j_biombioe_2016_03_022 crossref_primary_10_3390_catal11070805 crossref_primary_10_1016_j_apt_2016_04_036 crossref_primary_10_1016_j_partic_2020_12_006 crossref_primary_10_1088_1757_899X_501_1_012004 crossref_primary_10_3390_f15122086 crossref_primary_10_3390_en10081205 crossref_primary_10_3390_en14248320 crossref_primary_10_1007_s12155_018_9921_4 crossref_primary_10_1016_j_applthermaleng_2016_05_090 crossref_primary_10_1016_j_biombioe_2021_106087 crossref_primary_10_1016_j_biombioe_2019_105370 crossref_primary_10_3390_en14144104 crossref_primary_10_1016_j_powtec_2015_04_069 crossref_primary_10_1016_j_rser_2017_05_026 crossref_primary_10_1016_j_renene_2017_12_016 crossref_primary_10_1016_j_powtec_2016_06_041 crossref_primary_10_1007_s13399_024_06389_1 crossref_primary_10_1016_j_rser_2014_01_051 crossref_primary_10_1016_j_biombioe_2016_02_006 crossref_primary_10_1080_07373937_2014_967403 crossref_primary_10_1016_j_wasman_2013_01_033 crossref_primary_10_1016_j_joei_2016_09_002 crossref_primary_10_1515_revce_2024_0034 crossref_primary_10_1021_ef301562k crossref_primary_10_1007_s11694_017_9503_8 crossref_primary_10_33202_comuagri_865091 crossref_primary_10_1016_j_apenergy_2012_10_050 crossref_primary_10_1016_j_jfoodeng_2012_11_025 crossref_primary_10_1007_s42452_019_0453_0 crossref_primary_10_1002_bbb_1322 crossref_primary_10_3390_agronomy11071357 crossref_primary_10_1021_acssuschemeng_5b01748 crossref_primary_10_1016_j_renene_2019_06_048 crossref_primary_10_1021_acs_energyfuels_7b03663 crossref_primary_10_3390_fermentation5020030 crossref_primary_10_3103_S0361521921060070 crossref_primary_10_1007_s12155_019_10076_9 crossref_primary_10_1016_j_fuel_2014_04_061 crossref_primary_10_1016_j_biombioe_2012_10_015 crossref_primary_10_1016_j_powtec_2021_03_072 crossref_primary_10_21467_ajgr_9_1_1_13 crossref_primary_10_1016_j_biombioe_2008_04_013 crossref_primary_10_1021_acssusresmgt_3c00121 crossref_primary_10_1007_s13197_012_0861_2 crossref_primary_10_1016_j_apenergy_2012_10_016 crossref_primary_10_1039_C6GC01389A crossref_primary_10_1515_agriceng_2019_0028 crossref_primary_10_1007_s10973_016_5683_4 crossref_primary_10_3390_cleantechnol4040072 crossref_primary_10_1016_j_fuproc_2008_06_001 crossref_primary_10_1016_j_biteb_2022_101054 crossref_primary_10_1016_j_jclepro_2020_124006 crossref_primary_10_3390_bioengineering7020038 crossref_primary_10_3390_en11030648 crossref_primary_10_1007_s13399_024_05631_0 crossref_primary_10_1115_1_4007467 crossref_primary_10_1016_j_fuproc_2014_12_013 crossref_primary_10_3390_en11051214 crossref_primary_10_3390_foods12081598 crossref_primary_10_1080_10962247_2024_2447480 crossref_primary_10_1016_j_biombioe_2018_10_009 crossref_primary_10_7584_JKTAPPI_2018_06_50_3_12 crossref_primary_10_1016_j_chemosphere_2016_09_076 crossref_primary_10_1177_0734242X13484191 crossref_primary_10_1002_bbb_1476 crossref_primary_10_5307_JBE_2010_35_5_336 crossref_primary_10_1016_j_fuproc_2011_10_012 crossref_primary_10_3390_bioengineering6030080 crossref_primary_10_1007_s11367_011_0374_7 crossref_primary_10_1051_rees_2021057 crossref_primary_10_1002_ceat_201900488 crossref_primary_10_1016_j_fuproc_2018_04_015 crossref_primary_10_1016_j_biortech_2012_03_093 crossref_primary_10_1080_02726351_2017_1355860 crossref_primary_10_1016_j_powtec_2012_10_018 crossref_primary_10_12688_f1000research_10969_1 crossref_primary_10_1016_j_biombioe_2009_05_005 crossref_primary_10_1080_17597269_2024_2401223 crossref_primary_10_1016_j_biosystemseng_2015_08_009 crossref_primary_10_3390_bioengineering9040133 crossref_primary_10_1016_j_fuproc_2015_09_022 crossref_primary_10_2478_v10247_012_0040_8 crossref_primary_10_1080_15567036_2013_876462 crossref_primary_10_1177_0958305X18772414 crossref_primary_10_1007_s12649_017_0010_2 crossref_primary_10_1002_cite_201500157 crossref_primary_10_1016_j_fuel_2014_11_069 crossref_primary_10_1016_j_biombioe_2013_03_012 crossref_primary_10_1016_j_proeng_2016_06_445 crossref_primary_10_1007_s13399_021_01559_x crossref_primary_10_1016_j_biombioe_2015_06_006 crossref_primary_10_1016_j_fuproc_2008_07_001 crossref_primary_10_1016_j_wasman_2014_08_008 crossref_primary_10_3390_met14010074 crossref_primary_10_1016_j_compositesa_2019_05_009 crossref_primary_10_1007_s12155_014_9443_7 crossref_primary_10_1590_S1413_70542014000500005 crossref_primary_10_1016_j_fuel_2020_119613 crossref_primary_10_1016_j_biortech_2010_08_028 crossref_primary_10_1016_j_fuproc_2016_02_013 crossref_primary_10_1002_bbb_2121 crossref_primary_10_1016_j_fuproc_2012_05_031 crossref_primary_10_1142_S1793962320500257 crossref_primary_10_1016_j_renene_2018_11_004 crossref_primary_10_1007_s00107_020_01585_y crossref_primary_10_3390_ma13194375 crossref_primary_10_1016_j_fuel_2017_01_063 crossref_primary_10_1111_lam_13676 crossref_primary_10_2139_ssrn_4000211 crossref_primary_10_1016_j_fuel_2009_05_015 crossref_primary_10_1016_j_fuproc_2016_02_024 crossref_primary_10_1016_j_biortech_2009_08_064 crossref_primary_10_3390_ma11081329 crossref_primary_10_3390_bioengineering4020025 crossref_primary_10_1016_j_fuel_2019_03_126 crossref_primary_10_1016_j_partic_2013_05_007 crossref_primary_10_1016_j_ccst_2021_100005 crossref_primary_10_1016_j_renene_2017_04_041 crossref_primary_10_3168_jds_2016_11033 crossref_primary_10_1049_rpg2_12365 crossref_primary_10_7464_ksct_2016_22_4_286 crossref_primary_10_1016_j_cep_2021_108634 crossref_primary_10_1016_j_renene_2013_06_038 crossref_primary_10_4028_www_scientific_net_AMM_592_594_67 crossref_primary_10_3390_app11062740 crossref_primary_10_3390_en11020331 crossref_primary_10_1002_bit_26925 crossref_primary_10_1016_j_fuproc_2010_11_031 crossref_primary_10_3390_en16124796 crossref_primary_10_3390_fermentation9030289 crossref_primary_10_1007_s00107_020_01637_3 crossref_primary_10_1007_s10694_018_0712_4 crossref_primary_10_3390_en14113116 crossref_primary_10_1016_j_apenergy_2016_12_027 crossref_primary_10_1016_j_scp_2022_100814 crossref_primary_10_1016_j_rser_2020_109763 crossref_primary_10_20289_zfdergi_723940 crossref_primary_10_1016_j_biombioe_2013_10_011 crossref_primary_10_1016_j_biombioe_2016_07_007 crossref_primary_10_1016_j_rser_2017_01_039 crossref_primary_10_1016_j_foohum_2023_09_002 crossref_primary_10_9713_kcer_2012_50_2_385 crossref_primary_10_1016_j_biortech_2016_04_064 crossref_primary_10_4155_bfs_11_146 crossref_primary_10_1051_matecconf_201816807005 crossref_primary_10_1016_j_biosystemseng_2009_02_012 crossref_primary_10_1016_j_rser_2023_113520 crossref_primary_10_1021_acsomega_2c03434 crossref_primary_10_3390_ijerph18136964 crossref_primary_10_1016_j_renene_2024_120494 crossref_primary_10_1002_ceat_202200310 crossref_primary_10_3390_en14185895 crossref_primary_10_1016_j_biombioe_2014_04_027 crossref_primary_10_1016_j_fuel_2023_130107 crossref_primary_10_1016_j_jenvman_2019_02_104 crossref_primary_10_1016_j_renene_2020_08_083 crossref_primary_10_1002_pc_22592 crossref_primary_10_1007_s13399_023_04805_6 crossref_primary_10_1016_j_apenergy_2017_07_080 crossref_primary_10_3390_en15030842 crossref_primary_10_1016_j_fbp_2012_01_007 crossref_primary_10_1088_1755_1315_578_1_012028 crossref_primary_10_3390_f10100869 crossref_primary_10_1016_j_biosystemseng_2013_12_009 crossref_primary_10_1016_j_polymdegradstab_2019_05_033 crossref_primary_10_1177_27533735241284221 crossref_primary_10_1016_j_biortech_2012_04_054 crossref_primary_10_1016_j_energy_2015_12_063 crossref_primary_10_1007_s12649_017_0178_5 crossref_primary_10_1016_j_biombioe_2015_06_010 crossref_primary_10_1007_s12649_013_9271_6 crossref_primary_10_1007_s12649_022_01701_4 crossref_primary_10_1016_j_biosystemseng_2012_10_002 crossref_primary_10_1016_j_pecs_2017_05_004 crossref_primary_10_1016_j_rser_2018_03_023 crossref_primary_10_1016_j_renene_2019_04_050 crossref_primary_10_1016_j_fuproc_2008_12_009 crossref_primary_10_1016_j_powtec_2019_06_002 crossref_primary_10_1111_jfpe_12192 crossref_primary_10_1016_j_powtec_2024_119406 crossref_primary_10_1016_j_powtec_2018_11_002 crossref_primary_10_1016_j_fuel_2020_119805 crossref_primary_10_1016_j_biombioe_2012_01_027 crossref_primary_10_1016_j_fuel_2013_04_048 crossref_primary_10_1016_j_renene_2010_08_003 crossref_primary_10_1016_j_renene_2019_04_046 crossref_primary_10_1016_j_renene_2018_08_003 crossref_primary_10_5658_WOOD_2019_47_1_110 crossref_primary_10_1080_17597269_2024_2303812 crossref_primary_10_1007_s13196_020_00268_8 crossref_primary_10_1016_j_jtice_2024_105616 crossref_primary_10_1016_j_biombioe_2017_08_008 crossref_primary_10_1016_j_fuproc_2014_12_040 crossref_primary_10_1016_j_indcrop_2014_10_008 crossref_primary_10_1007_s10098_022_02350_w crossref_primary_10_1016_j_esd_2017_11_005 crossref_primary_10_1016_j_indcrop_2010_12_016 crossref_primary_10_3390_app14209398 crossref_primary_10_3390_ma16010058 crossref_primary_10_1007_s12649_019_00755_1 crossref_primary_10_1016_j_mtcomm_2023_107683 crossref_primary_10_1080_02773813_2019_1652324 crossref_primary_10_1016_j_fuproc_2013_07_006 crossref_primary_10_1016_j_renene_2012_07_034 crossref_primary_10_1016_j_apenergy_2018_01_093 crossref_primary_10_3390_ma14040879 crossref_primary_10_1063_1_4940660 crossref_primary_10_3390_en13133468 crossref_primary_10_1002_bbb_239 crossref_primary_10_1016_j_biteb_2023_101554 crossref_primary_10_1088_1757_899X_297_1_012003 crossref_primary_10_1016_j_apenergy_2014_08_094 crossref_primary_10_1016_j_biortech_2009_05_069 crossref_primary_10_1016_j_rser_2009_06_025 crossref_primary_10_3182_20130606_3_XK_4037_00052 crossref_primary_10_1016_j_renene_2020_01_037 crossref_primary_10_1016_j_fuproc_2017_02_020 crossref_primary_10_1016_j_jaap_2011_04_010 crossref_primary_10_1080_15567036_2020_1752857 crossref_primary_10_1016_j_biombioe_2018_11_013 crossref_primary_10_1016_j_ecmx_2019_100008 crossref_primary_10_1016_j_foodcont_2020_107164 crossref_primary_10_3390_en14113270 crossref_primary_10_1016_j_rser_2013_08_074 crossref_primary_10_1007_s13399_024_06293_8 crossref_primary_10_3390_molecules27031035 crossref_primary_10_1016_j_biteb_2023_101527 crossref_primary_10_1016_j_fuel_2009_03_015 crossref_primary_10_1007_s11274_022_03399_x crossref_primary_10_3390_en13030652 crossref_primary_10_1016_j_biombioe_2017_08_024 crossref_primary_10_1016_j_apenergy_2019_113385 crossref_primary_10_1016_j_renene_2012_12_015 crossref_primary_10_1016_j_renene_2012_12_014 crossref_primary_10_11118_actaun201664051593 crossref_primary_10_1016_j_renene_2022_06_085 crossref_primary_10_1007_s13399_023_03863_0 crossref_primary_10_1051_epjconf_201714013017 crossref_primary_10_1016_j_renene_2021_09_088 crossref_primary_10_1007_s11356_024_34232_7 crossref_primary_10_1007_s10311_022_01510_0 crossref_primary_10_1016_j_biombioe_2013_02_031 crossref_primary_10_1016_j_rser_2025_115484 crossref_primary_10_3390_polym13152487 crossref_primary_10_3390_ma13204623 crossref_primary_10_1016_j_supflu_2023_106078 crossref_primary_10_1016_j_scitotenv_2023_164526 crossref_primary_10_1007_s12649_012_9127_5 crossref_primary_10_1016_j_biombioe_2009_10_001 crossref_primary_10_3390_en12244687 crossref_primary_10_1016_j_protcy_2015_02_106 crossref_primary_10_1021_ef2005628 crossref_primary_10_1007_s12010_014_1120_y crossref_primary_10_1051_bioconf_20181002028 crossref_primary_10_1051_agro_2007006 crossref_primary_10_1177_0734242X19893022 crossref_primary_10_14723_tmrsj_38_467 crossref_primary_10_1016_j_chemosphere_2021_132555 crossref_primary_10_1016_j_fuproc_2010_12_001 crossref_primary_10_1007_s12011_022_03429_7 crossref_primary_10_37908_mkutbd_785095 crossref_primary_10_1016_j_renene_2019_10_139 crossref_primary_10_5424_sjar_2015131_6492 crossref_primary_10_3390_pr11072170 crossref_primary_10_1016_j_biortech_2012_12_004 crossref_primary_10_1007_s10853_012_6897_x crossref_primary_10_1016_j_energy_2022_125305 crossref_primary_10_3390_en13133392 crossref_primary_10_1051_bioconf_20181002035 crossref_primary_10_1021_acsearthspacechem_2c00251 crossref_primary_10_3390_en13081859 crossref_primary_10_3390_ma8041413 crossref_primary_10_1016_j_energy_2018_06_200 crossref_primary_10_1016_j_indcrop_2020_113189 crossref_primary_10_1016_j_biombioe_2024_107271 crossref_primary_10_1016_j_partic_2022_08_016 crossref_primary_10_3390_en11010109 crossref_primary_10_3390_en12071198 crossref_primary_10_3390_en8076382 crossref_primary_10_1088_1748_9326_ac4c5c crossref_primary_10_1016_j_rser_2021_111871 crossref_primary_10_1007_s41204_024_00377_6 crossref_primary_10_1016_j_biosystemseng_2016_12_009 crossref_primary_10_5658_WOOD_2017_45_6_703 crossref_primary_10_1007_s00248_015_0683_7 crossref_primary_10_1016_j_partic_2023_07_006 crossref_primary_10_1021_ef101683s crossref_primary_10_1515_agriceng_2016_0062 crossref_primary_10_1115_1_4039602 crossref_primary_10_3390_fuels3010010 crossref_primary_10_1016_j_apenergy_2015_11_018 crossref_primary_10_3390_en13102544 crossref_primary_10_3390_en13102542 crossref_primary_10_30766_2072_9081_2023_24_1_30_45 crossref_primary_10_59665_rar4060 crossref_primary_10_1002_fsn3_1184 crossref_primary_10_1016_j_combustflame_2018_04_014 crossref_primary_10_1515_agriceng_2016_0072 crossref_primary_10_1016_j_jclepro_2016_12_166 crossref_primary_10_1515_agriceng_2016_0078 crossref_primary_10_3390_app14031080 crossref_primary_10_5194_ms_12_725_2021 crossref_primary_10_1016_j_fuproc_2024_108149 crossref_primary_10_2478_auoc_2022_0022 crossref_primary_10_3390_fuels4010008 crossref_primary_10_14356_kona_2019010 crossref_primary_10_1016_j_powtec_2019_10_051 crossref_primary_10_1122_1_5009943 crossref_primary_10_17221_17_2015_RAE crossref_primary_10_1016_j_jfoodeng_2014_09_006 crossref_primary_10_1080_15435075_2019_1671402 crossref_primary_10_3390_app9204302 crossref_primary_10_1016_j_fuproc_2018_09_021 crossref_primary_10_1016_j_renene_2023_01_042 crossref_primary_10_1016_j_jclepro_2024_144046 crossref_primary_10_1016_j_fuproc_2015_05_011 crossref_primary_10_13080_z_a_2014_101_004 crossref_primary_10_1016_j_biosystemseng_2018_08_007 crossref_primary_10_1007_s12649_017_9840_1 crossref_primary_10_3390_molecules26041014 crossref_primary_10_1016_j_biombioe_2024_107077 crossref_primary_10_1016_j_jenvman_2018_08_105 crossref_primary_10_1016_j_jobab_2022_10_001 crossref_primary_10_1016_j_indcrop_2022_115688 crossref_primary_10_46647_ijetms_2023_v07i04_019 crossref_primary_10_1016_j_biombioe_2021_106125 crossref_primary_10_1016_j_biosystemseng_2023_08_017 crossref_primary_10_1080_19392699_2022_2119558 crossref_primary_10_3390_su11133604 crossref_primary_10_1007_s13369_017_2808_4 crossref_primary_10_1016_j_fuproc_2009_04_007 crossref_primary_10_1007_s13399_015_0162_x crossref_primary_10_1016_j_indcrop_2015_12_072 crossref_primary_10_1016_j_apenergy_2012_01_037 crossref_primary_10_1007_s12155_014_9527_4 crossref_primary_10_1016_j_biortech_2017_12_015 crossref_primary_10_1016_j_biombioe_2023_106825 crossref_primary_10_3390_ma14133698 crossref_primary_10_1021_ef4000787 crossref_primary_10_1021_ef5019252 crossref_primary_10_1080_00986445_2024_2367222 crossref_primary_10_1002_star_202300069 crossref_primary_10_1039_D3RA05367A crossref_primary_10_1007_s12649_018_0458_8 crossref_primary_10_4155_bfs_12_20 crossref_primary_10_1016_j_biosystemseng_2016_05_009 crossref_primary_10_1016_j_indcrop_2015_04_027 crossref_primary_10_1016_j_renene_2014_10_057 crossref_primary_10_1063_1_5000879 crossref_primary_10_1016_j_indcrop_2024_120134 crossref_primary_10_1080_23311932_2019_1656917 crossref_primary_10_14356_kona_2018005 crossref_primary_10_1016_j_biombioe_2016_04_007 crossref_primary_10_1016_j_biombioe_2019_01_048 crossref_primary_10_1155_2021_8608215 crossref_primary_10_1016_j_fuproc_2009_04_012 crossref_primary_10_1007_s12649_018_0239_4 crossref_primary_10_1080_15567036_2019_1660436 |
Cites_doi | 10.1016/0377-8401(87)90025-3 10.1122/1.549567 10.1016/S0961-9534(97)10023-X 10.13031/2013.38747 10.13031/2013.21618 10.1016/j.biombioe.2004.03.007 10.1016/0377-8401(96)00949-2 10.1016/S0377-8401(97)00072-2 10.1016/S0926-6690(03)00112-2 10.1111/j.1365-2621.1980.tb07467.x 10.1080/07352680500316508 10.1016/0032-5910(79)87018-7 10.3168/jds.S0022-0302(91)78551-2 10.1111/j.1745-4530.1977.tb00188.x 10.1016/S0196-8904(00)00137-0 10.1111/j.1365-2621.1981.tb14557.x |
ContentType | Journal Article |
Copyright | 2006 Elsevier Ltd 2006 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier Ltd – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QO 7ST 7U6 8FD C1K FR3 P64 SOI |
DOI | 10.1016/j.biombioe.2005.01.004 |
DatabaseName | CrossRef Pascal-Francis Biotechnology Research Abstracts Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database Sustainability Science Abstracts Engineering Research Database Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Biotechnology Research Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1873-2909 |
EndPage | 654 |
ExternalDocumentID | 17915934 10_1016_j_biombioe_2005_01_004 S0961953406000250 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SES SEW SPC SPCBC SSA SSG SSJ SSR SSZ T5K VH1 WUQ ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7QO 7ST 7U6 8FD C1K FR3 P64 SOI |
ID | FETCH-LOGICAL-c439t-b66a545834cfeb3386ba871d56ffea813f590e2ce3d1ddd858a3588350ad01c03 |
IEDL.DBID | AIKHN |
ISSN | 0961-9534 |
IngestDate | Thu Sep 04 22:42:30 EDT 2025 Mon Jul 21 09:16:38 EDT 2025 Tue Jul 01 01:49:20 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Fri Feb 23 02:34:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Pellet density and Asymptotic modulus Barley straw Corn stover Physical properties Wheat straw Switchgrass Pellet Monocotyledones Particle size Corn Mechanical properties Biomass Panicum virgatum Energy crop Straw Gramineae Angiospermae Water content Spermatophyta |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-b66a545834cfeb3386ba871d56ffea813f590e2ce3d1ddd858a3588350ad01c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 20494948 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_20494948 pascalfrancis_primary_17915934 crossref_primary_10_1016_j_biombioe_2005_01_004 crossref_citationtrail_10_1016_j_biombioe_2005_01_004 elsevier_sciencedirect_doi_10_1016_j_biombioe_2005_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-07-01 |
PublicationDateYYYYMMDD | 2006-07-01 |
PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Biomass & bioenergy |
PublicationYear | 2006 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Peleg (bib23) 1980; 24 Tabil LG, Sokhansanj S. The use of binders in pelleting of alfalfa. CSAE paper no. 95-307. Mansonville, QC: Canadian Society of Agricultural Engineer; 1995. Thomas, van der Poel (bib11) 1996; 61 Mani, Tabil, Sokhansanj (bib3) 2004; 46 AOAC. AOAC method 942.05—ash in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 70. Arlington, VA: Association of Official Analytical Chemists; 1990. ASAE Standards 47th Ed. S319.3—method of determining and expressing fineness of feed materials by sieving. St. Joseph, Michigan: ASAE; 2001. p. 573–6. AOAC. AOAC method 920.29—fat (crude) or ether extract in animal feed. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., Arlington, VA: Association of Official Analytical Chemists; 1990. AOAC. AOAC method 973.18—fiber (acid detergent) and lignin in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 82. Arlington, VA: Association of Official Analytical Chemists; 1990. Peleg (bib21) 1977; 1 Mani, Tabil, Sokhansanj (bib4) 2003; 15 van Dam, van den Oever, Teunissen, Keijsers, Peralta (bib26) 2004; 19 Samson, Mani, Boddey, Sokhansanj, Quesada, Urquiaga (bib5) 2005; 24 Gustafson, Kjelgaard (bib29) 1963; 44 2001 [accessed on August 2002]. Tabil LG. Binding and pelleting characteristics of alfalfa. PhD thesis, Saskatoon, SK: Department of Agricultural and Bioresource Engineering, University of Saskatchewan; 1996. ASTM Standard. ASTM Standards D 3173-87—standard test method for moisture in the analysis sample of coal and coke. In: Furcola NC, editor Annual book of ASTM standards, section 5, vol. 05.05. West Conshohocken, PA, USA: American Society for Testing and Materials; 1998. p. 301–2. Tabil, Sokhansanj (bib6) 1997; 13 Tripathi, Iyer, Kandpal (bib2) 1998; 14 (bib20) 1999 AOAC. AOAC method 976.06—protein (crude) in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 72. Arlington, VA: Association of Official Analytical Chemists; 1990. Mani, Tabil, Sokhansanj (bib19) 2004; 27 Moreyra, Peleg (bib24) 1980; 45 Rehkugler, Buchele (bib30) 1969; 12 Scoville, Peleg (bib25) 1981; 46 Peleg, Moreyra (bib22) 1979; 23 Jannasch R, Quan Y, Samson R. A process and energy analysis of pelletizing switchgrass. Final report. Website Samson P, Duxbury P, Drisdelle M, Lapointe C. Assessment of pelletized biofuels. Wood (bib28) 1987; 18 2000 [accessed on June 20, 2001]. van Soest, Robertson, Lewis (bib15) 1991; 74 Thomas, van Vliet, van der Poel (bib27) 1998; 70 Demirbaş (bib1) 2001; 42 Tabil (10.1016/j.biombioe.2005.01.004_bib6) 1997; 13 Wood (10.1016/j.biombioe.2005.01.004_bib28) 1987; 18 (10.1016/j.biombioe.2005.01.004_bib20) 1999 Peleg (10.1016/j.biombioe.2005.01.004_bib21) 1977; 1 10.1016/j.biombioe.2005.01.004_bib8 10.1016/j.biombioe.2005.01.004_bib9 10.1016/j.biombioe.2005.01.004_bib7 Thomas (10.1016/j.biombioe.2005.01.004_bib27) 1998; 70 Demirbaş (10.1016/j.biombioe.2005.01.004_bib1) 2001; 42 Peleg (10.1016/j.biombioe.2005.01.004_bib23) 1980; 24 Peleg (10.1016/j.biombioe.2005.01.004_bib22) 1979; 23 Tripathi (10.1016/j.biombioe.2005.01.004_bib2) 1998; 14 Samson (10.1016/j.biombioe.2005.01.004_bib5) 2005; 24 van Soest (10.1016/j.biombioe.2005.01.004_bib15) 1991; 74 van Dam (10.1016/j.biombioe.2005.01.004_bib26) 2004; 19 Mani (10.1016/j.biombioe.2005.01.004_bib3) 2004; 46 Mani (10.1016/j.biombioe.2005.01.004_bib4) 2003; 15 10.1016/j.biombioe.2005.01.004_bib18 Mani (10.1016/j.biombioe.2005.01.004_bib19) 2004; 27 Scoville (10.1016/j.biombioe.2005.01.004_bib25) 1981; 46 10.1016/j.biombioe.2005.01.004_bib17 10.1016/j.biombioe.2005.01.004_bib16 Gustafson (10.1016/j.biombioe.2005.01.004_bib29) 1963; 44 10.1016/j.biombioe.2005.01.004_bib14 10.1016/j.biombioe.2005.01.004_bib13 10.1016/j.biombioe.2005.01.004_bib12 10.1016/j.biombioe.2005.01.004_bib10 Rehkugler (10.1016/j.biombioe.2005.01.004_bib30) 1969; 12 Moreyra (10.1016/j.biombioe.2005.01.004_bib24) 1980; 45 Thomas (10.1016/j.biombioe.2005.01.004_bib11) 1996; 61 |
References_xml | – volume: 46 start-page: 174 year: 1981 end-page: 177 ident: bib25 article-title: Evaluation of the effects of liquid bridges on the bulk properties of model powders publication-title: Journal of Food Science – volume: 24 start-page: 461 year: 2005 end-page: 495 ident: bib5 article-title: The potential of C4 perennial grasses for developing a global bio-heat industry publication-title: Critical Reviews in Plant Science – year: 1999 ident: bib20 article-title: SAS user's guide: statistics. Ver. 8 – volume: 44 start-page: 442 year: 1963 end-page: 445 ident: bib29 article-title: Hay pellet geometry and stability publication-title: Agricultural Engineering – reference: AOAC. AOAC method 920.29—fat (crude) or ether extract in animal feed. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., Arlington, VA: Association of Official Analytical Chemists; 1990. – reference: ASTM Standard. ASTM Standards D 3173-87—standard test method for moisture in the analysis sample of coal and coke. In: Furcola NC, editor Annual book of ASTM standards, section 5, vol. 05.05. West Conshohocken, PA, USA: American Society for Testing and Materials; 1998. p. 301–2. – volume: 24 start-page: 451 year: 1980 end-page: 463 ident: bib23 article-title: Linearization of relaxation and creep curves of solid biological materials publication-title: Journal of Rheology – reference: AOAC. AOAC method 973.18—fiber (acid detergent) and lignin in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 82. Arlington, VA: Association of Official Analytical Chemists; 1990. – volume: 12 start-page: 1 year: 1969 end-page: 8 ident: bib30 article-title: Bio-mechanics of forage wafering publication-title: Transactions of American Society of Agricultural Engineers – volume: 15 start-page: 160 year: 2003 end-page: 168 ident: bib4 article-title: An overview of compaction of biomass grinds publication-title: Powder Handling and Processing – reference: Jannasch R, Quan Y, Samson R. A process and energy analysis of pelletizing switchgrass. Final report. Website: – volume: 74 start-page: 3583 year: 1991 end-page: 3597 ident: bib15 article-title: Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition publication-title: Journal of Dairy Science – volume: 14 start-page: 479 year: 1998 end-page: 488 ident: bib2 article-title: A techno-economic evaluation of biomass briquetting in India publication-title: Biomass and Bioenergy – volume: 70 start-page: 59 year: 1998 end-page: 78 ident: bib27 article-title: Physical quality of pelleted animal feed 3 publication-title: Contribution of feedstuff components. Animal Feed Science Technology – volume: 18 start-page: 1 year: 1987 end-page: 17 ident: bib28 article-title: The functional properties of feed raw materials and their effect on the production and quality of feed pellets publication-title: Animal Feed Science Technology – reference: ASAE Standards 47th Ed. S319.3—method of determining and expressing fineness of feed materials by sieving. St. Joseph, Michigan: ASAE; 2001. p. 573–6. – reference: Tabil LG, Sokhansanj S. The use of binders in pelleting of alfalfa. CSAE paper no. 95-307. Mansonville, QC: Canadian Society of Agricultural Engineer; 1995. – volume: 13 start-page: 499 year: 1997 end-page: 505 ident: bib6 article-title: Bulk properties of alfalfa grind related to its compaction characteristics publication-title: Applied Engineering in Agriculture – reference: ; 2001 [accessed on August 2002]. – volume: 19 start-page: 207 year: 2004 end-page: 216 ident: bib26 article-title: Process for production of high density/high performance binderless boards from whole coconut husk Part 1: lignin as intrinsic thermosetting binder resin publication-title: Industrial Crops and Products – volume: 45 start-page: 864 year: 1980 end-page: 868 ident: bib24 article-title: Compressive deformation patterns of selected food powders publication-title: Journal of Food Science – volume: 23 start-page: 277 year: 1979 end-page: 279 ident: bib22 article-title: Effect of moisture on the stress relaxation pattern of compacted powders publication-title: Powder Technology – reference: ; 2000 [accessed on June 20, 2001]. – volume: 61 start-page: 89 year: 1996 end-page: 112 ident: bib11 article-title: Physical quality of pelleted animal feed 1 publication-title: Criteria for pellet quality. Animal Feed Science Technology – reference: AOAC. AOAC method 976.06—protein (crude) in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 72. Arlington, VA: Association of Official Analytical Chemists; 1990. – reference: AOAC. AOAC method 942.05—ash in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 70. Arlington, VA: Association of Official Analytical Chemists; 1990. – volume: 27 start-page: 339 year: 2004 end-page: 352 ident: bib19 article-title: Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass publication-title: Biomass and Bioenergy – volume: 1 start-page: 303 year: 1977 end-page: 328 ident: bib21 article-title: Flowability of food powders and methods for its evaluation—a review publication-title: Journal of Food Process Engineering – volume: 46 start-page: 355 year: 2004 end-page: 361 ident: bib3 article-title: Evaluation of compaction equations applied to four biomass species publication-title: Canadian Biosystems Engineering – reference: Tabil LG. Binding and pelleting characteristics of alfalfa. PhD thesis, Saskatoon, SK: Department of Agricultural and Bioresource Engineering, University of Saskatchewan; 1996. – reference: Samson P, Duxbury P, Drisdelle M, Lapointe C. Assessment of pelletized biofuels. – volume: 42 start-page: 1357 year: 2001 end-page: 1378 ident: bib1 article-title: Biomass resource facilities and biomass conversion processing for fuels and chemicals publication-title: Energy Conversion and Management – volume: 18 start-page: 1 year: 1987 ident: 10.1016/j.biombioe.2005.01.004_bib28 article-title: The functional properties of feed raw materials and their effect on the production and quality of feed pellets publication-title: Animal Feed Science Technology doi: 10.1016/0377-8401(87)90025-3 – ident: 10.1016/j.biombioe.2005.01.004_bib13 – volume: 24 start-page: 451 issue: 4 year: 1980 ident: 10.1016/j.biombioe.2005.01.004_bib23 article-title: Linearization of relaxation and creep curves of solid biological materials publication-title: Journal of Rheology doi: 10.1122/1.549567 – volume: 14 start-page: 479 year: 1998 ident: 10.1016/j.biombioe.2005.01.004_bib2 article-title: A techno-economic evaluation of biomass briquetting in India publication-title: Biomass and Bioenergy doi: 10.1016/S0961-9534(97)10023-X – ident: 10.1016/j.biombioe.2005.01.004_bib17 – ident: 10.1016/j.biombioe.2005.01.004_bib9 – volume: 46 start-page: 355 year: 2004 ident: 10.1016/j.biombioe.2005.01.004_bib3 article-title: Evaluation of compaction equations applied to four biomass species publication-title: Canadian Biosystems Engineering – volume: 12 start-page: 1 year: 1969 ident: 10.1016/j.biombioe.2005.01.004_bib30 article-title: Bio-mechanics of forage wafering publication-title: Transactions of American Society of Agricultural Engineers doi: 10.13031/2013.38747 – volume: 44 start-page: 442 issue: 8 year: 1963 ident: 10.1016/j.biombioe.2005.01.004_bib29 article-title: Hay pellet geometry and stability publication-title: Agricultural Engineering – volume: 13 start-page: 499 issue: 4 year: 1997 ident: 10.1016/j.biombioe.2005.01.004_bib6 article-title: Bulk properties of alfalfa grind related to its compaction characteristics publication-title: Applied Engineering in Agriculture doi: 10.13031/2013.21618 – year: 1999 ident: 10.1016/j.biombioe.2005.01.004_bib20 – ident: 10.1016/j.biombioe.2005.01.004_bib12 – volume: 27 start-page: 339 issue: 4 year: 2004 ident: 10.1016/j.biombioe.2005.01.004_bib19 article-title: Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2004.03.007 – ident: 10.1016/j.biombioe.2005.01.004_bib14 – ident: 10.1016/j.biombioe.2005.01.004_bib10 – volume: 15 start-page: 160 issue: 2 year: 2003 ident: 10.1016/j.biombioe.2005.01.004_bib4 article-title: An overview of compaction of biomass grinds publication-title: Powder Handling and Processing – ident: 10.1016/j.biombioe.2005.01.004_bib18 – volume: 61 start-page: 89 year: 1996 ident: 10.1016/j.biombioe.2005.01.004_bib11 article-title: Physical quality of pelleted animal feed 1 publication-title: Criteria for pellet quality. Animal Feed Science Technology doi: 10.1016/0377-8401(96)00949-2 – ident: 10.1016/j.biombioe.2005.01.004_bib16 – volume: 70 start-page: 59 year: 1998 ident: 10.1016/j.biombioe.2005.01.004_bib27 article-title: Physical quality of pelleted animal feed 3 publication-title: Contribution of feedstuff components. Animal Feed Science Technology doi: 10.1016/S0377-8401(97)00072-2 – ident: 10.1016/j.biombioe.2005.01.004_bib8 – volume: 19 start-page: 207 year: 2004 ident: 10.1016/j.biombioe.2005.01.004_bib26 article-title: Process for production of high density/high performance binderless boards from whole coconut husk Part 1: lignin as intrinsic thermosetting binder resin publication-title: Industrial Crops and Products doi: 10.1016/S0926-6690(03)00112-2 – volume: 45 start-page: 864 year: 1980 ident: 10.1016/j.biombioe.2005.01.004_bib24 article-title: Compressive deformation patterns of selected food powders publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.1980.tb07467.x – volume: 24 start-page: 461 issue: 5–6 year: 2005 ident: 10.1016/j.biombioe.2005.01.004_bib5 article-title: The potential of C4 perennial grasses for developing a global bio-heat industry publication-title: Critical Reviews in Plant Science doi: 10.1080/07352680500316508 – ident: 10.1016/j.biombioe.2005.01.004_bib7 – volume: 23 start-page: 277 issue: 2 year: 1979 ident: 10.1016/j.biombioe.2005.01.004_bib22 article-title: Effect of moisture on the stress relaxation pattern of compacted powders publication-title: Powder Technology doi: 10.1016/0032-5910(79)87018-7 – volume: 74 start-page: 3583 year: 1991 ident: 10.1016/j.biombioe.2005.01.004_bib15 article-title: Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition publication-title: Journal of Dairy Science doi: 10.3168/jds.S0022-0302(91)78551-2 – volume: 1 start-page: 303 issue: 4 year: 1977 ident: 10.1016/j.biombioe.2005.01.004_bib21 article-title: Flowability of food powders and methods for its evaluation—a review publication-title: Journal of Food Process Engineering doi: 10.1111/j.1745-4530.1977.tb00188.x – volume: 42 start-page: 1357 year: 2001 ident: 10.1016/j.biombioe.2005.01.004_bib1 article-title: Biomass resource facilities and biomass conversion processing for fuels and chemicals publication-title: Energy Conversion and Management doi: 10.1016/S0196-8904(00)00137-0 – volume: 46 start-page: 174 issue: 1 year: 1981 ident: 10.1016/j.biombioe.2005.01.004_bib25 article-title: Evaluation of the effects of liquid bridges on the bulk properties of model powders publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.1981.tb14557.x |
SSID | ssj0014041 |
Score | 2.4143324 |
Snippet | Mechanical properties of wheat straw, barley straw, corn stover and switchgrass were determined at different compressive forces, particle sizes and moisture... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 648 |
SubjectTerms | Applied sciences Barley straw Biomass Corn stover Energy Exact sciences and technology Hordeum vulgare Natural energy Pellet density and Asymptotic modulus Physical properties Switchgrass Triticum aestivum Wheat straw |
Title | Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses |
URI | https://dx.doi.org/10.1016/j.biombioe.2005.01.004 https://www.proquest.com/docview/20494948 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6120sRqqAPUVoWHzg2u04cZ51jVbVaQPQClXqLHD_QVjSJNrtIcOC3dyZx-hBIPXDIJfIjGY9nPnteAB_KGddmlmSRVxoPKEbpSEvPo0RoXvqZ8qWneOcvl9n8Kv10La834GyIhSG3yiD7e5neSevwZhqoOW0Wi-lXKlaSS4EaiXeafBO2EtT2agRbpx8_zy_vjQkp7wpYUnuyVqaPAoVvJhTljo8L1yvxhIeabf_QUS8b3SLlfF_y4i_p3amki1ewE7AkO-0_9zVsuGoXXjzKMLgLB-cPgWzYNOzkdg9-9WmLW1Z7Rm7lnTvsT8cQwxp3wppAA9YufjumK8tua2SI9dIxcm7H0VhdsVtHccO0zKyhS_0lZWelEel3EZUzMu04nISCWNj3pSYL8z5cXZx_O5tHoQxDZBCtrKIyyzSZ10RqPB69hcpKjccsKzP8UK1i4WXOXWKcsLG1VkmlhVSI7Li2PDZcHMCoqiv3BpgVmTAIEnwiXBqnic5RfiSxT732FmXLIciB8IUJOcqpVMaPYnBGuymGBaMCmrLgcYELdgjT-35Nn6Xj2R75sK7FE34rUJU823f8hBEeppzliA4FNng_cEaBu5VMMLpy9brFUSgbUKre_sf0R7Dd3wORz_AxjFbLtXuHyGhVjmFz8iceB_6_AxjAEf0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dBWCLW0qBQKPvTYsE6cZJ0jQqClwF4KEjfL8aNaVJJos1up_fWdSRweaiUOPeQS-ZHM2DNjz-MD-FxOuDaTJI-81HhAMVJHOvM8SoTmpZ9IX3rKd76c5dPr9OtNdrMGx0MuDIVVBtnfy_ROWoc340DNcTOfj78RWEmRCdRIvNPkL2A9JVDrEawfnZ1PZ_fOhJR3AJbUnryV6aNE4dtDynLHx4XrlfiQB8y2f-iojUa3SDnfQ178Jb07lXT6BjaDLcmO-s99C2uu2oLXjyoMbsH2yUMiGzYNO7l9B7_6ssUtqz2jsPIuHPanY2jDGveFNYEGrJ3_dkxXlt3VuCBWC8couB1HY3XF7hzlDRObWUOX-guqzkoj0u-iVc7IteNwEkpiYd8XmjzM7-H69OTqeBoFGIbIoLWyjMo81-ReE6nxePQWMi81HrNsluOHahkLnxXcJcYJG1trZSa1yCRadlxbHhsutmFU1ZX7AMyKXBg0EnwiHHIq0QXKjyT2qdfeomzZgWwgvDKhRjlBZfxQQzDarRoYRgCameKxQobtwPi-X9NX6Xi2RzHwVT1ZbwpVybN9958shIcpJwVahwIbHAwrQ-FuJReMrly9anEUqgaUyo__Mf0BvJxeXV6oi7PZ-S686u-EKH54D0bLxcp9QitpWe6HXfAHiyoT4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+compressive+force%2C+particle+size+and+moisture+content+on+mechanical+properties+of+biomass+pellets+from+grasses&rft.jtitle=Biomass+%26+bioenergy&rft.au=Mani%2C+S&rft.au=Tabil%2C+L+G&rft.au=Sokhansanj%2C+S&rft.date=2006-07-01&rft.issn=0961-9534&rft.volume=30&rft.issue=7&rft.spage=648&rft.epage=654&rft_id=info:doi/10.1016%2Fj.biombioe.2005.01.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon |