Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses

Mechanical properties of wheat straw, barley straw, corn stover and switchgrass were determined at different compressive forces, particle sizes and moisture contents. Ground biomass samples were compressed with five levels of compressive forces (1000, 2000, 3000, 4000 and 4400 N) and three levels of...

Full description

Saved in:
Bibliographic Details
Published inBiomass & bioenergy Vol. 30; no. 7; pp. 648 - 654
Main Authors Mani, Sudhagar, Tabil, Lope G., Sokhansanj, Shahab
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2006
Elsevier
Subjects
Online AccessGet full text
ISSN0961-9534
1873-2909
DOI10.1016/j.biombioe.2005.01.004

Cover

Abstract Mechanical properties of wheat straw, barley straw, corn stover and switchgrass were determined at different compressive forces, particle sizes and moisture contents. Ground biomass samples were compressed with five levels of compressive forces (1000, 2000, 3000, 4000 and 4400 N) and three levels of particle sizes (3.2, 1.6 and 0.8 mm) at two levels of moisture contents (12% and 15% (wet basis)) to establish compression and relaxation data. Compressed sample dimensions and mass were measured to calculate pellet density. Corn stover produced the highest pellet density at low pressure during compression. Compressive force, particle size and moisture content significantly affected the pellet density of barley straw, corn stover and switchgrass. However, different particle sizes of wheat straw did not produce any significant difference on pellet density. The relaxation data were analyzed to determine the asymptotic modulus of biomass pellets. Barley straw had the highest asymptotic modulus among all biomass indicating that pellets made from barley straw were more rigid than those of other pellets. Asymptotic modulus increased linearly with an increase in compressive pressure. A simple linear model was developed to relate asymptotic modulus and maximum compressive pressure.
AbstractList Mechanical properties of wheat straw, barley straw, corn stover and switchgrass were determined at different compressive forces, particle sizes and moisture contents. Ground biomass samples were compressed with five levels of compressive forces (1000, 2000, 3000, 4000 and 4400 N) and three levels of particle sizes (3.2, 1.6 and 0.8 mm) at two levels of moisture contents (12% and 15% (wet basis)) to establish compression and relaxation data. Compressed sample dimensions and mass were measured to calculate pellet density. Corn stover produced the highest pellet density at low pressure during compression. Compressive force, particle size and moisture content significantly affected the pellet density of barley straw, corn stover and switchgrass. However, different particle sizes of wheat straw did not produce any significant difference on pellet density. The relaxation data were analyzed to determine the asymptotic modulus of biomass pellets. Barley straw had the highest asymptotic modulus among all biomass indicating that pellets made from barley straw were more rigid than those of other pellets. Asymptotic modulus increased linearly with an increase in compressive pressure. A simple linear model was developed to relate asymptotic modulus and maximum compressive pressure.
Mechanical properties of wheat straw, barley straw, corn stover and switchgrass were determined at different compressive forces, particle sizes and moisture contents. Ground biomass samples were compressed with five levels of compressive forces (1000, 2000, 3000, 4000 and 4400 N) and three levels of particle sizes (3.2, 1.6 and 0.8 mm) at two levels of moisture contents (12% and 15% (wet basis)) to establish compression and relaxation data. Compressed sample dimensions and mass were measured to calculate pellet density. Corn stover produced the highest pellet density at low pressure during compression. Compressive force, particle size and moisture content significantly affected the pellet density of barley straw, com stover and switchgrass. However, different particle sizes of wheat straw did not produce any significant difference on pellet density. The relaxation data were analyzed to determine the asymptotic modulus of biomass pellets. Barley straw had the highest asymptotic modulus among all biomass indicating that pellets made from barley straw were more rigid than those of other pellets. Asymptotic modulus increased linearly with an increase in compressive pressure. A simple linear model was developed to relate asymptotic modulus and maximum compressive pressure.
Author Mani, Sudhagar
Tabil, Lope G.
Sokhansanj, Shahab
Author_xml – sequence: 1
  givenname: Sudhagar
  surname: Mani
  fullname: Mani, Sudhagar
  email: msudhagar@chml.ubc.ca
  organization: Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3
– sequence: 2
  givenname: Lope G.
  surname: Tabil
  fullname: Tabil, Lope G.
  organization: Department of Agricultural and Bioresource Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada, S7N 5A9
– sequence: 3
  givenname: Shahab
  surname: Sokhansanj
  fullname: Sokhansanj, Shahab
  organization: Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17915934$$DView record in Pascal Francis
BookMark eNqFkVFrHCEUhaUk0E3Sv1B8aZ860-s6zir0oSWkTSDQl-RZXOfauszo1DsbSH593W5KoS9BRJDvHI_3nLGTlBMy9lZAK0D0H3ftNuapbmzXAKoF0QJ0r9hK6I1s1gbMCVuB6UVjlOxeszOiHYDooBMr9ngVAvqFeA7c52kuSBQfkIdcPH7gsytL9CNyik_IXRr4lCMt-4KVTgumhefEJ_Q_XYrejXwuecaqwT-Oh2COiM84jlgfCSVP_EepV0gX7DS4kfDN83nO7r9e3V1eN7ffv91cfrltfCfN0mz73qlOadn5gFspdb91eiMG1dfgTgsZlAFce5SDGIZBK-2k0loqcAMID_KcvT_61mi_9kiLnSL5GsglzHuya-hMXbqC755BR_UrobjkI9m5xMmVRys2Rigju8r1R86XTFQw_EPAHhqxO_u3EXtoxIKwtZEq_PSf0MfFLbEOsrg4viz_fJRjndZDxGLJR0weh1hqhXbI8SWL3zG1sLk
CitedBy_id crossref_primary_10_1016_j_fuel_2021_122728
crossref_primary_10_3168_jds_2018_15334
crossref_primary_10_1016_j_biombioe_2012_12_025
crossref_primary_10_1016_j_indcrop_2012_11_009
crossref_primary_10_1080_14328917_2021_2022372
crossref_primary_10_1016_j_fuel_2019_03_141
crossref_primary_10_3390_ma7096686
crossref_primary_10_4028_www_scientific_net_AMR_156_157_94
crossref_primary_10_1016_j_fuel_2014_09_033
crossref_primary_10_1016_j_fuproc_2015_08_023
crossref_primary_10_4155_bfs_13_14
crossref_primary_10_1002_aic_14755
crossref_primary_10_1007_s11356_022_20218_w
crossref_primary_10_1007_s13399_016_0206_x
crossref_primary_10_1016_j_rser_2019_109506
crossref_primary_10_1016_j_biombioe_2017_05_005
crossref_primary_10_1016_j_biombioe_2010_08_052
crossref_primary_10_1016_j_biombioe_2019_02_013
crossref_primary_10_1007_s13399_020_00844_5
crossref_primary_10_1007_s11356_019_06115_9
crossref_primary_10_1007_s13399_021_01805_2
crossref_primary_10_1016_j_fuel_2018_03_097
crossref_primary_10_1155_2015_719042
crossref_primary_10_2134_agronj2012_0190
crossref_primary_10_1016_j_renene_2015_08_043
crossref_primary_10_1016_j_ces_2014_05_012
crossref_primary_10_1007_s12649_023_02133_4
crossref_primary_10_1016_j_biombioe_2013_05_001
crossref_primary_10_1016_j_renene_2024_120805
crossref_primary_10_29136_mediterranean_427730
crossref_primary_10_1016_j_fuel_2020_119145
crossref_primary_10_1016_j_biombioe_2018_07_025
crossref_primary_10_1016_j_rser_2019_109414
crossref_primary_10_1016_j_renene_2016_02_006
crossref_primary_10_1016_j_biombioe_2019_105368
crossref_primary_10_1016_j_apenergy_2015_05_019
crossref_primary_10_14710_ijred_2023_53994
crossref_primary_10_1021_acs_energyfuels_7b00097
crossref_primary_10_4236_jsbs_2015_51002
crossref_primary_10_3389_fenrg_2021_699657
crossref_primary_10_1016_j_petrol_2017_11_001
crossref_primary_10_1016_j_indcrop_2016_11_028
crossref_primary_10_1016_j_biombioe_2014_07_029
crossref_primary_10_1016_j_biosystemseng_2015_04_005
crossref_primary_10_1016_j_rser_2019_01_053
crossref_primary_10_1007_s12155_014_9495_8
crossref_primary_10_1016_j_bcab_2022_102315
crossref_primary_10_3390_su152316489
crossref_primary_10_1080_17597269_2017_1368060
crossref_primary_10_1016_j_renene_2021_06_094
crossref_primary_10_1080_11358120809487623
crossref_primary_10_1016_j_biortech_2007_12_065
crossref_primary_10_1016_j_biteb_2021_100686
crossref_primary_10_1080_17597269_2017_1368061
crossref_primary_10_1002_cite_201700097
crossref_primary_10_1016_j_biortech_2013_01_169
crossref_primary_10_1007_s42108_023_00268_7
crossref_primary_10_1007_s11356_022_22823_1
crossref_primary_10_1016_j_applthermaleng_2017_06_007
crossref_primary_10_1016_j_powtec_2018_08_042
crossref_primary_10_1080_09593330_2013_833639
crossref_primary_10_1016_j_enconman_2014_04_071
crossref_primary_10_3389_fenrg_2022_754811
crossref_primary_10_24326_as_2021_1_7
crossref_primary_10_1007_s43938_023_00036_3
crossref_primary_10_1016_j_biosystemseng_2023_04_009
crossref_primary_10_3390_app10186383
crossref_primary_10_1007_s12155_015_9588_z
crossref_primary_10_1016_j_biosystemseng_2023_12_007
crossref_primary_10_1007_s12649_016_9742_7
crossref_primary_10_1115_1_4003475
crossref_primary_10_1007_s13196_025_00367_4
crossref_primary_10_1007_s12155_011_9169_8
crossref_primary_10_1016_j_biortech_2014_05_077
crossref_primary_10_1007_s40831_024_00825_2
crossref_primary_10_1016_j_biombioe_2016_03_022
crossref_primary_10_3390_catal11070805
crossref_primary_10_1016_j_apt_2016_04_036
crossref_primary_10_1016_j_partic_2020_12_006
crossref_primary_10_1088_1757_899X_501_1_012004
crossref_primary_10_3390_f15122086
crossref_primary_10_3390_en10081205
crossref_primary_10_3390_en14248320
crossref_primary_10_1007_s12155_018_9921_4
crossref_primary_10_1016_j_applthermaleng_2016_05_090
crossref_primary_10_1016_j_biombioe_2021_106087
crossref_primary_10_1016_j_biombioe_2019_105370
crossref_primary_10_3390_en14144104
crossref_primary_10_1016_j_powtec_2015_04_069
crossref_primary_10_1016_j_rser_2017_05_026
crossref_primary_10_1016_j_renene_2017_12_016
crossref_primary_10_1016_j_powtec_2016_06_041
crossref_primary_10_1007_s13399_024_06389_1
crossref_primary_10_1016_j_rser_2014_01_051
crossref_primary_10_1016_j_biombioe_2016_02_006
crossref_primary_10_1080_07373937_2014_967403
crossref_primary_10_1016_j_wasman_2013_01_033
crossref_primary_10_1016_j_joei_2016_09_002
crossref_primary_10_1515_revce_2024_0034
crossref_primary_10_1021_ef301562k
crossref_primary_10_1007_s11694_017_9503_8
crossref_primary_10_33202_comuagri_865091
crossref_primary_10_1016_j_apenergy_2012_10_050
crossref_primary_10_1016_j_jfoodeng_2012_11_025
crossref_primary_10_1007_s42452_019_0453_0
crossref_primary_10_1002_bbb_1322
crossref_primary_10_3390_agronomy11071357
crossref_primary_10_1021_acssuschemeng_5b01748
crossref_primary_10_1016_j_renene_2019_06_048
crossref_primary_10_1021_acs_energyfuels_7b03663
crossref_primary_10_3390_fermentation5020030
crossref_primary_10_3103_S0361521921060070
crossref_primary_10_1007_s12155_019_10076_9
crossref_primary_10_1016_j_fuel_2014_04_061
crossref_primary_10_1016_j_biombioe_2012_10_015
crossref_primary_10_1016_j_powtec_2021_03_072
crossref_primary_10_21467_ajgr_9_1_1_13
crossref_primary_10_1016_j_biombioe_2008_04_013
crossref_primary_10_1021_acssusresmgt_3c00121
crossref_primary_10_1007_s13197_012_0861_2
crossref_primary_10_1016_j_apenergy_2012_10_016
crossref_primary_10_1039_C6GC01389A
crossref_primary_10_1515_agriceng_2019_0028
crossref_primary_10_1007_s10973_016_5683_4
crossref_primary_10_3390_cleantechnol4040072
crossref_primary_10_1016_j_fuproc_2008_06_001
crossref_primary_10_1016_j_biteb_2022_101054
crossref_primary_10_1016_j_jclepro_2020_124006
crossref_primary_10_3390_bioengineering7020038
crossref_primary_10_3390_en11030648
crossref_primary_10_1007_s13399_024_05631_0
crossref_primary_10_1115_1_4007467
crossref_primary_10_1016_j_fuproc_2014_12_013
crossref_primary_10_3390_en11051214
crossref_primary_10_3390_foods12081598
crossref_primary_10_1080_10962247_2024_2447480
crossref_primary_10_1016_j_biombioe_2018_10_009
crossref_primary_10_7584_JKTAPPI_2018_06_50_3_12
crossref_primary_10_1016_j_chemosphere_2016_09_076
crossref_primary_10_1177_0734242X13484191
crossref_primary_10_1002_bbb_1476
crossref_primary_10_5307_JBE_2010_35_5_336
crossref_primary_10_1016_j_fuproc_2011_10_012
crossref_primary_10_3390_bioengineering6030080
crossref_primary_10_1007_s11367_011_0374_7
crossref_primary_10_1051_rees_2021057
crossref_primary_10_1002_ceat_201900488
crossref_primary_10_1016_j_fuproc_2018_04_015
crossref_primary_10_1016_j_biortech_2012_03_093
crossref_primary_10_1080_02726351_2017_1355860
crossref_primary_10_1016_j_powtec_2012_10_018
crossref_primary_10_12688_f1000research_10969_1
crossref_primary_10_1016_j_biombioe_2009_05_005
crossref_primary_10_1080_17597269_2024_2401223
crossref_primary_10_1016_j_biosystemseng_2015_08_009
crossref_primary_10_3390_bioengineering9040133
crossref_primary_10_1016_j_fuproc_2015_09_022
crossref_primary_10_2478_v10247_012_0040_8
crossref_primary_10_1080_15567036_2013_876462
crossref_primary_10_1177_0958305X18772414
crossref_primary_10_1007_s12649_017_0010_2
crossref_primary_10_1002_cite_201500157
crossref_primary_10_1016_j_fuel_2014_11_069
crossref_primary_10_1016_j_biombioe_2013_03_012
crossref_primary_10_1016_j_proeng_2016_06_445
crossref_primary_10_1007_s13399_021_01559_x
crossref_primary_10_1016_j_biombioe_2015_06_006
crossref_primary_10_1016_j_fuproc_2008_07_001
crossref_primary_10_1016_j_wasman_2014_08_008
crossref_primary_10_3390_met14010074
crossref_primary_10_1016_j_compositesa_2019_05_009
crossref_primary_10_1007_s12155_014_9443_7
crossref_primary_10_1590_S1413_70542014000500005
crossref_primary_10_1016_j_fuel_2020_119613
crossref_primary_10_1016_j_biortech_2010_08_028
crossref_primary_10_1016_j_fuproc_2016_02_013
crossref_primary_10_1002_bbb_2121
crossref_primary_10_1016_j_fuproc_2012_05_031
crossref_primary_10_1142_S1793962320500257
crossref_primary_10_1016_j_renene_2018_11_004
crossref_primary_10_1007_s00107_020_01585_y
crossref_primary_10_3390_ma13194375
crossref_primary_10_1016_j_fuel_2017_01_063
crossref_primary_10_1111_lam_13676
crossref_primary_10_2139_ssrn_4000211
crossref_primary_10_1016_j_fuel_2009_05_015
crossref_primary_10_1016_j_fuproc_2016_02_024
crossref_primary_10_1016_j_biortech_2009_08_064
crossref_primary_10_3390_ma11081329
crossref_primary_10_3390_bioengineering4020025
crossref_primary_10_1016_j_fuel_2019_03_126
crossref_primary_10_1016_j_partic_2013_05_007
crossref_primary_10_1016_j_ccst_2021_100005
crossref_primary_10_1016_j_renene_2017_04_041
crossref_primary_10_3168_jds_2016_11033
crossref_primary_10_1049_rpg2_12365
crossref_primary_10_7464_ksct_2016_22_4_286
crossref_primary_10_1016_j_cep_2021_108634
crossref_primary_10_1016_j_renene_2013_06_038
crossref_primary_10_4028_www_scientific_net_AMM_592_594_67
crossref_primary_10_3390_app11062740
crossref_primary_10_3390_en11020331
crossref_primary_10_1002_bit_26925
crossref_primary_10_1016_j_fuproc_2010_11_031
crossref_primary_10_3390_en16124796
crossref_primary_10_3390_fermentation9030289
crossref_primary_10_1007_s00107_020_01637_3
crossref_primary_10_1007_s10694_018_0712_4
crossref_primary_10_3390_en14113116
crossref_primary_10_1016_j_apenergy_2016_12_027
crossref_primary_10_1016_j_scp_2022_100814
crossref_primary_10_1016_j_rser_2020_109763
crossref_primary_10_20289_zfdergi_723940
crossref_primary_10_1016_j_biombioe_2013_10_011
crossref_primary_10_1016_j_biombioe_2016_07_007
crossref_primary_10_1016_j_rser_2017_01_039
crossref_primary_10_1016_j_foohum_2023_09_002
crossref_primary_10_9713_kcer_2012_50_2_385
crossref_primary_10_1016_j_biortech_2016_04_064
crossref_primary_10_4155_bfs_11_146
crossref_primary_10_1051_matecconf_201816807005
crossref_primary_10_1016_j_biosystemseng_2009_02_012
crossref_primary_10_1016_j_rser_2023_113520
crossref_primary_10_1021_acsomega_2c03434
crossref_primary_10_3390_ijerph18136964
crossref_primary_10_1016_j_renene_2024_120494
crossref_primary_10_1002_ceat_202200310
crossref_primary_10_3390_en14185895
crossref_primary_10_1016_j_biombioe_2014_04_027
crossref_primary_10_1016_j_fuel_2023_130107
crossref_primary_10_1016_j_jenvman_2019_02_104
crossref_primary_10_1016_j_renene_2020_08_083
crossref_primary_10_1002_pc_22592
crossref_primary_10_1007_s13399_023_04805_6
crossref_primary_10_1016_j_apenergy_2017_07_080
crossref_primary_10_3390_en15030842
crossref_primary_10_1016_j_fbp_2012_01_007
crossref_primary_10_1088_1755_1315_578_1_012028
crossref_primary_10_3390_f10100869
crossref_primary_10_1016_j_biosystemseng_2013_12_009
crossref_primary_10_1016_j_polymdegradstab_2019_05_033
crossref_primary_10_1177_27533735241284221
crossref_primary_10_1016_j_biortech_2012_04_054
crossref_primary_10_1016_j_energy_2015_12_063
crossref_primary_10_1007_s12649_017_0178_5
crossref_primary_10_1016_j_biombioe_2015_06_010
crossref_primary_10_1007_s12649_013_9271_6
crossref_primary_10_1007_s12649_022_01701_4
crossref_primary_10_1016_j_biosystemseng_2012_10_002
crossref_primary_10_1016_j_pecs_2017_05_004
crossref_primary_10_1016_j_rser_2018_03_023
crossref_primary_10_1016_j_renene_2019_04_050
crossref_primary_10_1016_j_fuproc_2008_12_009
crossref_primary_10_1016_j_powtec_2019_06_002
crossref_primary_10_1111_jfpe_12192
crossref_primary_10_1016_j_powtec_2024_119406
crossref_primary_10_1016_j_powtec_2018_11_002
crossref_primary_10_1016_j_fuel_2020_119805
crossref_primary_10_1016_j_biombioe_2012_01_027
crossref_primary_10_1016_j_fuel_2013_04_048
crossref_primary_10_1016_j_renene_2010_08_003
crossref_primary_10_1016_j_renene_2019_04_046
crossref_primary_10_1016_j_renene_2018_08_003
crossref_primary_10_5658_WOOD_2019_47_1_110
crossref_primary_10_1080_17597269_2024_2303812
crossref_primary_10_1007_s13196_020_00268_8
crossref_primary_10_1016_j_jtice_2024_105616
crossref_primary_10_1016_j_biombioe_2017_08_008
crossref_primary_10_1016_j_fuproc_2014_12_040
crossref_primary_10_1016_j_indcrop_2014_10_008
crossref_primary_10_1007_s10098_022_02350_w
crossref_primary_10_1016_j_esd_2017_11_005
crossref_primary_10_1016_j_indcrop_2010_12_016
crossref_primary_10_3390_app14209398
crossref_primary_10_3390_ma16010058
crossref_primary_10_1007_s12649_019_00755_1
crossref_primary_10_1016_j_mtcomm_2023_107683
crossref_primary_10_1080_02773813_2019_1652324
crossref_primary_10_1016_j_fuproc_2013_07_006
crossref_primary_10_1016_j_renene_2012_07_034
crossref_primary_10_1016_j_apenergy_2018_01_093
crossref_primary_10_3390_ma14040879
crossref_primary_10_1063_1_4940660
crossref_primary_10_3390_en13133468
crossref_primary_10_1002_bbb_239
crossref_primary_10_1016_j_biteb_2023_101554
crossref_primary_10_1088_1757_899X_297_1_012003
crossref_primary_10_1016_j_apenergy_2014_08_094
crossref_primary_10_1016_j_biortech_2009_05_069
crossref_primary_10_1016_j_rser_2009_06_025
crossref_primary_10_3182_20130606_3_XK_4037_00052
crossref_primary_10_1016_j_renene_2020_01_037
crossref_primary_10_1016_j_fuproc_2017_02_020
crossref_primary_10_1016_j_jaap_2011_04_010
crossref_primary_10_1080_15567036_2020_1752857
crossref_primary_10_1016_j_biombioe_2018_11_013
crossref_primary_10_1016_j_ecmx_2019_100008
crossref_primary_10_1016_j_foodcont_2020_107164
crossref_primary_10_3390_en14113270
crossref_primary_10_1016_j_rser_2013_08_074
crossref_primary_10_1007_s13399_024_06293_8
crossref_primary_10_3390_molecules27031035
crossref_primary_10_1016_j_biteb_2023_101527
crossref_primary_10_1016_j_fuel_2009_03_015
crossref_primary_10_1007_s11274_022_03399_x
crossref_primary_10_3390_en13030652
crossref_primary_10_1016_j_biombioe_2017_08_024
crossref_primary_10_1016_j_apenergy_2019_113385
crossref_primary_10_1016_j_renene_2012_12_015
crossref_primary_10_1016_j_renene_2012_12_014
crossref_primary_10_11118_actaun201664051593
crossref_primary_10_1016_j_renene_2022_06_085
crossref_primary_10_1007_s13399_023_03863_0
crossref_primary_10_1051_epjconf_201714013017
crossref_primary_10_1016_j_renene_2021_09_088
crossref_primary_10_1007_s11356_024_34232_7
crossref_primary_10_1007_s10311_022_01510_0
crossref_primary_10_1016_j_biombioe_2013_02_031
crossref_primary_10_1016_j_rser_2025_115484
crossref_primary_10_3390_polym13152487
crossref_primary_10_3390_ma13204623
crossref_primary_10_1016_j_supflu_2023_106078
crossref_primary_10_1016_j_scitotenv_2023_164526
crossref_primary_10_1007_s12649_012_9127_5
crossref_primary_10_1016_j_biombioe_2009_10_001
crossref_primary_10_3390_en12244687
crossref_primary_10_1016_j_protcy_2015_02_106
crossref_primary_10_1021_ef2005628
crossref_primary_10_1007_s12010_014_1120_y
crossref_primary_10_1051_bioconf_20181002028
crossref_primary_10_1051_agro_2007006
crossref_primary_10_1177_0734242X19893022
crossref_primary_10_14723_tmrsj_38_467
crossref_primary_10_1016_j_chemosphere_2021_132555
crossref_primary_10_1016_j_fuproc_2010_12_001
crossref_primary_10_1007_s12011_022_03429_7
crossref_primary_10_37908_mkutbd_785095
crossref_primary_10_1016_j_renene_2019_10_139
crossref_primary_10_5424_sjar_2015131_6492
crossref_primary_10_3390_pr11072170
crossref_primary_10_1016_j_biortech_2012_12_004
crossref_primary_10_1007_s10853_012_6897_x
crossref_primary_10_1016_j_energy_2022_125305
crossref_primary_10_3390_en13133392
crossref_primary_10_1051_bioconf_20181002035
crossref_primary_10_1021_acsearthspacechem_2c00251
crossref_primary_10_3390_en13081859
crossref_primary_10_3390_ma8041413
crossref_primary_10_1016_j_energy_2018_06_200
crossref_primary_10_1016_j_indcrop_2020_113189
crossref_primary_10_1016_j_biombioe_2024_107271
crossref_primary_10_1016_j_partic_2022_08_016
crossref_primary_10_3390_en11010109
crossref_primary_10_3390_en12071198
crossref_primary_10_3390_en8076382
crossref_primary_10_1088_1748_9326_ac4c5c
crossref_primary_10_1016_j_rser_2021_111871
crossref_primary_10_1007_s41204_024_00377_6
crossref_primary_10_1016_j_biosystemseng_2016_12_009
crossref_primary_10_5658_WOOD_2017_45_6_703
crossref_primary_10_1007_s00248_015_0683_7
crossref_primary_10_1016_j_partic_2023_07_006
crossref_primary_10_1021_ef101683s
crossref_primary_10_1515_agriceng_2016_0062
crossref_primary_10_1115_1_4039602
crossref_primary_10_3390_fuels3010010
crossref_primary_10_1016_j_apenergy_2015_11_018
crossref_primary_10_3390_en13102544
crossref_primary_10_3390_en13102542
crossref_primary_10_30766_2072_9081_2023_24_1_30_45
crossref_primary_10_59665_rar4060
crossref_primary_10_1002_fsn3_1184
crossref_primary_10_1016_j_combustflame_2018_04_014
crossref_primary_10_1515_agriceng_2016_0072
crossref_primary_10_1016_j_jclepro_2016_12_166
crossref_primary_10_1515_agriceng_2016_0078
crossref_primary_10_3390_app14031080
crossref_primary_10_5194_ms_12_725_2021
crossref_primary_10_1016_j_fuproc_2024_108149
crossref_primary_10_2478_auoc_2022_0022
crossref_primary_10_3390_fuels4010008
crossref_primary_10_14356_kona_2019010
crossref_primary_10_1016_j_powtec_2019_10_051
crossref_primary_10_1122_1_5009943
crossref_primary_10_17221_17_2015_RAE
crossref_primary_10_1016_j_jfoodeng_2014_09_006
crossref_primary_10_1080_15435075_2019_1671402
crossref_primary_10_3390_app9204302
crossref_primary_10_1016_j_fuproc_2018_09_021
crossref_primary_10_1016_j_renene_2023_01_042
crossref_primary_10_1016_j_jclepro_2024_144046
crossref_primary_10_1016_j_fuproc_2015_05_011
crossref_primary_10_13080_z_a_2014_101_004
crossref_primary_10_1016_j_biosystemseng_2018_08_007
crossref_primary_10_1007_s12649_017_9840_1
crossref_primary_10_3390_molecules26041014
crossref_primary_10_1016_j_biombioe_2024_107077
crossref_primary_10_1016_j_jenvman_2018_08_105
crossref_primary_10_1016_j_jobab_2022_10_001
crossref_primary_10_1016_j_indcrop_2022_115688
crossref_primary_10_46647_ijetms_2023_v07i04_019
crossref_primary_10_1016_j_biombioe_2021_106125
crossref_primary_10_1016_j_biosystemseng_2023_08_017
crossref_primary_10_1080_19392699_2022_2119558
crossref_primary_10_3390_su11133604
crossref_primary_10_1007_s13369_017_2808_4
crossref_primary_10_1016_j_fuproc_2009_04_007
crossref_primary_10_1007_s13399_015_0162_x
crossref_primary_10_1016_j_indcrop_2015_12_072
crossref_primary_10_1016_j_apenergy_2012_01_037
crossref_primary_10_1007_s12155_014_9527_4
crossref_primary_10_1016_j_biortech_2017_12_015
crossref_primary_10_1016_j_biombioe_2023_106825
crossref_primary_10_3390_ma14133698
crossref_primary_10_1021_ef4000787
crossref_primary_10_1021_ef5019252
crossref_primary_10_1080_00986445_2024_2367222
crossref_primary_10_1002_star_202300069
crossref_primary_10_1039_D3RA05367A
crossref_primary_10_1007_s12649_018_0458_8
crossref_primary_10_4155_bfs_12_20
crossref_primary_10_1016_j_biosystemseng_2016_05_009
crossref_primary_10_1016_j_indcrop_2015_04_027
crossref_primary_10_1016_j_renene_2014_10_057
crossref_primary_10_1063_1_5000879
crossref_primary_10_1016_j_indcrop_2024_120134
crossref_primary_10_1080_23311932_2019_1656917
crossref_primary_10_14356_kona_2018005
crossref_primary_10_1016_j_biombioe_2016_04_007
crossref_primary_10_1016_j_biombioe_2019_01_048
crossref_primary_10_1155_2021_8608215
crossref_primary_10_1016_j_fuproc_2009_04_012
crossref_primary_10_1007_s12649_018_0239_4
crossref_primary_10_1080_15567036_2019_1660436
Cites_doi 10.1016/0377-8401(87)90025-3
10.1122/1.549567
10.1016/S0961-9534(97)10023-X
10.13031/2013.38747
10.13031/2013.21618
10.1016/j.biombioe.2004.03.007
10.1016/0377-8401(96)00949-2
10.1016/S0377-8401(97)00072-2
10.1016/S0926-6690(03)00112-2
10.1111/j.1365-2621.1980.tb07467.x
10.1080/07352680500316508
10.1016/0032-5910(79)87018-7
10.3168/jds.S0022-0302(91)78551-2
10.1111/j.1745-4530.1977.tb00188.x
10.1016/S0196-8904(00)00137-0
10.1111/j.1365-2621.1981.tb14557.x
ContentType Journal Article
Copyright 2006 Elsevier Ltd
2006 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Ltd
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QO
7ST
7U6
8FD
C1K
FR3
P64
SOI
DOI 10.1016/j.biombioe.2005.01.004
DatabaseName CrossRef
Pascal-Francis
Biotechnology Research Abstracts
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Sustainability Science Abstracts
Engineering Research Database
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Biotechnology Research Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1873-2909
EndPage 654
ExternalDocumentID 17915934
10_1016_j_biombioe_2005_01_004
S0961953406000250
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSJ
SSR
SSZ
T5K
VH1
WUQ
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7QO
7ST
7U6
8FD
C1K
FR3
P64
SOI
ID FETCH-LOGICAL-c439t-b66a545834cfeb3386ba871d56ffea813f590e2ce3d1ddd858a3588350ad01c03
IEDL.DBID AIKHN
ISSN 0961-9534
IngestDate Thu Sep 04 22:42:30 EDT 2025
Mon Jul 21 09:16:38 EDT 2025
Tue Jul 01 01:49:20 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Fri Feb 23 02:34:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Pellet density and Asymptotic modulus
Barley straw
Corn stover
Physical properties
Wheat straw
Switchgrass
Pellet
Monocotyledones
Particle size
Corn
Mechanical properties
Biomass
Panicum virgatum
Energy crop
Straw
Gramineae
Angiospermae
Water content
Spermatophyta
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-b66a545834cfeb3386ba871d56ffea813f590e2ce3d1ddd858a3588350ad01c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 20494948
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_20494948
pascalfrancis_primary_17915934
crossref_primary_10_1016_j_biombioe_2005_01_004
crossref_citationtrail_10_1016_j_biombioe_2005_01_004
elsevier_sciencedirect_doi_10_1016_j_biombioe_2005_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-07-01
PublicationDateYYYYMMDD 2006-07-01
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Biomass & bioenergy
PublicationYear 2006
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Peleg (bib23) 1980; 24
Tabil LG, Sokhansanj S. The use of binders in pelleting of alfalfa. CSAE paper no. 95-307. Mansonville, QC: Canadian Society of Agricultural Engineer; 1995.
Thomas, van der Poel (bib11) 1996; 61
Mani, Tabil, Sokhansanj (bib3) 2004; 46
AOAC. AOAC method 942.05—ash in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 70. Arlington, VA: Association of Official Analytical Chemists; 1990.
ASAE Standards 47th Ed. S319.3—method of determining and expressing fineness of feed materials by sieving. St. Joseph, Michigan: ASAE; 2001. p. 573–6.
AOAC. AOAC method 920.29—fat (crude) or ether extract in animal feed. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., Arlington, VA: Association of Official Analytical Chemists; 1990.
AOAC. AOAC method 973.18—fiber (acid detergent) and lignin in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 82. Arlington, VA: Association of Official Analytical Chemists; 1990.
Peleg (bib21) 1977; 1
Mani, Tabil, Sokhansanj (bib4) 2003; 15
van Dam, van den Oever, Teunissen, Keijsers, Peralta (bib26) 2004; 19
Samson, Mani, Boddey, Sokhansanj, Quesada, Urquiaga (bib5) 2005; 24
Gustafson, Kjelgaard (bib29) 1963; 44
2001 [accessed on August 2002].
Tabil LG. Binding and pelleting characteristics of alfalfa. PhD thesis, Saskatoon, SK: Department of Agricultural and Bioresource Engineering, University of Saskatchewan; 1996.
ASTM Standard. ASTM Standards D 3173-87—standard test method for moisture in the analysis sample of coal and coke. In: Furcola NC, editor Annual book of ASTM standards, section 5, vol. 05.05. West Conshohocken, PA, USA: American Society for Testing and Materials; 1998. p. 301–2.
Tabil, Sokhansanj (bib6) 1997; 13
Tripathi, Iyer, Kandpal (bib2) 1998; 14
(bib20) 1999
AOAC. AOAC method 976.06—protein (crude) in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 72. Arlington, VA: Association of Official Analytical Chemists; 1990.
Mani, Tabil, Sokhansanj (bib19) 2004; 27
Moreyra, Peleg (bib24) 1980; 45
Rehkugler, Buchele (bib30) 1969; 12
Scoville, Peleg (bib25) 1981; 46
Peleg, Moreyra (bib22) 1979; 23
Jannasch R, Quan Y, Samson R. A process and energy analysis of pelletizing switchgrass. Final report. Website
Samson P, Duxbury P, Drisdelle M, Lapointe C. Assessment of pelletized biofuels.
Wood (bib28) 1987; 18
2000 [accessed on June 20, 2001].
van Soest, Robertson, Lewis (bib15) 1991; 74
Thomas, van Vliet, van der Poel (bib27) 1998; 70
Demirbaş (bib1) 2001; 42
Tabil (10.1016/j.biombioe.2005.01.004_bib6) 1997; 13
Wood (10.1016/j.biombioe.2005.01.004_bib28) 1987; 18
(10.1016/j.biombioe.2005.01.004_bib20) 1999
Peleg (10.1016/j.biombioe.2005.01.004_bib21) 1977; 1
10.1016/j.biombioe.2005.01.004_bib8
10.1016/j.biombioe.2005.01.004_bib9
10.1016/j.biombioe.2005.01.004_bib7
Thomas (10.1016/j.biombioe.2005.01.004_bib27) 1998; 70
Demirbaş (10.1016/j.biombioe.2005.01.004_bib1) 2001; 42
Peleg (10.1016/j.biombioe.2005.01.004_bib23) 1980; 24
Peleg (10.1016/j.biombioe.2005.01.004_bib22) 1979; 23
Tripathi (10.1016/j.biombioe.2005.01.004_bib2) 1998; 14
Samson (10.1016/j.biombioe.2005.01.004_bib5) 2005; 24
van Soest (10.1016/j.biombioe.2005.01.004_bib15) 1991; 74
van Dam (10.1016/j.biombioe.2005.01.004_bib26) 2004; 19
Mani (10.1016/j.biombioe.2005.01.004_bib3) 2004; 46
Mani (10.1016/j.biombioe.2005.01.004_bib4) 2003; 15
10.1016/j.biombioe.2005.01.004_bib18
Mani (10.1016/j.biombioe.2005.01.004_bib19) 2004; 27
Scoville (10.1016/j.biombioe.2005.01.004_bib25) 1981; 46
10.1016/j.biombioe.2005.01.004_bib17
10.1016/j.biombioe.2005.01.004_bib16
Gustafson (10.1016/j.biombioe.2005.01.004_bib29) 1963; 44
10.1016/j.biombioe.2005.01.004_bib14
10.1016/j.biombioe.2005.01.004_bib13
10.1016/j.biombioe.2005.01.004_bib12
10.1016/j.biombioe.2005.01.004_bib10
Rehkugler (10.1016/j.biombioe.2005.01.004_bib30) 1969; 12
Moreyra (10.1016/j.biombioe.2005.01.004_bib24) 1980; 45
Thomas (10.1016/j.biombioe.2005.01.004_bib11) 1996; 61
References_xml – volume: 46
  start-page: 174
  year: 1981
  end-page: 177
  ident: bib25
  article-title: Evaluation of the effects of liquid bridges on the bulk properties of model powders
  publication-title: Journal of Food Science
– volume: 24
  start-page: 461
  year: 2005
  end-page: 495
  ident: bib5
  article-title: The potential of C4 perennial grasses for developing a global bio-heat industry
  publication-title: Critical Reviews in Plant Science
– year: 1999
  ident: bib20
  article-title: SAS user's guide: statistics. Ver. 8
– volume: 44
  start-page: 442
  year: 1963
  end-page: 445
  ident: bib29
  article-title: Hay pellet geometry and stability
  publication-title: Agricultural Engineering
– reference: AOAC. AOAC method 920.29—fat (crude) or ether extract in animal feed. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., Arlington, VA: Association of Official Analytical Chemists; 1990.
– reference: ASTM Standard. ASTM Standards D 3173-87—standard test method for moisture in the analysis sample of coal and coke. In: Furcola NC, editor Annual book of ASTM standards, section 5, vol. 05.05. West Conshohocken, PA, USA: American Society for Testing and Materials; 1998. p. 301–2.
– volume: 24
  start-page: 451
  year: 1980
  end-page: 463
  ident: bib23
  article-title: Linearization of relaxation and creep curves of solid biological materials
  publication-title: Journal of Rheology
– reference: AOAC. AOAC method 973.18—fiber (acid detergent) and lignin in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 82. Arlington, VA: Association of Official Analytical Chemists; 1990.
– volume: 12
  start-page: 1
  year: 1969
  end-page: 8
  ident: bib30
  article-title: Bio-mechanics of forage wafering
  publication-title: Transactions of American Society of Agricultural Engineers
– volume: 15
  start-page: 160
  year: 2003
  end-page: 168
  ident: bib4
  article-title: An overview of compaction of biomass grinds
  publication-title: Powder Handling and Processing
– reference: Jannasch R, Quan Y, Samson R. A process and energy analysis of pelletizing switchgrass. Final report. Website:
– volume: 74
  start-page: 3583
  year: 1991
  end-page: 3597
  ident: bib15
  article-title: Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition
  publication-title: Journal of Dairy Science
– volume: 14
  start-page: 479
  year: 1998
  end-page: 488
  ident: bib2
  article-title: A techno-economic evaluation of biomass briquetting in India
  publication-title: Biomass and Bioenergy
– volume: 70
  start-page: 59
  year: 1998
  end-page: 78
  ident: bib27
  article-title: Physical quality of pelleted animal feed 3
  publication-title: Contribution of feedstuff components. Animal Feed Science Technology
– volume: 18
  start-page: 1
  year: 1987
  end-page: 17
  ident: bib28
  article-title: The functional properties of feed raw materials and their effect on the production and quality of feed pellets
  publication-title: Animal Feed Science Technology
– reference: ASAE Standards 47th Ed. S319.3—method of determining and expressing fineness of feed materials by sieving. St. Joseph, Michigan: ASAE; 2001. p. 573–6.
– reference: Tabil LG, Sokhansanj S. The use of binders in pelleting of alfalfa. CSAE paper no. 95-307. Mansonville, QC: Canadian Society of Agricultural Engineer; 1995.
– volume: 13
  start-page: 499
  year: 1997
  end-page: 505
  ident: bib6
  article-title: Bulk properties of alfalfa grind related to its compaction characteristics
  publication-title: Applied Engineering in Agriculture
– reference: ; 2001 [accessed on August 2002].
– volume: 19
  start-page: 207
  year: 2004
  end-page: 216
  ident: bib26
  article-title: Process for production of high density/high performance binderless boards from whole coconut husk Part 1: lignin as intrinsic thermosetting binder resin
  publication-title: Industrial Crops and Products
– volume: 45
  start-page: 864
  year: 1980
  end-page: 868
  ident: bib24
  article-title: Compressive deformation patterns of selected food powders
  publication-title: Journal of Food Science
– volume: 23
  start-page: 277
  year: 1979
  end-page: 279
  ident: bib22
  article-title: Effect of moisture on the stress relaxation pattern of compacted powders
  publication-title: Powder Technology
– reference: ; 2000 [accessed on June 20, 2001].
– volume: 61
  start-page: 89
  year: 1996
  end-page: 112
  ident: bib11
  article-title: Physical quality of pelleted animal feed 1
  publication-title: Criteria for pellet quality. Animal Feed Science Technology
– reference: AOAC. AOAC method 976.06—protein (crude) in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 72. Arlington, VA: Association of Official Analytical Chemists; 1990.
– reference: AOAC. AOAC method 942.05—ash in animal feeds. In: Helrick K, editor. Official method of analysis of the Association of Official Analytical Chemists, 15th ed., vol. 70. Arlington, VA: Association of Official Analytical Chemists; 1990.
– volume: 27
  start-page: 339
  year: 2004
  end-page: 352
  ident: bib19
  article-title: Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass
  publication-title: Biomass and Bioenergy
– volume: 1
  start-page: 303
  year: 1977
  end-page: 328
  ident: bib21
  article-title: Flowability of food powders and methods for its evaluation—a review
  publication-title: Journal of Food Process Engineering
– volume: 46
  start-page: 355
  year: 2004
  end-page: 361
  ident: bib3
  article-title: Evaluation of compaction equations applied to four biomass species
  publication-title: Canadian Biosystems Engineering
– reference: Tabil LG. Binding and pelleting characteristics of alfalfa. PhD thesis, Saskatoon, SK: Department of Agricultural and Bioresource Engineering, University of Saskatchewan; 1996.
– reference: Samson P, Duxbury P, Drisdelle M, Lapointe C. Assessment of pelletized biofuels.
– volume: 42
  start-page: 1357
  year: 2001
  end-page: 1378
  ident: bib1
  article-title: Biomass resource facilities and biomass conversion processing for fuels and chemicals
  publication-title: Energy Conversion and Management
– volume: 18
  start-page: 1
  year: 1987
  ident: 10.1016/j.biombioe.2005.01.004_bib28
  article-title: The functional properties of feed raw materials and their effect on the production and quality of feed pellets
  publication-title: Animal Feed Science Technology
  doi: 10.1016/0377-8401(87)90025-3
– ident: 10.1016/j.biombioe.2005.01.004_bib13
– volume: 24
  start-page: 451
  issue: 4
  year: 1980
  ident: 10.1016/j.biombioe.2005.01.004_bib23
  article-title: Linearization of relaxation and creep curves of solid biological materials
  publication-title: Journal of Rheology
  doi: 10.1122/1.549567
– volume: 14
  start-page: 479
  year: 1998
  ident: 10.1016/j.biombioe.2005.01.004_bib2
  article-title: A techno-economic evaluation of biomass briquetting in India
  publication-title: Biomass and Bioenergy
  doi: 10.1016/S0961-9534(97)10023-X
– ident: 10.1016/j.biombioe.2005.01.004_bib17
– ident: 10.1016/j.biombioe.2005.01.004_bib9
– volume: 46
  start-page: 355
  year: 2004
  ident: 10.1016/j.biombioe.2005.01.004_bib3
  article-title: Evaluation of compaction equations applied to four biomass species
  publication-title: Canadian Biosystems Engineering
– volume: 12
  start-page: 1
  year: 1969
  ident: 10.1016/j.biombioe.2005.01.004_bib30
  article-title: Bio-mechanics of forage wafering
  publication-title: Transactions of American Society of Agricultural Engineers
  doi: 10.13031/2013.38747
– volume: 44
  start-page: 442
  issue: 8
  year: 1963
  ident: 10.1016/j.biombioe.2005.01.004_bib29
  article-title: Hay pellet geometry and stability
  publication-title: Agricultural Engineering
– volume: 13
  start-page: 499
  issue: 4
  year: 1997
  ident: 10.1016/j.biombioe.2005.01.004_bib6
  article-title: Bulk properties of alfalfa grind related to its compaction characteristics
  publication-title: Applied Engineering in Agriculture
  doi: 10.13031/2013.21618
– year: 1999
  ident: 10.1016/j.biombioe.2005.01.004_bib20
– ident: 10.1016/j.biombioe.2005.01.004_bib12
– volume: 27
  start-page: 339
  issue: 4
  year: 2004
  ident: 10.1016/j.biombioe.2005.01.004_bib19
  article-title: Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass
  publication-title: Biomass and Bioenergy
  doi: 10.1016/j.biombioe.2004.03.007
– ident: 10.1016/j.biombioe.2005.01.004_bib14
– ident: 10.1016/j.biombioe.2005.01.004_bib10
– volume: 15
  start-page: 160
  issue: 2
  year: 2003
  ident: 10.1016/j.biombioe.2005.01.004_bib4
  article-title: An overview of compaction of biomass grinds
  publication-title: Powder Handling and Processing
– ident: 10.1016/j.biombioe.2005.01.004_bib18
– volume: 61
  start-page: 89
  year: 1996
  ident: 10.1016/j.biombioe.2005.01.004_bib11
  article-title: Physical quality of pelleted animal feed 1
  publication-title: Criteria for pellet quality. Animal Feed Science Technology
  doi: 10.1016/0377-8401(96)00949-2
– ident: 10.1016/j.biombioe.2005.01.004_bib16
– volume: 70
  start-page: 59
  year: 1998
  ident: 10.1016/j.biombioe.2005.01.004_bib27
  article-title: Physical quality of pelleted animal feed 3
  publication-title: Contribution of feedstuff components. Animal Feed Science Technology
  doi: 10.1016/S0377-8401(97)00072-2
– ident: 10.1016/j.biombioe.2005.01.004_bib8
– volume: 19
  start-page: 207
  year: 2004
  ident: 10.1016/j.biombioe.2005.01.004_bib26
  article-title: Process for production of high density/high performance binderless boards from whole coconut husk Part 1: lignin as intrinsic thermosetting binder resin
  publication-title: Industrial Crops and Products
  doi: 10.1016/S0926-6690(03)00112-2
– volume: 45
  start-page: 864
  year: 1980
  ident: 10.1016/j.biombioe.2005.01.004_bib24
  article-title: Compressive deformation patterns of selected food powders
  publication-title: Journal of Food Science
  doi: 10.1111/j.1365-2621.1980.tb07467.x
– volume: 24
  start-page: 461
  issue: 5–6
  year: 2005
  ident: 10.1016/j.biombioe.2005.01.004_bib5
  article-title: The potential of C4 perennial grasses for developing a global bio-heat industry
  publication-title: Critical Reviews in Plant Science
  doi: 10.1080/07352680500316508
– ident: 10.1016/j.biombioe.2005.01.004_bib7
– volume: 23
  start-page: 277
  issue: 2
  year: 1979
  ident: 10.1016/j.biombioe.2005.01.004_bib22
  article-title: Effect of moisture on the stress relaxation pattern of compacted powders
  publication-title: Powder Technology
  doi: 10.1016/0032-5910(79)87018-7
– volume: 74
  start-page: 3583
  year: 1991
  ident: 10.1016/j.biombioe.2005.01.004_bib15
  article-title: Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition
  publication-title: Journal of Dairy Science
  doi: 10.3168/jds.S0022-0302(91)78551-2
– volume: 1
  start-page: 303
  issue: 4
  year: 1977
  ident: 10.1016/j.biombioe.2005.01.004_bib21
  article-title: Flowability of food powders and methods for its evaluation—a review
  publication-title: Journal of Food Process Engineering
  doi: 10.1111/j.1745-4530.1977.tb00188.x
– volume: 42
  start-page: 1357
  year: 2001
  ident: 10.1016/j.biombioe.2005.01.004_bib1
  article-title: Biomass resource facilities and biomass conversion processing for fuels and chemicals
  publication-title: Energy Conversion and Management
  doi: 10.1016/S0196-8904(00)00137-0
– volume: 46
  start-page: 174
  issue: 1
  year: 1981
  ident: 10.1016/j.biombioe.2005.01.004_bib25
  article-title: Evaluation of the effects of liquid bridges on the bulk properties of model powders
  publication-title: Journal of Food Science
  doi: 10.1111/j.1365-2621.1981.tb14557.x
SSID ssj0014041
Score 2.4143324
Snippet Mechanical properties of wheat straw, barley straw, corn stover and switchgrass were determined at different compressive forces, particle sizes and moisture...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 648
SubjectTerms Applied sciences
Barley straw
Biomass
Corn stover
Energy
Exact sciences and technology
Hordeum vulgare
Natural energy
Pellet density and Asymptotic modulus
Physical properties
Switchgrass
Triticum aestivum
Wheat straw
Title Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses
URI https://dx.doi.org/10.1016/j.biombioe.2005.01.004
https://www.proquest.com/docview/20494948
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6120sRqqAPUVoWHzg2u04cZ51jVbVaQPQClXqLHD_QVjSJNrtIcOC3dyZx-hBIPXDIJfIjGY9nPnteAB_KGddmlmSRVxoPKEbpSEvPo0RoXvqZ8qWneOcvl9n8Kv10La834GyIhSG3yiD7e5neSevwZhqoOW0Wi-lXKlaSS4EaiXeafBO2EtT2agRbpx8_zy_vjQkp7wpYUnuyVqaPAoVvJhTljo8L1yvxhIeabf_QUS8b3SLlfF_y4i_p3amki1ewE7AkO-0_9zVsuGoXXjzKMLgLB-cPgWzYNOzkdg9-9WmLW1Z7Rm7lnTvsT8cQwxp3wppAA9YufjumK8tua2SI9dIxcm7H0VhdsVtHccO0zKyhS_0lZWelEel3EZUzMu04nISCWNj3pSYL8z5cXZx_O5tHoQxDZBCtrKIyyzSZ10RqPB69hcpKjccsKzP8UK1i4WXOXWKcsLG1VkmlhVSI7Li2PDZcHMCoqiv3BpgVmTAIEnwiXBqnic5RfiSxT732FmXLIciB8IUJOcqpVMaPYnBGuymGBaMCmrLgcYELdgjT-35Nn6Xj2R75sK7FE34rUJU823f8hBEeppzliA4FNng_cEaBu5VMMLpy9brFUSgbUKre_sf0R7Dd3wORz_AxjFbLtXuHyGhVjmFz8iceB_6_AxjAEf0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dBWCLW0qBQKPvTYsE6cZJ0jQqClwF4KEjfL8aNaVJJos1up_fWdSRweaiUOPeQS-ZHM2DNjz-MD-FxOuDaTJI-81HhAMVJHOvM8SoTmpZ9IX3rKd76c5dPr9OtNdrMGx0MuDIVVBtnfy_ROWoc340DNcTOfj78RWEmRCdRIvNPkL2A9JVDrEawfnZ1PZ_fOhJR3AJbUnryV6aNE4dtDynLHx4XrlfiQB8y2f-iojUa3SDnfQ178Jb07lXT6BjaDLcmO-s99C2uu2oLXjyoMbsH2yUMiGzYNO7l9B7_6ssUtqz2jsPIuHPanY2jDGveFNYEGrJ3_dkxXlt3VuCBWC8couB1HY3XF7hzlDRObWUOX-guqzkoj0u-iVc7IteNwEkpiYd8XmjzM7-H69OTqeBoFGIbIoLWyjMo81-ReE6nxePQWMi81HrNsluOHahkLnxXcJcYJG1trZSa1yCRadlxbHhsutmFU1ZX7AMyKXBg0EnwiHHIq0QXKjyT2qdfeomzZgWwgvDKhRjlBZfxQQzDarRoYRgCameKxQobtwPi-X9NX6Xi2RzHwVT1ZbwpVybN9958shIcpJwVahwIbHAwrQ-FuJReMrly9anEUqgaUyo__Mf0BvJxeXV6oi7PZ-S686u-EKH54D0bLxcp9QitpWe6HXfAHiyoT4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+compressive+force%2C+particle+size+and+moisture+content+on+mechanical+properties+of+biomass+pellets+from+grasses&rft.jtitle=Biomass+%26+bioenergy&rft.au=Mani%2C+S&rft.au=Tabil%2C+L+G&rft.au=Sokhansanj%2C+S&rft.date=2006-07-01&rft.issn=0961-9534&rft.volume=30&rft.issue=7&rft.spage=648&rft.epage=654&rft_id=info:doi/10.1016%2Fj.biombioe.2005.01.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon