A unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood for landslide susceptibility mapping
•The proportion of landslide binary pixels was used as label data input in network models.•MSCNN model was carried out for LSM the first time.•A unified network in parallel with GRU and MSCNN was proposed for LSM. Landslide susceptibility mapping (LSM) is very important for hazard risk identificatio...
Saved in:
| Published in | International journal of applied earth observation and geoinformation Vol. 104; p. 102508 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.12.2021
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1569-8432 1872-826X 1872-826X |
| DOI | 10.1016/j.jag.2021.102508 |
Cover
| Abstract | •The proportion of landslide binary pixels was used as label data input in network models.•MSCNN model was carried out for LSM the first time.•A unified network in parallel with GRU and MSCNN was proposed for LSM.
Landslide susceptibility mapping (LSM) is very important for hazard risk identification and prevention. Most of existing neural network models extract a pixel neighborhood feature or a pixel sequence feature of landslide factors on one side, which leads to the generalization ability of the network models difficultly, and had a low prediction accuracy in complex scenes. In this paper, a new unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood is proposed for LSM. Different from the traditional prediction model framework, the landslide conditioning factors are merged into a unified network model in parallel with the pixel sequence features and pixel neighbourhood features. In the experiment, we take the proportion of landslide binary pixels as label data, which represents the landslide possibility in the neighbourhood. We propose a pixel sequence feature extraction algorithm based on a gated recurrent unit (GRU) network and a pixel neighbourhood feature extraction algorithm based on a multi-scale convolution neural network (MSCNN). In this study, the landslide conditioning factors were analysed by multicollinearity analysis and the frequency ratio (FR) method. The performance of the modes was evaluated by statistical indexes and the correlation analysis. The LSM results were verified by google earth images and field investigation. Our research shows that the proposed model can greatly improve the accuracy of LSM compared with the individual GRU and MSCNN, especially, the proposed model had 6.1% more improvement than the GRU model in terms of the area under curve (AUC). Therefore, we suggest that the proposed model is a suitable technology for use in early identification and landslide prediction. |
|---|---|
| AbstractList | •The proportion of landslide binary pixels was used as label data input in network models.•MSCNN model was carried out for LSM the first time.•A unified network in parallel with GRU and MSCNN was proposed for LSM.
Landslide susceptibility mapping (LSM) is very important for hazard risk identification and prevention. Most of existing neural network models extract a pixel neighborhood feature or a pixel sequence feature of landslide factors on one side, which leads to the generalization ability of the network models difficultly, and had a low prediction accuracy in complex scenes. In this paper, a new unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood is proposed for LSM. Different from the traditional prediction model framework, the landslide conditioning factors are merged into a unified network model in parallel with the pixel sequence features and pixel neighbourhood features. In the experiment, we take the proportion of landslide binary pixels as label data, which represents the landslide possibility in the neighbourhood. We propose a pixel sequence feature extraction algorithm based on a gated recurrent unit (GRU) network and a pixel neighbourhood feature extraction algorithm based on a multi-scale convolution neural network (MSCNN). In this study, the landslide conditioning factors were analysed by multicollinearity analysis and the frequency ratio (FR) method. The performance of the modes was evaluated by statistical indexes and the correlation analysis. The LSM results were verified by google earth images and field investigation. Our research shows that the proposed model can greatly improve the accuracy of LSM compared with the individual GRU and MSCNN, especially, the proposed model had 6.1% more improvement than the GRU model in terms of the area under curve (AUC). Therefore, we suggest that the proposed model is a suitable technology for use in early identification and landslide prediction. Landslide susceptibility mapping (LSM) is very important for hazard risk identification and prevention. Most of existing neural network models extract a pixel neighborhood feature or a pixel sequence feature of landslide factors on one side, which leads to the generalization ability of the network models difficultly, and had a low prediction accuracy in complex scenes. In this paper, a new unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood is proposed for LSM. Different from the traditional prediction model framework, the landslide conditioning factors are merged into a unified network model in parallel with the pixel sequence features and pixel neighbourhood features. In the experiment, we take the proportion of landslide binary pixels as label data, which represents the landslide possibility in the neighbourhood. We propose a pixel sequence feature extraction algorithm based on a gated recurrent unit (GRU) network and a pixel neighbourhood feature extraction algorithm based on a multi-scale convolution neural network (MSCNN). In this study, the landslide conditioning factors were analysed by multicollinearity analysis and the frequency ratio (FR) method. The performance of the modes was evaluated by statistical indexes and the correlation analysis. The LSM results were verified by google earth images and field investigation. Our research shows that the proposed model can greatly improve the accuracy of LSM compared with the individual GRU and MSCNN, especially, the proposed model had 6.1% more improvement than the GRU model in terms of the area under curve (AUC). Therefore, we suggest that the proposed model is a suitable technology for use in early identification and landslide prediction. |
| ArticleNumber | 102508 |
| Author | He, Yi Yang, Wang Wang, Wenhui Yan, Haowen Yao, Sheng Zhang, Lifeng Zhao, Zhan'ao Liu, Tao |
| Author_xml | – sequence: 1 givenname: Yi surname: He fullname: He, Yi email: heyi@mail.lzjtu.cn organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 2 givenname: Zhan'ao surname: Zhao fullname: Zhao, Zhan'ao organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 3 givenname: Wang surname: Yang fullname: Yang, Wang email: yyangwang48@gmail.com organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 4 givenname: Haowen surname: Yan fullname: Yan, Haowen email: haowen2010@gmail.com organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 5 givenname: Wenhui surname: Wang fullname: Wang, Wenhui organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 6 givenname: Sheng surname: Yao fullname: Yao, Sheng organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 7 givenname: Lifeng surname: Zhang fullname: Zhang, Lifeng organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 8 givenname: Tao surname: Liu fullname: Liu, Tao organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China |
| BookMark | eNqNkc1u1TAQhSNUJNrCA7Dzkk0utpM4jlhVFT-VKrEBiZ01sZ1bB1872A7lPgpvy9wGIcSiYuXxzJzP8jkX1VmIwVbVS0Z3jDLxet7NsN9xyhneeUflk-qcyZ7XkosvZ1h3Yqhl2_Bn1UXOM6Ws74U8r35ekTW4yVlDgi33MX0lcSIuTDEdoLgYiI4hO2OTC3uS1wWLwxIz7nsIJnsckQl0iSmTbL-tNmhLcEIW98N6khekgEe429-NcU13MRqC9L_kec3aLsWNzrtyJAdYFnzsefV0Ap_ti9_nZfX53dtP1x_q24_vb66vbmvdNkOpR951pu0AqBhb6AfbjEaMvdTDqTO1AvqmB8rlCB0bJBt0Y1vLmBiFbiZumsvqZuOaCLNa8HuQjiqCUw-NmPYKUnHaW4XKrhVWik7IlmFhjNSjnFrOYRopQxbfWGtY4HgP3v8BMqpOQalZYVDqFJTagkLRq020pIj-5aIODg3xaJCNa1Zc9F0neUMprrJtVaeYc7LTf-H7fzTalYdoSwLnH1W-2ZQW7f_ubFJZu1O-xiWrC_rjHlH_Apcc0fE |
| CitedBy_id | crossref_primary_10_1080_10095020_2024_2443483 crossref_primary_10_1109_JSTARS_2025_3525633 crossref_primary_10_1109_JSTARS_2022_3199118 crossref_primary_10_1080_17538947_2025_2468913 crossref_primary_10_1007_s10064_023_03440_9 crossref_primary_10_1109_JSTARS_2022_3198728 crossref_primary_10_1109_JSTARS_2024_3437751 crossref_primary_10_3389_feart_2022_872192 crossref_primary_10_1080_19475705_2023_2185120 crossref_primary_10_1109_JSTARS_2025_3541638 crossref_primary_10_1515_geo_2022_0516 crossref_primary_10_1109_JSTARS_2024_3368039 crossref_primary_10_1080_15481603_2024_2349343 crossref_primary_10_1080_17538947_2023_2229797 crossref_primary_10_1080_17538947_2023_2172224 crossref_primary_10_1007_s11440_023_01841_4 crossref_primary_10_1016_j_jag_2023_103631 crossref_primary_10_1371_journal_pone_0292897 crossref_primary_10_1007_s10346_024_02350_5 crossref_primary_10_3389_feart_2024_1511785 crossref_primary_10_1109_JSTARS_2023_3260584 crossref_primary_10_1109_JSTARS_2023_3339294 crossref_primary_10_1007_s11069_022_05325_8 crossref_primary_10_1109_JSTARS_2023_3291490 crossref_primary_10_1080_19475705_2024_2378176 crossref_primary_10_1007_s10346_025_02465_3 crossref_primary_10_1109_JSTARS_2022_3200521 crossref_primary_10_1117_1_JRS_19_014502 crossref_primary_10_1080_17538947_2023_2295408 crossref_primary_10_1007_s11629_024_8651_7 crossref_primary_10_1109_JSTARS_2024_3351277 crossref_primary_10_1109_JSTARS_2024_3370218 crossref_primary_10_1007_s12205_024_1598_y crossref_primary_10_1007_s41651_023_00137_1 |
| Cites_doi | 10.1016/j.geomorph.2017.12.008 10.1007/s11269-015-0962-6 10.1016/j.catena.2017.11.022 10.1016/j.asr.2010.01.006 10.3390/rs12030502 10.1109/MGRS.2019.2954395 10.1016/j.scitotenv.2017.09.262 10.1016/j.scitotenv.2019.01.221 10.3390/s20061576 10.1016/j.cageo.2010.04.004 10.1016/S0098-3004(97)00117-9 10.1007/s12665-019-8562-z 10.4236/ijg.2016.75056 10.1080/19475705.2017.1289250 10.1016/j.geomorph.2012.02.003 10.1007/s10346-015-0614-1 10.1016/j.jag.2010.04.006 10.1016/j.earscirev.2018.03.001 10.1016/j.catena.2018.08.025 10.3390/s19163590 10.1007/s10661-018-6507-8 10.1007/s12665-011-1504-z 10.1023/A:1018054314350 10.1016/j.catena.2011.01.014 10.1016/j.scitotenv.2020.139937 10.1016/j.scitotenv.2019.02.263 10.1016/j.gsf.2020.07.012 10.1016/j.cageo.2020.104445 10.1080/10106049.2018.1559885 10.3390/rs8100866 10.1016/j.geomorph.2017.09.007 10.1007/s10346-016-0769-4 10.1016/j.catena.2015.08.007 10.3390/rs11060638 10.1016/j.scitotenv.2020.140549 10.1016/j.catena.2019.104188 10.1080/01431161.2018.1478465 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) |
| Copyright_xml | – notice: 2021 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.1016/j.jag.2021.102508 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-826X |
| ExternalDocumentID | oai_doaj_org_article_3e4546e86568416e8dd8cb8f422afb01 10.1016/j.jag.2021.102508 10_1016_j_jag_2021_102508 S0303243421002154 |
| GroupedDBID | 4.4 5GY 6I. AAFTH AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT BKOJK BLECG EBS FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P ROL SDF SDG SES SPC SSE SSJ T5K ~02 29J AAHBH AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AGQPQ AIIUN AITUG ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFJIC EFKBS EJD R2- 7S9 L.6 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c439t-b255d45aa06b4a79e3bd6b78c9a06bf46a737a028ba519819c3e4e116b6c3f2d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1569-8432 1872-826X |
| IngestDate | Fri Oct 03 12:52:36 EDT 2025 Tue Aug 19 19:22:31 EDT 2025 Sun Sep 28 06:11:35 EDT 2025 Thu Oct 09 00:36:41 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Fri Feb 23 02:39:58 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lanzhou city GRU Landslide susceptibility MSCNN RS and GIS |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-b255d45aa06b4a79e3bd6b78c9a06bf46a737a028ba519819c3e4e116b6c3f2d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jag.2021.102508 |
| PQID | 2675582300 |
| PQPubID | 24069 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3e4546e86568416e8dd8cb8f422afb01 unpaywall_primary_10_1016_j_jag_2021_102508 proquest_miscellaneous_2675582300 crossref_primary_10_1016_j_jag_2021_102508 crossref_citationtrail_10_1016_j_jag_2021_102508 elsevier_sciencedirect_doi_10_1016_j_jag_2021_102508 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-15 |
| PublicationDateYYYYMMDD | 2021-12-15 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of applied earth observation and geoinformation |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Chauhan, Sharma, Arora, Gupta (b0035) 2010; 12 Dou, Yunus, Tien Bui, Merghadi, Sahana, Zhu, Chen, Khosravi, Yang, Pham (b0080) 2019; 662 Atkinson, Massari (b0010) 1998; 24 Chen, Lin, Zhao, Wang, Gu (b0070) 2014; 7 Pham, Prakash, Dou, Singh, Trinh, Tran, Le, Van Phong, Khoi, Shirzadi, Bui (b0145) 2020; 35 Tsangaratos, Ilia, Hong, Chen, Xu (b0200) 2017; 14 Chang, Du, Zhang, Huang, Chen, Li, Guo (b0030) 2020; 12 Reichenbach, Rossi, Malamud, Mihir, Guzzetti (b0170) 2018; 180 Wang, Guo, Sawada, Lin, Zhang (b0210) 2015; 135 Zhou (b0260) 2019 Zhu, Huang, Fan, Huang, Huang, Chen, Zhang, Wang (b0270) 2020; 20 Maas, Hannun, Ng (b0130) 2013 Pourghasemi, Rahmati (b0160) 2018; 162 Pham, Prakash, Tien Bui (b0150) 2018; 303 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0180) 2014; 15 Taylor (b0185) 2009 Piacentini, Troiani, Soldati, Notarnicola, Savelli, Schneiderbauer, Strada (b0155) 2012; 151-152 Wang (b0235) 2020 Saha, Saha (b0175) 2020 Termeh, Kornejady, Pourghasemi, Keesstra (b0190) 2018; 615 Golkarian, Naghibi, Kalantar, Pradhan (b0095) 2018; 190 . Xu, Huang, Xiang (b0240) 2000; S1 He, Yao, Yang, Yan, Zhang, Wen, Zhang, Liu (b0100) 2021; 14 Bui, Moayedi, Kalantar, Osouli, Pradhan, Nguyen, Rashid (b0025) 2019; 19 Chen (b0040) 2016 Wang, Fang, Hong (b0225) 2019; 666 Avalon, Cullen, Al-Suhili, Khanbilvardi (b0015) 2016; 8 Du, Bai, Tan, Xue, Samat, Xia, Li, Su, Liu (b0090) 2020; 4 Dai, Li, Xu, Bürgmann, Milledge, Tomás, Fan, Zhao, Liu, Peng, Zhang, Wang, Qu, He, Li, Liu (b0075) 2020; 8 Paudel, Oguchi, Hayakawa (b0140) 2016; 07 Dou, Yunus, Tien Bui, Sahana, Chen, Zhu, Wang, Pham (b0085) 2019; 11 Kia, Pirasteh, Pradhan, Mahmud, Sulaiman, Moradi (b0125) 2012; 67 Wang, Chau, Xu, Chen (b0215) 2015; 29 Wang, He, Zhang, Chen, Tang, Qiu, Zhang (b0220) 2021; 57 Panahi, Gayen, Pourghasemi, Rezaie, Lee (b0135) 2020; 741 Jaafari, Rezaeian, Omrani (b0120) 2017; 38 Chen, Xie, Peng, Wang, Duan, Hong (b0065) 2017; 8 Chen, Zhong, Niu, Liu, Chen (b0045) 2020; 45 He, Dou, Yan, Zhang, Yang (b0105) 2018; 39 Zhu, Miao, Liu, Bai, Zeng, Ma, Hong (b0265) 2019; 183 Chen, Panahi, Tsangaratos, Shahabi, Ilia, Panahi, Li, Jaafari, Ahmad (b0055) 2019; 172 Wang, Fang, Wang, Peng, Hong (b0230) 2020; 138 Breiman (b0020) 1996; 24 The peoples Government of Gansu Province, 2017. The 13th 5 years plan of geological disaster prevention and control in Gansu Province. Chen, Pourghasemi, Panahi, Kornejady, Wang, Xie, Caoal (b0060) 2017; 297 Yalcin, Reis, Aydinoglu, Yomralioglu (b0245) 2011; 85 Abedini, Ghasemian, Shirzadi, Bui (b0005) 2019; 78 Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (b0250) 2016; 13 Chen, Chen, Peng, Panahi, Lee (b0050) 2021; 12 Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (b0110) 2012; 3 Pradhan (b0165) 2010; 45 Vahidnia, Alesheikh, Alimohammadi, Hosseinali (b0205) 2010; 36 Zhang, Guo, Xiao (b0255) 2021; 49 Hong, Tsangaratos, Ilia, Loupasakis, Wang (b0115) 2020; 742 Pham (10.1016/j.jag.2021.102508_b0150) 2018; 303 Kia (10.1016/j.jag.2021.102508_b0125) 2012; 67 Piacentini (10.1016/j.jag.2021.102508_b0155) 2012; 151-152 Dai (10.1016/j.jag.2021.102508_b0075) 2020; 8 Pham (10.1016/j.jag.2021.102508_b0145) 2020; 35 Maas (10.1016/j.jag.2021.102508_b0130) 2013 He (10.1016/j.jag.2021.102508_b0100) 2021; 14 Zhu (10.1016/j.jag.2021.102508_b0270) 2020; 20 Youssef (10.1016/j.jag.2021.102508_b0250) 2016; 13 Wang (10.1016/j.jag.2021.102508_b0220) 2021; 57 Taylor (10.1016/j.jag.2021.102508_b0185) 2009 Chen (10.1016/j.jag.2021.102508_b0045) 2020; 45 Wang (10.1016/j.jag.2021.102508_b0235) 2020 Zhou (10.1016/j.jag.2021.102508_b0260) 2019 Dou (10.1016/j.jag.2021.102508_b0080) 2019; 662 Hinton (10.1016/j.jag.2021.102508_b0110) 2012; 3 Panahi (10.1016/j.jag.2021.102508_b0135) 2020; 741 Saha (10.1016/j.jag.2021.102508_b0175) 2020 Avalon (10.1016/j.jag.2021.102508_b0015) 2016; 8 Zhu (10.1016/j.jag.2021.102508_b0265) 2019; 183 Chen (10.1016/j.jag.2021.102508_b0060) 2017; 297 Chen (10.1016/j.jag.2021.102508_b0055) 2019; 172 Chen (10.1016/j.jag.2021.102508_b0040) 2016 Srivastava (10.1016/j.jag.2021.102508_b0180) 2014; 15 Golkarian (10.1016/j.jag.2021.102508_b0095) 2018; 190 Breiman (10.1016/j.jag.2021.102508_b0020) 1996; 24 Pourghasemi (10.1016/j.jag.2021.102508_b0160) 2018; 162 He (10.1016/j.jag.2021.102508_b0105) 2018; 39 Pradhan (10.1016/j.jag.2021.102508_b0165) 2010; 45 Jaafari (10.1016/j.jag.2021.102508_b0120) 2017; 38 Atkinson (10.1016/j.jag.2021.102508_b0010) 1998; 24 Abedini (10.1016/j.jag.2021.102508_b0005) 2019; 78 10.1016/j.jag.2021.102508_b0195 Vahidnia (10.1016/j.jag.2021.102508_b0205) 2010; 36 Wang (10.1016/j.jag.2021.102508_b0225) 2019; 666 Hong (10.1016/j.jag.2021.102508_b0115) 2020; 742 Bui (10.1016/j.jag.2021.102508_b0025) 2019; 19 Chauhan (10.1016/j.jag.2021.102508_b0035) 2010; 12 Yalcin (10.1016/j.jag.2021.102508_b0245) 2011; 85 Wang (10.1016/j.jag.2021.102508_b0210) 2015; 135 Wang (10.1016/j.jag.2021.102508_b0215) 2015; 29 Xu (10.1016/j.jag.2021.102508_b0240) 2000; S1 Tsangaratos (10.1016/j.jag.2021.102508_b0200) 2017; 14 Termeh (10.1016/j.jag.2021.102508_b0190) 2018; 615 Dou (10.1016/j.jag.2021.102508_b0085) 2019; 11 Chang (10.1016/j.jag.2021.102508_b0030) 2020; 12 Paudel (10.1016/j.jag.2021.102508_b0140) 2016; 07 Reichenbach (10.1016/j.jag.2021.102508_b0170) 2018; 180 Chen (10.1016/j.jag.2021.102508_b0065) 2017; 8 Chen (10.1016/j.jag.2021.102508_b0050) 2021; 12 Zhang (10.1016/j.jag.2021.102508_b0255) 2021; 49 Du (10.1016/j.jag.2021.102508_b0090) 2020; 4 Chen (10.1016/j.jag.2021.102508_b0070) 2014; 7 Wang (10.1016/j.jag.2021.102508_b0230) 2020; 138 |
| References_xml | – volume: 12 start-page: 340 year: 2010 end-page: 350 ident: b0035 article-title: Landslide susceptibility zonation through ratings derived from artificial neural network publication-title: Int. J. Appl. Earth Obs. Geoinformation – volume: 8 start-page: 866 year: 2016 ident: b0015 article-title: Guidance index for shallow landslide hazard analysis publication-title: Remote Sens. – volume: 11 start-page: 638 year: 2019 ident: b0085 article-title: Evaluating GIS-based multiple statistical models and datamining for earth quake and rainfall-induced landslide susceptibility using the LiDAR DEM publication-title: Remote Sens. – volume: 45 start-page: 1809 year: 2020 end-page: 1817 ident: b0045 article-title: Mapping landslide susceptibility based on deep belief network publication-title: Geomatics Inf. Sci. Wuhan Univ. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b0180 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Machine Learn. Res. – year: 2016 ident: b0040 article-title: Analyzing Landslide Susceptibility in the Upper Mingjiang Basin – volume: 36 start-page: 1101 year: 2010 end-page: 1114 ident: b0205 article-title: A GIS-based neurofuzzy procedure for integrating knowledge and data inlandslide susceptibility mapping publication-title: Comput. Geosci. – volume: S1 start-page: 112 year: 2000 end-page: 117 ident: b0240 article-title: Time and Spacial Predicting of Geological Hazards Occurrence publication-title: J. Mountain Sci. – volume: 20 start-page: 1576 year: 2020 ident: b0270 article-title: Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network publication-title: Sensors – year: 2020 ident: b0235 article-title: Research on Early Warning Model of Rainfall Landslide in Loess Landform Combined with InSAR Technology – volume: 85 start-page: 274 year: 2011 end-page: 287 ident: b0245 article-title: GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey publication-title: Catena – volume: 7 start-page: 2094 year: 2014 end-page: 2107 ident: b0070 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J-STARS – volume: 07 start-page: 726 year: 2016 end-page: 743 ident: b0140 article-title: Multi-resolution landslide susceptibility analysis using a DEM and random forest publication-title: Int. J. Geosci. – volume: 13 start-page: 839 year: 2016 end-page: 856 ident: b0250 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides – year: 2013 ident: b0130 article-title: Rectifier Nonlinearities Improve Neural Network Acoustic Models – start-page: 100323 year: 2020 ident: b0175 article-title: Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: a study on Kurseong region of Darjeeling Himalaya, India publication-title: Soc. Environ. Remote Sens. App. – volume: 8 start-page: 950 year: 2017 end-page: 973 ident: b0065 article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models publication-title: Geomatics, Natural Hazards Risk – volume: 57 start-page: 382 year: 2021 end-page: 389 ident: b0220 article-title: Ground deformation monitoring and driving force analysis of the main city area in Lanzhou based on PS-InSAR and GeoDetector publication-title: J. Lanzhou Univ. (NaturalSciences). – volume: 78 start-page: 560 year: 2019 ident: b0005 article-title: A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling publication-title: Environ. Environ. Earth Sci. – volume: 162 start-page: 177 year: 2018 end-page: 192 ident: b0160 article-title: Prediction of the landslide susceptibility: which algorithm, which precision? publication-title: Catena – volume: 19 start-page: 3590 year: 2019 ident: b0025 article-title: A Novel swarm intelligence-Harris hawks optimization for spatial assessment of landslide susceptibility publication-title: Sensors – volume: 8 start-page: 136 year: 2020 end-page: 153 ident: b0075 article-title: Entering the era of Earth-Observation based landslide warning system publication-title: IEEE Geose. Rem. Sen. M. – volume: 172 start-page: 212 year: 2019 end-page: 231 ident: b0055 article-title: Applying population-based evolutionary algorithms and aneuro-fuzzy system for modeling landslide susceptibility publication-title: Catena – volume: 151-152 start-page: 196 year: 2012 end-page: 206 ident: b0155 article-title: Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy) publication-title: Geomorphology – volume: 303 start-page: 256 year: 2018 end-page: 270 ident: b0150 article-title: Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees publication-title: Geomorphology – volume: 183 start-page: 104188 year: 2019 ident: b0265 article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods publication-title: Catena – volume: 67 start-page: 251 year: 2012 end-page: 264 ident: b0125 article-title: An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia publication-title: Environ. Earth Sci. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0020 article-title: Bagging predictors publication-title: Machine Learn. – volume: 14 start-page: 1091 year: 2017 end-page: 1111 ident: b0200 article-title: Applying Information Theory and GIS based quantitative methods to produce landslide susceptibility maps in Nancheng County, China publication-title: Landslides – volume: 24 start-page: 373 year: 1998 end-page: 385 ident: b0010 article-title: Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy publication-title: Comput. Geosci. – volume: 14 start-page: 6544 year: 2021 end-page: 6558 ident: b0100 article-title: Water Body Extraction of High Resolution Remote Sensing Image based on Improved U-Net Network publication-title: IEEE J-STARS – volume: 135 start-page: 271 year: 2015 end-page: 282 ident: b0210 article-title: Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models publication-title: Catena – volume: 742 start-page: 140549 year: 2020 ident: b0115 article-title: Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping publication-title: Sci. Total Environ. – reference: The peoples Government of Gansu Province, 2017. The 13th 5 years plan of geological disaster prevention and control in Gansu Province. – volume: 662 start-page: 332 year: 2019 end-page: 346 ident: b0080 article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan publication-title: Sci. Total Environ. – volume: 138 start-page: 104445 year: 2020 ident: b0230 article-title: Comparative study of landslide susceptibility mapping with different recurrent neural networks publication-title: Comput. Geosci. – volume: 45 start-page: 1244 year: 2010 end-page: 1256 ident: b0165 article-title: Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia publication-title: Adv. Space Res. – volume: 38 start-page: 107 year: 2017 end-page: 118 ident: b0120 article-title: Spatial prediction of slope failures in support of forestry operations safety publication-title: Croatian J. For. Eng.: J. Theory App. Forest. Eng. – year: 2009 ident: b0185 article-title: Statistical Enhancement of Support Vector Machines – volume: 4 year: 2020 ident: b0090 article-title: Advances of Four Machine Learning Methods for Spatial Data Handling: a Review publication-title: J. Geovisualization Spatial Anal – volume: 35 start-page: 1267 year: 2020 end-page: 1292 ident: b0145 article-title: A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers publication-title: Geocarto Int. – volume: 12 start-page: 502 year: 2020 ident: b0030 article-title: Landslide susceptibility prediction based on remote sensing images and GIS: comparisons of supervised and unsupervised machine learning models publication-title: Remote Sens. – volume: 190 start-page: 149 year: 2018 ident: b0095 article-title: Ground water potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS publication-title: Environ. Monitor. Assess. Int. J. – volume: 49 start-page: 68 year: 2021 end-page: 73 ident: b0255 article-title: Image Description based on GoogleNet and doublelayer GRU publication-title: J. Shanxi Normal Univ. (Natural Sci. Ed.) – year: 2019 ident: b0260 article-title: The Mechanism Analysis and Susceptibility Mapping of the Landslides along the Maoding River at the Upstream of the Jinsha – volume: 615 start-page: 438 year: 2018 end-page: 451 ident: b0190 article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristical gorithms publication-title: Sci. Total Environ. – volume: 12 start-page: 93 year: 2021 end-page: 107 ident: b0050 article-title: Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer publication-title: Geosci. Front. – reference: . – volume: 39 start-page: 7693 year: 2018 end-page: 7717 ident: b0105 article-title: Quantifying the main urban area expansion ofGuangzhou using Landsat imagery publication-title: Int. J. Remot. Sens. – volume: 666 start-page: 975 year: 2019 end-page: 993 ident: b0225 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China publication-title: Sci. Total Environ. – volume: 29 start-page: 2655 year: 2015 end-page: 2675 ident: b0215 article-title: Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition publication-title: Water Resour. Manag. – volume: 297 start-page: 69 year: 2017 end-page: 85 ident: b0060 article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques publication-title: Geomorphology – volume: 741 start-page: 139937 year: 2020 ident: b0135 article-title: Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms publication-title: Sci. Total Environ. – volume: 180 start-page: 60 year: 2018 end-page: 91 ident: b0170 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth-Sci. Rev. – volume: 3 start-page: 212 year: 2012 end-page: 223 ident: b0110 article-title: Improving neural networks by preventing co-adaptation of feature detectors publication-title: Comput. Sci. – volume: 303 start-page: 256 year: 2018 ident: 10.1016/j.jag.2021.102508_b0150 article-title: Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.12.008 – volume: 29 start-page: 2655 issue: 8 year: 2015 ident: 10.1016/j.jag.2021.102508_b0215 article-title: Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-0962-6 – volume: 162 start-page: 177 year: 2018 ident: 10.1016/j.jag.2021.102508_b0160 article-title: Prediction of the landslide susceptibility: which algorithm, which precision? publication-title: Catena doi: 10.1016/j.catena.2017.11.022 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.jag.2021.102508_b0180 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Machine Learn. Res. – volume: 38 start-page: 107 issue: 1 year: 2017 ident: 10.1016/j.jag.2021.102508_b0120 article-title: Spatial prediction of slope failures in support of forestry operations safety publication-title: Croatian J. For. Eng.: J. Theory App. Forest. Eng. – volume: 3 start-page: 212 issue: 4 year: 2012 ident: 10.1016/j.jag.2021.102508_b0110 article-title: Improving neural networks by preventing co-adaptation of feature detectors publication-title: Comput. Sci. – volume: 49 start-page: 68 issue: 01 year: 2021 ident: 10.1016/j.jag.2021.102508_b0255 article-title: Image Description based on GoogleNet and doublelayer GRU publication-title: J. Shanxi Normal Univ. (Natural Sci. Ed.) – volume: 7 start-page: 2094 issue: 6 year: 2014 ident: 10.1016/j.jag.2021.102508_b0070 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J-STARS – volume: 45 start-page: 1244 issue: 10 year: 2010 ident: 10.1016/j.jag.2021.102508_b0165 article-title: Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia publication-title: Adv. Space Res. doi: 10.1016/j.asr.2010.01.006 – volume: 57 start-page: 382 issue: 3 year: 2021 ident: 10.1016/j.jag.2021.102508_b0220 article-title: Ground deformation monitoring and driving force analysis of the main city area in Lanzhou based on PS-InSAR and GeoDetector publication-title: J. Lanzhou Univ. (NaturalSciences). – volume: 12 start-page: 502 issue: 3 year: 2020 ident: 10.1016/j.jag.2021.102508_b0030 article-title: Landslide susceptibility prediction based on remote sensing images and GIS: comparisons of supervised and unsupervised machine learning models publication-title: Remote Sens. doi: 10.3390/rs12030502 – volume: 8 start-page: 136 issue: 1 year: 2020 ident: 10.1016/j.jag.2021.102508_b0075 article-title: Entering the era of Earth-Observation based landslide warning system publication-title: IEEE Geose. Rem. Sen. M. doi: 10.1109/MGRS.2019.2954395 – volume: 615 start-page: 438 year: 2018 ident: 10.1016/j.jag.2021.102508_b0190 article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristical gorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.262 – volume: 662 start-page: 332 year: 2019 ident: 10.1016/j.jag.2021.102508_b0080 article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.221 – volume: 20 start-page: 1576 issue: 6 year: 2020 ident: 10.1016/j.jag.2021.102508_b0270 article-title: Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network publication-title: Sensors doi: 10.3390/s20061576 – volume: 36 start-page: 1101 issue: 9 year: 2010 ident: 10.1016/j.jag.2021.102508_b0205 article-title: A GIS-based neurofuzzy procedure for integrating knowledge and data inlandslide susceptibility mapping publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.04.004 – year: 2019 ident: 10.1016/j.jag.2021.102508_b0260 – volume: 24 start-page: 373 issue: 4 year: 1998 ident: 10.1016/j.jag.2021.102508_b0010 article-title: Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy publication-title: Comput. Geosci. doi: 10.1016/S0098-3004(97)00117-9 – volume: 78 start-page: 560 issue: 18 year: 2019 ident: 10.1016/j.jag.2021.102508_b0005 article-title: A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling publication-title: Environ. Environ. Earth Sci. doi: 10.1007/s12665-019-8562-z – volume: 07 start-page: 726 issue: 05 year: 2016 ident: 10.1016/j.jag.2021.102508_b0140 article-title: Multi-resolution landslide susceptibility analysis using a DEM and random forest publication-title: Int. J. Geosci. doi: 10.4236/ijg.2016.75056 – year: 2020 ident: 10.1016/j.jag.2021.102508_b0235 – volume: 8 start-page: 950 issue: 2 year: 2017 ident: 10.1016/j.jag.2021.102508_b0065 article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models publication-title: Geomatics, Natural Hazards Risk doi: 10.1080/19475705.2017.1289250 – volume: 151-152 start-page: 196 year: 2012 ident: 10.1016/j.jag.2021.102508_b0155 article-title: Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.02.003 – ident: 10.1016/j.jag.2021.102508_b0195 – volume: 13 start-page: 839 issue: 5 year: 2016 ident: 10.1016/j.jag.2021.102508_b0250 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides doi: 10.1007/s10346-015-0614-1 – volume: 12 start-page: 340 issue: 5 year: 2010 ident: 10.1016/j.jag.2021.102508_b0035 article-title: Landslide susceptibility zonation through ratings derived from artificial neural network publication-title: Int. J. Appl. Earth Obs. Geoinformation doi: 10.1016/j.jag.2010.04.006 – volume: 180 start-page: 60 year: 2018 ident: 10.1016/j.jag.2021.102508_b0170 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2018.03.001 – volume: 172 start-page: 212 year: 2019 ident: 10.1016/j.jag.2021.102508_b0055 article-title: Applying population-based evolutionary algorithms and aneuro-fuzzy system for modeling landslide susceptibility publication-title: Catena doi: 10.1016/j.catena.2018.08.025 – volume: 4 issue: 1 year: 2020 ident: 10.1016/j.jag.2021.102508_b0090 article-title: Advances of Four Machine Learning Methods for Spatial Data Handling: a Review publication-title: J. Geovisualization Spatial Anal – start-page: 100323 year: 2020 ident: 10.1016/j.jag.2021.102508_b0175 article-title: Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: a study on Kurseong region of Darjeeling Himalaya, India publication-title: Soc. Environ. Remote Sens. App. – volume: 19 start-page: 3590 issue: 16 year: 2019 ident: 10.1016/j.jag.2021.102508_b0025 article-title: A Novel swarm intelligence-Harris hawks optimization for spatial assessment of landslide susceptibility publication-title: Sensors doi: 10.3390/s19163590 – volume: 190 start-page: 149 issue: 3 year: 2018 ident: 10.1016/j.jag.2021.102508_b0095 article-title: Ground water potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS publication-title: Environ. Monitor. Assess. Int. J. doi: 10.1007/s10661-018-6507-8 – volume: 67 start-page: 251 issue: 1 year: 2012 ident: 10.1016/j.jag.2021.102508_b0125 article-title: An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1504-z – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.jag.2021.102508_b0020 article-title: Bagging predictors publication-title: Machine Learn. doi: 10.1023/A:1018054314350 – year: 2013 ident: 10.1016/j.jag.2021.102508_b0130 – volume: 14 start-page: 6544 year: 2021 ident: 10.1016/j.jag.2021.102508_b0100 article-title: Water Body Extraction of High Resolution Remote Sensing Image based on Improved U-Net Network publication-title: IEEE J-STARS – volume: 85 start-page: 274 year: 2011 ident: 10.1016/j.jag.2021.102508_b0245 article-title: GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey publication-title: Catena doi: 10.1016/j.catena.2011.01.014 – volume: 741 start-page: 139937 year: 2020 ident: 10.1016/j.jag.2021.102508_b0135 article-title: Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139937 – volume: S1 start-page: 112 year: 2000 ident: 10.1016/j.jag.2021.102508_b0240 article-title: Time and Spacial Predicting of Geological Hazards Occurrence publication-title: J. Mountain Sci. – year: 2009 ident: 10.1016/j.jag.2021.102508_b0185 – volume: 666 start-page: 975 year: 2019 ident: 10.1016/j.jag.2021.102508_b0225 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.263 – volume: 12 start-page: 93 issue: 1 year: 2021 ident: 10.1016/j.jag.2021.102508_b0050 article-title: Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.07.012 – volume: 138 start-page: 104445 year: 2020 ident: 10.1016/j.jag.2021.102508_b0230 article-title: Comparative study of landslide susceptibility mapping with different recurrent neural networks publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104445 – volume: 35 start-page: 1267 issue: 12 year: 2020 ident: 10.1016/j.jag.2021.102508_b0145 article-title: A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers publication-title: Geocarto Int. doi: 10.1080/10106049.2018.1559885 – volume: 8 start-page: 866 issue: 10 year: 2016 ident: 10.1016/j.jag.2021.102508_b0015 article-title: Guidance index for shallow landslide hazard analysis publication-title: Remote Sens. doi: 10.3390/rs8100866 – volume: 297 start-page: 69 issue: 15 year: 2017 ident: 10.1016/j.jag.2021.102508_b0060 article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.09.007 – volume: 14 start-page: 1091 issue: 3 year: 2017 ident: 10.1016/j.jag.2021.102508_b0200 article-title: Applying Information Theory and GIS based quantitative methods to produce landslide susceptibility maps in Nancheng County, China publication-title: Landslides doi: 10.1007/s10346-016-0769-4 – volume: 135 start-page: 271 year: 2015 ident: 10.1016/j.jag.2021.102508_b0210 article-title: Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models publication-title: Catena doi: 10.1016/j.catena.2015.08.007 – volume: 11 start-page: 638 issue: 6 year: 2019 ident: 10.1016/j.jag.2021.102508_b0085 article-title: Evaluating GIS-based multiple statistical models and datamining for earth quake and rainfall-induced landslide susceptibility using the LiDAR DEM publication-title: Remote Sens. doi: 10.3390/rs11060638 – volume: 742 start-page: 140549 year: 2020 ident: 10.1016/j.jag.2021.102508_b0115 article-title: Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140549 – volume: 183 start-page: 104188 year: 2019 ident: 10.1016/j.jag.2021.102508_b0265 article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods publication-title: Catena doi: 10.1016/j.catena.2019.104188 – volume: 45 start-page: 1809 issue: 11 year: 2020 ident: 10.1016/j.jag.2021.102508_b0045 article-title: Mapping landslide susceptibility based on deep belief network publication-title: Geomatics Inf. Sci. Wuhan Univ. – year: 2016 ident: 10.1016/j.jag.2021.102508_b0040 – volume: 39 start-page: 7693 issue: 21 year: 2018 ident: 10.1016/j.jag.2021.102508_b0105 article-title: Quantifying the main urban area expansion ofGuangzhou using Landsat imagery publication-title: Int. J. Remot. Sens. doi: 10.1080/01431161.2018.1478465 |
| SSID | ssj0017768 |
| Score | 2.5278847 |
| Snippet | •The proportion of landslide binary pixels was used as label data input in network models.•MSCNN model was carried out for LSM the first time.•A unified... Landslide susceptibility mapping (LSM) is very important for hazard risk identification and prevention. Most of existing neural network models extract a pixel... |
| SourceID | doaj unpaywall proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102508 |
| SubjectTerms | algorithms GRU Internet Landslide susceptibility landslides Lanzhou city MSCNN prediction risk RS and GIS spatial data |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ABQaFi-ZKROIEi4thxnGNBrSokOFGpN8t27GqrkF01G0F_Cv-WGdtZwqW9cHUcO8mM5TeZ5zeEvBPGBlMxXlRVZyBA4aJQruwKwMaCW-5bH1MxX7_Js3Px5aK-WJT6Qk5YkgdOH-4j96IW0ivAHZgh86rrlLMqiKoywaaTW6Vq52Aq5w-aJh2Cq2VbKMGrOZ8ZmV1X5hICw4qhbEGNdSUXO1IU7v9nY1oAz_vTsDU3P03fL_ag08fkUQaP9Dg99BNyzw-H5OFCUvCQHJ38PbkGXfPSHZ-S38d0GtYBECcdEvWbbgLNuqloHepy7U4Yh45TFP7fbkboH48D93CJ5uo8dCZgU7hCt-tfvqcjUrNhxgH_teKvUtRLpjD64vZxGiOLJhJyb-gPg-IQl8_I-enJ989nRa7LUDiAL7vCQhjSidqYUlphmtZz20nbKNdiSxDSNLwxAFysAXwIkMOBET1j0krHQ9XxI3IwbAb_nFCmbOC8BVwigmDCqFow5aRT1lnXerYi5Wwb7bJoOdbO6PXMTrvSYE6N5tTJnCvyfn_LNil23Nb5Exp83xHFtmMDuKDOLqjvcsEVEbO76IxbEh6Boda3zf12di0NaxoTNWbwm2nUFURxNWZAyxX5sPe5u9_mxf94m5fkAQ6JlB1WvyIHu-vJvwbgtbNv4hr7A2pLLEQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcEBQqlpeMxAkUbfxI4hyXqtUCoheo1JtlO84qVUiiZiPoT-HfMnacJb0UiWMcx3EyY89nz-cZhN5xpUtFCYsoLRQsUBiPhImLCLAxZ5rZ3HpXzNfzdHPBP18mlwfoZDoL42iVYe4f53Q_W4eSVfibq66qVt9APQENME6JN1z8HjoE-yPEAh2uP33ZnO-dCVk2nohL0jwSnNHJuelpXldqC6tESlwMg8QlmZyZJx_F_5aVmqHQ-0PTqZufqq5nBunsMXoUkCRej519gg5sc4QezuILHqHj07_H2KBqGMf9U_R7jYemKgF-4mbkgeO2xCGIqhMVNiGRJ7SD-8FnAejaHur7s8E13MIhVQ-e2NgY7uCu-mVr3DueNryxcRuvbt_UBU_G0Prs8X7oPaXGs3Nv8A_lIkVsn6GLs9PvJ5soJGmIDGCZXaRhTVLwRKk41VxluWW6SHUmTO5KSp6qjGUKUIxWABYBfxhmuSUk1alhJS3YMVo0bWOfI0yELhnLAaTwkhOuRMKJMKkR2miTW7JE8SQbaUIEc5dIo5YTVe1KgjilE6ccxblE7_ePdGP4jrsqf3QC31d0kbd9QXu9lUH1JPQ-4akVgIOdx9aKohBGi5JTqkodQyf5pC7yliJDU9Vd7347qZaEAe68Nqqx7dBLCku6xLlD4yX6sNe5f3_Ni__ryEv0wF05xg5JXqHF7nqwrwF37fSbMK7-AI03LWQ priority: 102 providerName: Elsevier |
| Title | A unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood for landslide susceptibility mapping |
| URI | https://dx.doi.org/10.1016/j.jag.2021.102508 https://www.proquest.com/docview/2675582300 https://doi.org/10.1016/j.jag.2021.102508 https://doaj.org/article/3e4546e86568416e8dd8cb8f422afb01 |
| UnpaywallVersion | publishedVersion |
| Volume | 104 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1872-826X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017768 issn: 1569-8432 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-826X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017768 issn: 1569-8432 databaseCode: ACRLP dateStart: 20200201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-826X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017768 issn: 1569-8432 databaseCode: AIKHN dateStart: 20200201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQewAOPBZWlEdlJE6grJLYcZxjWe2qvKoVolI5RbbjrLqEtCKNYPkn_FtmHKe0CC1wqpJMnEQzrj97Pn9DyDOudKniiAVxXCiYoDAeSBMWAWBjzjSzmXWpmHczMZ3z14tk4cWicS_MXv7e8bAu1DlM4-IIRQYS3NY7FAnA7gEZzmdnk49OD1VkgeSuGFkkU-jhsVj0Gcw_tbE3Bjmp_r2haAdqXm_rtbr8qqpqZ9Q5vd3xtRonVohkk09H7UYfme-_STn-0wfdIbc89qSTLljukmu2PiA3dxQJD8jhya-Nb2Dqe35zj_yY0LZelgBYad0xx-mqpF52FZ1LjS_9Ce3QpnV1A9arBuzdbuIKLlFf3If2_G0KV-h6-c1WtEFmNzyxxqVaXGlFuWUKre_c3rSNI-E4Pu8l_axQW-L8Ppmfnnw4nga-rENgAP1sAg2zmIInSoVCc5VmlulC6FSaDM-UXKiUpQpwj1YALwGxGGa5jSKhhWFlXLBDMqhXtX1AaCR1yVgGsIaXPOJKJjySRhipjTaZjUYk7B2dG695jqU3qrwnt13k4I4c3ZF37hiR59tb1p3gx1XGLzF6toao1e1OgMdz3_VzePuECysBOWOO18qikEbLksexKnUIL8n72Ms97OngDDS1vOrZT_s4zeEvAfM8qrartsljmAQmmEANR-TFNoD__jUP_8v6EbmBR0jtiZLHZLD50tonANA2ekyGk-P3b8_w99Wb6WzsFjrGvsP-BEepOko |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKeygcEBQqlk8jcQJFG38kcY5L1WpL273QSr1ZtuOsUoUkajaC_hT-LePEWdJLkbjajuPdGdvPmec3CH3iSueKEhZQmik4oDAeCBNmAWBjzjSzqe1DMRereHnFv11H1zvoaLwL42iVfu0f1vR-tfYlc_9vzpuimH8H9wQ0wDgl_cbFH6E9HrEEZufe4vRsudoGE5JkuBEXxWkgOKNjcLOned2oNZwSKXEaBpFLMjnZnnoV_3u71ASF7ndVo-5-qrKcbEgnz9BTjyTxYhjsc7RjqwP0ZKIveIAOj_9eY4Omfh63L9DvBe6qIgf4iauBB47rHHsRVWcqbHwiT-gHt12fBaCpW2jf3w0uoQr7VD14ZGNjqMFN8cuWuHU8bXhj5T68uu-mTjwZQ--Tx9uu7Sk1PTv3Dv9QTili_RJdnRxfHi0Dn6QhMIBlNoGGM0nGI6XCWHOVpJbpLNaJMKkryXmsEpYoQDFaAVgE_GGY5ZaQWMeG5TRjh2i3qiv7CmEidM5YCiCF55xwJSJOhImN0Eab1JIZCkfbSOMVzF0ijVKOVLUbCeaUzpxyMOcMfd4-0gzyHQ81_uoMvm3olLf7gvp2Lb3rSRh9xGMrAAe7iK0VWSaMFjmnVOU6hEHy0V3kPUeGroqH3v1xdC0JE9xFbVRl666VFI50kQuHhjP0Zetz__41r_9vIB_Q_vLy4lyen67O3qDHrsaxd0j0Fu1ubjv7DjDYRr_3c-wPryUwRQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQ9gAc-ChULF8yEidQqjh2vM5xQa0qJCoOrLScLNtxqm1DdkU2ass_4d8y4zjLLkIFjkkmTqIZx8-e5zeEvBbGViZjPMmy0sAEhYtEubRMABsLbrkvfEjFfDyVJzPxYZ7Po1g07oXZyd8HHta5OYNpXMZQZCDHbb17MgfYPSJ7s9NP0y9BD1UWiRKhGBlTE-jhmZwPGcw_tbEzBgWp_p2haAtq3u6albm-NHW9Neoc3-_5Wm0QK0SyycVht7aH7vtvUo7_9EEPyL2IPem0D5aH5JZv9sndLUXCfXJw9GvjG5jGnt8-Ij-mtGsWFQBW2vTMcbqsaJRdRedSF0t_Qju07ULdgNWyBfuwm7iGSzQW96EDf5vCFbpaXPmatsjshic2uFSLK60ot0yh9a3b264NJJzA572mXw1qS5w9JrPjo8_vT5JY1iFxgH7WiYVZTClyY1JphZkUnttS2olyBZ6phDQTPjGAe6wBeAmIxXEvPGPSSserrOQHZNQsG_-EUKZsxXkBsEZUggmjcsGUk05ZZ13h2Zikg6O1i5rnWHqj1gO57VyDOzS6Q_fuGJM3m1tWveDHTcbvMHo2hqjVHU6Ax3Xs-hrePhfSK0DOmOP1qiyVs6oSWWYqm8JLiiH2dIQ9PZyBphY3PfvVEKcafgmY5zGNX3atzmASmGMCNR2Tt5sA_vvXPP0v62fkDh4htYflz8lo_a3zLwCgre3L2DV_AncaNjI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+network+of+information+considering+superimposed+landslide+factors+sequence+and+pixel+spatial+neighbourhood+for+landslide+susceptibility+mapping&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=He%2C+Yi&rft.au=Zhao%2C+Zhan%27ao&rft.au=Yang%2C+Wang&rft.au=Yan%2C+Haowen&rft.date=2021-12-15&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=104&rft_id=info:doi/10.1016%2Fj.jag.2021.102508&rft.externalDocID=S0303243421002154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |