A unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood for landslide susceptibility mapping

•The proportion of landslide binary pixels was used as label data input in network models.•MSCNN model was carried out for LSM the first time.•A unified network in parallel with GRU and MSCNN was proposed for LSM. Landslide susceptibility mapping (LSM) is very important for hazard risk identificatio...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 104; p. 102508
Main Authors He, Yi, Zhao, Zhan'ao, Yang, Wang, Yan, Haowen, Wang, Wenhui, Yao, Sheng, Zhang, Lifeng, Liu, Tao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2021
Elsevier
Subjects
Online AccessGet full text
ISSN1569-8432
1872-826X
1872-826X
DOI10.1016/j.jag.2021.102508

Cover

Abstract •The proportion of landslide binary pixels was used as label data input in network models.•MSCNN model was carried out for LSM the first time.•A unified network in parallel with GRU and MSCNN was proposed for LSM. Landslide susceptibility mapping (LSM) is very important for hazard risk identification and prevention. Most of existing neural network models extract a pixel neighborhood feature or a pixel sequence feature of landslide factors on one side, which leads to the generalization ability of the network models difficultly, and had a low prediction accuracy in complex scenes. In this paper, a new unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood is proposed for LSM. Different from the traditional prediction model framework, the landslide conditioning factors are merged into a unified network model in parallel with the pixel sequence features and pixel neighbourhood features. In the experiment, we take the proportion of landslide binary pixels as label data, which represents the landslide possibility in the neighbourhood. We propose a pixel sequence feature extraction algorithm based on a gated recurrent unit (GRU) network and a pixel neighbourhood feature extraction algorithm based on a multi-scale convolution neural network (MSCNN). In this study, the landslide conditioning factors were analysed by multicollinearity analysis and the frequency ratio (FR) method. The performance of the modes was evaluated by statistical indexes and the correlation analysis. The LSM results were verified by google earth images and field investigation. Our research shows that the proposed model can greatly improve the accuracy of LSM compared with the individual GRU and MSCNN, especially, the proposed model had 6.1% more improvement than the GRU model in terms of the area under curve (AUC). Therefore, we suggest that the proposed model is a suitable technology for use in early identification and landslide prediction.
AbstractList •The proportion of landslide binary pixels was used as label data input in network models.•MSCNN model was carried out for LSM the first time.•A unified network in parallel with GRU and MSCNN was proposed for LSM. Landslide susceptibility mapping (LSM) is very important for hazard risk identification and prevention. Most of existing neural network models extract a pixel neighborhood feature or a pixel sequence feature of landslide factors on one side, which leads to the generalization ability of the network models difficultly, and had a low prediction accuracy in complex scenes. In this paper, a new unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood is proposed for LSM. Different from the traditional prediction model framework, the landslide conditioning factors are merged into a unified network model in parallel with the pixel sequence features and pixel neighbourhood features. In the experiment, we take the proportion of landslide binary pixels as label data, which represents the landslide possibility in the neighbourhood. We propose a pixel sequence feature extraction algorithm based on a gated recurrent unit (GRU) network and a pixel neighbourhood feature extraction algorithm based on a multi-scale convolution neural network (MSCNN). In this study, the landslide conditioning factors were analysed by multicollinearity analysis and the frequency ratio (FR) method. The performance of the modes was evaluated by statistical indexes and the correlation analysis. The LSM results were verified by google earth images and field investigation. Our research shows that the proposed model can greatly improve the accuracy of LSM compared with the individual GRU and MSCNN, especially, the proposed model had 6.1% more improvement than the GRU model in terms of the area under curve (AUC). Therefore, we suggest that the proposed model is a suitable technology for use in early identification and landslide prediction.
Landslide susceptibility mapping (LSM) is very important for hazard risk identification and prevention. Most of existing neural network models extract a pixel neighborhood feature or a pixel sequence feature of landslide factors on one side, which leads to the generalization ability of the network models difficultly, and had a low prediction accuracy in complex scenes. In this paper, a new unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood is proposed for LSM. Different from the traditional prediction model framework, the landslide conditioning factors are merged into a unified network model in parallel with the pixel sequence features and pixel neighbourhood features. In the experiment, we take the proportion of landslide binary pixels as label data, which represents the landslide possibility in the neighbourhood. We propose a pixel sequence feature extraction algorithm based on a gated recurrent unit (GRU) network and a pixel neighbourhood feature extraction algorithm based on a multi-scale convolution neural network (MSCNN). In this study, the landslide conditioning factors were analysed by multicollinearity analysis and the frequency ratio (FR) method. The performance of the modes was evaluated by statistical indexes and the correlation analysis. The LSM results were verified by google earth images and field investigation. Our research shows that the proposed model can greatly improve the accuracy of LSM compared with the individual GRU and MSCNN, especially, the proposed model had 6.1% more improvement than the GRU model in terms of the area under curve (AUC). Therefore, we suggest that the proposed model is a suitable technology for use in early identification and landslide prediction.
ArticleNumber 102508
Author He, Yi
Yang, Wang
Wang, Wenhui
Yan, Haowen
Yao, Sheng
Zhang, Lifeng
Zhao, Zhan'ao
Liu, Tao
Author_xml – sequence: 1
  givenname: Yi
  surname: He
  fullname: He, Yi
  email: heyi@mail.lzjtu.cn
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 2
  givenname: Zhan'ao
  surname: Zhao
  fullname: Zhao, Zhan'ao
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 3
  givenname: Wang
  surname: Yang
  fullname: Yang, Wang
  email: yyangwang48@gmail.com
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 4
  givenname: Haowen
  surname: Yan
  fullname: Yan, Haowen
  email: haowen2010@gmail.com
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 5
  givenname: Wenhui
  surname: Wang
  fullname: Wang, Wenhui
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 6
  givenname: Sheng
  surname: Yao
  fullname: Yao, Sheng
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 7
  givenname: Lifeng
  surname: Zhang
  fullname: Zhang, Lifeng
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 8
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
BookMark eNqNkc1u1TAQhSNUJNrCA7Dzkk0utpM4jlhVFT-VKrEBiZ01sZ1bB1872A7lPgpvy9wGIcSiYuXxzJzP8jkX1VmIwVbVS0Z3jDLxet7NsN9xyhneeUflk-qcyZ7XkosvZ1h3Yqhl2_Bn1UXOM6Ws74U8r35ekTW4yVlDgi33MX0lcSIuTDEdoLgYiI4hO2OTC3uS1wWLwxIz7nsIJnsckQl0iSmTbL-tNmhLcEIW98N6khekgEe429-NcU13MRqC9L_kec3aLsWNzrtyJAdYFnzsefV0Ap_ti9_nZfX53dtP1x_q24_vb66vbmvdNkOpR951pu0AqBhb6AfbjEaMvdTDqTO1AvqmB8rlCB0bJBt0Y1vLmBiFbiZumsvqZuOaCLNa8HuQjiqCUw-NmPYKUnHaW4XKrhVWik7IlmFhjNSjnFrOYRopQxbfWGtY4HgP3v8BMqpOQalZYVDqFJTagkLRq020pIj-5aIODg3xaJCNa1Zc9F0neUMprrJtVaeYc7LTf-H7fzTalYdoSwLnH1W-2ZQW7f_ubFJZu1O-xiWrC_rjHlH_Apcc0fE
CitedBy_id crossref_primary_10_1080_10095020_2024_2443483
crossref_primary_10_1109_JSTARS_2025_3525633
crossref_primary_10_1109_JSTARS_2022_3199118
crossref_primary_10_1080_17538947_2025_2468913
crossref_primary_10_1007_s10064_023_03440_9
crossref_primary_10_1109_JSTARS_2022_3198728
crossref_primary_10_1109_JSTARS_2024_3437751
crossref_primary_10_3389_feart_2022_872192
crossref_primary_10_1080_19475705_2023_2185120
crossref_primary_10_1109_JSTARS_2025_3541638
crossref_primary_10_1515_geo_2022_0516
crossref_primary_10_1109_JSTARS_2024_3368039
crossref_primary_10_1080_15481603_2024_2349343
crossref_primary_10_1080_17538947_2023_2229797
crossref_primary_10_1080_17538947_2023_2172224
crossref_primary_10_1007_s11440_023_01841_4
crossref_primary_10_1016_j_jag_2023_103631
crossref_primary_10_1371_journal_pone_0292897
crossref_primary_10_1007_s10346_024_02350_5
crossref_primary_10_3389_feart_2024_1511785
crossref_primary_10_1109_JSTARS_2023_3260584
crossref_primary_10_1109_JSTARS_2023_3339294
crossref_primary_10_1007_s11069_022_05325_8
crossref_primary_10_1109_JSTARS_2023_3291490
crossref_primary_10_1080_19475705_2024_2378176
crossref_primary_10_1007_s10346_025_02465_3
crossref_primary_10_1109_JSTARS_2022_3200521
crossref_primary_10_1117_1_JRS_19_014502
crossref_primary_10_1080_17538947_2023_2295408
crossref_primary_10_1007_s11629_024_8651_7
crossref_primary_10_1109_JSTARS_2024_3351277
crossref_primary_10_1109_JSTARS_2024_3370218
crossref_primary_10_1007_s12205_024_1598_y
crossref_primary_10_1007_s41651_023_00137_1
Cites_doi 10.1016/j.geomorph.2017.12.008
10.1007/s11269-015-0962-6
10.1016/j.catena.2017.11.022
10.1016/j.asr.2010.01.006
10.3390/rs12030502
10.1109/MGRS.2019.2954395
10.1016/j.scitotenv.2017.09.262
10.1016/j.scitotenv.2019.01.221
10.3390/s20061576
10.1016/j.cageo.2010.04.004
10.1016/S0098-3004(97)00117-9
10.1007/s12665-019-8562-z
10.4236/ijg.2016.75056
10.1080/19475705.2017.1289250
10.1016/j.geomorph.2012.02.003
10.1007/s10346-015-0614-1
10.1016/j.jag.2010.04.006
10.1016/j.earscirev.2018.03.001
10.1016/j.catena.2018.08.025
10.3390/s19163590
10.1007/s10661-018-6507-8
10.1007/s12665-011-1504-z
10.1023/A:1018054314350
10.1016/j.catena.2011.01.014
10.1016/j.scitotenv.2020.139937
10.1016/j.scitotenv.2019.02.263
10.1016/j.gsf.2020.07.012
10.1016/j.cageo.2020.104445
10.1080/10106049.2018.1559885
10.3390/rs8100866
10.1016/j.geomorph.2017.09.007
10.1007/s10346-016-0769-4
10.1016/j.catena.2015.08.007
10.3390/rs11060638
10.1016/j.scitotenv.2020.140549
10.1016/j.catena.2019.104188
10.1080/01431161.2018.1478465
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1016/j.jag.2021.102508
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_3e4546e86568416e8dd8cb8f422afb01
10.1016/j.jag.2021.102508
10_1016_j_jag_2021_102508
S0303243421002154
GroupedDBID 4.4
5GY
6I.
AAFTH
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
BKOJK
BLECG
EBS
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
29J
AAHBH
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
AITUG
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFJIC
EFKBS
EJD
R2-
7S9
L.6
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c439t-b255d45aa06b4a79e3bd6b78c9a06bf46a737a028ba519819c3e4e116b6c3f2d3
IEDL.DBID UNPAY
ISSN 1569-8432
1872-826X
IngestDate Fri Oct 03 12:52:36 EDT 2025
Tue Aug 19 19:22:31 EDT 2025
Sun Sep 28 06:11:35 EDT 2025
Thu Oct 09 00:36:41 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Fri Feb 23 02:39:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lanzhou city
GRU
Landslide susceptibility
MSCNN
RS and GIS
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-b255d45aa06b4a79e3bd6b78c9a06bf46a737a028ba519819c3e4e116b6c3f2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jag.2021.102508
PQID 2675582300
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_3e4546e86568416e8dd8cb8f422afb01
unpaywall_primary_10_1016_j_jag_2021_102508
proquest_miscellaneous_2675582300
crossref_primary_10_1016_j_jag_2021_102508
crossref_citationtrail_10_1016_j_jag_2021_102508
elsevier_sciencedirect_doi_10_1016_j_jag_2021_102508
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chauhan, Sharma, Arora, Gupta (b0035) 2010; 12
Dou, Yunus, Tien Bui, Merghadi, Sahana, Zhu, Chen, Khosravi, Yang, Pham (b0080) 2019; 662
Atkinson, Massari (b0010) 1998; 24
Chen, Lin, Zhao, Wang, Gu (b0070) 2014; 7
Pham, Prakash, Dou, Singh, Trinh, Tran, Le, Van Phong, Khoi, Shirzadi, Bui (b0145) 2020; 35
Tsangaratos, Ilia, Hong, Chen, Xu (b0200) 2017; 14
Chang, Du, Zhang, Huang, Chen, Li, Guo (b0030) 2020; 12
Reichenbach, Rossi, Malamud, Mihir, Guzzetti (b0170) 2018; 180
Wang, Guo, Sawada, Lin, Zhang (b0210) 2015; 135
Zhou (b0260) 2019
Zhu, Huang, Fan, Huang, Huang, Chen, Zhang, Wang (b0270) 2020; 20
Maas, Hannun, Ng (b0130) 2013
Pourghasemi, Rahmati (b0160) 2018; 162
Pham, Prakash, Tien Bui (b0150) 2018; 303
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0180) 2014; 15
Taylor (b0185) 2009
Piacentini, Troiani, Soldati, Notarnicola, Savelli, Schneiderbauer, Strada (b0155) 2012; 151-152
Wang (b0235) 2020
Saha, Saha (b0175) 2020
Termeh, Kornejady, Pourghasemi, Keesstra (b0190) 2018; 615
Golkarian, Naghibi, Kalantar, Pradhan (b0095) 2018; 190
.
Xu, Huang, Xiang (b0240) 2000; S1
He, Yao, Yang, Yan, Zhang, Wen, Zhang, Liu (b0100) 2021; 14
Bui, Moayedi, Kalantar, Osouli, Pradhan, Nguyen, Rashid (b0025) 2019; 19
Chen (b0040) 2016
Wang, Fang, Hong (b0225) 2019; 666
Avalon, Cullen, Al-Suhili, Khanbilvardi (b0015) 2016; 8
Du, Bai, Tan, Xue, Samat, Xia, Li, Su, Liu (b0090) 2020; 4
Dai, Li, Xu, Bürgmann, Milledge, Tomás, Fan, Zhao, Liu, Peng, Zhang, Wang, Qu, He, Li, Liu (b0075) 2020; 8
Paudel, Oguchi, Hayakawa (b0140) 2016; 07
Dou, Yunus, Tien Bui, Sahana, Chen, Zhu, Wang, Pham (b0085) 2019; 11
Kia, Pirasteh, Pradhan, Mahmud, Sulaiman, Moradi (b0125) 2012; 67
Wang, Chau, Xu, Chen (b0215) 2015; 29
Wang, He, Zhang, Chen, Tang, Qiu, Zhang (b0220) 2021; 57
Panahi, Gayen, Pourghasemi, Rezaie, Lee (b0135) 2020; 741
Jaafari, Rezaeian, Omrani (b0120) 2017; 38
Chen, Xie, Peng, Wang, Duan, Hong (b0065) 2017; 8
Chen, Zhong, Niu, Liu, Chen (b0045) 2020; 45
He, Dou, Yan, Zhang, Yang (b0105) 2018; 39
Zhu, Miao, Liu, Bai, Zeng, Ma, Hong (b0265) 2019; 183
Chen, Panahi, Tsangaratos, Shahabi, Ilia, Panahi, Li, Jaafari, Ahmad (b0055) 2019; 172
Wang, Fang, Wang, Peng, Hong (b0230) 2020; 138
Breiman (b0020) 1996; 24
The peoples Government of Gansu Province, 2017. The 13th 5 years plan of geological disaster prevention and control in Gansu Province.
Chen, Pourghasemi, Panahi, Kornejady, Wang, Xie, Caoal (b0060) 2017; 297
Yalcin, Reis, Aydinoglu, Yomralioglu (b0245) 2011; 85
Abedini, Ghasemian, Shirzadi, Bui (b0005) 2019; 78
Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (b0250) 2016; 13
Chen, Chen, Peng, Panahi, Lee (b0050) 2021; 12
Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (b0110) 2012; 3
Pradhan (b0165) 2010; 45
Vahidnia, Alesheikh, Alimohammadi, Hosseinali (b0205) 2010; 36
Zhang, Guo, Xiao (b0255) 2021; 49
Hong, Tsangaratos, Ilia, Loupasakis, Wang (b0115) 2020; 742
Pham (10.1016/j.jag.2021.102508_b0150) 2018; 303
Kia (10.1016/j.jag.2021.102508_b0125) 2012; 67
Piacentini (10.1016/j.jag.2021.102508_b0155) 2012; 151-152
Dai (10.1016/j.jag.2021.102508_b0075) 2020; 8
Pham (10.1016/j.jag.2021.102508_b0145) 2020; 35
Maas (10.1016/j.jag.2021.102508_b0130) 2013
He (10.1016/j.jag.2021.102508_b0100) 2021; 14
Zhu (10.1016/j.jag.2021.102508_b0270) 2020; 20
Youssef (10.1016/j.jag.2021.102508_b0250) 2016; 13
Wang (10.1016/j.jag.2021.102508_b0220) 2021; 57
Taylor (10.1016/j.jag.2021.102508_b0185) 2009
Chen (10.1016/j.jag.2021.102508_b0045) 2020; 45
Wang (10.1016/j.jag.2021.102508_b0235) 2020
Zhou (10.1016/j.jag.2021.102508_b0260) 2019
Dou (10.1016/j.jag.2021.102508_b0080) 2019; 662
Hinton (10.1016/j.jag.2021.102508_b0110) 2012; 3
Panahi (10.1016/j.jag.2021.102508_b0135) 2020; 741
Saha (10.1016/j.jag.2021.102508_b0175) 2020
Avalon (10.1016/j.jag.2021.102508_b0015) 2016; 8
Zhu (10.1016/j.jag.2021.102508_b0265) 2019; 183
Chen (10.1016/j.jag.2021.102508_b0060) 2017; 297
Chen (10.1016/j.jag.2021.102508_b0055) 2019; 172
Chen (10.1016/j.jag.2021.102508_b0040) 2016
Srivastava (10.1016/j.jag.2021.102508_b0180) 2014; 15
Golkarian (10.1016/j.jag.2021.102508_b0095) 2018; 190
Breiman (10.1016/j.jag.2021.102508_b0020) 1996; 24
Pourghasemi (10.1016/j.jag.2021.102508_b0160) 2018; 162
He (10.1016/j.jag.2021.102508_b0105) 2018; 39
Pradhan (10.1016/j.jag.2021.102508_b0165) 2010; 45
Jaafari (10.1016/j.jag.2021.102508_b0120) 2017; 38
Atkinson (10.1016/j.jag.2021.102508_b0010) 1998; 24
Abedini (10.1016/j.jag.2021.102508_b0005) 2019; 78
10.1016/j.jag.2021.102508_b0195
Vahidnia (10.1016/j.jag.2021.102508_b0205) 2010; 36
Wang (10.1016/j.jag.2021.102508_b0225) 2019; 666
Hong (10.1016/j.jag.2021.102508_b0115) 2020; 742
Bui (10.1016/j.jag.2021.102508_b0025) 2019; 19
Chauhan (10.1016/j.jag.2021.102508_b0035) 2010; 12
Yalcin (10.1016/j.jag.2021.102508_b0245) 2011; 85
Wang (10.1016/j.jag.2021.102508_b0210) 2015; 135
Wang (10.1016/j.jag.2021.102508_b0215) 2015; 29
Xu (10.1016/j.jag.2021.102508_b0240) 2000; S1
Tsangaratos (10.1016/j.jag.2021.102508_b0200) 2017; 14
Termeh (10.1016/j.jag.2021.102508_b0190) 2018; 615
Dou (10.1016/j.jag.2021.102508_b0085) 2019; 11
Chang (10.1016/j.jag.2021.102508_b0030) 2020; 12
Paudel (10.1016/j.jag.2021.102508_b0140) 2016; 07
Reichenbach (10.1016/j.jag.2021.102508_b0170) 2018; 180
Chen (10.1016/j.jag.2021.102508_b0065) 2017; 8
Chen (10.1016/j.jag.2021.102508_b0050) 2021; 12
Zhang (10.1016/j.jag.2021.102508_b0255) 2021; 49
Du (10.1016/j.jag.2021.102508_b0090) 2020; 4
Chen (10.1016/j.jag.2021.102508_b0070) 2014; 7
Wang (10.1016/j.jag.2021.102508_b0230) 2020; 138
References_xml – volume: 12
  start-page: 340
  year: 2010
  end-page: 350
  ident: b0035
  article-title: Landslide susceptibility zonation through ratings derived from artificial neural network
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
– volume: 8
  start-page: 866
  year: 2016
  ident: b0015
  article-title: Guidance index for shallow landslide hazard analysis
  publication-title: Remote Sens.
– volume: 11
  start-page: 638
  year: 2019
  ident: b0085
  article-title: Evaluating GIS-based multiple statistical models and datamining for earth quake and rainfall-induced landslide susceptibility using the LiDAR DEM
  publication-title: Remote Sens.
– volume: 45
  start-page: 1809
  year: 2020
  end-page: 1817
  ident: b0045
  article-title: Mapping landslide susceptibility based on deep belief network
  publication-title: Geomatics Inf. Sci. Wuhan Univ.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0180
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Machine Learn. Res.
– year: 2016
  ident: b0040
  article-title: Analyzing Landslide Susceptibility in the Upper Mingjiang Basin
– volume: 36
  start-page: 1101
  year: 2010
  end-page: 1114
  ident: b0205
  article-title: A GIS-based neurofuzzy procedure for integrating knowledge and data inlandslide susceptibility mapping
  publication-title: Comput. Geosci.
– volume: S1
  start-page: 112
  year: 2000
  end-page: 117
  ident: b0240
  article-title: Time and Spacial Predicting of Geological Hazards Occurrence
  publication-title: J. Mountain Sci.
– volume: 20
  start-page: 1576
  year: 2020
  ident: b0270
  article-title: Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network
  publication-title: Sensors
– year: 2020
  ident: b0235
  article-title: Research on Early Warning Model of Rainfall Landslide in Loess Landform Combined with InSAR Technology
– volume: 85
  start-page: 274
  year: 2011
  end-page: 287
  ident: b0245
  article-title: GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey
  publication-title: Catena
– volume: 7
  start-page: 2094
  year: 2014
  end-page: 2107
  ident: b0070
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J-STARS
– volume: 07
  start-page: 726
  year: 2016
  end-page: 743
  ident: b0140
  article-title: Multi-resolution landslide susceptibility analysis using a DEM and random forest
  publication-title: Int. J. Geosci.
– volume: 13
  start-page: 839
  year: 2016
  end-page: 856
  ident: b0250
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
– year: 2013
  ident: b0130
  article-title: Rectifier Nonlinearities Improve Neural Network Acoustic Models
– start-page: 100323
  year: 2020
  ident: b0175
  article-title: Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: a study on Kurseong region of Darjeeling Himalaya, India
  publication-title: Soc. Environ. Remote Sens. App.
– volume: 8
  start-page: 950
  year: 2017
  end-page: 973
  ident: b0065
  article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models
  publication-title: Geomatics, Natural Hazards Risk
– volume: 57
  start-page: 382
  year: 2021
  end-page: 389
  ident: b0220
  article-title: Ground deformation monitoring and driving force analysis of the main city area in Lanzhou based on PS-InSAR and GeoDetector
  publication-title: J. Lanzhou Univ. (NaturalSciences).
– volume: 78
  start-page: 560
  year: 2019
  ident: b0005
  article-title: A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling
  publication-title: Environ. Environ. Earth Sci.
– volume: 162
  start-page: 177
  year: 2018
  end-page: 192
  ident: b0160
  article-title: Prediction of the landslide susceptibility: which algorithm, which precision?
  publication-title: Catena
– volume: 19
  start-page: 3590
  year: 2019
  ident: b0025
  article-title: A Novel swarm intelligence-Harris hawks optimization for spatial assessment of landslide susceptibility
  publication-title: Sensors
– volume: 8
  start-page: 136
  year: 2020
  end-page: 153
  ident: b0075
  article-title: Entering the era of Earth-Observation based landslide warning system
  publication-title: IEEE Geose. Rem. Sen. M.
– volume: 172
  start-page: 212
  year: 2019
  end-page: 231
  ident: b0055
  article-title: Applying population-based evolutionary algorithms and aneuro-fuzzy system for modeling landslide susceptibility
  publication-title: Catena
– volume: 151-152
  start-page: 196
  year: 2012
  end-page: 206
  ident: b0155
  article-title: Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy)
  publication-title: Geomorphology
– volume: 303
  start-page: 256
  year: 2018
  end-page: 270
  ident: b0150
  article-title: Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees
  publication-title: Geomorphology
– volume: 183
  start-page: 104188
  year: 2019
  ident: b0265
  article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods
  publication-title: Catena
– volume: 67
  start-page: 251
  year: 2012
  end-page: 264
  ident: b0125
  article-title: An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia
  publication-title: Environ. Earth Sci.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0020
  article-title: Bagging predictors
  publication-title: Machine Learn.
– volume: 14
  start-page: 1091
  year: 2017
  end-page: 1111
  ident: b0200
  article-title: Applying Information Theory and GIS based quantitative methods to produce landslide susceptibility maps in Nancheng County, China
  publication-title: Landslides
– volume: 24
  start-page: 373
  year: 1998
  end-page: 385
  ident: b0010
  article-title: Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy
  publication-title: Comput. Geosci.
– volume: 14
  start-page: 6544
  year: 2021
  end-page: 6558
  ident: b0100
  article-title: Water Body Extraction of High Resolution Remote Sensing Image based on Improved U-Net Network
  publication-title: IEEE J-STARS
– volume: 135
  start-page: 271
  year: 2015
  end-page: 282
  ident: b0210
  article-title: Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models
  publication-title: Catena
– volume: 742
  start-page: 140549
  year: 2020
  ident: b0115
  article-title: Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping
  publication-title: Sci. Total Environ.
– reference: The peoples Government of Gansu Province, 2017. The 13th 5 years plan of geological disaster prevention and control in Gansu Province.
– volume: 662
  start-page: 332
  year: 2019
  end-page: 346
  ident: b0080
  article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan
  publication-title: Sci. Total Environ.
– volume: 138
  start-page: 104445
  year: 2020
  ident: b0230
  article-title: Comparative study of landslide susceptibility mapping with different recurrent neural networks
  publication-title: Comput. Geosci.
– volume: 45
  start-page: 1244
  year: 2010
  end-page: 1256
  ident: b0165
  article-title: Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia
  publication-title: Adv. Space Res.
– volume: 38
  start-page: 107
  year: 2017
  end-page: 118
  ident: b0120
  article-title: Spatial prediction of slope failures in support of forestry operations safety
  publication-title: Croatian J. For. Eng.: J. Theory App. Forest. Eng.
– year: 2009
  ident: b0185
  article-title: Statistical Enhancement of Support Vector Machines
– volume: 4
  year: 2020
  ident: b0090
  article-title: Advances of Four Machine Learning Methods for Spatial Data Handling: a Review
  publication-title: J. Geovisualization Spatial Anal
– volume: 35
  start-page: 1267
  year: 2020
  end-page: 1292
  ident: b0145
  article-title: A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers
  publication-title: Geocarto Int.
– volume: 12
  start-page: 502
  year: 2020
  ident: b0030
  article-title: Landslide susceptibility prediction based on remote sensing images and GIS: comparisons of supervised and unsupervised machine learning models
  publication-title: Remote Sens.
– volume: 190
  start-page: 149
  year: 2018
  ident: b0095
  article-title: Ground water potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS
  publication-title: Environ. Monitor. Assess. Int. J.
– volume: 49
  start-page: 68
  year: 2021
  end-page: 73
  ident: b0255
  article-title: Image Description based on GoogleNet and doublelayer GRU
  publication-title: J. Shanxi Normal Univ. (Natural Sci. Ed.)
– year: 2019
  ident: b0260
  article-title: The Mechanism Analysis and Susceptibility Mapping of the Landslides along the Maoding River at the Upstream of the Jinsha
– volume: 615
  start-page: 438
  year: 2018
  end-page: 451
  ident: b0190
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristical gorithms
  publication-title: Sci. Total Environ.
– volume: 12
  start-page: 93
  year: 2021
  end-page: 107
  ident: b0050
  article-title: Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer
  publication-title: Geosci. Front.
– reference: .
– volume: 39
  start-page: 7693
  year: 2018
  end-page: 7717
  ident: b0105
  article-title: Quantifying the main urban area expansion ofGuangzhou using Landsat imagery
  publication-title: Int. J. Remot. Sens.
– volume: 666
  start-page: 975
  year: 2019
  end-page: 993
  ident: b0225
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci. Total Environ.
– volume: 29
  start-page: 2655
  year: 2015
  end-page: 2675
  ident: b0215
  article-title: Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition
  publication-title: Water Resour. Manag.
– volume: 297
  start-page: 69
  year: 2017
  end-page: 85
  ident: b0060
  article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques
  publication-title: Geomorphology
– volume: 741
  start-page: 139937
  year: 2020
  ident: b0135
  article-title: Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms
  publication-title: Sci. Total Environ.
– volume: 180
  start-page: 60
  year: 2018
  end-page: 91
  ident: b0170
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth-Sci. Rev.
– volume: 3
  start-page: 212
  year: 2012
  end-page: 223
  ident: b0110
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: Comput. Sci.
– volume: 303
  start-page: 256
  year: 2018
  ident: 10.1016/j.jag.2021.102508_b0150
  article-title: Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.12.008
– volume: 29
  start-page: 2655
  issue: 8
  year: 2015
  ident: 10.1016/j.jag.2021.102508_b0215
  article-title: Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-0962-6
– volume: 162
  start-page: 177
  year: 2018
  ident: 10.1016/j.jag.2021.102508_b0160
  article-title: Prediction of the landslide susceptibility: which algorithm, which precision?
  publication-title: Catena
  doi: 10.1016/j.catena.2017.11.022
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.jag.2021.102508_b0180
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Machine Learn. Res.
– volume: 38
  start-page: 107
  issue: 1
  year: 2017
  ident: 10.1016/j.jag.2021.102508_b0120
  article-title: Spatial prediction of slope failures in support of forestry operations safety
  publication-title: Croatian J. For. Eng.: J. Theory App. Forest. Eng.
– volume: 3
  start-page: 212
  issue: 4
  year: 2012
  ident: 10.1016/j.jag.2021.102508_b0110
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: Comput. Sci.
– volume: 49
  start-page: 68
  issue: 01
  year: 2021
  ident: 10.1016/j.jag.2021.102508_b0255
  article-title: Image Description based on GoogleNet and doublelayer GRU
  publication-title: J. Shanxi Normal Univ. (Natural Sci. Ed.)
– volume: 7
  start-page: 2094
  issue: 6
  year: 2014
  ident: 10.1016/j.jag.2021.102508_b0070
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J-STARS
– volume: 45
  start-page: 1244
  issue: 10
  year: 2010
  ident: 10.1016/j.jag.2021.102508_b0165
  article-title: Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2010.01.006
– volume: 57
  start-page: 382
  issue: 3
  year: 2021
  ident: 10.1016/j.jag.2021.102508_b0220
  article-title: Ground deformation monitoring and driving force analysis of the main city area in Lanzhou based on PS-InSAR and GeoDetector
  publication-title: J. Lanzhou Univ. (NaturalSciences).
– volume: 12
  start-page: 502
  issue: 3
  year: 2020
  ident: 10.1016/j.jag.2021.102508_b0030
  article-title: Landslide susceptibility prediction based on remote sensing images and GIS: comparisons of supervised and unsupervised machine learning models
  publication-title: Remote Sens.
  doi: 10.3390/rs12030502
– volume: 8
  start-page: 136
  issue: 1
  year: 2020
  ident: 10.1016/j.jag.2021.102508_b0075
  article-title: Entering the era of Earth-Observation based landslide warning system
  publication-title: IEEE Geose. Rem. Sen. M.
  doi: 10.1109/MGRS.2019.2954395
– volume: 615
  start-page: 438
  year: 2018
  ident: 10.1016/j.jag.2021.102508_b0190
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristical gorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.262
– volume: 662
  start-page: 332
  year: 2019
  ident: 10.1016/j.jag.2021.102508_b0080
  article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.221
– volume: 20
  start-page: 1576
  issue: 6
  year: 2020
  ident: 10.1016/j.jag.2021.102508_b0270
  article-title: Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network
  publication-title: Sensors
  doi: 10.3390/s20061576
– volume: 36
  start-page: 1101
  issue: 9
  year: 2010
  ident: 10.1016/j.jag.2021.102508_b0205
  article-title: A GIS-based neurofuzzy procedure for integrating knowledge and data inlandslide susceptibility mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.04.004
– year: 2019
  ident: 10.1016/j.jag.2021.102508_b0260
– volume: 24
  start-page: 373
  issue: 4
  year: 1998
  ident: 10.1016/j.jag.2021.102508_b0010
  article-title: Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(97)00117-9
– volume: 78
  start-page: 560
  issue: 18
  year: 2019
  ident: 10.1016/j.jag.2021.102508_b0005
  article-title: A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling
  publication-title: Environ. Environ. Earth Sci.
  doi: 10.1007/s12665-019-8562-z
– volume: 07
  start-page: 726
  issue: 05
  year: 2016
  ident: 10.1016/j.jag.2021.102508_b0140
  article-title: Multi-resolution landslide susceptibility analysis using a DEM and random forest
  publication-title: Int. J. Geosci.
  doi: 10.4236/ijg.2016.75056
– year: 2020
  ident: 10.1016/j.jag.2021.102508_b0235
– volume: 8
  start-page: 950
  issue: 2
  year: 2017
  ident: 10.1016/j.jag.2021.102508_b0065
  article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models
  publication-title: Geomatics, Natural Hazards Risk
  doi: 10.1080/19475705.2017.1289250
– volume: 151-152
  start-page: 196
  year: 2012
  ident: 10.1016/j.jag.2021.102508_b0155
  article-title: Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.02.003
– ident: 10.1016/j.jag.2021.102508_b0195
– volume: 13
  start-page: 839
  issue: 5
  year: 2016
  ident: 10.1016/j.jag.2021.102508_b0250
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
  doi: 10.1007/s10346-015-0614-1
– volume: 12
  start-page: 340
  issue: 5
  year: 2010
  ident: 10.1016/j.jag.2021.102508_b0035
  article-title: Landslide susceptibility zonation through ratings derived from artificial neural network
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
  doi: 10.1016/j.jag.2010.04.006
– volume: 180
  start-page: 60
  year: 2018
  ident: 10.1016/j.jag.2021.102508_b0170
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 172
  start-page: 212
  year: 2019
  ident: 10.1016/j.jag.2021.102508_b0055
  article-title: Applying population-based evolutionary algorithms and aneuro-fuzzy system for modeling landslide susceptibility
  publication-title: Catena
  doi: 10.1016/j.catena.2018.08.025
– volume: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.jag.2021.102508_b0090
  article-title: Advances of Four Machine Learning Methods for Spatial Data Handling: a Review
  publication-title: J. Geovisualization Spatial Anal
– start-page: 100323
  year: 2020
  ident: 10.1016/j.jag.2021.102508_b0175
  article-title: Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: a study on Kurseong region of Darjeeling Himalaya, India
  publication-title: Soc. Environ. Remote Sens. App.
– volume: 19
  start-page: 3590
  issue: 16
  year: 2019
  ident: 10.1016/j.jag.2021.102508_b0025
  article-title: A Novel swarm intelligence-Harris hawks optimization for spatial assessment of landslide susceptibility
  publication-title: Sensors
  doi: 10.3390/s19163590
– volume: 190
  start-page: 149
  issue: 3
  year: 2018
  ident: 10.1016/j.jag.2021.102508_b0095
  article-title: Ground water potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS
  publication-title: Environ. Monitor. Assess. Int. J.
  doi: 10.1007/s10661-018-6507-8
– volume: 67
  start-page: 251
  issue: 1
  year: 2012
  ident: 10.1016/j.jag.2021.102508_b0125
  article-title: An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1504-z
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.jag.2021.102508_b0020
  article-title: Bagging predictors
  publication-title: Machine Learn.
  doi: 10.1023/A:1018054314350
– year: 2013
  ident: 10.1016/j.jag.2021.102508_b0130
– volume: 14
  start-page: 6544
  year: 2021
  ident: 10.1016/j.jag.2021.102508_b0100
  article-title: Water Body Extraction of High Resolution Remote Sensing Image based on Improved U-Net Network
  publication-title: IEEE J-STARS
– volume: 85
  start-page: 274
  year: 2011
  ident: 10.1016/j.jag.2021.102508_b0245
  article-title: GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey
  publication-title: Catena
  doi: 10.1016/j.catena.2011.01.014
– volume: 741
  start-page: 139937
  year: 2020
  ident: 10.1016/j.jag.2021.102508_b0135
  article-title: Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139937
– volume: S1
  start-page: 112
  year: 2000
  ident: 10.1016/j.jag.2021.102508_b0240
  article-title: Time and Spacial Predicting of Geological Hazards Occurrence
  publication-title: J. Mountain Sci.
– year: 2009
  ident: 10.1016/j.jag.2021.102508_b0185
– volume: 666
  start-page: 975
  year: 2019
  ident: 10.1016/j.jag.2021.102508_b0225
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.263
– volume: 12
  start-page: 93
  issue: 1
  year: 2021
  ident: 10.1016/j.jag.2021.102508_b0050
  article-title: Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.07.012
– volume: 138
  start-page: 104445
  year: 2020
  ident: 10.1016/j.jag.2021.102508_b0230
  article-title: Comparative study of landslide susceptibility mapping with different recurrent neural networks
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104445
– volume: 35
  start-page: 1267
  issue: 12
  year: 2020
  ident: 10.1016/j.jag.2021.102508_b0145
  article-title: A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2018.1559885
– volume: 8
  start-page: 866
  issue: 10
  year: 2016
  ident: 10.1016/j.jag.2021.102508_b0015
  article-title: Guidance index for shallow landslide hazard analysis
  publication-title: Remote Sens.
  doi: 10.3390/rs8100866
– volume: 297
  start-page: 69
  issue: 15
  year: 2017
  ident: 10.1016/j.jag.2021.102508_b0060
  article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.09.007
– volume: 14
  start-page: 1091
  issue: 3
  year: 2017
  ident: 10.1016/j.jag.2021.102508_b0200
  article-title: Applying Information Theory and GIS based quantitative methods to produce landslide susceptibility maps in Nancheng County, China
  publication-title: Landslides
  doi: 10.1007/s10346-016-0769-4
– volume: 135
  start-page: 271
  year: 2015
  ident: 10.1016/j.jag.2021.102508_b0210
  article-title: Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models
  publication-title: Catena
  doi: 10.1016/j.catena.2015.08.007
– volume: 11
  start-page: 638
  issue: 6
  year: 2019
  ident: 10.1016/j.jag.2021.102508_b0085
  article-title: Evaluating GIS-based multiple statistical models and datamining for earth quake and rainfall-induced landslide susceptibility using the LiDAR DEM
  publication-title: Remote Sens.
  doi: 10.3390/rs11060638
– volume: 742
  start-page: 140549
  year: 2020
  ident: 10.1016/j.jag.2021.102508_b0115
  article-title: Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140549
– volume: 183
  start-page: 104188
  year: 2019
  ident: 10.1016/j.jag.2021.102508_b0265
  article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104188
– volume: 45
  start-page: 1809
  issue: 11
  year: 2020
  ident: 10.1016/j.jag.2021.102508_b0045
  article-title: Mapping landslide susceptibility based on deep belief network
  publication-title: Geomatics Inf. Sci. Wuhan Univ.
– year: 2016
  ident: 10.1016/j.jag.2021.102508_b0040
– volume: 39
  start-page: 7693
  issue: 21
  year: 2018
  ident: 10.1016/j.jag.2021.102508_b0105
  article-title: Quantifying the main urban area expansion ofGuangzhou using Landsat imagery
  publication-title: Int. J. Remot. Sens.
  doi: 10.1080/01431161.2018.1478465
SSID ssj0017768
Score 2.5278847
Snippet •The proportion of landslide binary pixels was used as label data input in network models.•MSCNN model was carried out for LSM the first time.•A unified...
Landslide susceptibility mapping (LSM) is very important for hazard risk identification and prevention. Most of existing neural network models extract a pixel...
SourceID doaj
unpaywall
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102508
SubjectTerms algorithms
GRU
Internet
Landslide susceptibility
landslides
Lanzhou city
MSCNN
prediction
risk
RS and GIS
spatial data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ABQaFi-ZKROIEi4thxnGNBrSokOFGpN8t27GqrkF01G0F_Cv-WGdtZwqW9cHUcO8mM5TeZ5zeEvBPGBlMxXlRVZyBA4aJQruwKwMaCW-5bH1MxX7_Js3Px5aK-WJT6Qk5YkgdOH-4j96IW0ivAHZgh86rrlLMqiKoywaaTW6Vq52Aq5w-aJh2Cq2VbKMGrOZ8ZmV1X5hICw4qhbEGNdSUXO1IU7v9nY1oAz_vTsDU3P03fL_ag08fkUQaP9Dg99BNyzw-H5OFCUvCQHJ38PbkGXfPSHZ-S38d0GtYBECcdEvWbbgLNuqloHepy7U4Yh45TFP7fbkboH48D93CJ5uo8dCZgU7hCt-tfvqcjUrNhxgH_teKvUtRLpjD64vZxGiOLJhJyb-gPg-IQl8_I-enJ989nRa7LUDiAL7vCQhjSidqYUlphmtZz20nbKNdiSxDSNLwxAFysAXwIkMOBET1j0krHQ9XxI3IwbAb_nFCmbOC8BVwigmDCqFow5aRT1lnXerYi5Wwb7bJoOdbO6PXMTrvSYE6N5tTJnCvyfn_LNil23Nb5Exp83xHFtmMDuKDOLqjvcsEVEbO76IxbEh6Boda3zf12di0NaxoTNWbwm2nUFURxNWZAyxX5sPe5u9_mxf94m5fkAQ6JlB1WvyIHu-vJvwbgtbNv4hr7A2pLLEQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcEBQqlpeMxAkUbfxI4hyXqtUCoheo1JtlO84qVUiiZiPoT-HfMnacJb0UiWMcx3EyY89nz-cZhN5xpUtFCYsoLRQsUBiPhImLCLAxZ5rZ3HpXzNfzdHPBP18mlwfoZDoL42iVYe4f53Q_W4eSVfibq66qVt9APQENME6JN1z8HjoE-yPEAh2uP33ZnO-dCVk2nohL0jwSnNHJuelpXldqC6tESlwMg8QlmZyZJx_F_5aVmqHQ-0PTqZufqq5nBunsMXoUkCRej519gg5sc4QezuILHqHj07_H2KBqGMf9U_R7jYemKgF-4mbkgeO2xCGIqhMVNiGRJ7SD-8FnAejaHur7s8E13MIhVQ-e2NgY7uCu-mVr3DueNryxcRuvbt_UBU_G0Prs8X7oPaXGs3Nv8A_lIkVsn6GLs9PvJ5soJGmIDGCZXaRhTVLwRKk41VxluWW6SHUmTO5KSp6qjGUKUIxWABYBfxhmuSUk1alhJS3YMVo0bWOfI0yELhnLAaTwkhOuRMKJMKkR2miTW7JE8SQbaUIEc5dIo5YTVe1KgjilE6ccxblE7_ePdGP4jrsqf3QC31d0kbd9QXu9lUH1JPQ-4akVgIOdx9aKohBGi5JTqkodQyf5pC7yliJDU9Vd7347qZaEAe68Nqqx7dBLCku6xLlD4yX6sNe5f3_Ni__ryEv0wF05xg5JXqHF7nqwrwF37fSbMK7-AI03LWQ
  priority: 102
  providerName: Elsevier
Title A unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood for landslide susceptibility mapping
URI https://dx.doi.org/10.1016/j.jag.2021.102508
https://www.proquest.com/docview/2675582300
https://doi.org/10.1016/j.jag.2021.102508
https://doaj.org/article/3e4546e86568416e8dd8cb8f422afb01
UnpaywallVersion publishedVersion
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: ACRLP
  dateStart: 20200201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: AIKHN
  dateStart: 20200201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQewAOPBZWlEdlJE6grJLYcZxjWe2qvKoVolI5RbbjrLqEtCKNYPkn_FtmHKe0CC1wqpJMnEQzrj97Pn9DyDOudKniiAVxXCiYoDAeSBMWAWBjzjSzmXWpmHczMZ3z14tk4cWicS_MXv7e8bAu1DlM4-IIRQYS3NY7FAnA7gEZzmdnk49OD1VkgeSuGFkkU-jhsVj0Gcw_tbE3Bjmp_r2haAdqXm_rtbr8qqpqZ9Q5vd3xtRonVohkk09H7UYfme-_STn-0wfdIbc89qSTLljukmu2PiA3dxQJD8jhya-Nb2Dqe35zj_yY0LZelgBYad0xx-mqpF52FZ1LjS_9Ce3QpnV1A9arBuzdbuIKLlFf3If2_G0KV-h6-c1WtEFmNzyxxqVaXGlFuWUKre_c3rSNI-E4Pu8l_axQW-L8Ppmfnnw4nga-rENgAP1sAg2zmIInSoVCc5VmlulC6FSaDM-UXKiUpQpwj1YALwGxGGa5jSKhhWFlXLBDMqhXtX1AaCR1yVgGsIaXPOJKJjySRhipjTaZjUYk7B2dG695jqU3qrwnt13k4I4c3ZF37hiR59tb1p3gx1XGLzF6toao1e1OgMdz3_VzePuECysBOWOO18qikEbLksexKnUIL8n72Ms97OngDDS1vOrZT_s4zeEvAfM8qrartsljmAQmmEANR-TFNoD__jUP_8v6EbmBR0jtiZLHZLD50tonANA2ekyGk-P3b8_w99Wb6WzsFjrGvsP-BEepOko
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKeygcEBQqlk8jcQJFG38kcY5L1WpL273QSr1ZtuOsUoUkajaC_hT-LePEWdJLkbjajuPdGdvPmec3CH3iSueKEhZQmik4oDAeCBNmAWBjzjSzqe1DMRereHnFv11H1zvoaLwL42iVfu0f1vR-tfYlc_9vzpuimH8H9wQ0wDgl_cbFH6E9HrEEZufe4vRsudoGE5JkuBEXxWkgOKNjcLOned2oNZwSKXEaBpFLMjnZnnoV_3u71ASF7ndVo-5-qrKcbEgnz9BTjyTxYhjsc7RjqwP0ZKIveIAOj_9eY4Omfh63L9DvBe6qIgf4iauBB47rHHsRVWcqbHwiT-gHt12fBaCpW2jf3w0uoQr7VD14ZGNjqMFN8cuWuHU8bXhj5T68uu-mTjwZQ--Tx9uu7Sk1PTv3Dv9QTili_RJdnRxfHi0Dn6QhMIBlNoGGM0nGI6XCWHOVpJbpLNaJMKkryXmsEpYoQDFaAVgE_GGY5ZaQWMeG5TRjh2i3qiv7CmEidM5YCiCF55xwJSJOhImN0Eab1JIZCkfbSOMVzF0ijVKOVLUbCeaUzpxyMOcMfd4-0gzyHQ81_uoMvm3olLf7gvp2Lb3rSRh9xGMrAAe7iK0VWSaMFjmnVOU6hEHy0V3kPUeGroqH3v1xdC0JE9xFbVRl666VFI50kQuHhjP0Zetz__41r_9vIB_Q_vLy4lyen67O3qDHrsaxd0j0Fu1ubjv7DjDYRr_3c-wPryUwRQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQ9gAc-ChULF8yEidQqjh2vM5xQa0qJCoOrLScLNtxqm1DdkU2ass_4d8y4zjLLkIFjkkmTqIZx8-e5zeEvBbGViZjPMmy0sAEhYtEubRMABsLbrkvfEjFfDyVJzPxYZ7Po1g07oXZyd8HHta5OYNpXMZQZCDHbb17MgfYPSJ7s9NP0y9BD1UWiRKhGBlTE-jhmZwPGcw_tbEzBgWp_p2haAtq3u6albm-NHW9Neoc3-_5Wm0QK0SyycVht7aH7vtvUo7_9EEPyL2IPem0D5aH5JZv9sndLUXCfXJw9GvjG5jGnt8-Ij-mtGsWFQBW2vTMcbqsaJRdRedSF0t_Qju07ULdgNWyBfuwm7iGSzQW96EDf5vCFbpaXPmatsjshic2uFSLK60ot0yh9a3b264NJJzA572mXw1qS5w9JrPjo8_vT5JY1iFxgH7WiYVZTClyY1JphZkUnttS2olyBZ6phDQTPjGAe6wBeAmIxXEvPGPSSserrOQHZNQsG_-EUKZsxXkBsEZUggmjcsGUk05ZZ13h2Zikg6O1i5rnWHqj1gO57VyDOzS6Q_fuGJM3m1tWveDHTcbvMHo2hqjVHU6Ax3Xs-hrePhfSK0DOmOP1qiyVs6oSWWYqm8JLiiH2dIQ9PZyBphY3PfvVEKcafgmY5zGNX3atzmASmGMCNR2Tt5sA_vvXPP0v62fkDh4htYflz8lo_a3zLwCgre3L2DV_AncaNjI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+network+of+information+considering+superimposed+landslide+factors+sequence+and+pixel+spatial+neighbourhood+for+landslide+susceptibility+mapping&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=He%2C+Yi&rft.au=Zhao%2C+Zhan%27ao&rft.au=Yang%2C+Wang&rft.au=Yan%2C+Haowen&rft.date=2021-12-15&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=104&rft_id=info:doi/10.1016%2Fj.jag.2021.102508&rft.externalDocID=S0303243421002154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon