A novel ensemble learning approach to extract urban impervious surface based on machine learning algorithms using SAR and optical data
•Proposed a novel ensemble learning framework to improve urban impervious surface accuracy.•Integrated open source Optical and SAR datasets and four ensemble algorithms.•UISEM outperformed three existing global data products with 92% accuracy.•XGB algorithm is optimal for mapping UIS for diverse glo...
Saved in:
| Published in | International journal of applied earth observation and geoinformation Vol. 132; p. 104013 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2024
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1569-8432 1872-826X |
| DOI | 10.1016/j.jag.2024.104013 |
Cover
| Abstract | •Proposed a novel ensemble learning framework to improve urban impervious surface accuracy.•Integrated open source Optical and SAR datasets and four ensemble algorithms.•UISEM outperformed three existing global data products with 92% accuracy.•XGB algorithm is optimal for mapping UIS for diverse global cities.
Accurate urban impervious surface (UIS) extraction from open-source remote sensing data remains challenging, especially for cities with heterogeneous climatic backgrounds. Contemporary, state-of-the-art techniques achieve promising results at a global scale, but accuracy is compromised at the city level. Therefore, a ensemble machine learning approach using open-source Optical-SAR remote sensing datasets was implemented to enhance the accuracy of UIS mapping. Initially, we integrated optical and radar datasets with modified urban indices to generate input features. Then, we applied four ensemble machine learning algorithms, including AdaBoost, Gradient Boost (GB), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), and fine-tuned them via a soft voting ensemble approach. The optimized UISEM approach showed a model accuracy of 98%. The UISEM method achieved a classification accuracy of 92% and consistently performed across 32 cities globally with heterogeneous climatic zones. Regarding accuracy and predictive power, the XGB ensemble classifier outperformed other ML classifiers in mapping UIS. Furthermore, a comparative analysis against three well-known datasets (ESA World Cover, ESRI Land Cover, and Dynamic World) was also performed. The proposed UISEM model outperformed renowned global datasets with a 92% classification accuracy, followed by DW with 83%, ESA with 86%, and ESRI with 82%. In the future, developing a spatial–temporal version of UISEM can support diverse urban applications globally. The datasets and (GEE and Python) codes are available at https://github.com/mnasarahmad/UISEM. |
|---|---|
| AbstractList | Accurate urban impervious surface (UIS) extraction from open-source remote sensing data remains challenging, especially for cities with heterogeneous climatic backgrounds. Contemporary, state-of-the-art techniques achieve promising results at a global scale, but accuracy is compromised at the city level. Therefore, a ensemble machine learning approach using open-source Optical-SAR remote sensing datasets was implemented to enhance the accuracy of UIS mapping. Initially, we integrated optical and radar datasets with modified urban indices to generate input features. Then, we applied four ensemble machine learning algorithms, including AdaBoost, Gradient Boost (GB), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), and fine-tuned them via a soft voting ensemble approach. The optimized UISEM approach showed a model accuracy of 98%. The UISEM method achieved a classification accuracy of 92% and consistently performed across 32 cities globally with heterogeneous climatic zones. Regarding accuracy and predictive power, the XGB ensemble classifier outperformed other ML classifiers in mapping UIS. Furthermore, a comparative analysis against three well-known datasets (ESA World Cover, ESRI Land Cover, and Dynamic World) was also performed. The proposed UISEM model outperformed renowned global datasets with a 92% classification accuracy, followed by DW with 83%, ESA with 86%, and ESRI with 82%. In the future, developing a spatial–temporal version of UISEM can support diverse urban applications globally. The datasets and (GEE and Python) codes are available at https://github.com/mnasarahmad/UISEM. •Proposed a novel ensemble learning framework to improve urban impervious surface accuracy.•Integrated open source Optical and SAR datasets and four ensemble algorithms.•UISEM outperformed three existing global data products with 92% accuracy.•XGB algorithm is optimal for mapping UIS for diverse global cities. Accurate urban impervious surface (UIS) extraction from open-source remote sensing data remains challenging, especially for cities with heterogeneous climatic backgrounds. Contemporary, state-of-the-art techniques achieve promising results at a global scale, but accuracy is compromised at the city level. Therefore, a ensemble machine learning approach using open-source Optical-SAR remote sensing datasets was implemented to enhance the accuracy of UIS mapping. Initially, we integrated optical and radar datasets with modified urban indices to generate input features. Then, we applied four ensemble machine learning algorithms, including AdaBoost, Gradient Boost (GB), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), and fine-tuned them via a soft voting ensemble approach. The optimized UISEM approach showed a model accuracy of 98%. The UISEM method achieved a classification accuracy of 92% and consistently performed across 32 cities globally with heterogeneous climatic zones. Regarding accuracy and predictive power, the XGB ensemble classifier outperformed other ML classifiers in mapping UIS. Furthermore, a comparative analysis against three well-known datasets (ESA World Cover, ESRI Land Cover, and Dynamic World) was also performed. The proposed UISEM model outperformed renowned global datasets with a 92% classification accuracy, followed by DW with 83%, ESA with 86%, and ESRI with 82%. In the future, developing a spatial–temporal version of UISEM can support diverse urban applications globally. The datasets and (GEE and Python) codes are available at https://github.com/mnasarahmad/UISEM. |
| ArticleNumber | 104013 |
| Author | Ahmad, Muhammad Nasar Fu, Peng Xiao, Xiongwu Javed, Akib Ara, Iffat Shao, Zhenfeng |
| Author_xml | – sequence: 1 givenname: Muhammad Nasar surname: Ahmad fullname: Ahmad, Muhammad Nasar email: mnasarahmad@whu.edu.cn organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, 43007, China – sequence: 2 givenname: Zhenfeng surname: Shao fullname: Shao, Zhenfeng email: shaozhenfeng@whu.edu.cn organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, 43007, China – sequence: 3 givenname: Xiongwu surname: Xiao fullname: Xiao, Xiongwu email: xwxiao@whu.edu.cn organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, 43007, China – sequence: 4 givenname: Peng surname: Fu fullname: Fu, Peng email: pfu@harrisburgu.edu organization: Center for Advanced Agriculture and Sustainability, Harrisburg University, Harrisburg, PA, 17101, USA – sequence: 5 givenname: Akib surname: Javed fullname: Javed, Akib email: akibjaved@whu.edu.cn organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, 43007, China – sequence: 6 givenname: Iffat surname: Ara fullname: Ara, Iffat email: iffat@esg.iu.ac.bd organization: Department of Geography and Environment, Islamic University, Kushtia, 7003, Bangladesh |
| BookMark | eNqNkctuFDEQRb0IEsmED2DnJZsZ7H64x2I1inhEioQUYG1V29UTt9x2Y7sH8gN8Nx4aIcQiYuOSS3Vule69Ihc-eCTkJWc7zrh4Pe5GOO4qVjXl3zBeX5BL3gq53Td19ZxcpTQyxrtO7C_JjwP14YSOok849Q6pQ4je-iOFeY4B9APNgeL3HEFnusQePLXTjPFkw5JoWuIAGmkPCQ0Nnk6FsP5vGXcM0eaHKdElnRufDvcUfBmes9XgqIEM1-TZAC7hi991Q768e_v55sP27uP725vD3VY3tcxbiXJfGWTl1S0DYYaW66rVXGo56J5Vsh5Y03St2QNjwrAOe9lX0ApmpORYb8jtqmsCjGqOdoL4qAJY9asR4lFBLGc5VFLWXVVrIcFgI6saDIeGicbwQdS96ItWtWotfobHb-DcH0HO1DkJNaqShDonodYkCvRqhYq3XxdMWU02aXQOPBY_Vc3bsrY5lw3p1lEdQ0oRB6VthmyDL1lY9-QS_g_5P4e9WRks9p8sRpW0Ra_R2Ig6F3_sE_RPQzfGPw |
| CitedBy_id | crossref_primary_10_1109_TGRS_2025_3531879 crossref_primary_10_1016_j_eswa_2024_126378 |
| Cites_doi | 10.1109/ACCESS.2024.3363628 10.1016/j.conbuildmat.2024.135114 10.1109/TKDE.2019.2912815 10.1038/s41598-023-48617-0 10.1080/17538947.2023.2301675 10.1016/j.rse.2011.02.030 10.1109/ACCESS.2019.2923640 10.3390/rs12193254 10.1016/j.scitotenv.2022.161321 10.3390/su151310537 10.3390/rs16040665 10.3390/rs15041042 10.1016/j.rse.2005.04.008 10.1016/j.ufug.2020.126961 10.3390/rs13030373 10.1016/j.envpol.2020.115569 10.1109/JSTARS.2015.2478914 10.1109/JSTARS.2016.2634859 10.1029/2010WR009607 10.14358/PERS.23-00001R2 10.3390/rs15102562 10.1109/MGRS.2018.2890023 10.1186/s12864-019-6413-7 10.5194/essd-14-1831-2022 10.1016/j.scitotenv.2020.142334 10.1088/1748-9326/abdaed 10.3390/rs13214241 10.1016/j.patrec.2020.07.042 10.3390/rs14194777 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.1016/j.jag.2024.104013 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| ExternalDocumentID | oai_doaj_org_article_993723c69ade4923ad1a4064d1f63b6b 10.1016/j.jag.2024.104013 10_1016_j_jag_2024_104013 S1569843224003674 |
| GroupedDBID | 0SF 29J 4.4 5GY 6I. AAFTH AAHBH AALRI AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ACLVX ACRLP ACSBN ADBBV ADMUD ADVLN AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EFJIC EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS 7S9 L.6 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c439t-9e982de0982c50a6df51c25c19c9fcb0293f04475d8a006d07eb9b2a560d991e3 |
| IEDL.DBID | DOA |
| ISSN | 1569-8432 1872-826X |
| IngestDate | Fri Oct 03 12:53:23 EDT 2025 Tue Aug 19 19:31:58 EDT 2025 Sun Sep 28 10:30:41 EDT 2025 Wed Oct 01 02:55:58 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Sat Aug 17 15:43:13 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ensemble Learning Remote Sensing Impervious surface SAR Machine Learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-9e982de0982c50a6df51c25c19c9fcb0293f04475d8a006d07eb9b2a560d991e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/993723c69ade4923ad1a4064d1f63b6b |
| PQID | 3153724315 |
| PQPubID | 24069 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_993723c69ade4923ad1a4064d1f63b6b unpaywall_primary_10_1016_j_jag_2024_104013 proquest_miscellaneous_3153724315 crossref_citationtrail_10_1016_j_jag_2024_104013 crossref_primary_10_1016_j_jag_2024_104013 elsevier_sciencedirect_doi_10_1016_j_jag_2024_104013 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 20240801 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of applied earth observation and geoinformation |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Zhao, Zhu (b0235) 2022; 107 Ju, Noh, Wang, Choi (b0070) 2024 Paul, Ganguli, Dziugaite (b0100) 2021; 34 Shahtahmassebi, Song, Zheng, Blackburn, Wang, Huang, Pan, Moore, Shahtahmassebi, Haghighi (b0110) 2016; 46 Ye, Xu, Lei, Liao, Ding, Liang (b0210) 2022; 82 Ghamisi, Rasti, Yokoya, Wang, Hofle, Bruzzone, Bovolo, Chi, Anders, Gloaguen, Atkinson, Benediktsson (b0055) 2019; 7 Chen, Jia, Pickering (b0025) 2019; 83 Chicco, Jurman (b0030) 2020; 21 Weng (b0165) 2012; 117 Morabito, Crisci, Guerri, Messeri, Congedo, Munafò (b0090) 2021; 751 Wu, Guo, Shao, Li (b0175) 2023; 15 Yang, Huang, Yang, Liu (b0205) 2021; 16 Chang, Hou, Chen, Chen (b0020) 2023; 15 Shao, Ahmad, Javed (b0125) 2024; 16 Sun, Chen, Jia, Yao, Wang (b0130) 2015; 9 Fang, Li, Dong, Teng, Pablo, Zhu (b0045) 2023; 15 Tu, Chen, Lang, Chen, Li, Zhang, Xu (b0145) 2021; 13 Xiang, Liang, Fang, Chen, Xu, Hu, Chen, Mu, Hedblom, Qiu (b0185) 2021; 58 Dvornikov, Grigorieva, Varentsov, Vasenev (b0040) 2023; 123 Zhang, Liu, Zhao, Gao, Chen, Mi (b0220) 2022; 14 Shao, Ahmad, Javed, Islam, Jahangir, Ahmad (b0115) 2023; 89 Chmielowski, Kucharzak, Burduk (b0035) 2023; 13 Lesack, Marsh (b0075) 2010; 46 Xu, Luo, Wu, Dong, Liu, Zhou (b0195) 2021; 13 Shao, Cheng, Fu, Li, Huang (b0120) 2023; 15 Wong, Yeh (b0170) 2019; 32 Gao, Shan, Hu, Niu, Liu (b0050) 2019; 7 Wang, Zhang, Peng, Wu, Lv, Xiao, Zhao, Qian (b0160) 2020; 267 Yan, Liu, Liang, Wang, Li, Wang (b0200) 2023 Huang, Qi, Kang, Su, Liu (b0065) 2020; 12 Wakjira, Kutty, Alam (b0150) 2024; 416 Wu, Xue, Xu, Yan, Wang, Qi (b0180) 2022; 14 Zhang, Zhang, Yao (b0230) 2018; 70 Asner, Elmore, Hughes, Warner, Vitousek (b0010) 2005; 96 Wang, Fan, Wang (b0155) 2021; 141 Okujeni, van der Linden, Suess, Hostert (b0095) 2016; 10 Guo, Wu, Shao, Teng, Li (b0060) 2024; 17 Xiao, Zou, Xia, Dong, Yang, Yao (b0190) 2023; 866 Zhou, He, Nigh, Schulz (b0240) 2012; 18 Rahman, Thakur (b0105) 2018; 21 Gao (10.1016/j.jag.2024.104013_b0050) 2019; 7 Ju (10.1016/j.jag.2024.104013_b0070) 2024 Zhou (10.1016/j.jag.2024.104013_b0240) 2012; 18 Chang (10.1016/j.jag.2024.104013_b0020) 2023; 15 Guo (10.1016/j.jag.2024.104013_b0060) 2024; 17 Wong (10.1016/j.jag.2024.104013_b0170) 2019; 32 Wu (10.1016/j.jag.2024.104013_b0175) 2023; 15 Wang (10.1016/j.jag.2024.104013_b0160) 2020; 267 Asner (10.1016/j.jag.2024.104013_b0010) 2005; 96 Yan (10.1016/j.jag.2024.104013_b0200) 2023 Ghamisi (10.1016/j.jag.2024.104013_b0055) 2019; 7 Sun (10.1016/j.jag.2024.104013_b0130) 2015; 9 Shahtahmassebi (10.1016/j.jag.2024.104013_b0110) 2016; 46 Dvornikov (10.1016/j.jag.2024.104013_b0040) 2023; 123 Xiao (10.1016/j.jag.2024.104013_b0190) 2023; 866 Wu (10.1016/j.jag.2024.104013_b0180) 2022; 14 Zhang (10.1016/j.jag.2024.104013_b0230) 2018; 70 Zhao (10.1016/j.jag.2024.104013_b0235) 2022; 107 Tu (10.1016/j.jag.2024.104013_b0145) 2021; 13 Shao (10.1016/j.jag.2024.104013_b0125) 2024; 16 Wakjira (10.1016/j.jag.2024.104013_b0150) 2024; 416 Chmielowski (10.1016/j.jag.2024.104013_b0035) 2023; 13 Okujeni (10.1016/j.jag.2024.104013_b0095) 2016; 10 Shao (10.1016/j.jag.2024.104013_b0120) 2023; 15 Paul (10.1016/j.jag.2024.104013_b0100) 2021; 34 Zhang (10.1016/j.jag.2024.104013_b0220) 2022; 14 Xiang (10.1016/j.jag.2024.104013_b0185) 2021; 58 Ye (10.1016/j.jag.2024.104013_b0210) 2022; 82 Shao (10.1016/j.jag.2024.104013_b0115) 2023; 89 Weng (10.1016/j.jag.2024.104013_b0165) 2012; 117 Xu (10.1016/j.jag.2024.104013_b0195) 2021; 13 Yang (10.1016/j.jag.2024.104013_b0205) 2021; 16 Wang (10.1016/j.jag.2024.104013_b0155) 2021; 141 Chen (10.1016/j.jag.2024.104013_b0025) 2019; 83 Chicco (10.1016/j.jag.2024.104013_b0030) 2020; 21 Rahman (10.1016/j.jag.2024.104013_b0105) 2018; 21 Lesack (10.1016/j.jag.2024.104013_b0075) 2010; 46 Huang (10.1016/j.jag.2024.104013_b0065) 2020; 12 Morabito (10.1016/j.jag.2024.104013_b0090) 2021; 751 Fang (10.1016/j.jag.2024.104013_b0045) 2023; 15 |
| References_xml | – volume: 34 start-page: 20596 year: 2021 end-page: 20607 ident: b0100 article-title: Deep learning on a data diet: Finding important examples early in training publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 year: 2023 ident: b0175 article-title: Urban Impervious Surface extraction based on deep convolutional networks using intensity, polarimetric scattering and interferometric coherence information from Sentinel-1 SAR Images publication-title: Remote Sens. – volume: 46 start-page: 94 year: 2016 end-page: 112 ident: b0110 article-title: Remote sensing of impervious surface growth: a framework for quantifying urban expansion and re-densification mechanisms publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 13 start-page: 21512 year: 2023 ident: b0035 article-title: Novel method of building train and test sets for evaluation of machine learning models related to software bugs assignment publication-title: Sci. Rep. – volume: 12 start-page: 3254 year: 2020 ident: b0065 article-title: An ensemble learning approach for urban land use mapping based on remote sensing imagery and social sensing data publication-title: Remote Sens. – volume: 13 start-page: 4241 year: 2021 ident: b0145 article-title: Uncovering the nature of urban land use composition using multi-source open big data with ensemble learning publication-title: Remote Sens. – volume: 267 year: 2020 ident: b0160 article-title: Impact of rapid urbanization on the threshold effect in the relationship between impervious surfaces and water quality in shanghai publication-title: China. Environ. Pollut. – volume: 83 year: 2019 ident: b0025 article-title: A nighttime lights adjusted impervious surface index (NAISI) with integration of Landsat imagery and nighttime lights data from International Space Station publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 15 start-page: 1042 year: 2023 ident: b0020 article-title: Automatic Extraction of Urban Impervious Surface Based on SAH-Unet publication-title: Remote Sens. – volume: 866 year: 2023 ident: b0190 article-title: Assessment of the urban waterlogging resilience and identification of its driving factors: a case study of Wuhan City publication-title: China. Sci. Total Environ. – volume: 70 start-page: 51 year: 2018 end-page: 61 ident: b0230 article-title: Mapping seasonal impervious surface dynamics in Wuhan urban agglomeration, China from 2000 to 2016 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 13 start-page: 373 year: 2021 ident: b0195 article-title: Identification and portrait of urban functional zones based on multisource heterogeneous data and ensemble learning publication-title: Remote Sens. – volume: 14 start-page: 1831 year: 2022 end-page: 1856 ident: b0220 article-title: GISD30: Global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform publication-title: Earth Syst. Sci. Data – volume: 9 start-page: 2081 year: 2015 end-page: 2092 ident: b0130 article-title: Combinational build-up index (CBI) for effective impervious surface mapping in urban areas. IEEE J publication-title: Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 7 start-page: 82512 year: 2019 end-page: 82521 ident: b0050 article-title: An adaptive ensemble machine learning model for intrusion detection publication-title: IEEE Access – volume: 10 start-page: 1640 year: 2016 end-page: 1650 ident: b0095 article-title: Ensemble learning from synthetically mixed training data for quantifying urban land cover with support vector regression. IEEE J publication-title: Sel. Top. Appl. Earth Obs. Remote Sens. – year: 2023 ident: b0200 article-title: Semantic segmentation of land cover in urban areas by fusing multi-source satellite image time series – volume: 32 start-page: 1586 year: 2019 end-page: 1594 ident: b0170 article-title: Reliable accuracy estimates from k-fold cross validation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 14 start-page: 4777 year: 2022 ident: b0180 article-title: Urban Flood risk assessment in zhengzhou, china, based on a D-Number-Improved analytic hierarchy process and a self-organizing map algorithm publication-title: Remote Sens. – volume: 82 year: 2022 ident: b0210 article-title: Assessment of urban flood risk based on data-driven models: A case study in Fuzhou City publication-title: China. Int. J. Disaster Risk Reduct. – volume: 21 start-page: 1 year: 2020 end-page: 13 ident: b0030 article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genomics – volume: 16 start-page: 24032 year: 2021 ident: b0205 article-title: The relationship between land surface temperature and artificial impervious surface fraction in 682 global cities: Spatiotemporal variations and drivers publication-title: Environ. Res. Lett. – volume: 117 start-page: 34 year: 2012 end-page: 49 ident: b0165 article-title: Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends publication-title: Remote Sens. Environ. – volume: 16 start-page: 665 year: 2024 ident: b0125 article-title: Comparison of Random Forest and XGBoost classifiers using integrated optical and SAR features for mapping urban impervious surface publication-title: Remote Sens. – volume: 123 year: 2023 ident: b0040 article-title: Optimal spectral index and threshold applied to Sentinel-2 data for extracting impervious surface: Verification across latitudes, growing seasons, approaches, and comparison to global datasets publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 18 start-page: 195 year: 2012 end-page: 206 ident: b0240 article-title: Mapping and analyzing change of impervious surface for two decades using multi-temporal Landsat imagery in Missouri publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 89 start-page: 479 year: 2023 end-page: 486 ident: b0115 article-title: Expansion of Urban impervious surfaces in lahore (1993–2022) Based on GEE and remote sensing data publication-title: Photogramm. Eng. Remote Sens. – volume: 96 start-page: 497 year: 2005 end-page: 508 ident: b0010 article-title: Ecosystem structure along bioclimatic gradients in Hawai’i from imaging spectroscopy publication-title: Remote Sens. Environ. – volume: 15 start-page: 10537 year: 2023 ident: b0045 article-title: Extraction and Spatiotemporal Evolution Analysis of Impervious Surface and Surface Runoff in Main Urban Region of Hefei City publication-title: China. Sustainability – volume: 21 start-page: S37 year: 2018 end-page: S41 ident: b0105 article-title: Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: a case study from the kendrapara district of orissa state of india publication-title: Egypt. J. Remote Sens. Sp. Sci. – volume: 416 year: 2024 ident: b0150 article-title: A novel framework for developing environmentally sustainable and cost-effective ultra-high-performance concrete (UHPC) using advanced machine learning and multi-objective optimization techniques publication-title: Constr. Build. Mater. – year: 2024 ident: b0070 article-title: Class-wise Adaptive Strategy for Semi Supervised Semantic Segmentation publication-title: IEEE Access – volume: 17 year: 2024 ident: b0060 article-title: Extracting urban impervious surface based on optical and SAR images cross-modal multi-scale features fusion network publication-title: Int. J. Digit. Earth – volume: 107 year: 2022 ident: b0235 article-title: ASI: An artificial surface Index for Landsat 8 imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 58 year: 2021 ident: b0185 article-title: The comparisons of on-site and off-site applications in surveys on perception of and preference for urban green spaces: Which approach is more reliable? publication-title: Urban for. Urban Green. – volume: 141 start-page: 61 year: 2021 end-page: 67 ident: b0155 article-title: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning publication-title: Pattern Recognit. Lett. – volume: 46 year: 2010 ident: b0075 article-title: River-to-lake connectivities, water renewal, and aquatic habitat diversity in the Mackenzie River Delta publication-title: Water Resour. Res. – volume: 7 start-page: 6 year: 2019 end-page: 39 ident: b0055 article-title: Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 751 year: 2021 ident: b0090 article-title: Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences publication-title: Sci. Total Environ. – volume: 15 start-page: 2562 year: 2023 ident: b0120 article-title: Emerging Issues in Mapping Urban impervious surfaces using high-resolution remote sensing images publication-title: Remote Sens. – volume: 21 start-page: S37 year: 2018 ident: 10.1016/j.jag.2024.104013_b0105 article-title: Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: a case study from the kendrapara district of orissa state of india publication-title: Egypt. J. Remote Sens. Sp. Sci. – year: 2024 ident: 10.1016/j.jag.2024.104013_b0070 article-title: Class-wise Adaptive Strategy for Semi Supervised Semantic Segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3363628 – volume: 416 year: 2024 ident: 10.1016/j.jag.2024.104013_b0150 article-title: A novel framework for developing environmentally sustainable and cost-effective ultra-high-performance concrete (UHPC) using advanced machine learning and multi-objective optimization techniques publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2024.135114 – volume: 32 start-page: 1586 year: 2019 ident: 10.1016/j.jag.2024.104013_b0170 article-title: Reliable accuracy estimates from k-fold cross validation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2912815 – volume: 13 start-page: 21512 year: 2023 ident: 10.1016/j.jag.2024.104013_b0035 article-title: Novel method of building train and test sets for evaluation of machine learning models related to software bugs assignment publication-title: Sci. Rep. doi: 10.1038/s41598-023-48617-0 – volume: 82 year: 2022 ident: 10.1016/j.jag.2024.104013_b0210 article-title: Assessment of urban flood risk based on data-driven models: A case study in Fuzhou City publication-title: China. Int. J. Disaster Risk Reduct. – volume: 70 start-page: 51 year: 2018 ident: 10.1016/j.jag.2024.104013_b0230 article-title: Mapping seasonal impervious surface dynamics in Wuhan urban agglomeration, China from 2000 to 2016 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 83 year: 2019 ident: 10.1016/j.jag.2024.104013_b0025 article-title: A nighttime lights adjusted impervious surface index (NAISI) with integration of Landsat imagery and nighttime lights data from International Space Station publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 17 year: 2024 ident: 10.1016/j.jag.2024.104013_b0060 article-title: Extracting urban impervious surface based on optical and SAR images cross-modal multi-scale features fusion network publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2023.2301675 – volume: 117 start-page: 34 year: 2012 ident: 10.1016/j.jag.2024.104013_b0165 article-title: Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.02.030 – volume: 107 year: 2022 ident: 10.1016/j.jag.2024.104013_b0235 article-title: ASI: An artificial surface Index for Landsat 8 imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 7 start-page: 82512 year: 2019 ident: 10.1016/j.jag.2024.104013_b0050 article-title: An adaptive ensemble machine learning model for intrusion detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923640 – volume: 12 start-page: 3254 year: 2020 ident: 10.1016/j.jag.2024.104013_b0065 article-title: An ensemble learning approach for urban land use mapping based on remote sensing imagery and social sensing data publication-title: Remote Sens. doi: 10.3390/rs12193254 – volume: 866 year: 2023 ident: 10.1016/j.jag.2024.104013_b0190 article-title: Assessment of the urban waterlogging resilience and identification of its driving factors: a case study of Wuhan City publication-title: China. Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.161321 – volume: 15 start-page: 10537 year: 2023 ident: 10.1016/j.jag.2024.104013_b0045 article-title: Extraction and Spatiotemporal Evolution Analysis of Impervious Surface and Surface Runoff in Main Urban Region of Hefei City publication-title: China. Sustainability doi: 10.3390/su151310537 – volume: 16 start-page: 665 year: 2024 ident: 10.1016/j.jag.2024.104013_b0125 article-title: Comparison of Random Forest and XGBoost classifiers using integrated optical and SAR features for mapping urban impervious surface publication-title: Remote Sens. doi: 10.3390/rs16040665 – volume: 15 start-page: 1042 year: 2023 ident: 10.1016/j.jag.2024.104013_b0020 article-title: Automatic Extraction of Urban Impervious Surface Based on SAH-Unet publication-title: Remote Sens. doi: 10.3390/rs15041042 – volume: 96 start-page: 497 year: 2005 ident: 10.1016/j.jag.2024.104013_b0010 article-title: Ecosystem structure along bioclimatic gradients in Hawai’i from imaging spectroscopy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.04.008 – volume: 58 year: 2021 ident: 10.1016/j.jag.2024.104013_b0185 article-title: The comparisons of on-site and off-site applications in surveys on perception of and preference for urban green spaces: Which approach is more reliable? publication-title: Urban for. Urban Green. doi: 10.1016/j.ufug.2020.126961 – volume: 46 start-page: 94 year: 2016 ident: 10.1016/j.jag.2024.104013_b0110 article-title: Remote sensing of impervious surface growth: a framework for quantifying urban expansion and re-densification mechanisms publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 13 start-page: 373 year: 2021 ident: 10.1016/j.jag.2024.104013_b0195 article-title: Identification and portrait of urban functional zones based on multisource heterogeneous data and ensemble learning publication-title: Remote Sens. doi: 10.3390/rs13030373 – volume: 267 year: 2020 ident: 10.1016/j.jag.2024.104013_b0160 article-title: Impact of rapid urbanization on the threshold effect in the relationship between impervious surfaces and water quality in shanghai publication-title: China. Environ. Pollut. doi: 10.1016/j.envpol.2020.115569 – volume: 123 year: 2023 ident: 10.1016/j.jag.2024.104013_b0040 article-title: Optimal spectral index and threshold applied to Sentinel-2 data for extracting impervious surface: Verification across latitudes, growing seasons, approaches, and comparison to global datasets publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 9 start-page: 2081 year: 2015 ident: 10.1016/j.jag.2024.104013_b0130 article-title: Combinational build-up index (CBI) for effective impervious surface mapping in urban areas. IEEE J publication-title: Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2478914 – volume: 15 year: 2023 ident: 10.1016/j.jag.2024.104013_b0175 article-title: Urban Impervious Surface extraction based on deep convolutional networks using intensity, polarimetric scattering and interferometric coherence information from Sentinel-1 SAR Images publication-title: Remote Sens. – volume: 18 start-page: 195 year: 2012 ident: 10.1016/j.jag.2024.104013_b0240 article-title: Mapping and analyzing change of impervious surface for two decades using multi-temporal Landsat imagery in Missouri publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 10 start-page: 1640 year: 2016 ident: 10.1016/j.jag.2024.104013_b0095 article-title: Ensemble learning from synthetically mixed training data for quantifying urban land cover with support vector regression. IEEE J publication-title: Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2634859 – volume: 46 year: 2010 ident: 10.1016/j.jag.2024.104013_b0075 article-title: River-to-lake connectivities, water renewal, and aquatic habitat diversity in the Mackenzie River Delta publication-title: Water Resour. Res. doi: 10.1029/2010WR009607 – volume: 89 start-page: 479 year: 2023 ident: 10.1016/j.jag.2024.104013_b0115 article-title: Expansion of Urban impervious surfaces in lahore (1993–2022) Based on GEE and remote sensing data publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.23-00001R2 – year: 2023 ident: 10.1016/j.jag.2024.104013_b0200 – volume: 15 start-page: 2562 year: 2023 ident: 10.1016/j.jag.2024.104013_b0120 article-title: Emerging Issues in Mapping Urban impervious surfaces using high-resolution remote sensing images publication-title: Remote Sens. doi: 10.3390/rs15102562 – volume: 7 start-page: 6 year: 2019 ident: 10.1016/j.jag.2024.104013_b0055 article-title: Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2018.2890023 – volume: 21 start-page: 1 year: 2020 ident: 10.1016/j.jag.2024.104013_b0030 article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genomics doi: 10.1186/s12864-019-6413-7 – volume: 34 start-page: 20596 year: 2021 ident: 10.1016/j.jag.2024.104013_b0100 article-title: Deep learning on a data diet: Finding important examples early in training publication-title: Adv. Neural Inf. Process. Syst. – volume: 14 start-page: 1831 year: 2022 ident: 10.1016/j.jag.2024.104013_b0220 article-title: GISD30: Global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-14-1831-2022 – volume: 751 year: 2021 ident: 10.1016/j.jag.2024.104013_b0090 article-title: Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142334 – volume: 16 start-page: 24032 year: 2021 ident: 10.1016/j.jag.2024.104013_b0205 article-title: The relationship between land surface temperature and artificial impervious surface fraction in 682 global cities: Spatiotemporal variations and drivers publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/abdaed – volume: 13 start-page: 4241 year: 2021 ident: 10.1016/j.jag.2024.104013_b0145 article-title: Uncovering the nature of urban land use composition using multi-source open big data with ensemble learning publication-title: Remote Sens. doi: 10.3390/rs13214241 – volume: 141 start-page: 61 year: 2021 ident: 10.1016/j.jag.2024.104013_b0155 article-title: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.07.042 – volume: 14 start-page: 4777 year: 2022 ident: 10.1016/j.jag.2024.104013_b0180 article-title: Urban Flood risk assessment in zhengzhou, china, based on a D-Number-Improved analytic hierarchy process and a self-organizing map algorithm publication-title: Remote Sens. doi: 10.3390/rs14194777 |
| SSID | ssj0017768 |
| Score | 2.4674582 |
| Snippet | •Proposed a novel ensemble learning framework to improve urban impervious surface accuracy.•Integrated open source Optical and SAR datasets and four ensemble... Accurate urban impervious surface (UIS) extraction from open-source remote sensing data remains challenging, especially for cities with heterogeneous climatic... |
| SourceID | doaj unpaywall proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104013 |
| SubjectTerms | data collection Ensemble Learning Impervious surface land cover Machine Learning radar Remote Sensing SAR spatial data |
| SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcEBQqlpeMxAkUbRw7Dx-XqtUCogdKpd4sv7JNlU1W2YSqf4DfzThxlt1LkbhESjR2nMx45rM9_ozQB6LimGqmA0VkGLDccUDKhAcw8ElVzC0YgZvv-H6eLC7Z16v46gCdjHthXFql9_2DT--9tX8y839zti6K2QWMPHjGaJ8FSZOUPUCHEH-ybIIO51--Lc63iwlpOuyIA_nAFRgXN_s0rxu5hFFixNxiZ0joXnjqWfz3otQOCn3YVWt5dyvLcicgnT1FTzySxPOhsc_Qga2O0OMdfsEjdHz6dxsbiPp-vHmOfs9xVf-yJYZBrF2p0mJ_esQSjyTjuK0xOG63iQp3jZIVLgBhg2Opuw3edE0utcUuBhpcV3jV52TuVlMu66Zor1cb7FLrl_hi_gPLCoTX_ew5dqmpL9Dl2enPk0XgT2QINACXNuCWZ5GxIVx1HMrE5DHRUawJ1zzXKgTskIeOQtBkErqzCVOruIokwCoDQNTSYzSp6sq-RJjnkWIhU4QyyzLNeR4zIq2SJqdEq2yKwlERQnu6cndqRinGvLQbAboTTndi0N0UfdwWWQ9cHfcJf3ba3Qo6mu3-Qd0shbcz4cBbRHXCpbGOyU4aIgEBMUPyhKpETREbbUPsWS1UVdz37vejHQnozW6JRlYW1CcoBKA0AlAXT9GnrYH9-2te_V9DXqNH7m5IaHyDJm3T2bcAslr1zneiP30mJBY priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ94A48FhYUbQgI3ECZRUndhofC9rVCokVAiqVk-VXSndTp2qSRfAD-N2ME6e0CC1wySGaTGR7xvPZHn-D0AuiGEs11ZEiMo5o4TkgZcYjWPhMFOMWjMDvd7y7yM5n9O2czQNZtL8Ls3d-3-VhXcoFLOMS6k8jY1-f9iBjALtH6GB28X76ueNDBeU57YqRkXwCHp5k8-EE80869mJQR9W_F4p2oObt1q3lt6-yLHeiztm9Pl-r7sgKfbLJ1UnbqBP9_Tcqx39q0H10N2BPPO2N5QG6Zd0hurPDSHiIjk5_XXwD0eD59UP0Y4pddW1LDMteu1KlxaHexAIPtOS4qTBM9f7aFW43Sjq8BEwOU1HV1rhuN4XUFvuoaXDl8KrL4txVUy6qzbL5sqqxT8Zf4I_TD1g6EF53--3YJ7M-QrOz009vzqNQwyHSAHWaiFueJ8bG8NQslpkpGNEJ04RrXmgVA9ooYk86aHIJE4CJJ1ZxlUgAYgagq02P0MhVzj5GmBeJojFVJKWW5przglEirZKmSIlW-RjFw6gKHQjOfZ2NUgyZbJcC-l74vhd934_Ry-0n657d4ybh195UtoKemLt7AcMrgp8LD_eSVGdcGuu576QhEjATNaTIUpWpMaKDoYmAcXrsAqqWN_37-WCUAvzfH-pIZ2H4RAoha5IADGRj9GprrX9vzZP_kj5Go2bT2qcAwBr1LLjeTyXUKq4 priority: 102 providerName: Unpaywall |
| Title | A novel ensemble learning approach to extract urban impervious surface based on machine learning algorithms using SAR and optical data |
| URI | https://dx.doi.org/10.1016/j.jag.2024.104013 https://www.proquest.com/docview/3153724315 https://doi.org/10.1016/j.jag.2024.104013 https://doaj.org/article/993723c69ade4923ad1a4064d1f63b6b |
| UnpaywallVersion | publishedVersion |
| Volume | 132 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1569-8432 databaseCode: DOA dateStart: 20200101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0017768 providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1569-8432 databaseCode: ACRLP dateStart: 20200201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017768 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 1569-8432 databaseCode: AIKHN dateStart: 20200201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017768 providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOQAHBIWKhVIZiRMowk7sJD6GqtXyWlWFlcrJ8ivbrbLJajeh4g_wuxnnsaSX9sIlUSLHTjIzns_2-BuE3lLNeWSYCTRVJGC554BUsQhg4JNoLhwogZ_v-DaLp3P2-YJfjFJ9-Ziwjh64-3EfvP8MIxMLZZ0nE1OWKnBCzNI8jnSsfe9LUjEMpvr1gyTpNsFxaDZlUTisZ7aRXVdqAQPDkPn1TUKjGx6pJe6_4ZhGwPNBU67V72tVFCMfdPoEPe7BI866l36K7rlyHz0aUQruo4OTfzvXoGhvuttn6E-Gy-qXKzCMW91KFw73CSMWeOAVx3WFoa_2-6Zws9GqxEsA1dCXVM0Wb5tNrozD3u1ZXJV41YZhjqspFtVmWV-utthH0y_w9-wcqxIKr9sJc-yjUZ-j-enJj-Np0CdhCAxglToQTqShdQSOhhMV25xTE3JDhRG50QTgQk48a6BNFViwJYnTQocKkJQF7OmiA7RXVqV7gbDIQ80I0zRijqVGiJwzqpxWNo-o0ekEkUEQ0vQM5T5RRiGHULQrCbKTXnayk90Evds9su7oOW4r_NFLd1fQM2u3N0DfZK9v8i59myA26IbsQUoHPqCq5W1tvxn0SIIB-1UZVToQn4zA5yQh4Dg-Qe93Cnb317z8H1_zCj30VXYRjYdor9407jWgrFofofvZ8fnXM3_-9GU6O2oNDK7ms7Ps519CUCeX |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKeygcEBQqhrIYiRMomiR2Fh-HqtWUtnOgrdSb5S1pqkwyykyo-AP8bp4TZ5i5FIlLDs5ztrd9jp8_I_Q5kFFEFFWeDITv0cxyQIqYeTDwSWTEDBiB_d9xOYunN_T7bXS7g46HtTC2rNLF_j6md9HatYzd1xwvimJ8BSMPllLSVUGSOKFP0B6NSALeuTc5O5_O1pMJSdKviAN5z3YYJje7Mq97kcMoMaR2stMPyFZ66lj8t7LUBgrdb6uF-PUgynIjIZ2-QM8dksST_mFfoh1THaBnG_yCB-jw5O8yNhB1frx8hX5PcFX_NCWGQayZy9Jgt3tEjgeScbyqMQRuu4gKt40UFS4AYUNgqdslXrZNJpTBNgdqXFd43tVkbl6mzOumWN3Nl9iW1uf4avIDiwqEF93fc2xLU1-jm9OT6-Op53Zk8BQAl5XHDEtDbXw4qsgXsc6iQIWRCphimZI-YIfMtxSCOhXgztpPjGQyFACrNABRQw7RblVX5g3CLAsl9akMCDU0VYxlEQ2EkUJnJFAyHSF_UARXjq7c7ppR8qEu7Z6D7rjVHe91N0Jf1l0WPVfHY8LfrHbXgpZmu2uom5w7O-MWvIVExUxoY5nshA4EICCqgywmMpYjRAfb4FtWC5cqHrv3p8GOOHiznaIRlQH1cQIJKAkB1EUj9HVtYP9-m7f_9yAf0f70-vKCX5zNzo_QU3umL258h3ZXTWveA-BayQ_Oof4AL_Mm9w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ94A48FhYUbQgI3ECZRUndhofC9rVCokVAiqVk-VXSndTp2qSRfAD-N2ME6e0CC1wySGaTGR7xvPZHn-D0AuiGEs11ZEiMo5o4TkgZcYjWPhMFOMWjMDvd7y7yM5n9O2czQNZtL8Ls3d-3-VhXcoFLOMS6k8jY1-f9iBjALtH6GB28X76ueNDBeU57YqRkXwCHp5k8-EE80869mJQR9W_F4p2oObt1q3lt6-yLHeiztm9Pl-r7sgKfbLJ1UnbqBP9_Tcqx39q0H10N2BPPO2N5QG6Zd0hurPDSHiIjk5_XXwD0eD59UP0Y4pddW1LDMteu1KlxaHexAIPtOS4qTBM9f7aFW43Sjq8BEwOU1HV1rhuN4XUFvuoaXDl8KrL4txVUy6qzbL5sqqxT8Zf4I_TD1g6EF53--3YJ7M-QrOz009vzqNQwyHSAHWaiFueJ8bG8NQslpkpGNEJ04RrXmgVA9ooYk86aHIJE4CJJ1ZxlUgAYgagq02P0MhVzj5GmBeJojFVJKWW5przglEirZKmSIlW-RjFw6gKHQjOfZ2NUgyZbJcC-l74vhd934_Ry-0n657d4ybh195UtoKemLt7AcMrgp8LD_eSVGdcGuu576QhEjATNaTIUpWpMaKDoYmAcXrsAqqWN_37-WCUAvzfH-pIZ2H4RAoha5IADGRj9GprrX9vzZP_kj5Go2bT2qcAwBr1LLjeTyXUKq4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+ensemble+learning+approach+to+extract+urban+impervious+surface+based+on+machine+learning+algorithms+using+SAR+and+optical+data&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Ahmad%2C+Muhammad+Nasar&rft.au=Shao%2C+Zhenfeng&rft.au=Xiao%2C+Xiongwu&rft.au=Fu%2C+P.+%28Peng%29&rft.date=2024-08-01&rft.issn=1569-8432&rft.volume=132+p.104013-&rft_id=info:doi/10.1016%2Fj.jag.2024.104013&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |