A novel ensemble learning approach to extract urban impervious surface based on machine learning algorithms using SAR and optical data

•Proposed a novel ensemble learning framework to improve urban impervious surface accuracy.•Integrated open source Optical and SAR datasets and four ensemble algorithms.•UISEM outperformed three existing global data products with 92% accuracy.•XGB algorithm is optimal for mapping UIS for diverse glo...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 132; p. 104013
Main Authors Ahmad, Muhammad Nasar, Shao, Zhenfeng, Xiao, Xiongwu, Fu, Peng, Javed, Akib, Ara, Iffat
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2024
Elsevier
Subjects
Online AccessGet full text
ISSN1569-8432
1872-826X
DOI10.1016/j.jag.2024.104013

Cover

Abstract •Proposed a novel ensemble learning framework to improve urban impervious surface accuracy.•Integrated open source Optical and SAR datasets and four ensemble algorithms.•UISEM outperformed three existing global data products with 92% accuracy.•XGB algorithm is optimal for mapping UIS for diverse global cities. Accurate urban impervious surface (UIS) extraction from open-source remote sensing data remains challenging, especially for cities with heterogeneous climatic backgrounds. Contemporary, state-of-the-art techniques achieve promising results at a global scale, but accuracy is compromised at the city level. Therefore, a ensemble machine learning approach using open-source Optical-SAR remote sensing datasets was implemented to enhance the accuracy of UIS mapping. Initially, we integrated optical and radar datasets with modified urban indices to generate input features. Then, we applied four ensemble machine learning algorithms, including AdaBoost, Gradient Boost (GB), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), and fine-tuned them via a soft voting ensemble approach. The optimized UISEM approach showed a model accuracy of 98%. The UISEM method achieved a classification accuracy of 92% and consistently performed across 32 cities globally with heterogeneous climatic zones. Regarding accuracy and predictive power, the XGB ensemble classifier outperformed other ML classifiers in mapping UIS. Furthermore, a comparative analysis against three well-known datasets (ESA World Cover, ESRI Land Cover, and Dynamic World) was also performed. The proposed UISEM model outperformed renowned global datasets with a 92% classification accuracy, followed by DW with 83%, ESA with 86%, and ESRI with 82%. In the future, developing a spatial–temporal version of UISEM can support diverse urban applications globally. The datasets and (GEE and Python) codes are available at https://github.com/mnasarahmad/UISEM.
AbstractList Accurate urban impervious surface (UIS) extraction from open-source remote sensing data remains challenging, especially for cities with heterogeneous climatic backgrounds. Contemporary, state-of-the-art techniques achieve promising results at a global scale, but accuracy is compromised at the city level. Therefore, a ensemble machine learning approach using open-source Optical-SAR remote sensing datasets was implemented to enhance the accuracy of UIS mapping. Initially, we integrated optical and radar datasets with modified urban indices to generate input features. Then, we applied four ensemble machine learning algorithms, including AdaBoost, Gradient Boost (GB), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), and fine-tuned them via a soft voting ensemble approach. The optimized UISEM approach showed a model accuracy of 98%. The UISEM method achieved a classification accuracy of 92% and consistently performed across 32 cities globally with heterogeneous climatic zones. Regarding accuracy and predictive power, the XGB ensemble classifier outperformed other ML classifiers in mapping UIS. Furthermore, a comparative analysis against three well-known datasets (ESA World Cover, ESRI Land Cover, and Dynamic World) was also performed. The proposed UISEM model outperformed renowned global datasets with a 92% classification accuracy, followed by DW with 83%, ESA with 86%, and ESRI with 82%. In the future, developing a spatial–temporal version of UISEM can support diverse urban applications globally. The datasets and (GEE and Python) codes are available at https://github.com/mnasarahmad/UISEM.
•Proposed a novel ensemble learning framework to improve urban impervious surface accuracy.•Integrated open source Optical and SAR datasets and four ensemble algorithms.•UISEM outperformed three existing global data products with 92% accuracy.•XGB algorithm is optimal for mapping UIS for diverse global cities. Accurate urban impervious surface (UIS) extraction from open-source remote sensing data remains challenging, especially for cities with heterogeneous climatic backgrounds. Contemporary, state-of-the-art techniques achieve promising results at a global scale, but accuracy is compromised at the city level. Therefore, a ensemble machine learning approach using open-source Optical-SAR remote sensing datasets was implemented to enhance the accuracy of UIS mapping. Initially, we integrated optical and radar datasets with modified urban indices to generate input features. Then, we applied four ensemble machine learning algorithms, including AdaBoost, Gradient Boost (GB), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), and fine-tuned them via a soft voting ensemble approach. The optimized UISEM approach showed a model accuracy of 98%. The UISEM method achieved a classification accuracy of 92% and consistently performed across 32 cities globally with heterogeneous climatic zones. Regarding accuracy and predictive power, the XGB ensemble classifier outperformed other ML classifiers in mapping UIS. Furthermore, a comparative analysis against three well-known datasets (ESA World Cover, ESRI Land Cover, and Dynamic World) was also performed. The proposed UISEM model outperformed renowned global datasets with a 92% classification accuracy, followed by DW with 83%, ESA with 86%, and ESRI with 82%. In the future, developing a spatial–temporal version of UISEM can support diverse urban applications globally. The datasets and (GEE and Python) codes are available at https://github.com/mnasarahmad/UISEM.
ArticleNumber 104013
Author Ahmad, Muhammad Nasar
Fu, Peng
Xiao, Xiongwu
Javed, Akib
Ara, Iffat
Shao, Zhenfeng
Author_xml – sequence: 1
  givenname: Muhammad Nasar
  surname: Ahmad
  fullname: Ahmad, Muhammad Nasar
  email: mnasarahmad@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, 43007, China
– sequence: 2
  givenname: Zhenfeng
  surname: Shao
  fullname: Shao, Zhenfeng
  email: shaozhenfeng@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, 43007, China
– sequence: 3
  givenname: Xiongwu
  surname: Xiao
  fullname: Xiao, Xiongwu
  email: xwxiao@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, 43007, China
– sequence: 4
  givenname: Peng
  surname: Fu
  fullname: Fu, Peng
  email: pfu@harrisburgu.edu
  organization: Center for Advanced Agriculture and Sustainability, Harrisburg University, Harrisburg, PA, 17101, USA
– sequence: 5
  givenname: Akib
  surname: Javed
  fullname: Javed, Akib
  email: akibjaved@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, 43007, China
– sequence: 6
  givenname: Iffat
  surname: Ara
  fullname: Ara, Iffat
  email: iffat@esg.iu.ac.bd
  organization: Department of Geography and Environment, Islamic University, Kushtia, 7003, Bangladesh
BookMark eNqNkctuFDEQRb0IEsmED2DnJZsZ7H64x2I1inhEioQUYG1V29UTt9x2Y7sH8gN8Nx4aIcQiYuOSS3Vule69Ihc-eCTkJWc7zrh4Pe5GOO4qVjXl3zBeX5BL3gq53Td19ZxcpTQyxrtO7C_JjwP14YSOok849Q6pQ4je-iOFeY4B9APNgeL3HEFnusQePLXTjPFkw5JoWuIAGmkPCQ0Nnk6FsP5vGXcM0eaHKdElnRufDvcUfBmes9XgqIEM1-TZAC7hi991Q768e_v55sP27uP725vD3VY3tcxbiXJfGWTl1S0DYYaW66rVXGo56J5Vsh5Y03St2QNjwrAOe9lX0ApmpORYb8jtqmsCjGqOdoL4qAJY9asR4lFBLGc5VFLWXVVrIcFgI6saDIeGicbwQdS96ItWtWotfobHb-DcH0HO1DkJNaqShDonodYkCvRqhYq3XxdMWU02aXQOPBY_Vc3bsrY5lw3p1lEdQ0oRB6VthmyDL1lY9-QS_g_5P4e9WRks9p8sRpW0Ra_R2Ig6F3_sE_RPQzfGPw
CitedBy_id crossref_primary_10_1109_TGRS_2025_3531879
crossref_primary_10_1016_j_eswa_2024_126378
Cites_doi 10.1109/ACCESS.2024.3363628
10.1016/j.conbuildmat.2024.135114
10.1109/TKDE.2019.2912815
10.1038/s41598-023-48617-0
10.1080/17538947.2023.2301675
10.1016/j.rse.2011.02.030
10.1109/ACCESS.2019.2923640
10.3390/rs12193254
10.1016/j.scitotenv.2022.161321
10.3390/su151310537
10.3390/rs16040665
10.3390/rs15041042
10.1016/j.rse.2005.04.008
10.1016/j.ufug.2020.126961
10.3390/rs13030373
10.1016/j.envpol.2020.115569
10.1109/JSTARS.2015.2478914
10.1109/JSTARS.2016.2634859
10.1029/2010WR009607
10.14358/PERS.23-00001R2
10.3390/rs15102562
10.1109/MGRS.2018.2890023
10.1186/s12864-019-6413-7
10.5194/essd-14-1831-2022
10.1016/j.scitotenv.2020.142334
10.1088/1748-9326/abdaed
10.3390/rs13214241
10.1016/j.patrec.2020.07.042
10.3390/rs14194777
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1016/j.jag.2024.104013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID oai_doaj_org_article_993723c69ade4923ad1a4064d1f63b6b
10.1016/j.jag.2024.104013
10_1016_j_jag_2024_104013
S1569843224003674
GroupedDBID 0SF
29J
4.4
5GY
6I.
AAFTH
AAHBH
AALRI
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
ADVLN
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
7S9
L.6
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c439t-9e982de0982c50a6df51c25c19c9fcb0293f04475d8a006d07eb9b2a560d991e3
IEDL.DBID DOA
ISSN 1569-8432
1872-826X
IngestDate Fri Oct 03 12:53:23 EDT 2025
Tue Aug 19 19:31:58 EDT 2025
Sun Sep 28 10:30:41 EDT 2025
Wed Oct 01 02:55:58 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Sat Aug 17 15:43:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ensemble Learning
Remote Sensing
Impervious surface
SAR
Machine Learning
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-9e982de0982c50a6df51c25c19c9fcb0293f04475d8a006d07eb9b2a560d991e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/993723c69ade4923ad1a4064d1f63b6b
PQID 3153724315
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_993723c69ade4923ad1a4064d1f63b6b
unpaywall_primary_10_1016_j_jag_2024_104013
proquest_miscellaneous_3153724315
crossref_citationtrail_10_1016_j_jag_2024_104013
crossref_primary_10_1016_j_jag_2024_104013
elsevier_sciencedirect_doi_10_1016_j_jag_2024_104013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
20240801
2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhao, Zhu (b0235) 2022; 107
Ju, Noh, Wang, Choi (b0070) 2024
Paul, Ganguli, Dziugaite (b0100) 2021; 34
Shahtahmassebi, Song, Zheng, Blackburn, Wang, Huang, Pan, Moore, Shahtahmassebi, Haghighi (b0110) 2016; 46
Ye, Xu, Lei, Liao, Ding, Liang (b0210) 2022; 82
Ghamisi, Rasti, Yokoya, Wang, Hofle, Bruzzone, Bovolo, Chi, Anders, Gloaguen, Atkinson, Benediktsson (b0055) 2019; 7
Chen, Jia, Pickering (b0025) 2019; 83
Chicco, Jurman (b0030) 2020; 21
Weng (b0165) 2012; 117
Morabito, Crisci, Guerri, Messeri, Congedo, Munafò (b0090) 2021; 751
Wu, Guo, Shao, Li (b0175) 2023; 15
Yang, Huang, Yang, Liu (b0205) 2021; 16
Chang, Hou, Chen, Chen (b0020) 2023; 15
Shao, Ahmad, Javed (b0125) 2024; 16
Sun, Chen, Jia, Yao, Wang (b0130) 2015; 9
Fang, Li, Dong, Teng, Pablo, Zhu (b0045) 2023; 15
Tu, Chen, Lang, Chen, Li, Zhang, Xu (b0145) 2021; 13
Xiang, Liang, Fang, Chen, Xu, Hu, Chen, Mu, Hedblom, Qiu (b0185) 2021; 58
Dvornikov, Grigorieva, Varentsov, Vasenev (b0040) 2023; 123
Zhang, Liu, Zhao, Gao, Chen, Mi (b0220) 2022; 14
Shao, Ahmad, Javed, Islam, Jahangir, Ahmad (b0115) 2023; 89
Chmielowski, Kucharzak, Burduk (b0035) 2023; 13
Lesack, Marsh (b0075) 2010; 46
Xu, Luo, Wu, Dong, Liu, Zhou (b0195) 2021; 13
Shao, Cheng, Fu, Li, Huang (b0120) 2023; 15
Wong, Yeh (b0170) 2019; 32
Gao, Shan, Hu, Niu, Liu (b0050) 2019; 7
Wang, Zhang, Peng, Wu, Lv, Xiao, Zhao, Qian (b0160) 2020; 267
Yan, Liu, Liang, Wang, Li, Wang (b0200) 2023
Huang, Qi, Kang, Su, Liu (b0065) 2020; 12
Wakjira, Kutty, Alam (b0150) 2024; 416
Wu, Xue, Xu, Yan, Wang, Qi (b0180) 2022; 14
Zhang, Zhang, Yao (b0230) 2018; 70
Asner, Elmore, Hughes, Warner, Vitousek (b0010) 2005; 96
Wang, Fan, Wang (b0155) 2021; 141
Okujeni, van der Linden, Suess, Hostert (b0095) 2016; 10
Guo, Wu, Shao, Teng, Li (b0060) 2024; 17
Xiao, Zou, Xia, Dong, Yang, Yao (b0190) 2023; 866
Zhou, He, Nigh, Schulz (b0240) 2012; 18
Rahman, Thakur (b0105) 2018; 21
Gao (10.1016/j.jag.2024.104013_b0050) 2019; 7
Ju (10.1016/j.jag.2024.104013_b0070) 2024
Zhou (10.1016/j.jag.2024.104013_b0240) 2012; 18
Chang (10.1016/j.jag.2024.104013_b0020) 2023; 15
Guo (10.1016/j.jag.2024.104013_b0060) 2024; 17
Wong (10.1016/j.jag.2024.104013_b0170) 2019; 32
Wu (10.1016/j.jag.2024.104013_b0175) 2023; 15
Wang (10.1016/j.jag.2024.104013_b0160) 2020; 267
Asner (10.1016/j.jag.2024.104013_b0010) 2005; 96
Yan (10.1016/j.jag.2024.104013_b0200) 2023
Ghamisi (10.1016/j.jag.2024.104013_b0055) 2019; 7
Sun (10.1016/j.jag.2024.104013_b0130) 2015; 9
Shahtahmassebi (10.1016/j.jag.2024.104013_b0110) 2016; 46
Dvornikov (10.1016/j.jag.2024.104013_b0040) 2023; 123
Xiao (10.1016/j.jag.2024.104013_b0190) 2023; 866
Wu (10.1016/j.jag.2024.104013_b0180) 2022; 14
Zhang (10.1016/j.jag.2024.104013_b0230) 2018; 70
Zhao (10.1016/j.jag.2024.104013_b0235) 2022; 107
Tu (10.1016/j.jag.2024.104013_b0145) 2021; 13
Shao (10.1016/j.jag.2024.104013_b0125) 2024; 16
Wakjira (10.1016/j.jag.2024.104013_b0150) 2024; 416
Chmielowski (10.1016/j.jag.2024.104013_b0035) 2023; 13
Okujeni (10.1016/j.jag.2024.104013_b0095) 2016; 10
Shao (10.1016/j.jag.2024.104013_b0120) 2023; 15
Paul (10.1016/j.jag.2024.104013_b0100) 2021; 34
Zhang (10.1016/j.jag.2024.104013_b0220) 2022; 14
Xiang (10.1016/j.jag.2024.104013_b0185) 2021; 58
Ye (10.1016/j.jag.2024.104013_b0210) 2022; 82
Shao (10.1016/j.jag.2024.104013_b0115) 2023; 89
Weng (10.1016/j.jag.2024.104013_b0165) 2012; 117
Xu (10.1016/j.jag.2024.104013_b0195) 2021; 13
Yang (10.1016/j.jag.2024.104013_b0205) 2021; 16
Wang (10.1016/j.jag.2024.104013_b0155) 2021; 141
Chen (10.1016/j.jag.2024.104013_b0025) 2019; 83
Chicco (10.1016/j.jag.2024.104013_b0030) 2020; 21
Rahman (10.1016/j.jag.2024.104013_b0105) 2018; 21
Lesack (10.1016/j.jag.2024.104013_b0075) 2010; 46
Huang (10.1016/j.jag.2024.104013_b0065) 2020; 12
Morabito (10.1016/j.jag.2024.104013_b0090) 2021; 751
Fang (10.1016/j.jag.2024.104013_b0045) 2023; 15
References_xml – volume: 34
  start-page: 20596
  year: 2021
  end-page: 20607
  ident: b0100
  article-title: Deep learning on a data diet: Finding important examples early in training
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  year: 2023
  ident: b0175
  article-title: Urban Impervious Surface extraction based on deep convolutional networks using intensity, polarimetric scattering and interferometric coherence information from Sentinel-1 SAR Images
  publication-title: Remote Sens.
– volume: 46
  start-page: 94
  year: 2016
  end-page: 112
  ident: b0110
  article-title: Remote sensing of impervious surface growth: a framework for quantifying urban expansion and re-densification mechanisms
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 13
  start-page: 21512
  year: 2023
  ident: b0035
  article-title: Novel method of building train and test sets for evaluation of machine learning models related to software bugs assignment
  publication-title: Sci. Rep.
– volume: 12
  start-page: 3254
  year: 2020
  ident: b0065
  article-title: An ensemble learning approach for urban land use mapping based on remote sensing imagery and social sensing data
  publication-title: Remote Sens.
– volume: 13
  start-page: 4241
  year: 2021
  ident: b0145
  article-title: Uncovering the nature of urban land use composition using multi-source open big data with ensemble learning
  publication-title: Remote Sens.
– volume: 267
  year: 2020
  ident: b0160
  article-title: Impact of rapid urbanization on the threshold effect in the relationship between impervious surfaces and water quality in shanghai
  publication-title: China. Environ. Pollut.
– volume: 83
  year: 2019
  ident: b0025
  article-title: A nighttime lights adjusted impervious surface index (NAISI) with integration of Landsat imagery and nighttime lights data from International Space Station
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 15
  start-page: 1042
  year: 2023
  ident: b0020
  article-title: Automatic Extraction of Urban Impervious Surface Based on SAH-Unet
  publication-title: Remote Sens.
– volume: 866
  year: 2023
  ident: b0190
  article-title: Assessment of the urban waterlogging resilience and identification of its driving factors: a case study of Wuhan City
  publication-title: China. Sci. Total Environ.
– volume: 70
  start-page: 51
  year: 2018
  end-page: 61
  ident: b0230
  article-title: Mapping seasonal impervious surface dynamics in Wuhan urban agglomeration, China from 2000 to 2016
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 13
  start-page: 373
  year: 2021
  ident: b0195
  article-title: Identification and portrait of urban functional zones based on multisource heterogeneous data and ensemble learning
  publication-title: Remote Sens.
– volume: 14
  start-page: 1831
  year: 2022
  end-page: 1856
  ident: b0220
  article-title: GISD30: Global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform
  publication-title: Earth Syst. Sci. Data
– volume: 9
  start-page: 2081
  year: 2015
  end-page: 2092
  ident: b0130
  article-title: Combinational build-up index (CBI) for effective impervious surface mapping in urban areas. IEEE J
  publication-title: Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 7
  start-page: 82512
  year: 2019
  end-page: 82521
  ident: b0050
  article-title: An adaptive ensemble machine learning model for intrusion detection
  publication-title: IEEE Access
– volume: 10
  start-page: 1640
  year: 2016
  end-page: 1650
  ident: b0095
  article-title: Ensemble learning from synthetically mixed training data for quantifying urban land cover with support vector regression. IEEE J
  publication-title: Sel. Top. Appl. Earth Obs. Remote Sens.
– year: 2023
  ident: b0200
  article-title: Semantic segmentation of land cover in urban areas by fusing multi-source satellite image time series
– volume: 32
  start-page: 1586
  year: 2019
  end-page: 1594
  ident: b0170
  article-title: Reliable accuracy estimates from k-fold cross validation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 14
  start-page: 4777
  year: 2022
  ident: b0180
  article-title: Urban Flood risk assessment in zhengzhou, china, based on a D-Number-Improved analytic hierarchy process and a self-organizing map algorithm
  publication-title: Remote Sens.
– volume: 82
  year: 2022
  ident: b0210
  article-title: Assessment of urban flood risk based on data-driven models: A case study in Fuzhou City
  publication-title: China. Int. J. Disaster Risk Reduct.
– volume: 21
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0030
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
– volume: 16
  start-page: 24032
  year: 2021
  ident: b0205
  article-title: The relationship between land surface temperature and artificial impervious surface fraction in 682 global cities: Spatiotemporal variations and drivers
  publication-title: Environ. Res. Lett.
– volume: 117
  start-page: 34
  year: 2012
  end-page: 49
  ident: b0165
  article-title: Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends
  publication-title: Remote Sens. Environ.
– volume: 16
  start-page: 665
  year: 2024
  ident: b0125
  article-title: Comparison of Random Forest and XGBoost classifiers using integrated optical and SAR features for mapping urban impervious surface
  publication-title: Remote Sens.
– volume: 123
  year: 2023
  ident: b0040
  article-title: Optimal spectral index and threshold applied to Sentinel-2 data for extracting impervious surface: Verification across latitudes, growing seasons, approaches, and comparison to global datasets
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 18
  start-page: 195
  year: 2012
  end-page: 206
  ident: b0240
  article-title: Mapping and analyzing change of impervious surface for two decades using multi-temporal Landsat imagery in Missouri
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 89
  start-page: 479
  year: 2023
  end-page: 486
  ident: b0115
  article-title: Expansion of Urban impervious surfaces in lahore (1993–2022) Based on GEE and remote sensing data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 96
  start-page: 497
  year: 2005
  end-page: 508
  ident: b0010
  article-title: Ecosystem structure along bioclimatic gradients in Hawai’i from imaging spectroscopy
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 10537
  year: 2023
  ident: b0045
  article-title: Extraction and Spatiotemporal Evolution Analysis of Impervious Surface and Surface Runoff in Main Urban Region of Hefei City
  publication-title: China. Sustainability
– volume: 21
  start-page: S37
  year: 2018
  end-page: S41
  ident: b0105
  article-title: Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: a case study from the kendrapara district of orissa state of india
  publication-title: Egypt. J. Remote Sens. Sp. Sci.
– volume: 416
  year: 2024
  ident: b0150
  article-title: A novel framework for developing environmentally sustainable and cost-effective ultra-high-performance concrete (UHPC) using advanced machine learning and multi-objective optimization techniques
  publication-title: Constr. Build. Mater.
– year: 2024
  ident: b0070
  article-title: Class-wise Adaptive Strategy for Semi Supervised Semantic Segmentation
  publication-title: IEEE Access
– volume: 17
  year: 2024
  ident: b0060
  article-title: Extracting urban impervious surface based on optical and SAR images cross-modal multi-scale features fusion network
  publication-title: Int. J. Digit. Earth
– volume: 107
  year: 2022
  ident: b0235
  article-title: ASI: An artificial surface Index for Landsat 8 imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 58
  year: 2021
  ident: b0185
  article-title: The comparisons of on-site and off-site applications in surveys on perception of and preference for urban green spaces: Which approach is more reliable?
  publication-title: Urban for. Urban Green.
– volume: 141
  start-page: 61
  year: 2021
  end-page: 67
  ident: b0155
  article-title: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
  publication-title: Pattern Recognit. Lett.
– volume: 46
  year: 2010
  ident: b0075
  article-title: River-to-lake connectivities, water renewal, and aquatic habitat diversity in the Mackenzie River Delta
  publication-title: Water Resour. Res.
– volume: 7
  start-page: 6
  year: 2019
  end-page: 39
  ident: b0055
  article-title: Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 751
  year: 2021
  ident: b0090
  article-title: Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences
  publication-title: Sci. Total Environ.
– volume: 15
  start-page: 2562
  year: 2023
  ident: b0120
  article-title: Emerging Issues in Mapping Urban impervious surfaces using high-resolution remote sensing images
  publication-title: Remote Sens.
– volume: 21
  start-page: S37
  year: 2018
  ident: 10.1016/j.jag.2024.104013_b0105
  article-title: Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: a case study from the kendrapara district of orissa state of india
  publication-title: Egypt. J. Remote Sens. Sp. Sci.
– year: 2024
  ident: 10.1016/j.jag.2024.104013_b0070
  article-title: Class-wise Adaptive Strategy for Semi Supervised Semantic Segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3363628
– volume: 416
  year: 2024
  ident: 10.1016/j.jag.2024.104013_b0150
  article-title: A novel framework for developing environmentally sustainable and cost-effective ultra-high-performance concrete (UHPC) using advanced machine learning and multi-objective optimization techniques
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.135114
– volume: 32
  start-page: 1586
  year: 2019
  ident: 10.1016/j.jag.2024.104013_b0170
  article-title: Reliable accuracy estimates from k-fold cross validation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2912815
– volume: 13
  start-page: 21512
  year: 2023
  ident: 10.1016/j.jag.2024.104013_b0035
  article-title: Novel method of building train and test sets for evaluation of machine learning models related to software bugs assignment
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-48617-0
– volume: 82
  year: 2022
  ident: 10.1016/j.jag.2024.104013_b0210
  article-title: Assessment of urban flood risk based on data-driven models: A case study in Fuzhou City
  publication-title: China. Int. J. Disaster Risk Reduct.
– volume: 70
  start-page: 51
  year: 2018
  ident: 10.1016/j.jag.2024.104013_b0230
  article-title: Mapping seasonal impervious surface dynamics in Wuhan urban agglomeration, China from 2000 to 2016
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 83
  year: 2019
  ident: 10.1016/j.jag.2024.104013_b0025
  article-title: A nighttime lights adjusted impervious surface index (NAISI) with integration of Landsat imagery and nighttime lights data from International Space Station
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 17
  year: 2024
  ident: 10.1016/j.jag.2024.104013_b0060
  article-title: Extracting urban impervious surface based on optical and SAR images cross-modal multi-scale features fusion network
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2023.2301675
– volume: 117
  start-page: 34
  year: 2012
  ident: 10.1016/j.jag.2024.104013_b0165
  article-title: Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.030
– volume: 107
  year: 2022
  ident: 10.1016/j.jag.2024.104013_b0235
  article-title: ASI: An artificial surface Index for Landsat 8 imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 82512
  year: 2019
  ident: 10.1016/j.jag.2024.104013_b0050
  article-title: An adaptive ensemble machine learning model for intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923640
– volume: 12
  start-page: 3254
  year: 2020
  ident: 10.1016/j.jag.2024.104013_b0065
  article-title: An ensemble learning approach for urban land use mapping based on remote sensing imagery and social sensing data
  publication-title: Remote Sens.
  doi: 10.3390/rs12193254
– volume: 866
  year: 2023
  ident: 10.1016/j.jag.2024.104013_b0190
  article-title: Assessment of the urban waterlogging resilience and identification of its driving factors: a case study of Wuhan City
  publication-title: China. Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.161321
– volume: 15
  start-page: 10537
  year: 2023
  ident: 10.1016/j.jag.2024.104013_b0045
  article-title: Extraction and Spatiotemporal Evolution Analysis of Impervious Surface and Surface Runoff in Main Urban Region of Hefei City
  publication-title: China. Sustainability
  doi: 10.3390/su151310537
– volume: 16
  start-page: 665
  year: 2024
  ident: 10.1016/j.jag.2024.104013_b0125
  article-title: Comparison of Random Forest and XGBoost classifiers using integrated optical and SAR features for mapping urban impervious surface
  publication-title: Remote Sens.
  doi: 10.3390/rs16040665
– volume: 15
  start-page: 1042
  year: 2023
  ident: 10.1016/j.jag.2024.104013_b0020
  article-title: Automatic Extraction of Urban Impervious Surface Based on SAH-Unet
  publication-title: Remote Sens.
  doi: 10.3390/rs15041042
– volume: 96
  start-page: 497
  year: 2005
  ident: 10.1016/j.jag.2024.104013_b0010
  article-title: Ecosystem structure along bioclimatic gradients in Hawai’i from imaging spectroscopy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.04.008
– volume: 58
  year: 2021
  ident: 10.1016/j.jag.2024.104013_b0185
  article-title: The comparisons of on-site and off-site applications in surveys on perception of and preference for urban green spaces: Which approach is more reliable?
  publication-title: Urban for. Urban Green.
  doi: 10.1016/j.ufug.2020.126961
– volume: 46
  start-page: 94
  year: 2016
  ident: 10.1016/j.jag.2024.104013_b0110
  article-title: Remote sensing of impervious surface growth: a framework for quantifying urban expansion and re-densification mechanisms
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 13
  start-page: 373
  year: 2021
  ident: 10.1016/j.jag.2024.104013_b0195
  article-title: Identification and portrait of urban functional zones based on multisource heterogeneous data and ensemble learning
  publication-title: Remote Sens.
  doi: 10.3390/rs13030373
– volume: 267
  year: 2020
  ident: 10.1016/j.jag.2024.104013_b0160
  article-title: Impact of rapid urbanization on the threshold effect in the relationship between impervious surfaces and water quality in shanghai
  publication-title: China. Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115569
– volume: 123
  year: 2023
  ident: 10.1016/j.jag.2024.104013_b0040
  article-title: Optimal spectral index and threshold applied to Sentinel-2 data for extracting impervious surface: Verification across latitudes, growing seasons, approaches, and comparison to global datasets
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 2081
  year: 2015
  ident: 10.1016/j.jag.2024.104013_b0130
  article-title: Combinational build-up index (CBI) for effective impervious surface mapping in urban areas. IEEE J
  publication-title: Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2478914
– volume: 15
  year: 2023
  ident: 10.1016/j.jag.2024.104013_b0175
  article-title: Urban Impervious Surface extraction based on deep convolutional networks using intensity, polarimetric scattering and interferometric coherence information from Sentinel-1 SAR Images
  publication-title: Remote Sens.
– volume: 18
  start-page: 195
  year: 2012
  ident: 10.1016/j.jag.2024.104013_b0240
  article-title: Mapping and analyzing change of impervious surface for two decades using multi-temporal Landsat imagery in Missouri
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 10
  start-page: 1640
  year: 2016
  ident: 10.1016/j.jag.2024.104013_b0095
  article-title: Ensemble learning from synthetically mixed training data for quantifying urban land cover with support vector regression. IEEE J
  publication-title: Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2634859
– volume: 46
  year: 2010
  ident: 10.1016/j.jag.2024.104013_b0075
  article-title: River-to-lake connectivities, water renewal, and aquatic habitat diversity in the Mackenzie River Delta
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009607
– volume: 89
  start-page: 479
  year: 2023
  ident: 10.1016/j.jag.2024.104013_b0115
  article-title: Expansion of Urban impervious surfaces in lahore (1993–2022) Based on GEE and remote sensing data
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.23-00001R2
– year: 2023
  ident: 10.1016/j.jag.2024.104013_b0200
– volume: 15
  start-page: 2562
  year: 2023
  ident: 10.1016/j.jag.2024.104013_b0120
  article-title: Emerging Issues in Mapping Urban impervious surfaces using high-resolution remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs15102562
– volume: 7
  start-page: 6
  year: 2019
  ident: 10.1016/j.jag.2024.104013_b0055
  article-title: Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2018.2890023
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.jag.2024.104013_b0030
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6413-7
– volume: 34
  start-page: 20596
  year: 2021
  ident: 10.1016/j.jag.2024.104013_b0100
  article-title: Deep learning on a data diet: Finding important examples early in training
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 1831
  year: 2022
  ident: 10.1016/j.jag.2024.104013_b0220
  article-title: GISD30: Global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-14-1831-2022
– volume: 751
  year: 2021
  ident: 10.1016/j.jag.2024.104013_b0090
  article-title: Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142334
– volume: 16
  start-page: 24032
  year: 2021
  ident: 10.1016/j.jag.2024.104013_b0205
  article-title: The relationship between land surface temperature and artificial impervious surface fraction in 682 global cities: Spatiotemporal variations and drivers
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/abdaed
– volume: 13
  start-page: 4241
  year: 2021
  ident: 10.1016/j.jag.2024.104013_b0145
  article-title: Uncovering the nature of urban land use composition using multi-source open big data with ensemble learning
  publication-title: Remote Sens.
  doi: 10.3390/rs13214241
– volume: 141
  start-page: 61
  year: 2021
  ident: 10.1016/j.jag.2024.104013_b0155
  article-title: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.07.042
– volume: 14
  start-page: 4777
  year: 2022
  ident: 10.1016/j.jag.2024.104013_b0180
  article-title: Urban Flood risk assessment in zhengzhou, china, based on a D-Number-Improved analytic hierarchy process and a self-organizing map algorithm
  publication-title: Remote Sens.
  doi: 10.3390/rs14194777
SSID ssj0017768
Score 2.4674582
Snippet •Proposed a novel ensemble learning framework to improve urban impervious surface accuracy.•Integrated open source Optical and SAR datasets and four ensemble...
Accurate urban impervious surface (UIS) extraction from open-source remote sensing data remains challenging, especially for cities with heterogeneous climatic...
SourceID doaj
unpaywall
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104013
SubjectTerms data collection
Ensemble Learning
Impervious surface
land cover
Machine Learning
radar
Remote Sensing
SAR
spatial data
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcEBQqlpeMxAkUbRw7Dx-XqtUCogdKpd4sv7JNlU1W2YSqf4DfzThxlt1LkbhESjR2nMx45rM9_ozQB6LimGqmA0VkGLDccUDKhAcw8ElVzC0YgZvv-H6eLC7Z16v46gCdjHthXFql9_2DT--9tX8y839zti6K2QWMPHjGaJ8FSZOUPUCHEH-ybIIO51--Lc63iwlpOuyIA_nAFRgXN_s0rxu5hFFixNxiZ0joXnjqWfz3otQOCn3YVWt5dyvLcicgnT1FTzySxPOhsc_Qga2O0OMdfsEjdHz6dxsbiPp-vHmOfs9xVf-yJYZBrF2p0mJ_esQSjyTjuK0xOG63iQp3jZIVLgBhg2Opuw3edE0utcUuBhpcV3jV52TuVlMu66Zor1cb7FLrl_hi_gPLCoTX_ew5dqmpL9Dl2enPk0XgT2QINACXNuCWZ5GxIVx1HMrE5DHRUawJ1zzXKgTskIeOQtBkErqzCVOruIokwCoDQNTSYzSp6sq-RJjnkWIhU4QyyzLNeR4zIq2SJqdEq2yKwlERQnu6cndqRinGvLQbAboTTndi0N0UfdwWWQ9cHfcJf3ba3Qo6mu3-Qd0shbcz4cBbRHXCpbGOyU4aIgEBMUPyhKpETREbbUPsWS1UVdz37vejHQnozW6JRlYW1CcoBKA0AlAXT9GnrYH9-2te_V9DXqNH7m5IaHyDJm3T2bcAslr1zneiP30mJBY
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ94A48FhYUbQgI3ECZRUndhofC9rVCokVAiqVk-VXSndTp2qSRfAD-N2ME6e0CC1wySGaTGR7xvPZHn-D0AuiGEs11ZEiMo5o4TkgZcYjWPhMFOMWjMDvd7y7yM5n9O2czQNZtL8Ls3d-3-VhXcoFLOMS6k8jY1-f9iBjALtH6GB28X76ueNDBeU57YqRkXwCHp5k8-EE80869mJQR9W_F4p2oObt1q3lt6-yLHeiztm9Pl-r7sgKfbLJ1UnbqBP9_Tcqx39q0H10N2BPPO2N5QG6Zd0hurPDSHiIjk5_XXwD0eD59UP0Y4pddW1LDMteu1KlxaHexAIPtOS4qTBM9f7aFW43Sjq8BEwOU1HV1rhuN4XUFvuoaXDl8KrL4txVUy6qzbL5sqqxT8Zf4I_TD1g6EF53--3YJ7M-QrOz009vzqNQwyHSAHWaiFueJ8bG8NQslpkpGNEJ04RrXmgVA9ooYk86aHIJE4CJJ1ZxlUgAYgagq02P0MhVzj5GmBeJojFVJKWW5przglEirZKmSIlW-RjFw6gKHQjOfZ2NUgyZbJcC-l74vhd934_Ry-0n657d4ybh195UtoKemLt7AcMrgp8LD_eSVGdcGuu576QhEjATNaTIUpWpMaKDoYmAcXrsAqqWN_37-WCUAvzfH-pIZ2H4RAoha5IADGRj9GprrX9vzZP_kj5Go2bT2qcAwBr1LLjeTyXUKq4
  priority: 102
  providerName: Unpaywall
Title A novel ensemble learning approach to extract urban impervious surface based on machine learning algorithms using SAR and optical data
URI https://dx.doi.org/10.1016/j.jag.2024.104013
https://www.proquest.com/docview/3153724315
https://doi.org/10.1016/j.jag.2024.104013
https://doaj.org/article/993723c69ade4923ad1a4064d1f63b6b
UnpaywallVersion publishedVersion
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1569-8432
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0017768
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1569-8432
  databaseCode: ACRLP
  dateStart: 20200201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017768
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 1569-8432
  databaseCode: AIKHN
  dateStart: 20200201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017768
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOQAHBIWKhVIZiRMowk7sJD6GqtXyWlWFlcrJ8ivbrbLJajeh4g_wuxnnsaSX9sIlUSLHTjIzns_2-BuE3lLNeWSYCTRVJGC554BUsQhg4JNoLhwogZ_v-DaLp3P2-YJfjFJ9-Ziwjh64-3EfvP8MIxMLZZ0nE1OWKnBCzNI8jnSsfe9LUjEMpvr1gyTpNsFxaDZlUTisZ7aRXVdqAQPDkPn1TUKjGx6pJe6_4ZhGwPNBU67V72tVFCMfdPoEPe7BI866l36K7rlyHz0aUQruo4OTfzvXoGhvuttn6E-Gy-qXKzCMW91KFw73CSMWeOAVx3WFoa_2-6Zws9GqxEsA1dCXVM0Wb5tNrozD3u1ZXJV41YZhjqspFtVmWV-utthH0y_w9-wcqxIKr9sJc-yjUZ-j-enJj-Np0CdhCAxglToQTqShdQSOhhMV25xTE3JDhRG50QTgQk48a6BNFViwJYnTQocKkJQF7OmiA7RXVqV7gbDIQ80I0zRijqVGiJwzqpxWNo-o0ekEkUEQ0vQM5T5RRiGHULQrCbKTXnayk90Evds9su7oOW4r_NFLd1fQM2u3N0DfZK9v8i59myA26IbsQUoHPqCq5W1tvxn0SIIB-1UZVToQn4zA5yQh4Dg-Qe93Cnb317z8H1_zCj30VXYRjYdor9407jWgrFofofvZ8fnXM3_-9GU6O2oNDK7ms7Ps519CUCeX
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKeygcEBQqhrIYiRMomiR2Fh-HqtWUtnOgrdSb5S1pqkwyykyo-AP8bp4TZ5i5FIlLDs5ztrd9jp8_I_Q5kFFEFFWeDITv0cxyQIqYeTDwSWTEDBiB_d9xOYunN_T7bXS7g46HtTC2rNLF_j6md9HatYzd1xwvimJ8BSMPllLSVUGSOKFP0B6NSALeuTc5O5_O1pMJSdKviAN5z3YYJje7Mq97kcMoMaR2stMPyFZ66lj8t7LUBgrdb6uF-PUgynIjIZ2-QM8dksST_mFfoh1THaBnG_yCB-jw5O8yNhB1frx8hX5PcFX_NCWGQayZy9Jgt3tEjgeScbyqMQRuu4gKt40UFS4AYUNgqdslXrZNJpTBNgdqXFd43tVkbl6mzOumWN3Nl9iW1uf4avIDiwqEF93fc2xLU1-jm9OT6-Op53Zk8BQAl5XHDEtDbXw4qsgXsc6iQIWRCphimZI-YIfMtxSCOhXgztpPjGQyFACrNABRQw7RblVX5g3CLAsl9akMCDU0VYxlEQ2EkUJnJFAyHSF_UARXjq7c7ppR8qEu7Z6D7rjVHe91N0Jf1l0WPVfHY8LfrHbXgpZmu2uom5w7O-MWvIVExUxoY5nshA4EICCqgywmMpYjRAfb4FtWC5cqHrv3p8GOOHiznaIRlQH1cQIJKAkB1EUj9HVtYP9-m7f_9yAf0f70-vKCX5zNzo_QU3umL258h3ZXTWveA-BayQ_Oof4AL_Mm9w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ94A48FhYUbQgI3ECZRUndhofC9rVCokVAiqVk-VXSndTp2qSRfAD-N2ME6e0CC1wySGaTGR7xvPZHn-D0AuiGEs11ZEiMo5o4TkgZcYjWPhMFOMWjMDvd7y7yM5n9O2czQNZtL8Ls3d-3-VhXcoFLOMS6k8jY1-f9iBjALtH6GB28X76ueNDBeU57YqRkXwCHp5k8-EE80869mJQR9W_F4p2oObt1q3lt6-yLHeiztm9Pl-r7sgKfbLJ1UnbqBP9_Tcqx39q0H10N2BPPO2N5QG6Zd0hurPDSHiIjk5_XXwD0eD59UP0Y4pddW1LDMteu1KlxaHexAIPtOS4qTBM9f7aFW43Sjq8BEwOU1HV1rhuN4XUFvuoaXDl8KrL4txVUy6qzbL5sqqxT8Zf4I_TD1g6EF53--3YJ7M-QrOz009vzqNQwyHSAHWaiFueJ8bG8NQslpkpGNEJ04RrXmgVA9ooYk86aHIJE4CJJ1ZxlUgAYgagq02P0MhVzj5GmBeJojFVJKWW5przglEirZKmSIlW-RjFw6gKHQjOfZ2NUgyZbJcC-l74vhd934_Ry-0n657d4ybh195UtoKemLt7AcMrgp8LD_eSVGdcGuu576QhEjATNaTIUpWpMaKDoYmAcXrsAqqWN_37-WCUAvzfH-pIZ2H4RAoha5IADGRj9GprrX9vzZP_kj5Go2bT2qcAwBr1LLjeTyXUKq4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+ensemble+learning+approach+to+extract+urban+impervious+surface+based+on+machine+learning+algorithms+using+SAR+and+optical+data&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Ahmad%2C+Muhammad+Nasar&rft.au=Shao%2C+Zhenfeng&rft.au=Xiao%2C+Xiongwu&rft.au=Fu%2C+P.+%28Peng%29&rft.date=2024-08-01&rft.issn=1569-8432&rft.volume=132+p.104013-&rft_id=info:doi/10.1016%2Fj.jag.2024.104013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon