Binder-Free Cathode for Thermal Batteries Fabricated Using FeS2 Treated Metal Foam

In this study, we fabricated a cathode with lower amounts of additive materials and higher amounts of active materials than those of a conventional cathode. A thermal battery was fabricated using FeS2 treated foam as the cathode frame, and its feasibility was verified. X-ray diffraction, transmissio...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in chemistry Vol. 7; p. 904
Main Authors Kim, In Yea, Woo, Sung Pil, Ko, Jaehwan, Kang, Seung-Ho, Yoon, Young Soo, Cheong, Hae-Won, Lim, Jae-Hong
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 10.01.2020
Subjects
Online AccessGet full text
ISSN2296-2646
2296-2646
DOI10.3389/fchem.2019.00904

Cover

Abstract In this study, we fabricated a cathode with lower amounts of additive materials and higher amounts of active materials than those of a conventional cathode. A thermal battery was fabricated using FeS2 treated foam as the cathode frame, and its feasibility was verified. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy were used to analyze the effects of thermal sulfidation temperature (400 and 500°C) on the structure and surface morphology of the FeS2 foam. The optimal temperature for the fabrication of the FeSx treated foam was determined to be 500°C. The FeS2 treated foam reduced the interfacial resistance and improved the mechanical strength of the cathode. The discharge capacity of the thermal battery using the FeS2 treated foam was about 1.3 times higher than that of a thermal battery using pure Fe metal foam.In this study, we fabricated a cathode with lower amounts of additive materials and higher amounts of active materials than those of a conventional cathode. A thermal battery was fabricated using FeS2 treated foam as the cathode frame, and its feasibility was verified. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy were used to analyze the effects of thermal sulfidation temperature (400 and 500°C) on the structure and surface morphology of the FeS2 foam. The optimal temperature for the fabrication of the FeSx treated foam was determined to be 500°C. The FeS2 treated foam reduced the interfacial resistance and improved the mechanical strength of the cathode. The discharge capacity of the thermal battery using the FeS2 treated foam was about 1.3 times higher than that of a thermal battery using pure Fe metal foam.
AbstractList In this study, we fabricated a cathode with lower amounts of additive materials and higher amounts of active materials than those of a conventional cathode. A thermal battery was fabricated using FeS2 treated foam as the cathode frame, and its feasibility was verified. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy were used to analyze the effects of thermal sulfidation temperature (400 and 500°C) on the structure and surface morphology of the FeS2 foam. The optimal temperature for the fabrication of the FeSx treated foam was determined to be 500°C. The FeS2 treated foam reduced the interfacial resistance and improved the mechanical strength of the cathode. The discharge capacity of the thermal battery using the FeS2 treated foam was about 1.3 times higher than that of a thermal battery using pure Fe metal foam.In this study, we fabricated a cathode with lower amounts of additive materials and higher amounts of active materials than those of a conventional cathode. A thermal battery was fabricated using FeS2 treated foam as the cathode frame, and its feasibility was verified. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy were used to analyze the effects of thermal sulfidation temperature (400 and 500°C) on the structure and surface morphology of the FeS2 foam. The optimal temperature for the fabrication of the FeSx treated foam was determined to be 500°C. The FeS2 treated foam reduced the interfacial resistance and improved the mechanical strength of the cathode. The discharge capacity of the thermal battery using the FeS2 treated foam was about 1.3 times higher than that of a thermal battery using pure Fe metal foam.
In this study, we fabricated a cathode with lower amounts of additive materials and higher amounts of active materials than those of a conventional cathode. A thermal battery was fabricated using FeS2 treated foam as the cathode frame, and its feasibility was verified. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy were used to analyze the effects of thermal sulfidation temperature (400 and 500°C) on the structure and surface morphology of the FeS2 foam. The optimal temperature for the fabrication of the FeSx treated foam was determined to be 500°C. The FeS2 treated foam reduced the interfacial resistance and improved the mechanical strength of the cathode. The discharge capacity of the thermal battery using the FeS2 treated foam was about 1.3 times higher than that of a thermal battery using pure Fe metal foam.
In this study, we fabricated a cathode with lower amounts of additive materials and higher amounts of active materials than those of a conventional cathode. A thermal battery was fabricated using FeS 2 treated foam as the cathode frame, and its feasibility was verified. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy were used to analyze the effects of thermal sulfidation temperature (400 and 500°C) on the structure and surface morphology of the FeS 2 foam. The optimal temperature for the fabrication of the FeS x treated foam was determined to be 500°C. The FeS 2 treated foam reduced the interfacial resistance and improved the mechanical strength of the cathode. The discharge capacity of the thermal battery using the FeS 2 treated foam was about 1.3 times higher than that of a thermal battery using pure Fe metal foam.
Author Kim, In Yea
Woo, Sung Pil
Ko, Jaehwan
Yoon, Young Soo
Kang, Seung-Ho
Lim, Jae-Hong
Cheong, Hae-Won
AuthorAffiliation 1 Department of Materials Science and Engineering, Gachon University , Seongnam , South Korea
2 Department of Materials Science and Engineering, Yonsei University , Seoul , South Korea
3 Agency for Defense Development , Daejeon , South Korea
AuthorAffiliation_xml – name: 3 Agency for Defense Development , Daejeon , South Korea
– name: 1 Department of Materials Science and Engineering, Gachon University , Seongnam , South Korea
– name: 2 Department of Materials Science and Engineering, Yonsei University , Seoul , South Korea
Author_xml – sequence: 1
  givenname: In Yea
  surname: Kim
  fullname: Kim, In Yea
– sequence: 2
  givenname: Sung Pil
  surname: Woo
  fullname: Woo, Sung Pil
– sequence: 3
  givenname: Jaehwan
  surname: Ko
  fullname: Ko, Jaehwan
– sequence: 4
  givenname: Seung-Ho
  surname: Kang
  fullname: Kang, Seung-Ho
– sequence: 5
  givenname: Young Soo
  surname: Yoon
  fullname: Yoon, Young Soo
– sequence: 6
  givenname: Hae-Won
  surname: Cheong
  fullname: Cheong, Hae-Won
– sequence: 7
  givenname: Jae-Hong
  surname: Lim
  fullname: Lim, Jae-Hong
BookMark eNp1kc1v1DAQxS1UREvpnWOOXLL4K459QaIrApWKkGB7tib2ZNdVEhfbW4n_nuxuhSgSpxmN3_vNWO81OZvjjIS8ZXQlhDbvB7fDacUpMytKDZUvyAXnRtVcSXX2V39OrnK-p5QyzoTk9BU5F8wYrYy4IN-vw-wx1V1CrNZQdtFjNcRUbXaYJhiraygFU8BcddCn4KCgr-5ymLdVhz94tUl4HH3Fsqi7CNMb8nKAMePVU70kd92nzfpLffvt8836423tpDClNi02ig0UnTB9q7lsOHPLXdAboXo_CE2NbwfnXWsaaHqquW8bvfxcUuidEpfk5sT1Ee7tQwoTpF82QrDHQUxbC6kEN6JVlC_8tm0G0JIbDhoMeGg4cMdVCwvrw4n1sO8n9A7nkmB8Bn3-Moed3cZHq4xSyugF8O4JkOLPPeZip5AdjiPMGPfZciG1poJJvkjpSepSzDnh8GcNo_aQrD0maw_J2mOyi0X9Y3GhQAnxcEwY_2_8DTOxqIA
CitedBy_id crossref_primary_10_1016_j_est_2023_109905
crossref_primary_10_3389_fchem_2022_832972
crossref_primary_10_3390_nano13202783
crossref_primary_10_1021_acsami_0c13396
crossref_primary_10_1002_app_56786
crossref_primary_10_1007_s12598_024_03064_2
crossref_primary_10_1021_acs_energyfuels_4c00167
crossref_primary_10_1016_j_pnsc_2021_10_007
crossref_primary_10_1016_j_est_2024_112557
crossref_primary_10_1039_D3EE00439B
crossref_primary_10_1016_j_jelechem_2022_116660
crossref_primary_10_1021_acs_jpcc_2c07634
crossref_primary_10_1021_acsami_3c16991
crossref_primary_10_3390_nano13243089
crossref_primary_10_3390_polym12112714
crossref_primary_10_1002_eem2_12677
crossref_primary_10_1016_j_ceramint_2020_05_251
crossref_primary_10_1016_j_matlet_2022_132371
crossref_primary_10_1016_j_apenergy_2024_122916
Cites_doi 10.4191/kcers.2018.55.6.09
10.4191/kcers.2017.54.1.11
10.1039/C8TA00346G
10.1023/A:1008888801424
10.1016/S0022-0728(80)80495-5
10.1016/j.jpowsour.2006.10.080
10.1007/s10800-014-0724-9
10.1149/1.2119692
10.2514/6.2011-6005
10.1016/j.jpowsour.2010.12.009
10.1016/j.jiec.2013.12.052
10.1016/j.ceramint.2017.01.126
10.1016/j.jpowsour.2007.11.017
10.1016/S0013-4686(97)10059-7
10.1021/jacs.7b07044
10.1016/S0013-4686(99)00368-0
10.2514/6.2000-2974
10.1016/j.jpowsour.2008.04.090
10.1016/j.jpowsour.2017.03.119
10.1007/s11581-015-1542-8
10.4191/kcers.2018.55.6.12
10.1021/nn305833u
10.20964/2016.06.41
10.1016/j.jpowsour.2004.09.038
10.1039/C9TA00862D
10.1021/nl300528p
10.1016/j.jpowsour.2006.02.086
10.1016/j.jpowsour.2007.11.073
10.1149/2.1351614jes
10.1016/j.jpowsour.2004.06.038
10.1002/aenm.201801462
10.2514/6.2007-4706
10.1021/cm304152b
10.1016/S0378-7753(02)00627-4
10.1039/C5RA23344E
10.1063/1.349377
10.1016/j.jpowsour.2006.06.013
10.1016/j.jpowsour.2010.12.107
10.1149/1.1850861
ContentType Journal Article
Copyright Copyright © 2020 Kim, Woo, Ko, Kang, Yoon, Cheong and Lim.
Copyright © 2020 Kim, Woo, Ko, Kang, Yoon, Cheong and Lim. 2020 Kim, Woo, Ko, Kang, Yoon, Cheong and Lim
Copyright_xml – notice: Copyright © 2020 Kim, Woo, Ko, Kang, Yoon, Cheong and Lim.
– notice: Copyright © 2020 Kim, Woo, Ko, Kang, Yoon, Cheong and Lim. 2020 Kim, Woo, Ko, Kang, Yoon, Cheong and Lim
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fchem.2019.00904
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2296-2646
ExternalDocumentID oai_doaj_org_article_602245775fa84292a8a9ada52a2c267a
PMC6966698
10_3389_fchem_2019_00904
GrantInformation_xml – fundername: Defense Acquisition Program Administration
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c439t-97e561f0ec39b7824521c199ab936bdf3809d7fcdc795a5b082d75838940abc63
IEDL.DBID M48
ISSN 2296-2646
IngestDate Wed Aug 27 00:49:38 EDT 2025
Thu Aug 21 14:11:05 EDT 2025
Thu Sep 04 21:30:27 EDT 2025
Tue Jul 01 03:18:02 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-97e561f0ec39b7824521c199ab936bdf3809d7fcdc795a5b082d75838940abc63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Nosang Vincent Myung, University of California, Riverside, United States
Reviewed by: Pankaj Madhukar Koinkar, Tokushima University, Japan; Xianhong Rui, Guangdong University of Technology, China
This article was submitted to Electrochemistry, a section of the journal Frontiers in Chemistry
OpenAccessLink https://doaj.org/article/602245775fa84292a8a9ada52a2c267a
PMID 31998693
PQID 2348803142
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_602245775fa84292a8a9ada52a2c267a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6966698
proquest_miscellaneous_2348803142
crossref_primary_10_3389_fchem_2019_00904
crossref_citationtrail_10_3389_fchem_2019_00904
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-10
PublicationDateYYYYMMDD 2020-01-10
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-10
  day: 10
PublicationDecade 2020
PublicationTitle Frontiers in chemistry
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Guidotti (B12) 2006; 161
Guidotti (B13) 2008; 183
Cha (B4) 2018; 55
Ji (B16) 2012; 12
Ko (B22) 2017; 43
Masset (B27) 2005; 152
Choi (B5) 2014; 20
Ferrer (B7) 1991; 70
Kang (B20) 2016; 6
Yang (B43) 2014; 44
Cooper (B6) 2006; 160
Sun (B38) 2019; 7
Rahman (B33) 2016; 22
Masset (B28); 177
Ceriotti (B3) 2011
Kam (B19) 1980; 115
Singh (B36) 2004; 138
Kim (B21) 2017; 54
Wesolowski (B41) 2010
Peled (B31) 1998; 43
Wu (B42) 2018; 55
Masset (B26) 2007; 164
Schoeffert (B34) 2005; 142
Ulissi (B40) 2018; 8
Preto (B32) 1983; 130
Au (B1) 2003; 115
B14
Gomez (B10) 2011; 196
Thomas (B39) 1998; 9
Sinclair (B35) 1995; 32
Guidotti (B15) 2000
Jin (B18) 2017; 352
Fujiwara (B8) 2011; 196
Giagloglou (B9) 2016; 163
Jin (B17) 2018; 6
Lucas (B25) 2013; 25
Guidotti (B11) 2007
Cabán-Acevedo (B2) 2013; 7
Miao (B30) 2017; 139
Masset (B29); 178
Liu (B24) 2016; 6
Leviatan (B23) 2011
Strauss (B37) 2000; 45
References_xml – volume: 55
  start-page: 618
  year: 2018
  ident: B4
  article-title: Simultaneous control of phase transformation and crystal of amorphous TiO2 coating on MWCNT surface
  publication-title: J. Korean Ceram. Soc
  doi: 10.4191/kcers.2018.55.6.09
– volume: 54
  start-page: 9
  year: 2017
  ident: B21
  article-title: Functional Li-M (Ti, Al, Co, Ni, Mn, Fe)-O energy materials
  publication-title: J. Korean Ceram. Soc
  doi: 10.4191/kcers.2017.54.1.11
– volume: 6
  start-page: 7123
  year: 2018
  ident: B17
  article-title: A hierarchical carbon modified nano-NiS2 cathode with high thermal stability for a high energy thermal battery
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00346G
– volume: 9
  start-page: 61
  year: 1998
  ident: B39
  article-title: Formation of secondary iron-sulphur phases during the growth of polycrystalline iron pyrite (FeS2) thin films by MOCVD
  publication-title: J. Mater. Sci. Mater. Electron
  doi: 10.1023/A:1008888801424
– ident: B14
– volume: 115
  start-page: 53
  year: 1980
  ident: B19
  article-title: Cycle voltammetry of Li2S, FeS and FeS2 in LiC1-KCl eutectic melt
  publication-title: J. Electroanal. Chem
  doi: 10.1016/S0022-0728(80)80495-5
– volume: 164
  start-page: 397
  year: 2007
  ident: B26
  article-title: Thermal activated (thermal) battery technology Part II. molten salt electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.10.080
– volume: 44
  start-page: 1075
  year: 2014
  ident: B43
  article-title: Hydrothermal synthesized micro/nano-sized pyrite usedas cathode material to improve the electrochemical performance of thermal battery
  publication-title: J. Appl. Electrochem
  doi: 10.1007/s10800-014-0724-9
– volume: 130
  start-page: 264
  year: 1983
  ident: B32
  article-title: Reactions of FeS2, CoS2, and NiS2 electrodes in molten LiCI-KCI electrolytes
  publication-title: Electrochem. Soc
  doi: 10.1149/1.2119692
– start-page: 14
  volume-title: 44th Power Sources Conference
  year: 2010
  ident: B41
  article-title: Study of cell performance in long-life thermal battery design space
– volume-title: 9th Annual International Energy Conversion Engineering Conference (IECEC)
  year: 2011
  ident: B23
  article-title: Development of thin layer electrochemical components for advanced thermal batteries
  doi: 10.2514/6.2011-6005
– volume: 196
  start-page: 4012
  year: 2011
  ident: B8
  article-title: New molten salt systems for high temperature molten salt batteries: ternary and quaternary molten salt systems based on LiF–LiCl, LiF–LiBr, and LiCl–LiBr
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.009
– volume: 20
  start-page: 3584
  year: 2014
  ident: B5
  article-title: Effect of the addition of carbon black and carbon nanotube to FeS2 cathode on the electrochemical performance of thermal battery
  publication-title: J. Ind. Eng. Chem
  doi: 10.1016/j.jiec.2013.12.052
– volume: 43
  start-page: 5789
  year: 2017
  ident: B22
  article-title: Thin cathode for thermal batteries using a tape-casting process
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.01.126
– volume: 177
  start-page: 595
  ident: B28
  article-title: Thermal activated (“thermal”) battery technology Part IIIa: FeS2 cathode material
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.017
– volume: 43
  start-page: 1593
  year: 1998
  ident: B31
  article-title: Li/CPE/FeS2 rechargeable battery
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(97)10059-7
– volume: 139
  start-page: 13604
  year: 2017
  ident: B30
  article-title: Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/jacs.7b07044
– volume: 45
  start-page: 1519
  year: 2000
  ident: B37
  article-title: Study of phase changes during 500 full cycles of Li/composite polymer electrolyte/FeS2 battery
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(99)00368-0
– start-page: 12
  volume-title: Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks
  year: 2011
  ident: B3
  article-title: Is there light at the ends of the tunnel? Wireless sensor networks for adaptive lighting in road tunnels
– start-page: 24
  volume-title: 35th Intersociety Energy Conversion Engineering Conference and Exhibit
  year: 2000
  ident: B15
  article-title: Thermal-sprayed, thin-film pyrite cathodes for thermal batteries-discharge-rate and temperature studies in single cells
  doi: 10.2514/6.2000-2974
– volume: 183
  start-page: 388
  year: 2008
  ident: B13
  article-title: Thermally activated (“thermal”) battery technology Part IV: anode materials
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.04.090
– volume: 352
  start-page: 83
  year: 2017
  ident: B18
  article-title: The acceleration intermediate phase (NiS and Ni3S2) evolution by nanocrystallization in Li/NiS2 thermal batteries with high specific capacity
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.119
– volume: 22
  start-page: 173
  year: 2016
  ident: B33
  article-title: A study of the capacity fade of porous NiO/Ni foam as negative electrode for lithium-ion batteries
  publication-title: Ionics
  doi: 10.1007/s11581-015-1542-8
– volume: 55
  start-page: 527
  year: 2018
  ident: B42
  article-title: Progresses on the optimal processing and properties of highly porous rare earth silicate thermal insulators
  publication-title: J. Korean Ceram. Soc
  doi: 10.4191/kcers.2018.55.6.12
– volume: 7
  start-page: 1731
  year: 2013
  ident: B2
  article-title: Synthesis, characterization, and variable range hopping transport of pyrite (FeS2) nanorods, nanobelts, and nanoplates
  publication-title: ACS Nano
  doi: 10.1021/nn305833u
– volume: 6
  start-page: 4371
  year: 2016
  ident: B20
  article-title: Heat treatment effect on microstrain and electrochemical performance of nano-sized FeS2 cathode for thermal batteries
  publication-title: Int. J. Electrochem. Sci
  doi: 10.20964/2016.06.41
– volume: 142
  start-page: 361
  year: 2005
  ident: B34
  article-title: Thermal batteries modeling, self-discharge and self-heating
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.09.038
– volume: 7
  start-page: 7752
  year: 2019
  ident: B38
  article-title: ZnO nanoarray-modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00862D
– volume: 12
  start-page: 2446
  year: 2012
  ident: B16
  article-title: Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes
  publication-title: Nano. Lett
  doi: 10.1021/nl300528p
– volume: 32
  start-page: 55
  year: 1995
  ident: B35
  article-title: Characterization of electro-materials using ac impedance spectroscopy
  publication-title: Cerámicay Vidrio
– volume: 160
  start-page: 1088
  year: 2006
  ident: B6
  article-title: Electrical test methods for on-line fuel cell ohmic resistance measurement
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.02.086
– volume: 178
  start-page: 456
  ident: B29
  article-title: Thermal activated (“thermal”) battery technology Part IIIb: sulfur and oxide based cathode materials
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.073
– volume: 163
  start-page: A3126
  year: 2016
  ident: B9
  article-title: Zirconium trisulfide as a promising cathode material for Li primary thermal batteries
  publication-title: J. Electrochem. Soc
  doi: 10.1149/2.1351614jes
– volume: 138
  start-page: 323
  year: 2004
  ident: B36
  article-title: AC impedance measurements of molten salt thermal batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.06.038
– volume: 8
  start-page: 1801462
  year: 2018
  ident: B40
  article-title: High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801462
– start-page: 25
  volume-title: 5th International Energy Conversion Engineering Conference and Exhibit
  year: 2007
  ident: B11
  article-title: Electrode fabrication processes for thermal batteries
  doi: 10.2514/6.2007-4706
– volume: 25
  start-page: 1615
  year: 2013
  ident: B25
  article-title: Ligand-controlled colloidal synthesis and electronic structure characterization of cubic iron pyrite (FeS2) nanocrystals
  publication-title: Chem. Mat
  doi: 10.1021/cm304152b
– volume: 115
  start-page: 360
  year: 2003
  ident: B1
  article-title: Nanostructured thermal batteries with high power density
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00627-4
– volume: 6
  start-page: 8290
  year: 2016
  ident: B24
  article-title: Synthesis, characterization and fabrication of ultrathin iron pyrite (FeS2) thin films and field-effect transistors
  publication-title: RSC Adv
  doi: 10.1039/C5RA23344E
– volume: 70
  start-page: 2641
  year: 1991
  ident: B7
  article-title: Characterization of FeS2 thin films prepared by thermal sulfidation of flash evaporated iron
  publication-title: J. Appl. Phys
  doi: 10.1063/1.349377
– volume: 161
  start-page: 1443
  year: 2006
  ident: B12
  article-title: Thermally activated (“thermal”) battery technology Part I: an overview
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.06.013
– volume: 196
  start-page: 4826
  year: 2011
  ident: B10
  article-title: Equivalent circuit model parameters of a high-power Li-ion battery: thermal and state of charge effects
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.107
– volume: 152
  start-page: A405
  year: 2005
  ident: B27
  article-title: LiF-LiCl-LiI vs. LiF-LiBr-KBr as molten salt electrolyte in thermal batteries
  publication-title: J. Electrochem. Soc
  doi: 10.1149/1.1850861
SSID ssj0001213420
Score 2.2466855
Snippet In this study, we fabricated a cathode with lower amounts of additive materials and higher amounts of active materials than those of a conventional cathode. A...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 904
SubjectTerms cathode frame
Chemistry
FeS2 foam
metal foam
thermal battery
thermal sulfidation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBUEAsj8qVuHCI1nH8iI-0IqoqlQO0Um_W-CWQShYt2__PjJOtNhe4cHUcxZoZeb6Jx9_H2Ifc2T5IkRpZwDWqQGwCouwmGFBGJ2tTFe27-mIubtTlrb49kPqinrCJHngy3NpQktHW6gI9SStBDw4SaAkySmMrNBJOHBRT09-VtlNSTOeSWIW5dUEb0M3zlvgp3azLts9Dla5_gTGXHZIHKWd4xp7OWJF_mtb4nD3K4zF7fL6XaHvBvp4R2eG2GbY5c7rLt0mZIwrl6HzccO_4xJ6JxTAfIFRBoJx47RLgQ_4m-TVBRhy6yojB-bCBny_ZzfD5-vyimUUSmohYYtc4mxECFZFj5wKme4X5OLbOQXCdCal0vXDJlpiidRp0wJSfLJ2VOiUgRNO9YkfjZsyvGYeiDUjXRw1JKWiDKcqJjIivbTsb9Iqt9ybzcWYQJyGLO4-VBBnZVyN7MrKvRl6xjw9v_JrYM_4y94y88DCPeK_rAEaDn6PB_ysaVux070OPvqDDDxjz5v63lx1tVV2r5IrZhXMXX1w-GX98r4zbBotC4_o3_2OJb9kTSTW7oFbCd-xot73P7xHY7MJJjeE_z0b1fg
  priority: 102
  providerName: Directory of Open Access Journals
Title Binder-Free Cathode for Thermal Batteries Fabricated Using FeS2 Treated Metal Foam
URI https://www.proquest.com/docview/2348803142
https://pubmed.ncbi.nlm.nih.gov/PMC6966698
https://doaj.org/article/602245775fa84292a8a9ada52a2c267a
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOcAF8RTLozISFw6hieNHfKhQWxFVSOUAXak3a_wIIG0TSLcS_PvOeLOlkSrE1XEcZcb2fOMZf8PY21SbxosyFqIDW8gOQuERZRdeg9QqGhNz0b6Tz_p4KT-dqbO_16MnAV7c6tpRPanluHr_-9efD7jg98njRHu71-Hv0aXyiqgnLZGD3s3RIkrkm8D-5sSlqmXmaRTCakrtmuKWtw4ys1OZzn-GQecZlDdMUvuQPZiwJD_YKP8Ru5P6x-ze0baE2xP25ZDIEMeiHVPidNdviIkjSuU4OXBDXvENuyY6y7wFnwsGpchzFgFv01fBTwlSYtNJQvHwdoDzp2zZfjw9Oi6mIgpFQKyxLqxJCJG6MoXaeoQDEu11qKwFb2vtY1c3pY2mCzEYq0B5hATRUCzVyhJ80PUzttMPfXrOOHRKg7BNUBClhMrrTtoyISKsqtp4tWB7W5G5MDGMU6GLlUNPg4TsspAdCdllIS_Yu-s3fm7YNf7R95C0cN2PeLFzwzB-c9Myc5ogiTJGddBQIS5owEIEJUAEoQ0s2JutDh3qgoIj0Kfh8sKJmrayupJiwcxMubMvzp_0P75nRm6NTqO2zYv_GP0luy_IZS8pk_AV21mPl-k14pq1383nAbt50l4BBSP2GA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binder-Free+Cathode+for+Thermal+Batteries+Fabricated+Using+FeS2+Treated+Metal+Foam&rft.jtitle=Frontiers+in+chemistry&rft.au=Kim%2C+In+Yea&rft.au=Woo%2C+Sung+Pil&rft.au=Ko%2C+Jaehwan&rft.au=Kang%2C+Seung-Ho&rft.date=2020-01-10&rft.issn=2296-2646&rft.eissn=2296-2646&rft.volume=7&rft.spage=904&rft_id=info:doi/10.3389%2Ffchem.2019.00904&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-2646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-2646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-2646&client=summon