Numerical methods for matching for teams and Wasserstein barycenters

Equilibrium multi-population matching (matching for teams) is a problem from mathematical economics which is related to multi-marginal optimal transport. A special but important case is the Wasserstein barycenter problem, which has applications in image processing and statistics. Two algorithms are...

Full description

Saved in:
Bibliographic Details
Published inESAIM Mathematical Modelling and Numerical Analysis Vol. 49; no. 6; pp. 1621 - 1642
Main Authors Carlier, Guillaume, Oberman, Adam, Oudet, Edouard
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.11.2015
Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
SeriesSpecial Issue - Optimal Transport
Subjects
Online AccessGet full text
ISSN0764-583X
2822-7840
1290-3841
1290-3841
2804-7214
DOI10.1051/m2an/2015033

Cover

Abstract Equilibrium multi-population matching (matching for teams) is a problem from mathematical economics which is related to multi-marginal optimal transport. A special but important case is the Wasserstein barycenter problem, which has applications in image processing and statistics. Two algorithms are presented: a linear programming algorithm and an efficient nonsmooth optimization algorithm, which applies in the case of the Wasserstein barycenters. The measures are approximated by discrete measures: convergence of the approximation is proved. Numerical results are presented which illustrate the efficiency of the algorithms.
AbstractList Equilibrium multi-population matching (matching for teams) is a problem from mathematical economics which is related to multi-marginal optimal transport. A special but important case is the Wasserstein barycenter problem, which has applications in image processing and statistics. Two algorithms are presented: a linear programming algorithm and an efficient nonsmooth optimization algorithm, which applies in the case of the Wasserstein barycenters. The measures are approximated by discrete measures: convergence of the approximation is proved. Numerical results are presented which illustrate the efficiency of the algorithms.
Author Oberman, Adam
Carlier, Guillaume
Oudet, Edouard
Author_xml – sequence: 1
  givenname: Guillaume
  surname: Carlier
  fullname: Carlier, Guillaume
  organization: CEREMADE, UMR CNRS 7534, Université Paris IX Dauphine, Pl. de Lattre de Tassigny, 75775 Paris cedex 16, France
– sequence: 2
  givenname: Adam
  surname: Oberman
  fullname: Oberman, Adam
  organization: Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Canada
– sequence: 3
  givenname: Edouard
  surname: Oudet
  fullname: Oudet, Edouard
  organization: Laboratoire Jean Kuntzmann, Université Joseph Fourier, Tour IRMA, BP 53 51, rue des Mathématiques 38041 Grenoble cedex 9, France
BackLink https://hal.science/hal-00987292$$DView record in HAL
BookMark eNqFkE9P3DAQxa0KpC5Lb_0AkThVImVsx3F85E_LIi30shXcrInjdA2Js9jeFr59s-yqSJUQp9GMfjPz3jsge37wlpDPFL5SEPSkZ-hPGFABnH8gE8oU5Lwq6B6ZgCyLXFT87iM5iPEeACgUYkIubta9Dc5gl_U2LYcmZu0Qsh6TWTr_66VJFvuYoW-yW4zRhpis81mN4dlYn8b-kOy32EX7aVen5Of3b4vzWT7_cXl1fjrPTcFVyhUzpUIAlJJyo2pJRVm3HFWrqOJMYGmEsk3TFkxWvJJF3RRg6watGsU2NZ-SfHt37Vf4_Ae7Tq-C60chmoLeRKA3EehdBCP_Zcsv8ZUc0OnZ6VxvZgCqkkyx33Rkj7bsKgyPaxuTvh_WwY92NKNKcVoIXo7U8ZYyYYgx2PY9Aew_3LiEyQ0-BXTdW0s7l24M-unfAwwPupRcCl3BrV7cnc344nquOf8LtXOY2A
CitedBy_id crossref_primary_10_1007_s00440_023_01241_5
crossref_primary_10_1016_j_jcp_2025_113772
crossref_primary_10_1016_j_cmpb_2021_106615
crossref_primary_10_1080_00949655_2021_1903463
crossref_primary_10_1137_15M1032600
crossref_primary_10_1007_s11222_024_10473_x
crossref_primary_10_1137_18M1208654
crossref_primary_10_1016_j_patcog_2022_108795
crossref_primary_10_1109_TSP_2017_2659647
crossref_primary_10_1137_17M1140431
crossref_primary_10_1137_20M1387262
crossref_primary_10_1007_s00245_022_09911_x
crossref_primary_10_1007_s12351_020_00589_z
crossref_primary_10_1287_ijoo_2019_0020
crossref_primary_10_1090_mcom_3989
crossref_primary_10_1137_21M140732X
crossref_primary_10_1145_2766963
crossref_primary_10_1051_m2an_2015020
crossref_primary_10_1137_22M1478355
crossref_primary_10_1007_s41468_020_00061_z
crossref_primary_10_1109_ACCESS_2021_3072613
crossref_primary_10_3150_17_BEJ957
crossref_primary_10_1016_j_disopt_2021_100669
crossref_primary_10_2139_ssrn_3276147
crossref_primary_10_1007_s00186_022_00805_w
crossref_primary_10_1016_j_jmaa_2016_04_045
crossref_primary_10_1090_qam_1535
crossref_primary_10_1007_s11222_018_9800_z
crossref_primary_10_1016_j_comgeo_2024_102162
crossref_primary_10_1109_TCNS_2022_3210341
crossref_primary_10_2139_ssrn_3855631
crossref_primary_10_1093_imaiai_iaz023
crossref_primary_10_3390_a15090311
crossref_primary_10_1007_s10851_020_00975_4
crossref_primary_10_1016_j_matpur_2020_05_004
crossref_primary_10_1007_s10107_022_01868_7
crossref_primary_10_1093_gji_ggab225
crossref_primary_10_3150_17_BEJ1009
crossref_primary_10_1007_s00245_020_09695_y
crossref_primary_10_1016_j_disopt_2021_100674
crossref_primary_10_1137_21M1390062
crossref_primary_10_1137_23M1584228
crossref_primary_10_1287_ijoo_2022_0028
crossref_primary_10_1016_j_jmva_2019_104581
crossref_primary_10_1109_TAES_2021_3057651
crossref_primary_10_3150_22_BEJ1481
crossref_primary_10_1109_TITS_2024_3399399
crossref_primary_10_1007_s13571_021_00255_0
Cites_doi 10.1007/978-1-84800-155-8_7
10.1109/TIP.2010.2052822
10.1137/100805741
10.1007/978-3-642-24785-9_37
10.1007/978-3-540-71050-9
10.1090/gsm/058
10.1007/s00199-008-0415-z
10.1016/j.jcp.2013.12.015
10.3934/dcds.2014.34.1623
ContentType Journal Article
Copyright 2015. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2015/06/m2an150084/m2an150084.html .
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2015/06/m2an150084/m2an150084.html .
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ADTOC
UNPAY
DOI 10.1051/m2an/2015033
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1290-3841
2804-7214
EndPage 1642
ExternalDocumentID 10.1051/m2an/2015033
oai:HAL:hal-00987292v1
10_1051_m2an_2015033
ark_67375_80W_TXBH3TML_3
GroupedDBID -E.
.FH
0E1
4.4
5VS
6TJ
74X
74Y
7~V
8FE
8FG
AADXX
AAOGA
AAOTM
ABGDZ
ABJNI
ABKKG
ABLJU
ABUBZ
ACACO
ACGFS
ACIMK
ACIWK
ACQPF
AEMTW
AFAYI
AFHSK
AFUTZ
AGQPQ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
AZPVJ
BPHCQ
BSCLL
C0O
DC4
EBS
EJD
FAM
FRP
GI~
HG-
HST
HZ~
I.6
IL9
I~P
J36
J38
J3A
K60
K6V
K6~
L6V
L98
LO0
M-V
O9-
OAV
P62
PQQKQ
PROAC
RCA
RED
RR0
S6-
WXU
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
ABDBF
AMVHM
ESX
TUS
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c439t-92c69a00a7713c9b7156bf3a9f919325a6c59eddf42783874bd40ebdae9104db3
IEDL.DBID UNPAY
ISSN 0764-583X
2822-7840
1290-3841
IngestDate Sun Oct 26 04:01:39 EDT 2025
Tue Oct 14 20:53:15 EDT 2025
Mon Jun 30 08:19:05 EDT 2025
Tue Jul 01 01:07:11 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Sep 03 02:44:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords matching for teams
linear programming
Wasserstein barycenters
duality
numerical methods for nonsmooth convex minimization
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-92c69a00a7713c9b7156bf3a9f919325a6c59eddf42783874bd40ebdae9104db3
Notes ark:/67375/80W-TXBH3TML-3
carlier@ceremade.dauphine.fr
PII:S0764583X15000333
istex:6AF79E2AFC3CD37345D9CB58AF75014489C8B169
publisher-ID:m2an150084
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.esaim-m2an.org/articles/m2an/pdf/2015/06/m2an150084.pdf
PQID 2199314536
PQPubID 626356
PageCount 22
ParticipantIDs unpaywall_primary_10_1051_m2an_2015033
hal_primary_oai_HAL_hal_00987292v1
proquest_journals_2199314536
crossref_primary_10_1051_m2an_2015033
crossref_citationtrail_10_1051_m2an_2015033
istex_primary_ark_67375_80W_TXBH3TML_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11
2015-11-00
20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationSeriesTitle Special Issue - Optimal Transport
PublicationTitle ESAIM Mathematical Modelling and Numerical Analysis
PublicationYear 2015
Publisher EDP Sciences
Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
Publisher_xml – name: EDP Sciences
– name: Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
References R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R12
R11
R14
R13
R16
R15
R18
R17
R19
References_xml – ident: R21
– ident: R25
– ident: R13
  doi: 10.1007/978-1-84800-155-8_7
– ident: R9
  doi: 10.1109/TIP.2010.2052822
– ident: R1
  doi: 10.1137/100805741
– ident: R10
– ident: R16
– ident: R5
– ident: R18
– ident: R14
– ident: R26
  doi: 10.1007/978-3-642-24785-9_37
– ident: R12
– ident: R29
  doi: 10.1007/978-3-540-71050-9
– ident: R28
  doi: 10.1090/gsm/058
– ident: R20
– ident: R7
  doi: 10.1007/s00199-008-0415-z
– ident: R22
– ident: R24
– ident: R27
– ident: R2
– ident: R19
– ident: R11
– ident: R4
– ident: R3
  doi: 10.1016/j.jcp.2013.12.015
– ident: R6
– ident: R15
– ident: R23
  doi: 10.3934/dcds.2014.34.1623
– ident: R8
– ident: R17
SSID ssj0001045
ssj0037293
ssib050964956
ssj0003314051
Score 2.4385536
Snippet Equilibrium multi-population matching (matching for teams) is a problem from mathematical economics which is related to multi-marginal optimal transport. A...
SourceID unpaywall
hal
proquest
crossref
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1621
SubjectTerms 49M29
90C05
Algorithms
Center of gravity
duality
Image processing
Linear programming
Matching
Matching for teams
Mathematics
Numerical methods
numerical methods for nonsmooth convex minimization
Optimization
Optimization and Control
Wasserstein barycenters
Title Numerical methods for matching for teams and Wasserstein barycenters
URI https://api.istex.fr/ark:/67375/80W-TXBH3TML-3/fulltext.pdf
https://www.proquest.com/docview/2199314536
https://hal.science/hal-00987292
https://www.esaim-m2an.org/articles/m2an/pdf/2015/06/m2an150084.pdf
UnpaywallVersion publishedVersion
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003314051
  issn: 0764-583X
  databaseCode: ABDBF
  dateStart: 20130901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003314051
  issn: 0764-583X
  databaseCode: AMVHM
  dateStart: 20130901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037293
  issn: 1290-3841
  databaseCode: GI~
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037293
  issn: 1290-3841
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-a5GHsYd9jGV0wY9vLcGLLkmw_Jm2zMJqwh4RmT0IfNh1NvBAn-_rrd5Id0xZaBnvU-XxY0tn6nXX6HcC7LAqMjBT1E5ZggJJo48tYhT7XJFE6VkS78m3TGZ8s6OclWx7ByeEsjEurLOW3tb8msqiIgusMsYGVDDYmx4A9ZIOAOwECmiChfRS3oMMZAvI2dBazL8OvjoCTU3uuaGnDLpJaJlka1unv6I2VRWstiKIbC1Pr0qZFduxI_7qBPR_si438_VOuVteWofFjMIcOVNknV_39TvX1n1vcjv_ZwyfwqIap3rC65SkcZcUzeHiNvBBb04bxtXwOp7N9tfez8qqi1KWHcNjDyy5Z0zXQn9alJwvjXUh3ytNW2vSU_YlkmUG35QtYjM_mJxO_rtDgawQyOz8lmqcyCGSMsa5OVYzRoMojmeapBYZMcs3SzJjcFfRIYqoMDTJlZIYohRoVvYR28b3IXoHHVaIpwikeG0UlITKPVUbyVAfc5IyYLnw8TI_QNX25raKxEm4bnYXCjpWoJ7ML7xvtTUXbcYfeW5zpRsVybU-G58LKLNMqRh7kR9iFD84RGjW5vbL5cDETSXAh5svRJJpPzwVaOz54iqg_BaUgNkUypCziaKfxnnuf6vW_Kh5De7fdZ28QF-1UD1rJ-FMPOsPR6Wjcq9-Cv4UODDw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZt8jD2sK270IxumLHtZTiRZUm2H7NeCKUJe0ho9iR0sWlp4oU42e3X7xzZMe2gZbBHHx8LSzpY37E-fYeQ93lMnY4ND1ORQoKSWhfqxEShtCw1NjHM-vJt44kczfj5XMz3yPHuLIynVVb6ehkumS5roeCGITZAy2DlCkjYIzGg0hsA0NCU98G8T7pSACDvkO5s8mX41QtwSo7niuaYdrEMlWR51NDfIRrrFrE1Gsd3Fqb9K6RFdnGkf97Bno-25Ur_-qEXi1vL0NlT4nYdqNknN_3txvTt77-0Hf-zh8_IkwamBsP6kQOyl5fPyeNb4oVwNW4VX6sX5GSyrfd-FkFdlLoKAA4HcNuTNf0FxNOyCnTpgkvtT3lipc3A4E8kVAZdVy_J7Ox0ejwKmwoNoQUgswkzZmWmKdUJ5Lo2Mwlkg6aIdVZkCAyFllZkuXOFL-iRJtw4TnPjdA4ohTsTvyKd8luZH5JAmtRygFMycYZrxnSRmJwVmaXSFYK5Hvm0mx5lG_lyrKKxUH4bXUQKx0o1k9kjH1rvVS3bcY_fO5jp1gW1tkfDC4U2VFqFzIN9j3rkow-E1k2vb5APlwiV0ks1nX8exdPxhYLWjnaRoppPQaUYUiQjLmIJ7bTR8-Bbvf5XxyPS2ay3-RvARRvzton7P_ELCeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+methods+for+matching+for+teams+and+Wasserstein+barycenters&rft.jtitle=ESAIM.+Mathematical+modelling+and+numerical+analysis&rft.au=Carlier%2C+Guillaume&rft.au=Oberman%2C+Adam&rft.au=Oudet%2C+Edouard&rft.date=2015-11-01&rft.pub=EDP+Sciences&rft.eissn=1290-3841&rft.volume=49&rft.issue=6&rft_id=info:doi/10.1051%2Fm2an%2F2015033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0764-583X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0764-583X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0764-583X&client=summon