Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging
Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers. Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical speci...
Saved in:
| Published in | Clinical cancer research Vol. 23; no. 18; pp. 5426 - 5436 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Association for Cancer Research Inc
15.09.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1078-0432 1557-3265 1557-3265 |
| DOI | 10.1158/1078-0432.CCR-17-0906 |
Cover
| Abstract | Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers.
Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens.
Results: Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection.
Conclusions: This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. Clin Cancer Res; 23(18); 5426–36. ©2017 AACR. |
|---|---|
| AbstractList | Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers.Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens.Results: Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection.Conclusions: This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. Clin Cancer Res; 23(18); 5426-36. ©2017 AACR.Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers.Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens.Results: Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection.Conclusions: This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. Clin Cancer Res; 23(18); 5426-36. ©2017 AACR. This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers. A clinical study was conducted in order to collect and image fresh, surgical specimens from patients ( = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens. Quantitative HSI differentiated cancerous tissue from normal tissue in surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging ( < 0.05) or fluorescence imaging of 2-NBDG ( < 0.05) and proflavine ( < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection. This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. . Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers. Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens. Results: Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection. Conclusions: This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. Clin Cancer Res; 23(18); 5426–36. ©2017 AACR. Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers.Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens.Results: Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection.Conclusions: This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. Clin Cancer Res; 23(18); 5426–36. ©2017 AACR. |
| Author | Patel, Mihir R. Little, James V. Zhang, Hongzheng Wang, Xu Fei, Baowei Griffith, Christopher C. Lu, Guolan El-Deiry, Mark W. Chen, Amy Y. |
| AuthorAffiliation | 5 Winship Cancer Institute of Emory University, Atlanta, Georgia 1 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 2 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 6 Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 4 Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia 3 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia |
| AuthorAffiliation_xml | – name: 3 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia – name: 2 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia – name: 4 Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia – name: 6 Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia – name: 5 Winship Cancer Institute of Emory University, Atlanta, Georgia – name: 1 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia |
| Author_xml | – sequence: 1 givenname: Guolan surname: Lu fullname: Lu, Guolan – sequence: 2 givenname: James V. surname: Little fullname: Little, James V. – sequence: 3 givenname: Xu surname: Wang fullname: Wang, Xu – sequence: 4 givenname: Hongzheng surname: Zhang fullname: Zhang, Hongzheng – sequence: 5 givenname: Mihir R. surname: Patel fullname: Patel, Mihir R. – sequence: 6 givenname: Christopher C. surname: Griffith fullname: Griffith, Christopher C. – sequence: 7 givenname: Mark W. surname: El-Deiry fullname: El-Deiry, Mark W. – sequence: 8 givenname: Amy Y. surname: Chen fullname: Chen, Amy Y. – sequence: 9 givenname: Baowei surname: Fei fullname: Fei, Baowei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28611203$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktv1DAUhSNURB_wE0CW2LBJseNHbCEhoUCZShUIStfGcW4Gl4wd7KRo_n0dpq1KF7CyJX_n6J5zfVjs-eChKJ4TfEwIl68JrmWJGa2Om-ZrSeoSKyweFQeE87qkleB7-X7L7BeHKV1iTBjB7EmxX0lBSIXpQfH9PUxgJxc8Cj1agemQ8R36BPYnaoy3EJHz6HyOa2fNgM5HsG4DPqGL5PwafZmNn9xkJncFaLUdIaZMTDGjpxuzzsjT4nFvhgTPbs6j4uLkw7dmVZ59_njavDsrLaNqKiWzlGArbW84Y6y3tMNGgGkVAy46QlnNoLUdb2WrCEhQXHDZ1iArMFQpelSIne_sR7P9bYZBj9FtTNxqgvVSmV7q0Esd2tqoSa2XyrLw7U44zu0GOgt-Gf9OHIzTf79490Ovw5XmgilRVdng1Y1BDL9mSJPeuGRhGIyHMCdNFFY140SwjL58gF6GOfrcS6YkZURwVmfqxf2J7ka53VoG-A6wMaQUof9H1Pw77kV980Bn_-wuLMHc8B_1Ne4rvl8 |
| CitedBy_id | crossref_primary_10_1002_jbio_201800455 crossref_primary_10_3390_diagnostics14171888 crossref_primary_10_3390_photonics10070708 crossref_primary_10_1016_j_heliyon_2024_e25844 crossref_primary_10_3390_jpm11020147 crossref_primary_10_1186_s42492_019_0023_8 crossref_primary_10_21053_ceo_2020_00654 crossref_primary_10_3390_cancers13050967 crossref_primary_10_1007_s00464_019_06675_4 crossref_primary_10_3390_s20236955 crossref_primary_10_1038_s41598_019_54139_5 crossref_primary_10_1016_j_pdpdt_2020_101922 crossref_primary_10_1007_s10043_019_00512_8 crossref_primary_10_1007_s12274_022_4239_0 crossref_primary_10_1038_s41598_018_28014_8 crossref_primary_10_3390_cancers14061591 crossref_primary_10_1158_1078_0432_CCR_19_3717 crossref_primary_10_1038_s41598_025_94526_9 crossref_primary_10_1117_1_JMI_6_3_035004 crossref_primary_10_1364_BOE_10_006096 crossref_primary_10_3390_cancers15010213 crossref_primary_10_3390_cancers15102679 crossref_primary_10_1111_iwj_13474 crossref_primary_10_1038_s41551_021_00808_8 crossref_primary_10_1007_s11654_021_00313_z crossref_primary_10_1364_BOE_381257 crossref_primary_10_1186_s40425_018_0488_6 crossref_primary_10_1186_s13014_018_1133_8 crossref_primary_10_1002_lsm_23161 crossref_primary_10_1016_j_otc_2024_05_003 crossref_primary_10_3390_cancers11060756 crossref_primary_10_1364_BOE_492635 crossref_primary_10_1364_BOE_432654 crossref_primary_10_1088_1742_6596_2058_1_012021 crossref_primary_10_1016_j_soc_2024_04_003 crossref_primary_10_1038_s41598_025_85678_9 crossref_primary_10_1158_1078_0432_CCR_19_0319 crossref_primary_10_1021_acsnano_2c01697 crossref_primary_10_1109_ACCESS_2019_2929508 crossref_primary_10_3390_app11198881 crossref_primary_10_1016_j_apjon_2022_100133 crossref_primary_10_1038_s41551_020_0537_6 crossref_primary_10_1117_1_JBO_24_3_036007 crossref_primary_10_1109_TBME_2020_3026683 crossref_primary_10_1016_j_cmpb_2024_108100 crossref_primary_10_1016_j_neo_2024_101118 crossref_primary_10_3390_ijerph20010159 crossref_primary_10_1002_cam4_70195 crossref_primary_10_1002_jbio_202000424 crossref_primary_10_1007_s11864_018_0585_2 crossref_primary_10_1364_BOE_10_004496 crossref_primary_10_1016_j_ejmech_2022_114555 crossref_primary_10_1080_21681163_2022_2160377 crossref_primary_10_1364_BOE_470202 crossref_primary_10_2967_jnumed_118_220426 crossref_primary_10_1016_j_jtos_2019_03_003 crossref_primary_10_1038_s41598_022_07524_6 crossref_primary_10_3390_cancers11091367 crossref_primary_10_3390_jcm8122229 crossref_primary_10_3390_cancers16223785 crossref_primary_10_1038_s41598_022_16074_w crossref_primary_10_1117_1_JBO_24_7_071605 crossref_primary_10_3390_s22249790 crossref_primary_10_1117_1_JBO_24_1_016002 crossref_primary_10_1002_jbio_202300105 crossref_primary_10_1007_s11082_020_2218_9 crossref_primary_10_1016_j_heliyon_2023_e17218 crossref_primary_10_1109_ACCESS_2021_3068392 crossref_primary_10_3390_s19040920 crossref_primary_10_1177_09603360211024971 crossref_primary_10_1038_s41416_021_01386_x crossref_primary_10_3390_cancers14061422 |
| Cites_doi | 10.1016/j.oraloncology.2016.04.007 10.1002/lary.25899 10.1117/1.JBO.17.7.076005 10.1145/1961189.1961199 10.1245/s10434-012-2351-1 10.1117/1.JBO.18.12.126017 10.1109/34.709601 10.1023/A:1010933404324 10.1001/jamaoto.2015.3211 10.1109/BMEI.2012.6513047 10.1158/1078-0432.CCR-06-1317 10.1007/978-1-4939-2836-1 10.1007/s40273-014-0169-3 10.1016/j.mayocp.2015.12.017 10.1097/00005537-200010000-00039 10.1117/1.JBO.20.12.126012 10.1117/1.JBO.19.1.010901 10.1158/1078-0432.CCR-14-3284 10.1054/ijom.2002.0313 10.1158/1078-0432.CCR-12-3598 10.1364/BOE.2.001514 10.1002/hed.23110 10.1007/s11307-010-0373-2 10.1117/1.JBO.19.10.106004 10.1117/12.2216553 10.1117/1.2165184 10.1158/1940-6207.CAPR-14-0097 10.1186/bcr3455 10.1111/j.1469-1809.1936.tb02137.x 10.1117/1.JBO.18.10.106016 |
| ContentType | Journal Article |
| Copyright | 2017 American Association for Cancer Research. Copyright American Association for Cancer Research Inc Sep 15, 2017 |
| Copyright_xml | – notice: 2017 American Association for Cancer Research. – notice: Copyright American Association for Cancer Research Inc Sep 15, 2017 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T5 7TO 7U9 8FD FR3 H94 P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1158/1078-0432.CCR-17-0906 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Immunology Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Biotechnology Research Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1557-3265 |
| EndPage | 5436 |
| ExternalDocumentID | 10.1158/1078-0432.ccr-17-0906 PMC5649622 28611203 10_1158_1078_0432_CCR_17_0906 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R21 CA120536 – fundername: NCI NIH HHS grantid: R21 CA176684 – fundername: NCI NIH HHS grantid: R01 CA204254 – fundername: NCI NIH HHS grantid: R01 CA156775 |
| GroupedDBID | --- 18M 29B 2FS 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ADBBV ADCOW ADNWM AENEX AFHIN AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P QTD RCR RHI RNS SJN TR2 W2D W8F WOQ YKV ACSVP AFOSN AFUMD CGR CUY CVF ECM EIF NPM RHF 7QO 7T5 7TO 7U9 8FD FR3 H94 P64 7X8 5PM .55 .GJ 1CY 3O- 4H- ADTOC AETEA AFFNX AI. C1A H~9 J5H MVM OHT UDS UNPAY VH1 WHG X7M XJT ZCG ZGI |
| ID | FETCH-LOGICAL-c439t-84c310c8cfa5444fc3d0a6eab94e56d13474ebcd5b8b91e8e95658b7e82ea3993 |
| IEDL.DBID | UNPAY |
| ISSN | 1078-0432 1557-3265 |
| IngestDate | Sun Oct 26 01:58:07 EDT 2025 Thu Aug 21 18:12:04 EDT 2025 Fri Sep 05 07:10:13 EDT 2025 Sat Jul 26 02:18:47 EDT 2025 Wed Feb 19 02:42:47 EST 2025 Wed Oct 01 05:57:14 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | 2017 American Association for Cancer Research. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-84c310c8cfa5444fc3d0a6eab94e56d13474ebcd5b8b91e8e95658b7e82ea3993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://clincancerres.aacrjournals.org/content/clincanres/23/18/5426.full.pdf |
| PMID | 28611203 |
| PQID | 1983416547 |
| PQPubID | 2046235 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1158_1078_0432_ccr_17_0906 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5649622 proquest_miscellaneous_1909745164 proquest_journals_1983416547 pubmed_primary_28611203 crossref_primary_10_1158_1078_0432_CCR_17_0906 crossref_citationtrail_10_1158_1078_0432_CCR_17_0906 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-15 |
| PublicationDateYYYYMMDD | 2017-09-15 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Philadelphia |
| PublicationTitle | Clinical cancer research |
| PublicationTitleAlternate | Clin Cancer Res |
| PublicationYear | 2017 |
| Publisher | American Association for Cancer Research Inc |
| Publisher_xml | – name: American Association for Cancer Research Inc |
| References | Tin Kam (2022061107221515800_bib30) 1998; 20 Lu (2022061107221515800_bib19) 2015; 20 Hellebust (2022061107221515800_bib27) 2013; 18 Lu (2022061107221515800_bib17) 2014; 19 Pike (2022061107221515800_bib18) 2015 Good (2022061107221515800_bib33) 2013 Vila (2022061107221515800_bib22) 2012; 19 DiNardo (2022061107221515800_bib8) 2000; 110 Sutton (2022061107221515800_bib4) 2003; 32 Lu (2022061107221515800_bib15) 2014; 19 Marur (2022061107221515800_bib2) 2016; 91 Hinni (2022061107221515800_bib5) 2013; 35 Muldoon (2022061107221515800_bib21) 2011; 9999 Laughney (2022061107221515800_bib36) 2013; 15 Rosenthal (2022061107221515800_bib12) 2015; 21 Dobbs (2022061107221515800_bib24) 2013; 18 2022061107221515800_bib35 Wissinger (2022061107221515800_bib1) 2014; 32 Luo (2022061107221515800_bib20) 2014; 7 2022061107221515800_bib34 Farah (2022061107221515800_bib11) 2014 Haddad (2022061107221515800_bib3) 2008; 359 Poh (2022061107221515800_bib9) 2006; 12 Poh (2022061107221515800_bib10) 2016; 142 Keereweer (2022061107221515800_bib6) 2011; 13 Akbari (2022061107221515800_bib16) 2012; 17 Park (2022061107221515800_bib26) 2015 Chang (2022061107221515800_bib31) 2011; 2 Iqbal (2022061107221515800_bib13) 2016; 57 Sun (2022061107221515800_bib25) Keereweer (2022061107221515800_bib14) 2013; 19 Subhash (2022061107221515800_bib28) 2006; 11 Langsner (2022061107221515800_bib23) 2011; 2 Du (2022061107221515800_bib7) 2016; 126 Breiman (2022061107221515800_bib32) 2001; 45 Fisher (2022061107221515800_bib29) 1936; 7 24842794 - Pharmacoeconomics. 2014 Sep;32(9):865-82 25139295 - Cancer Prev Res (Phila). 2014 Oct;7(10):1035-44 12653229 - Int J Oral Maxillofac Surg. 2003 Feb;32(1):30-4 23915805 - Breast Cancer Res. 2013;15(4):R61 18784104 - N Engl J Med. 2008 Sep 11;359(11):1143-54 26769431 - JAMA Otolaryngol Head Neck Surg. 2016 Mar;142(3):209-16 22941934 - Head Neck. 2013 Sep;35(9):1362-70 27113207 - Laryngoscope. 2016 Aug;126(8):1768-75 20617389 - Mol Imaging Biol. 2011 Apr;13(2):199-207 22492225 - Ann Surg Oncol. 2012 Oct;19(11):3534-9 26720879 - J Biomed Opt. 2015 ;20(12 ):126012 26285052 - IEEE Trans Biomed Eng. 2016 Mar;63(3):653-63 25277147 - J Biomed Opt. 2014;19(10):106004 11037842 - Laryngoscope. 2000 Oct;110(10 Pt 1):1773-6 25904751 - Clin Cancer Res. 2015 Aug 15;21(16):3658-66 27208842 - Oral Oncol. 2016 Jun;57:32-9 21698015 - Biomed Opt Express. 2011 Jun 1;2(6):1514-23 17121891 - Clin Cancer Res. 2006 Nov 15;12(22):6716-22 25545703 - Head Neck. 2016 Jun;38(6):832-9 24362926 - J Biomed Opt. 2013 Dec;18(12):126017 22894488 - J Biomed Opt. 2012 Jul;17(7):076005 23674494 - Clin Cancer Res. 2013 Jul 15;19(14):3745-54 21413101 - Head Neck. 2012 Mar;34(3):305-12 24165742 - J Biomed Opt. 2013 Oct;18(10):106016 24441941 - J Biomed Opt. 2014 Jan;19(1):10901 27656034 - Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9788:null 16526895 - J Biomed Opt. 2006 Jan-Feb;11(1):014018 26944243 - Mayo Clin Proc. 2016 Mar;91(3):386-96 |
| References_xml | – volume: 359 start-page: 1143 year: 2008 ident: 2022061107221515800_bib3 article-title: Recent advances in head and neck cancer publication-title: Indian J Plast Surg – volume: 57 start-page: 32 year: 2016 ident: 2022061107221515800_bib13 article-title: Image guided surgery in the management of head and neck cancer publication-title: Oral Oncol doi: 10.1016/j.oraloncology.2016.04.007 – volume: 126 start-page: 1768 year: 2016 ident: 2022061107221515800_bib7 article-title: Refining the utility and role of frozen section in head and neck squamous cell carcinoma resection publication-title: Laryngoscope doi: 10.1002/lary.25899 – volume: 17 start-page: 076005 year: 2012 ident: 2022061107221515800_bib16 article-title: Hyperspectral imaging and quantitative analysis for prostate cancer detection publication-title: J Biomed Opt doi: 10.1117/1.JBO.17.7.076005 – volume: 2 start-page: 1 year: 2011 ident: 2022061107221515800_bib31 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – volume: 19 start-page: 3534 year: 2012 ident: 2022061107221515800_bib22 article-title: Discrimination of benign and neoplastic mucosa with a high-resolution microendoscope (HRME) in head and neck cancer publication-title: Ann Surg Oncol doi: 10.1245/s10434-012-2351-1 – volume: 18 start-page: 126017 year: 2013 ident: 2022061107221515800_bib27 article-title: Vital-dye-enhanced multimodal imaging of neoplastic progression in a mouse model of oral carcinogenesis publication-title: J Biomed Opt doi: 10.1117/1.JBO.18.12.126017 – volume: 20 start-page: 832 year: 1998 ident: 2022061107221515800_bib30 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.709601 – volume: 45 start-page: 5 year: 2001 ident: 2022061107221515800_bib32 article-title: Random forests. publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 142 start-page: 209 year: 2016 ident: 2022061107221515800_bib10 article-title: Fluorescence visualization–guided surgery for early-stage oral cancer publication-title: JAMA Otolaryngol Head Neck Surg doi: 10.1001/jamaoto.2015.3211 – ident: 2022061107221515800_bib34 doi: 10.1109/BMEI.2012.6513047 – volume: 12 start-page: 6716 year: 2006 ident: 2022061107221515800_bib9 article-title: Fluorescence visualization detection of field alterations in tumor margins of oral cancer patients publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-1317 – start-page: 321 volume-title: Procedures for acquiring hyperspectral image cubes. Hyperspectral imaging technology in food and agriculture year: 2015 ident: 2022061107221515800_bib26 doi: 10.1007/978-1-4939-2836-1 – volume: 32 start-page: 865 year: 2014 ident: 2022061107221515800_bib1 article-title: The economic burden of head and neck cancer: a systematic literature review publication-title: PharmacoEconomics doi: 10.1007/s40273-014-0169-3 – volume: 91 start-page: 386 year: 2016 ident: 2022061107221515800_bib2 article-title: Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2015.12.017 – start-page: 832 year: 2014 ident: 2022061107221515800_bib11 article-title: Improved surgical margin definition by narrow band imaging for resection of oral squamous cell carcinoma: a prospective gene expression profiling study publication-title: Head Neck – volume: 110 start-page: 1773 year: 2000 ident: 2022061107221515800_bib8 article-title: Accuracy, utility, and cost of frozen section margins in head and neck cancer surgery publication-title: Laryngoscope doi: 10.1097/00005537-200010000-00039 – volume: 20 start-page: 126012 year: 2015 ident: 2022061107221515800_bib19 article-title: Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery publication-title: J Biomed Opt doi: 10.1117/1.JBO.20.12.126012 – volume: 19 start-page: 10901 year: 2014 ident: 2022061107221515800_bib15 article-title: Medical hyperspectral imaging: a review publication-title: J Biomed Opt doi: 10.1117/1.JBO.19.1.010901 – volume: 21 start-page: 3658 year: 2015 ident: 2022061107221515800_bib12 article-title: Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-3284 – volume: 9999 start-page: 1 year: 2011 ident: 2022061107221515800_bib21 article-title: Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope publication-title: Head Neck – volume-title: Permutation tests: a practical guide to resampling methods for testing hypotheses year: 2013 ident: 2022061107221515800_bib33 – volume: 32 start-page: 30 year: 2003 ident: 2022061107221515800_bib4 article-title: The prognostic implications of the surgical margin in oral squamous cell carcinoma publication-title: Int J Oral Maxillofac Surg doi: 10.1054/ijom.2002.0313 – volume: 19 start-page: 3745 year: 2013 ident: 2022061107221515800_bib14 article-title: Optical image-guided cancer surgery: challenges and limitations publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-3598 – volume: 2 start-page: 1514 year: 2011 ident: 2022061107221515800_bib23 article-title: Wide-field imaging of fluorescent deoxy-glucose in ex vivo malignant and normal breast tissue publication-title: Biomed Opt Express doi: 10.1364/BOE.2.001514 – start-page: 1 year: 2015 ident: 2022061107221515800_bib18 article-title: A minimum spanning Forest based method for noninvasive cancer detection with hyperspectral imaging publication-title: IEEE Trans Biomed Eng – volume: 35 start-page: 1362 year: 2013 ident: 2022061107221515800_bib5 article-title: Surgical margins in head and neck cancer: a contemporary review publication-title: Head Neck doi: 10.1002/hed.23110 – volume: 13 start-page: 199 year: 2011 ident: 2022061107221515800_bib6 article-title: Optical image-guided surgery—where do we stand? publication-title: Mol Imaging Biol doi: 10.1007/s11307-010-0373-2 – volume: 19 start-page: 106004 year: 2014 ident: 2022061107221515800_bib17 article-title: Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging publication-title: J Biomed Opt doi: 10.1117/1.JBO.19.10.106004 – ident: 2022061107221515800_bib35 doi: 10.1117/12.2216553 – volume-title: Preprocessing of hyperspectral images. Hyperspectral imaging for food quality analysis and control ident: 2022061107221515800_bib25 – volume: 11 start-page: 014018 year: 2006 ident: 2022061107221515800_bib28 article-title: Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands publication-title: J Biomed Opt doi: 10.1117/1.2165184 – volume: 7 start-page: 1035 year: 2014 ident: 2022061107221515800_bib20 article-title: Widefield optical imaging of changes in uptake of glucose and tissue extracellular pH in head and neck cancer publication-title: Cancer Prev Res (Phila) doi: 10.1158/1940-6207.CAPR-14-0097 – volume: 15 start-page: R61 year: 2013 ident: 2022061107221515800_bib36 article-title: Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging publication-title: Breast Cancer Res doi: 10.1186/bcr3455 – volume: 7 start-page: 179 year: 1936 ident: 2022061107221515800_bib29 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann Eugen doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 18 start-page: 106016 year: 2013 ident: 2022061107221515800_bib24 article-title: Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue publication-title: J Biomed Opt doi: 10.1117/1.JBO.18.10.106016 – reference: 25139295 - Cancer Prev Res (Phila). 2014 Oct;7(10):1035-44 – reference: 27656034 - Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9788:null – reference: 18784104 - N Engl J Med. 2008 Sep 11;359(11):1143-54 – reference: 25545703 - Head Neck. 2016 Jun;38(6):832-9 – reference: 26944243 - Mayo Clin Proc. 2016 Mar;91(3):386-96 – reference: 22492225 - Ann Surg Oncol. 2012 Oct;19(11):3534-9 – reference: 24842794 - Pharmacoeconomics. 2014 Sep;32(9):865-82 – reference: 22941934 - Head Neck. 2013 Sep;35(9):1362-70 – reference: 26720879 - J Biomed Opt. 2015 ;20(12 ):126012 – reference: 16526895 - J Biomed Opt. 2006 Jan-Feb;11(1):014018 – reference: 12653229 - Int J Oral Maxillofac Surg. 2003 Feb;32(1):30-4 – reference: 21698015 - Biomed Opt Express. 2011 Jun 1;2(6):1514-23 – reference: 25904751 - Clin Cancer Res. 2015 Aug 15;21(16):3658-66 – reference: 25277147 - J Biomed Opt. 2014;19(10):106004 – reference: 23915805 - Breast Cancer Res. 2013;15(4):R61 – reference: 22894488 - J Biomed Opt. 2012 Jul;17(7):076005 – reference: 27113207 - Laryngoscope. 2016 Aug;126(8):1768-75 – reference: 11037842 - Laryngoscope. 2000 Oct;110(10 Pt 1):1773-6 – reference: 24441941 - J Biomed Opt. 2014 Jan;19(1):10901 – reference: 20617389 - Mol Imaging Biol. 2011 Apr;13(2):199-207 – reference: 21413101 - Head Neck. 2012 Mar;34(3):305-12 – reference: 26769431 - JAMA Otolaryngol Head Neck Surg. 2016 Mar;142(3):209-16 – reference: 23674494 - Clin Cancer Res. 2013 Jul 15;19(14):3745-54 – reference: 27208842 - Oral Oncol. 2016 Jun;57:32-9 – reference: 26285052 - IEEE Trans Biomed Eng. 2016 Mar;63(3):653-63 – reference: 24165742 - J Biomed Opt. 2013 Oct;18(10):106016 – reference: 17121891 - Clin Cancer Res. 2006 Nov 15;12(22):6716-22 – reference: 24362926 - J Biomed Opt. 2013 Dec;18(12):126017 |
| SSID | ssj0014104 |
| Score | 2.5593328 |
| Snippet | Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of... This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5426 |
| SubjectTerms | Adult Aged Aged, 80 and over Algorithms Cancer Diagnostic Imaging - methods Diagnostic Imaging - standards Diagnostic software Diagnostic systems Experimental design Feasibility studies Female Fluorescence Head & neck cancer Head and Neck Neoplasms - diagnosis Head and Neck Neoplasms - surgery Humans Hyperspectral imaging Image detection Image Processing, Computer-Assisted Learning algorithms Male Medical personnel Middle Aged Models, Theoretical Optical Imaging - methods Optical Imaging - standards Patients Prognosis Reflectance Reproducibility of Results Research Design ROC Curve Sensitivity and Specificity Spectral signatures Surgery Surgical instruments Workflow |
| Title | Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28611203 https://www.proquest.com/docview/1983416547 https://www.proquest.com/docview/1909745164 https://pubmed.ncbi.nlm.nih.gov/PMC5649622 https://clincancerres.aacrjournals.org/content/clincanres/23/18/5426.full.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1557-3265 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014104 issn: 1557-3265 databaseCode: KQ8 dateStart: 19950101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1557-3265 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0014104 issn: 1557-3265 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1557-3265 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014104 issn: 1557-3265 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4anQS8cL8ExmQkXpPGrp06j1Nh6kCrgFFpPAXbccS04lZdIgS_nmPnoo1JICSebSs5Phd_xz4XgFdalIKHbBxB_dVNmsZasQkqXlnxEk9EaUO1z0U2X_K3p-J0B477XBifD2g8vb41RaKU2XZ7ehGe9X38NhrjfhrOGbPJmMqxwJMm8TfWyaasbsBuJhCaj2B3uXh_8LmNO5SxLz8X6qcKVCyWiS6jhwo5HsYTY7YxWu40902QLp9V1wDo9TjKW43bqB_f1Wp16ZA6vAuuJ6-NTTlPmlon5udvlR__G_334E4HZ8lBK3_3Yce6B3DzuHuwfwhfXts6BHs5sq7IHAWKKFeShTXnZBZ-gJw5ctJsgwEmJxtrfLuBCxJCGciHRrmQBYc2mczRZW4zQ3EXyNG30F_pESwP33yazeOuqUNsEPvUseQGEaWRplKCc16ZSZmqzCqdcyuy0me2cqtNKbTUObXSogMnpJ5ayazyaOoxjNza2adAEEzZnOfcaKY51TpPrcyoMZxVlda0ioD37CtMV_HcN95YFcHzEbLwXC8814vZ7GNBp4XnegTJsGzTlvz424K9XjaKnlsFzSUCBN_aOYKXwzDqrn-QUc6uGz8nRXdOoMcawZNWlIYvMiSFsnQSwfSKkA0TfF3wqyPu7GuoDy4ynmeMRTAexPEPhKC894Q8--cVz-E2S4O2xFTswajeNvYForRa76N_cvRuv9PAX9ESO58 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB_qFdQXv7WrVSL4uh_JJXvZx3JaTqGHWg_q05pks7T0zB3XW4r-9U6yH7QWFMHnTNidzCTzm2Q-AN5oUQkesnEE9Vc3WRZrxca48aqaV2gRpQ3VPuf5bME_nIiTHTjqc2F8PqDx_PrWFIlSZtOt6UV41vfx23gY92RIk7JxSmUq0NIk_sY6WVf1LdjNBULzEewu5h8PvrZxhzL25edC_VSBG4vlosvooUKmw3hizCbGkzsrfBOkq7bqBgC9GUd5p3Fr9eNSLZdXjNThfXA9e21synnSbHVifv5W-fG_8f8A7nVwlhy0-vcQdqx7BLePugf7x_Dtrd2GYC9HVjWZoUIR5Soyt-acTMMPkDNHjptNOIDJ8doa327ggoRQBvKpUS5kweGZTGboMreZobgK5P330F_pCSwO332ZzuKuqUNsEPtsY8kNIkojTa0E57w24ypTuVW64Fbklc9s5VabSmipC2qlRQdOSD2xklnl0dRTGLmVs3tAEEzZghfcaKY51brIrMypMZzVtda0joD34itNV_HcN95YlsHzEbL0Ui-91Mvp9HNJJ6WXegTJMG3dlvz424T9XjfKXlolLSQCBN_aOYLXwzDuXf8go5xdNZ4mQ3dOoMcawbNWlYYvMmSFsmwcweSakg0Evi749RF3dhrqg4ucFzljEaSDOv6BEdT3npHn_zzjBdxtL7t9mv8-jLabxr5ElLbVr7q99wtwNDqd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Head+and+Neck+Cancer+in+Surgical+Specimens+Using+Quantitative+Hyperspectral+Imaging&rft.jtitle=Clinical+cancer+research&rft.au=Lu%2C+Guolan&rft.au=Little%2C+James+V.&rft.au=Wang%2C+Xu&rft.au=Zhang%2C+Hongzheng&rft.date=2017-09-15&rft.issn=1078-0432&rft.volume=23&rft.issue=18&rft.spage=5426&rft.epage=5436&rft_id=info:doi/10.1158%2F1078-0432.CCR-17-0906&rft_id=info%3Apmid%2F28611203&rft.externalDocID=PMC5649622 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |