Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging

Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers. Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical speci...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 23; no. 18; pp. 5426 - 5436
Main Authors Lu, Guolan, Little, James V., Wang, Xu, Zhang, Hongzheng, Patel, Mihir R., Griffith, Christopher C., El-Deiry, Mark W., Chen, Amy Y., Fei, Baowei
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research Inc 15.09.2017
Subjects
Online AccessGet full text
ISSN1078-0432
1557-3265
1557-3265
DOI10.1158/1078-0432.CCR-17-0906

Cover

Abstract Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers. Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens. Results: Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection. Conclusions: This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. Clin Cancer Res; 23(18); 5426–36. ©2017 AACR.
AbstractList Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers.Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens.Results: Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection.Conclusions: This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. Clin Cancer Res; 23(18); 5426-36. ©2017 AACR.Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers.Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens.Results: Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection.Conclusions: This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. Clin Cancer Res; 23(18); 5426-36. ©2017 AACR.
This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers. A clinical study was conducted in order to collect and image fresh, surgical specimens from patients ( = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens. Quantitative HSI differentiated cancerous tissue from normal tissue in surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging ( < 0.05) or fluorescence imaging of 2-NBDG ( < 0.05) and proflavine ( < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection. This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. .
Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers. Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens. Results: Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection. Conclusions: This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. Clin Cancer Res; 23(18); 5426–36. ©2017 AACR.
Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers.Experimental Design: A clinical study was conducted in order to collect and image fresh, surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical resection. A set of machine-learning tools were developed to quantify hyperspectral images of the resected tissue in order to detect and delineate cancerous regions which were validated by histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by HSI and analyzed using machine-learning methods. The detection results of HSI were compared with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens.Results: Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability maps with the tumor border demarcated and which could provide real-time guidance for surgeons regarding optimal tumor resection.Conclusions: This study highlights the feasibility of using quantitative HSI as a diagnostic tool to delineate the cancer boundaries in surgical specimens, and which could be translated into the clinic application with the hope of improving clinical outcomes in the future. Clin Cancer Res; 23(18); 5426–36. ©2017 AACR.
Author Patel, Mihir R.
Little, James V.
Zhang, Hongzheng
Wang, Xu
Fei, Baowei
Griffith, Christopher C.
Lu, Guolan
El-Deiry, Mark W.
Chen, Amy Y.
AuthorAffiliation 5 Winship Cancer Institute of Emory University, Atlanta, Georgia
1 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
2 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
6 Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
4 Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia
3 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
AuthorAffiliation_xml – name: 3 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
– name: 2 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
– name: 4 Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia
– name: 6 Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
– name: 5 Winship Cancer Institute of Emory University, Atlanta, Georgia
– name: 1 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
Author_xml – sequence: 1
  givenname: Guolan
  surname: Lu
  fullname: Lu, Guolan
– sequence: 2
  givenname: James V.
  surname: Little
  fullname: Little, James V.
– sequence: 3
  givenname: Xu
  surname: Wang
  fullname: Wang, Xu
– sequence: 4
  givenname: Hongzheng
  surname: Zhang
  fullname: Zhang, Hongzheng
– sequence: 5
  givenname: Mihir R.
  surname: Patel
  fullname: Patel, Mihir R.
– sequence: 6
  givenname: Christopher C.
  surname: Griffith
  fullname: Griffith, Christopher C.
– sequence: 7
  givenname: Mark W.
  surname: El-Deiry
  fullname: El-Deiry, Mark W.
– sequence: 8
  givenname: Amy Y.
  surname: Chen
  fullname: Chen, Amy Y.
– sequence: 9
  givenname: Baowei
  surname: Fei
  fullname: Fei, Baowei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28611203$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNURB_wE0CW2LBJseNHbCEhoUCZShUIStfGcW4Gl4wd7KRo_n0dpq1KF7CyJX_n6J5zfVjs-eChKJ4TfEwIl68JrmWJGa2Om-ZrSeoSKyweFQeE87qkleB7-X7L7BeHKV1iTBjB7EmxX0lBSIXpQfH9PUxgJxc8Cj1agemQ8R36BPYnaoy3EJHz6HyOa2fNgM5HsG4DPqGL5PwafZmNn9xkJncFaLUdIaZMTDGjpxuzzsjT4nFvhgTPbs6j4uLkw7dmVZ59_njavDsrLaNqKiWzlGArbW84Y6y3tMNGgGkVAy46QlnNoLUdb2WrCEhQXHDZ1iArMFQpelSIne_sR7P9bYZBj9FtTNxqgvVSmV7q0Esd2tqoSa2XyrLw7U44zu0GOgt-Gf9OHIzTf79490Ovw5XmgilRVdng1Y1BDL9mSJPeuGRhGIyHMCdNFFY140SwjL58gF6GOfrcS6YkZURwVmfqxf2J7ka53VoG-A6wMaQUof9H1Pw77kV980Bn_-wuLMHc8B_1Ne4rvl8
CitedBy_id crossref_primary_10_1002_jbio_201800455
crossref_primary_10_3390_diagnostics14171888
crossref_primary_10_3390_photonics10070708
crossref_primary_10_1016_j_heliyon_2024_e25844
crossref_primary_10_3390_jpm11020147
crossref_primary_10_1186_s42492_019_0023_8
crossref_primary_10_21053_ceo_2020_00654
crossref_primary_10_3390_cancers13050967
crossref_primary_10_1007_s00464_019_06675_4
crossref_primary_10_3390_s20236955
crossref_primary_10_1038_s41598_019_54139_5
crossref_primary_10_1016_j_pdpdt_2020_101922
crossref_primary_10_1007_s10043_019_00512_8
crossref_primary_10_1007_s12274_022_4239_0
crossref_primary_10_1038_s41598_018_28014_8
crossref_primary_10_3390_cancers14061591
crossref_primary_10_1158_1078_0432_CCR_19_3717
crossref_primary_10_1038_s41598_025_94526_9
crossref_primary_10_1117_1_JMI_6_3_035004
crossref_primary_10_1364_BOE_10_006096
crossref_primary_10_3390_cancers15010213
crossref_primary_10_3390_cancers15102679
crossref_primary_10_1111_iwj_13474
crossref_primary_10_1038_s41551_021_00808_8
crossref_primary_10_1007_s11654_021_00313_z
crossref_primary_10_1364_BOE_381257
crossref_primary_10_1186_s40425_018_0488_6
crossref_primary_10_1186_s13014_018_1133_8
crossref_primary_10_1002_lsm_23161
crossref_primary_10_1016_j_otc_2024_05_003
crossref_primary_10_3390_cancers11060756
crossref_primary_10_1364_BOE_492635
crossref_primary_10_1364_BOE_432654
crossref_primary_10_1088_1742_6596_2058_1_012021
crossref_primary_10_1016_j_soc_2024_04_003
crossref_primary_10_1038_s41598_025_85678_9
crossref_primary_10_1158_1078_0432_CCR_19_0319
crossref_primary_10_1021_acsnano_2c01697
crossref_primary_10_1109_ACCESS_2019_2929508
crossref_primary_10_3390_app11198881
crossref_primary_10_1016_j_apjon_2022_100133
crossref_primary_10_1038_s41551_020_0537_6
crossref_primary_10_1117_1_JBO_24_3_036007
crossref_primary_10_1109_TBME_2020_3026683
crossref_primary_10_1016_j_cmpb_2024_108100
crossref_primary_10_1016_j_neo_2024_101118
crossref_primary_10_3390_ijerph20010159
crossref_primary_10_1002_cam4_70195
crossref_primary_10_1002_jbio_202000424
crossref_primary_10_1007_s11864_018_0585_2
crossref_primary_10_1364_BOE_10_004496
crossref_primary_10_1016_j_ejmech_2022_114555
crossref_primary_10_1080_21681163_2022_2160377
crossref_primary_10_1364_BOE_470202
crossref_primary_10_2967_jnumed_118_220426
crossref_primary_10_1016_j_jtos_2019_03_003
crossref_primary_10_1038_s41598_022_07524_6
crossref_primary_10_3390_cancers11091367
crossref_primary_10_3390_jcm8122229
crossref_primary_10_3390_cancers16223785
crossref_primary_10_1038_s41598_022_16074_w
crossref_primary_10_1117_1_JBO_24_7_071605
crossref_primary_10_3390_s22249790
crossref_primary_10_1117_1_JBO_24_1_016002
crossref_primary_10_1002_jbio_202300105
crossref_primary_10_1007_s11082_020_2218_9
crossref_primary_10_1016_j_heliyon_2023_e17218
crossref_primary_10_1109_ACCESS_2021_3068392
crossref_primary_10_3390_s19040920
crossref_primary_10_1177_09603360211024971
crossref_primary_10_1038_s41416_021_01386_x
crossref_primary_10_3390_cancers14061422
Cites_doi 10.1016/j.oraloncology.2016.04.007
10.1002/lary.25899
10.1117/1.JBO.17.7.076005
10.1145/1961189.1961199
10.1245/s10434-012-2351-1
10.1117/1.JBO.18.12.126017
10.1109/34.709601
10.1023/A:1010933404324
10.1001/jamaoto.2015.3211
10.1109/BMEI.2012.6513047
10.1158/1078-0432.CCR-06-1317
10.1007/978-1-4939-2836-1
10.1007/s40273-014-0169-3
10.1016/j.mayocp.2015.12.017
10.1097/00005537-200010000-00039
10.1117/1.JBO.20.12.126012
10.1117/1.JBO.19.1.010901
10.1158/1078-0432.CCR-14-3284
10.1054/ijom.2002.0313
10.1158/1078-0432.CCR-12-3598
10.1364/BOE.2.001514
10.1002/hed.23110
10.1007/s11307-010-0373-2
10.1117/1.JBO.19.10.106004
10.1117/12.2216553
10.1117/1.2165184
10.1158/1940-6207.CAPR-14-0097
10.1186/bcr3455
10.1111/j.1469-1809.1936.tb02137.x
10.1117/1.JBO.18.10.106016
ContentType Journal Article
Copyright 2017 American Association for Cancer Research.
Copyright American Association for Cancer Research Inc Sep 15, 2017
Copyright_xml – notice: 2017 American Association for Cancer Research.
– notice: Copyright American Association for Cancer Research Inc Sep 15, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T5
7TO
7U9
8FD
FR3
H94
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1158/1078-0432.CCR-17-0906
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 5436
ExternalDocumentID 10.1158/1078-0432.ccr-17-0906
PMC5649622
28611203
10_1158_1078_0432_CCR_17_0906
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R21 CA120536
– fundername: NCI NIH HHS
  grantid: R21 CA176684
– fundername: NCI NIH HHS
  grantid: R01 CA204254
– fundername: NCI NIH HHS
  grantid: R01 CA156775
GroupedDBID ---
18M
29B
2FS
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ADBBV
ADCOW
ADNWM
AENEX
AFHIN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
QTD
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WOQ
YKV
ACSVP
AFOSN
AFUMD
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7QO
7T5
7TO
7U9
8FD
FR3
H94
P64
7X8
5PM
.55
.GJ
1CY
3O-
4H-
ADTOC
AETEA
AFFNX
AI.
C1A
H~9
J5H
MVM
OHT
UDS
UNPAY
VH1
WHG
X7M
XJT
ZCG
ZGI
ID FETCH-LOGICAL-c439t-84c310c8cfa5444fc3d0a6eab94e56d13474ebcd5b8b91e8e95658b7e82ea3993
IEDL.DBID UNPAY
ISSN 1078-0432
1557-3265
IngestDate Sun Oct 26 01:58:07 EDT 2025
Thu Aug 21 18:12:04 EDT 2025
Fri Sep 05 07:10:13 EDT 2025
Sat Jul 26 02:18:47 EDT 2025
Wed Feb 19 02:42:47 EST 2025
Wed Oct 01 05:57:14 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License 2017 American Association for Cancer Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-84c310c8cfa5444fc3d0a6eab94e56d13474ebcd5b8b91e8e95658b7e82ea3993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://clincancerres.aacrjournals.org/content/clincanres/23/18/5426.full.pdf
PMID 28611203
PQID 1983416547
PQPubID 2046235
PageCount 11
ParticipantIDs unpaywall_primary_10_1158_1078_0432_ccr_17_0906
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5649622
proquest_miscellaneous_1909745164
proquest_journals_1983416547
pubmed_primary_28611203
crossref_primary_10_1158_1078_0432_CCR_17_0906
crossref_citationtrail_10_1158_1078_0432_CCR_17_0906
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-15
PublicationDateYYYYMMDD 2017-09-15
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Philadelphia
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2017
Publisher American Association for Cancer Research Inc
Publisher_xml – name: American Association for Cancer Research Inc
References Tin Kam (2022061107221515800_bib30) 1998; 20
Lu (2022061107221515800_bib19) 2015; 20
Hellebust (2022061107221515800_bib27) 2013; 18
Lu (2022061107221515800_bib17) 2014; 19
Pike (2022061107221515800_bib18) 2015
Good (2022061107221515800_bib33) 2013
Vila (2022061107221515800_bib22) 2012; 19
DiNardo (2022061107221515800_bib8) 2000; 110
Sutton (2022061107221515800_bib4) 2003; 32
Lu (2022061107221515800_bib15) 2014; 19
Marur (2022061107221515800_bib2) 2016; 91
Hinni (2022061107221515800_bib5) 2013; 35
Muldoon (2022061107221515800_bib21) 2011; 9999
Laughney (2022061107221515800_bib36) 2013; 15
Rosenthal (2022061107221515800_bib12) 2015; 21
Dobbs (2022061107221515800_bib24) 2013; 18
2022061107221515800_bib35
Wissinger (2022061107221515800_bib1) 2014; 32
Luo (2022061107221515800_bib20) 2014; 7
2022061107221515800_bib34
Farah (2022061107221515800_bib11) 2014
Haddad (2022061107221515800_bib3) 2008; 359
Poh (2022061107221515800_bib9) 2006; 12
Poh (2022061107221515800_bib10) 2016; 142
Keereweer (2022061107221515800_bib6) 2011; 13
Akbari (2022061107221515800_bib16) 2012; 17
Park (2022061107221515800_bib26) 2015
Chang (2022061107221515800_bib31) 2011; 2
Iqbal (2022061107221515800_bib13) 2016; 57
Sun (2022061107221515800_bib25)
Keereweer (2022061107221515800_bib14) 2013; 19
Subhash (2022061107221515800_bib28) 2006; 11
Langsner (2022061107221515800_bib23) 2011; 2
Du (2022061107221515800_bib7) 2016; 126
Breiman (2022061107221515800_bib32) 2001; 45
Fisher (2022061107221515800_bib29) 1936; 7
24842794 - Pharmacoeconomics. 2014 Sep;32(9):865-82
25139295 - Cancer Prev Res (Phila). 2014 Oct;7(10):1035-44
12653229 - Int J Oral Maxillofac Surg. 2003 Feb;32(1):30-4
23915805 - Breast Cancer Res. 2013;15(4):R61
18784104 - N Engl J Med. 2008 Sep 11;359(11):1143-54
26769431 - JAMA Otolaryngol Head Neck Surg. 2016 Mar;142(3):209-16
22941934 - Head Neck. 2013 Sep;35(9):1362-70
27113207 - Laryngoscope. 2016 Aug;126(8):1768-75
20617389 - Mol Imaging Biol. 2011 Apr;13(2):199-207
22492225 - Ann Surg Oncol. 2012 Oct;19(11):3534-9
26720879 - J Biomed Opt. 2015 ;20(12 ):126012
26285052 - IEEE Trans Biomed Eng. 2016 Mar;63(3):653-63
25277147 - J Biomed Opt. 2014;19(10):106004
11037842 - Laryngoscope. 2000 Oct;110(10 Pt 1):1773-6
25904751 - Clin Cancer Res. 2015 Aug 15;21(16):3658-66
27208842 - Oral Oncol. 2016 Jun;57:32-9
21698015 - Biomed Opt Express. 2011 Jun 1;2(6):1514-23
17121891 - Clin Cancer Res. 2006 Nov 15;12(22):6716-22
25545703 - Head Neck. 2016 Jun;38(6):832-9
24362926 - J Biomed Opt. 2013 Dec;18(12):126017
22894488 - J Biomed Opt. 2012 Jul;17(7):076005
23674494 - Clin Cancer Res. 2013 Jul 15;19(14):3745-54
21413101 - Head Neck. 2012 Mar;34(3):305-12
24165742 - J Biomed Opt. 2013 Oct;18(10):106016
24441941 - J Biomed Opt. 2014 Jan;19(1):10901
27656034 - Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9788:null
16526895 - J Biomed Opt. 2006 Jan-Feb;11(1):014018
26944243 - Mayo Clin Proc. 2016 Mar;91(3):386-96
References_xml – volume: 359
  start-page: 1143
  year: 2008
  ident: 2022061107221515800_bib3
  article-title: Recent advances in head and neck cancer
  publication-title: Indian J Plast Surg
– volume: 57
  start-page: 32
  year: 2016
  ident: 2022061107221515800_bib13
  article-title: Image guided surgery in the management of head and neck cancer
  publication-title: Oral Oncol
  doi: 10.1016/j.oraloncology.2016.04.007
– volume: 126
  start-page: 1768
  year: 2016
  ident: 2022061107221515800_bib7
  article-title: Refining the utility and role of frozen section in head and neck squamous cell carcinoma resection
  publication-title: Laryngoscope
  doi: 10.1002/lary.25899
– volume: 17
  start-page: 076005
  year: 2012
  ident: 2022061107221515800_bib16
  article-title: Hyperspectral imaging and quantitative analysis for prostate cancer detection
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.17.7.076005
– volume: 2
  start-page: 1
  year: 2011
  ident: 2022061107221515800_bib31
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 19
  start-page: 3534
  year: 2012
  ident: 2022061107221515800_bib22
  article-title: Discrimination of benign and neoplastic mucosa with a high-resolution microendoscope (HRME) in head and neck cancer
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-012-2351-1
– volume: 18
  start-page: 126017
  year: 2013
  ident: 2022061107221515800_bib27
  article-title: Vital-dye-enhanced multimodal imaging of neoplastic progression in a mouse model of oral carcinogenesis
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.18.12.126017
– volume: 20
  start-page: 832
  year: 1998
  ident: 2022061107221515800_bib30
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
– volume: 45
  start-page: 5
  year: 2001
  ident: 2022061107221515800_bib32
  article-title: Random forests.
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 142
  start-page: 209
  year: 2016
  ident: 2022061107221515800_bib10
  article-title: Fluorescence visualization–guided surgery for early-stage oral cancer
  publication-title: JAMA Otolaryngol Head Neck Surg
  doi: 10.1001/jamaoto.2015.3211
– ident: 2022061107221515800_bib34
  doi: 10.1109/BMEI.2012.6513047
– volume: 12
  start-page: 6716
  year: 2006
  ident: 2022061107221515800_bib9
  article-title: Fluorescence visualization detection of field alterations in tumor margins of oral cancer patients
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-1317
– start-page: 321
  volume-title: Procedures for acquiring hyperspectral image cubes. Hyperspectral imaging technology in food and agriculture
  year: 2015
  ident: 2022061107221515800_bib26
  doi: 10.1007/978-1-4939-2836-1
– volume: 32
  start-page: 865
  year: 2014
  ident: 2022061107221515800_bib1
  article-title: The economic burden of head and neck cancer: a systematic literature review
  publication-title: PharmacoEconomics
  doi: 10.1007/s40273-014-0169-3
– volume: 91
  start-page: 386
  year: 2016
  ident: 2022061107221515800_bib2
  article-title: Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2015.12.017
– start-page: 832
  year: 2014
  ident: 2022061107221515800_bib11
  article-title: Improved surgical margin definition by narrow band imaging for resection of oral squamous cell carcinoma: a prospective gene expression profiling study
  publication-title: Head Neck
– volume: 110
  start-page: 1773
  year: 2000
  ident: 2022061107221515800_bib8
  article-title: Accuracy, utility, and cost of frozen section margins in head and neck cancer surgery
  publication-title: Laryngoscope
  doi: 10.1097/00005537-200010000-00039
– volume: 20
  start-page: 126012
  year: 2015
  ident: 2022061107221515800_bib19
  article-title: Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.20.12.126012
– volume: 19
  start-page: 10901
  year: 2014
  ident: 2022061107221515800_bib15
  article-title: Medical hyperspectral imaging: a review
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.19.1.010901
– volume: 21
  start-page: 3658
  year: 2015
  ident: 2022061107221515800_bib12
  article-title: Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-3284
– volume: 9999
  start-page: 1
  year: 2011
  ident: 2022061107221515800_bib21
  article-title: Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope
  publication-title: Head Neck
– volume-title: Permutation tests: a practical guide to resampling methods for testing hypotheses
  year: 2013
  ident: 2022061107221515800_bib33
– volume: 32
  start-page: 30
  year: 2003
  ident: 2022061107221515800_bib4
  article-title: The prognostic implications of the surgical margin in oral squamous cell carcinoma
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1054/ijom.2002.0313
– volume: 19
  start-page: 3745
  year: 2013
  ident: 2022061107221515800_bib14
  article-title: Optical image-guided cancer surgery: challenges and limitations
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-12-3598
– volume: 2
  start-page: 1514
  year: 2011
  ident: 2022061107221515800_bib23
  article-title: Wide-field imaging of fluorescent deoxy-glucose in ex vivo malignant and normal breast tissue
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.2.001514
– start-page: 1
  year: 2015
  ident: 2022061107221515800_bib18
  article-title: A minimum spanning Forest based method for noninvasive cancer detection with hyperspectral imaging
  publication-title: IEEE Trans Biomed Eng
– volume: 35
  start-page: 1362
  year: 2013
  ident: 2022061107221515800_bib5
  article-title: Surgical margins in head and neck cancer: a contemporary review
  publication-title: Head Neck
  doi: 10.1002/hed.23110
– volume: 13
  start-page: 199
  year: 2011
  ident: 2022061107221515800_bib6
  article-title: Optical image-guided surgery—where do we stand?
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-010-0373-2
– volume: 19
  start-page: 106004
  year: 2014
  ident: 2022061107221515800_bib17
  article-title: Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.19.10.106004
– ident: 2022061107221515800_bib35
  doi: 10.1117/12.2216553
– volume-title: Preprocessing of hyperspectral images. Hyperspectral imaging for food quality analysis and control
  ident: 2022061107221515800_bib25
– volume: 11
  start-page: 014018
  year: 2006
  ident: 2022061107221515800_bib28
  article-title: Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands
  publication-title: J Biomed Opt
  doi: 10.1117/1.2165184
– volume: 7
  start-page: 1035
  year: 2014
  ident: 2022061107221515800_bib20
  article-title: Widefield optical imaging of changes in uptake of glucose and tissue extracellular pH in head and neck cancer
  publication-title: Cancer Prev Res (Phila)
  doi: 10.1158/1940-6207.CAPR-14-0097
– volume: 15
  start-page: R61
  year: 2013
  ident: 2022061107221515800_bib36
  article-title: Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr3455
– volume: 7
  start-page: 179
  year: 1936
  ident: 2022061107221515800_bib29
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann Eugen
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 18
  start-page: 106016
  year: 2013
  ident: 2022061107221515800_bib24
  article-title: Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.18.10.106016
– reference: 25139295 - Cancer Prev Res (Phila). 2014 Oct;7(10):1035-44
– reference: 27656034 - Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9788:null
– reference: 18784104 - N Engl J Med. 2008 Sep 11;359(11):1143-54
– reference: 25545703 - Head Neck. 2016 Jun;38(6):832-9
– reference: 26944243 - Mayo Clin Proc. 2016 Mar;91(3):386-96
– reference: 22492225 - Ann Surg Oncol. 2012 Oct;19(11):3534-9
– reference: 24842794 - Pharmacoeconomics. 2014 Sep;32(9):865-82
– reference: 22941934 - Head Neck. 2013 Sep;35(9):1362-70
– reference: 26720879 - J Biomed Opt. 2015 ;20(12 ):126012
– reference: 16526895 - J Biomed Opt. 2006 Jan-Feb;11(1):014018
– reference: 12653229 - Int J Oral Maxillofac Surg. 2003 Feb;32(1):30-4
– reference: 21698015 - Biomed Opt Express. 2011 Jun 1;2(6):1514-23
– reference: 25904751 - Clin Cancer Res. 2015 Aug 15;21(16):3658-66
– reference: 25277147 - J Biomed Opt. 2014;19(10):106004
– reference: 23915805 - Breast Cancer Res. 2013;15(4):R61
– reference: 22894488 - J Biomed Opt. 2012 Jul;17(7):076005
– reference: 27113207 - Laryngoscope. 2016 Aug;126(8):1768-75
– reference: 11037842 - Laryngoscope. 2000 Oct;110(10 Pt 1):1773-6
– reference: 24441941 - J Biomed Opt. 2014 Jan;19(1):10901
– reference: 20617389 - Mol Imaging Biol. 2011 Apr;13(2):199-207
– reference: 21413101 - Head Neck. 2012 Mar;34(3):305-12
– reference: 26769431 - JAMA Otolaryngol Head Neck Surg. 2016 Mar;142(3):209-16
– reference: 23674494 - Clin Cancer Res. 2013 Jul 15;19(14):3745-54
– reference: 27208842 - Oral Oncol. 2016 Jun;57:32-9
– reference: 26285052 - IEEE Trans Biomed Eng. 2016 Mar;63(3):653-63
– reference: 24165742 - J Biomed Opt. 2013 Oct;18(10):106016
– reference: 17121891 - Clin Cancer Res. 2006 Nov 15;12(22):6716-22
– reference: 24362926 - J Biomed Opt. 2013 Dec;18(12):126017
SSID ssj0014104
Score 2.5593328
Snippet Purpose: This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of...
This study intends to investigate the feasibility of using hyperspectral imaging (HSI) to detect and delineate cancers in fresh, surgical specimens of patients...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5426
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Cancer
Diagnostic Imaging - methods
Diagnostic Imaging - standards
Diagnostic software
Diagnostic systems
Experimental design
Feasibility studies
Female
Fluorescence
Head & neck cancer
Head and Neck Neoplasms - diagnosis
Head and Neck Neoplasms - surgery
Humans
Hyperspectral imaging
Image detection
Image Processing, Computer-Assisted
Learning algorithms
Male
Medical personnel
Middle Aged
Models, Theoretical
Optical Imaging - methods
Optical Imaging - standards
Patients
Prognosis
Reflectance
Reproducibility of Results
Research Design
ROC Curve
Sensitivity and Specificity
Spectral signatures
Surgery
Surgical instruments
Workflow
Title Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/28611203
https://www.proquest.com/docview/1983416547
https://www.proquest.com/docview/1909745164
https://pubmed.ncbi.nlm.nih.gov/PMC5649622
https://clincancerres.aacrjournals.org/content/clincanres/23/18/5426.full.pdf
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1557-3265
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014104
  issn: 1557-3265
  databaseCode: KQ8
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1557-3265
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0014104
  issn: 1557-3265
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1557-3265
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014104
  issn: 1557-3265
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4anQS8cL8ExmQkXpPGrp06j1Nh6kCrgFFpPAXbccS04lZdIgS_nmPnoo1JICSebSs5Phd_xz4XgFdalIKHbBxB_dVNmsZasQkqXlnxEk9EaUO1z0U2X_K3p-J0B477XBifD2g8vb41RaKU2XZ7ehGe9X38NhrjfhrOGbPJmMqxwJMm8TfWyaasbsBuJhCaj2B3uXh_8LmNO5SxLz8X6qcKVCyWiS6jhwo5HsYTY7YxWu40902QLp9V1wDo9TjKW43bqB_f1Wp16ZA6vAuuJ6-NTTlPmlon5udvlR__G_334E4HZ8lBK3_3Yce6B3DzuHuwfwhfXts6BHs5sq7IHAWKKFeShTXnZBZ-gJw5ctJsgwEmJxtrfLuBCxJCGciHRrmQBYc2mczRZW4zQ3EXyNG30F_pESwP33yazeOuqUNsEPvUseQGEaWRplKCc16ZSZmqzCqdcyuy0me2cqtNKbTUObXSogMnpJ5ayazyaOoxjNza2adAEEzZnOfcaKY51TpPrcyoMZxVlda0ioD37CtMV_HcN95YFcHzEbLwXC8814vZ7GNBp4XnegTJsGzTlvz424K9XjaKnlsFzSUCBN_aOYKXwzDqrn-QUc6uGz8nRXdOoMcawZNWlIYvMiSFsnQSwfSKkA0TfF3wqyPu7GuoDy4ynmeMRTAexPEPhKC894Q8--cVz-E2S4O2xFTswajeNvYForRa76N_cvRuv9PAX9ESO58
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB_qFdQXv7WrVSL4uh_JJXvZx3JaTqGHWg_q05pks7T0zB3XW4r-9U6yH7QWFMHnTNidzCTzm2Q-AN5oUQkesnEE9Vc3WRZrxca48aqaV2gRpQ3VPuf5bME_nIiTHTjqc2F8PqDx_PrWFIlSZtOt6UV41vfx23gY92RIk7JxSmUq0NIk_sY6WVf1LdjNBULzEewu5h8PvrZxhzL25edC_VSBG4vlosvooUKmw3hizCbGkzsrfBOkq7bqBgC9GUd5p3Fr9eNSLZdXjNThfXA9e21synnSbHVifv5W-fG_8f8A7nVwlhy0-vcQdqx7BLePugf7x_Dtrd2GYC9HVjWZoUIR5Soyt-acTMMPkDNHjptNOIDJ8doa327ggoRQBvKpUS5kweGZTGboMreZobgK5P330F_pCSwO332ZzuKuqUNsEPtsY8kNIkojTa0E57w24ypTuVW64Fbklc9s5VabSmipC2qlRQdOSD2xklnl0dRTGLmVs3tAEEzZghfcaKY51brIrMypMZzVtda0joD34itNV_HcN95YlsHzEbL0Ui-91Mvp9HNJJ6WXegTJMG3dlvz424T9XjfKXlolLSQCBN_aOYLXwzDuXf8go5xdNZ4mQ3dOoMcawbNWlYYvMmSFsmwcweSakg0Evi749RF3dhrqg4ucFzljEaSDOv6BEdT3npHn_zzjBdxtL7t9mv8-jLabxr5ElLbVr7q99wtwNDqd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Head+and+Neck+Cancer+in+Surgical+Specimens+Using+Quantitative+Hyperspectral+Imaging&rft.jtitle=Clinical+cancer+research&rft.au=Lu%2C+Guolan&rft.au=Little%2C+James+V.&rft.au=Wang%2C+Xu&rft.au=Zhang%2C+Hongzheng&rft.date=2017-09-15&rft.issn=1078-0432&rft.volume=23&rft.issue=18&rft.spage=5426&rft.epage=5436&rft_id=info:doi/10.1158%2F1078-0432.CCR-17-0906&rft_id=info%3Apmid%2F28611203&rft.externalDocID=PMC5649622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon