A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints
This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semidefinite, it is shown that the proposed neural network is stable at a Karush...
Saved in:
Published in | IEEE transactions on neural networks Vol. 19; no. 8; pp. 1340 - 1353 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.08.2008
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 1045-9227 1941-0093 1941-0093 |
DOI | 10.1109/TNN.2008.2000273 |
Cover
Abstract | This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semidefinite, it is shown that the proposed neural network is stable at a Karush-Kuhn-Tucker point in the sense of Lyapunov and its output trajectory is globally convergent to a minimum solution. Compared with variety of the existing projection neural networks, including their extensions and modification, for solving such nonlinearly constrained optimization problems, it is shown that the proposed neural network can solve constrained convex optimization problems and a class of constrained nonconvex optimization problems and there is no restriction on the initial point. Simulation results show the effectiveness of the proposed neural network in solving nonlinearly constrained optimization problems. |
---|---|
AbstractList | This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semidefinite, it is shown that the proposed neural network is stable at a Karush-Kuhn-Tucker point in the sense of Lyapunov and its output trajectory is globally convergent to a minimum solution. Compared with variety of the existing projection neural networks, including their extensions and modification, for solving such nonlinearly constrained optimization problems, it is shown that the proposed neural network can solve constrained convex optimization problems and a class of constrained nonconvex optimization problems and there is no restriction on the initial point. Simulation results show the effectiveness of the proposed neural network in solving nonlinearly constrained optimization problems.This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semidefinite, it is shown that the proposed neural network is stable at a Karush-Kuhn-Tucker point in the sense of Lyapunov and its output trajectory is globally convergent to a minimum solution. Compared with variety of the existing projection neural networks, including their extensions and modification, for solving such nonlinearly constrained optimization problems, it is shown that the proposed neural network can solve constrained convex optimization problems and a class of constrained nonconvex optimization problems and there is no restriction on the initial point. Simulation results show the effectiveness of the proposed neural network in solving nonlinearly constrained optimization problems. This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semidefinite, it is shown that the proposed neural network is stable at a Karush-Kuhn-Tucker point in the sense of Lyapunov and its output trajectory is globally convergent to a minimum solution. Compared with variety of the existing projection neural networks, including their extensions and modification, for solving such nonlinearly constrained optimization problems, it is shown that the proposed neural network can solve constrained convex optimization problems and a class of constrained nonconvex optimization problems and there is no restriction on the initial point. Simulation results show the effectiveness of the proposed neural network in solving nonlinearly constrained optimization problems. |
Author | Gang Feng Jun Wang Youshen Xia |
Author_xml | – sequence: 1 givenname: Youshen surname: Xia fullname: Xia, Youshen email: ysxia2001@yahoo.com organization: College of Mathematics and Computer Science, Fuzhou University, China. ysxia2001@yahoo.com – sequence: 2 givenname: Gang surname: Feng fullname: Feng, Gang – sequence: 3 givenname: Jun surname: Wang fullname: Wang, Jun |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20562025$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18701366$$D View this record in MEDLINE/PubMed |
BookMark | eNp90s1rFDEYBvAgFfuhd0GQXKpepiaTr5ljWawWyla04jFkZt_YaDbZJpmW-teb7a57EOwlbw6_J4SX5xDthRgAoZeUnFBK-vdX8_lJS0i3Pkir2BN0QHtOG0J6tlfvhIumb1u1jw5z_kkI5YLIZ2ifdopQJuUBuj7F83gLHn-BcUoJQsFzmJLxdZS7mH5hGxP-Gv2tCz8qDd4FMAlfropbut-muBjw5xQHD8uMv7tyjc8D3EzGu3KPZzHkkowLJT9HT63xGV5s5xH6dvbhavapubj8eD47vWhGzvrSKBiktUr00IKyQnZMdCNfMGsEHzpumQDL2Shlx5kYiJWGDYJTIsyCDgwYO0JvN--uUryZIBe9dHkE702AOGXdqboCKVpR5ZtHpex5qyRRFb57FFKpKKe9EF2lr7d0Gpaw0Kvklibd678Lr-B4C0wejbfJhNHlnWuJkC15-JzcuDHFnBNYPbrysO31Pr2mRK8boGsD9LoBetuAGiT_BHd_-H_k1SbiAGDHuaCk44L9AX4gupg |
CODEN | ITNNEP |
CitedBy_id | crossref_primary_10_1016_j_neucom_2022_03_026 crossref_primary_10_1109_TCYB_2016_2611529 crossref_primary_10_1002_cplx_21673 crossref_primary_10_1002_cta_657 crossref_primary_10_1109_TNNLS_2016_2575860 crossref_primary_10_1109_TETCI_2024_3369667 crossref_primary_10_1007_s00521_019_04391_7 crossref_primary_10_1016_j_neucom_2020_02_100 crossref_primary_10_1109_TKDE_2019_2893266 crossref_primary_10_1109_TNN_2010_2045129 crossref_primary_10_1016_j_neunet_2016_01_014 crossref_primary_10_1016_j_neunet_2013_03_010 crossref_primary_10_1049_iet_pel_2019_1261 crossref_primary_10_1016_j_neunet_2023_08_014 crossref_primary_10_1049_sil2_12046 crossref_primary_10_3390_electronics10131557 crossref_primary_10_1002_acs_1075 crossref_primary_10_1177_0142331220911821 crossref_primary_10_1016_j_neucom_2012_10_026 crossref_primary_10_3390_en15249486 crossref_primary_10_1016_j_neucom_2013_04_041 crossref_primary_10_1109_TNNLS_2019_2927282 crossref_primary_10_1088_1757_899X_297_1_012042 crossref_primary_10_1016_j_compchemeng_2022_107898 crossref_primary_10_1016_j_neucom_2013_09_028 crossref_primary_10_1016_j_neucom_2014_03_072 crossref_primary_10_1109_TIE_2011_2169636 crossref_primary_10_1016_j_neunet_2021_08_001 crossref_primary_10_1002_acs_3303 crossref_primary_10_1016_j_neunet_2023_08_047 crossref_primary_10_1109_TCST_2010_2054092 crossref_primary_10_1109_TNNLS_2015_2411671 crossref_primary_10_1016_j_neucom_2018_07_005 crossref_primary_10_1109_TNNLS_2018_2884788 crossref_primary_10_1016_j_neucom_2017_01_010 crossref_primary_10_1016_j_neucom_2016_12_064 crossref_primary_10_1016_j_neunet_2013_11_007 crossref_primary_10_1109_TNNLS_2015_2500618 crossref_primary_10_1007_s11063_022_10901_x crossref_primary_10_1016_j_neucom_2021_03_082 crossref_primary_10_1109_TCYB_2021_3090204 crossref_primary_10_3233_JIFS_182953 crossref_primary_10_1016_j_neunet_2015_03_008 crossref_primary_10_1109_TNNLS_2019_2918984 crossref_primary_10_1109_TCYB_2020_3042519 crossref_primary_10_1016_j_neucom_2015_11_014 crossref_primary_10_1109_TAC_2009_2023963 crossref_primary_10_1016_j_neunet_2021_10_007 crossref_primary_10_1109_TSMC_2015_2505687 crossref_primary_10_1002_oca_869 crossref_primary_10_1007_s10489_017_1072_3 crossref_primary_10_1016_j_engappai_2020_104115 crossref_primary_10_1016_j_neunet_2022_06_023 crossref_primary_10_1016_j_enconman_2013_11_004 crossref_primary_10_1007_s11063_019_10086_w crossref_primary_10_1016_j_neucom_2016_02_015 crossref_primary_10_1109_TNNLS_2014_2345734 crossref_primary_10_1109_TNNLS_2019_2927639 crossref_primary_10_1109_TNNLS_2016_2570257 crossref_primary_10_1109_TNNLS_2015_2442437 crossref_primary_10_1049_iet_cta_2017_0760 crossref_primary_10_1137_15M105361X crossref_primary_10_1016_j_neucom_2014_12_007 crossref_primary_10_1016_j_neunet_2015_09_013 crossref_primary_10_1016_j_neunet_2018_10_010 crossref_primary_10_1109_TII_2012_2205582 crossref_primary_10_1016_j_neunet_2017_05_004 crossref_primary_10_1109_TNN_2011_2169682 crossref_primary_10_1109_TNNLS_2018_2814824 crossref_primary_10_1109_TNNLS_2013_2278427 crossref_primary_10_1111_exsy_12498 crossref_primary_10_1016_j_matcom_2015_09_013 crossref_primary_10_1109_TNNLS_2013_2244908 crossref_primary_10_1016_j_neucom_2014_08_014 crossref_primary_10_1016_j_neunet_2012_02_007 crossref_primary_10_1016_j_neucom_2015_09_103 crossref_primary_10_1109_TIE_2020_2970635 crossref_primary_10_1109_TNNLS_2013_2275948 crossref_primary_10_1098_rsta_2022_0405 crossref_primary_10_1109_TNNLS_2016_2524619 crossref_primary_10_1109_TNNLS_2021_3082528 crossref_primary_10_1109_TNNLS_2015_2476348 crossref_primary_10_1016_j_neunet_2014_09_009 crossref_primary_10_1002_nme_7670 crossref_primary_10_1007_s00521_018_3422_4 crossref_primary_10_1007_s11432_009_0168_8 crossref_primary_10_1007_s10957_013_0459_5 crossref_primary_10_1109_TNNLS_2014_2334364 crossref_primary_10_1016_j_neunet_2019_02_002 crossref_primary_10_1007_s00521_023_09203_7 crossref_primary_10_1109_TNNLS_2020_3009201 crossref_primary_10_1016_j_neucom_2011_04_026 crossref_primary_10_1016_j_neucom_2020_12_045 crossref_primary_10_1007_s40747_022_00884_6 crossref_primary_10_1109_TNNLS_2020_3027471 crossref_primary_10_1016_j_neucom_2015_04_033 crossref_primary_10_1109_TNNLS_2017_2676046 crossref_primary_10_1109_TAC_2023_3319132 crossref_primary_10_1109_TNNLS_2023_3340730 crossref_primary_10_1109_TVT_2022_3187494 crossref_primary_10_1016_j_neucom_2024_127670 crossref_primary_10_1016_j_neunet_2014_03_006 crossref_primary_10_1016_j_asoc_2019_01_002 crossref_primary_10_1016_j_neunet_2022_03_033 crossref_primary_10_1109_TNNLS_2011_2181867 crossref_primary_10_1109_TNNLS_2019_2944388 crossref_primary_10_1109_TNNLS_2015_2404773 crossref_primary_10_1109_TNNLS_2013_2292893 crossref_primary_10_1109_TNN_2011_2167760 crossref_primary_10_1007_s00521_019_04283_w crossref_primary_10_1016_j_neucom_2021_07_036 crossref_primary_10_1109_TNNLS_2015_2425734 crossref_primary_10_1007_s11063_013_9306_9 crossref_primary_10_1109_ACCESS_2020_2990298 |
Cites_doi | 10.1109/72.207617 10.1109/82.160169 10.1137/S1052623403426556 10.1162/0899766053019926 10.1007/s002459900114 10.1137/S0363012993255880 10.1016/j.matcom.2004.03.001 10.1109/72.286888 10.1109/72.883412 10.1007/BF01535411 10.1023/B:NEPL.0000023421.60208.30 10.1109/TNN.2004.841779 10.1109/31.1783 10.1109/TCS.1986.1085953 10.1016/j.neunet.2007.01.001 10.1023/A:1004628822745 10.1109/TNN.2006.879774 10.1162/089976604322860730 10.1007/11427391_111 10.1109/72.279195 10.1109/81.995659 10.1137/S1052623496305560 10.1137/S0363012994268655 10.1109/TNN.2004.824425 10.1109/72.485686 10.1109/TCSI.2004.830694 10.1016/S0096-3003(03)00309-6 10.1109/31.52732 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 INIST-CNRS |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D 7X8 7QO P64 |
DOI | 10.1109/TNN.2008.2000273 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Computer Science Applied Sciences |
EISSN | 1941-0093 |
EndPage | 1353 |
ExternalDocumentID | 18701366 20562025 10_1109_TNN_2008_2000273 4510845 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D 7X8 7QO P64 |
ID | FETCH-LOGICAL-c439t-7eb6ff759e2e7f568358c4d3fa54b84f35ef43c668435b0f6a3b54105ad1b3e33 |
IEDL.DBID | RIE |
ISSN | 1045-9227 1941-0093 |
IngestDate | Fri Sep 05 09:09:56 EDT 2025 Fri Sep 05 08:15:15 EDT 2025 Fri Sep 05 02:59:06 EDT 2025 Mon Jul 21 06:00:55 EDT 2025 Mon Jul 21 09:17:22 EDT 2025 Wed Oct 01 03:24:47 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Tue Aug 26 16:47:31 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Keywords | Recurrent neural nets nonlinear inequality constraints Non convex programming Global convergence Lagrangian recurrent neural network Lyapunov method nonconvex programming Nonlinear problems Non linear programming Network management Neural network Convex programming Constrained optimization nonsmooth analysis Inequality constraint Kuhn Tucker method Hessian matrices Non convex analysis Lyapunov function Mathematical programming |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-7eb6ff759e2e7f568358c4d3fa54b84f35ef43c668435b0f6a3b54105ad1b3e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18701366 |
PQID | 1671419558 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_18701366 crossref_citationtrail_10_1109_TNN_2008_2000273 proquest_miscellaneous_1671419558 crossref_primary_10_1109_TNN_2008_2000273 ieee_primary_4510845 pascalfrancis_primary_20562025 proquest_miscellaneous_875066525 proquest_miscellaneous_69427607 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-08-01 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | IEEE transactions on neural networks |
PublicationTitleAbbrev | TNN |
PublicationTitleAlternate | IEEE Trans Neural Netw |
PublicationYear | 2008 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref11 beyer (ref27) 2000; 2 ref32 ref10 ref17 ref19 kalouptisidis (ref6) 1997 ref18 bazaraa (ref1) 1993 xia (ref16) 1996; 18 kinderlehrer (ref2) 1980 ref24 ref23 ref26 ref25 sun (ref28) 2005 ref20 ref22 ref21 ref29 ref8 cichocki (ref7) 1993 ref9 ref4 ref3 ref5 ortega (ref33) 1970 |
References_xml | – ident: ref14 doi: 10.1109/72.207617 – year: 1980 ident: ref2 publication-title: An Introduction to Variational Inequalities and Their Applications – ident: ref13 doi: 10.1109/82.160169 – ident: ref5 doi: 10.1137/S1052623403426556 – ident: ref30 doi: 10.1162/0899766053019926 – ident: ref3 doi: 10.1007/s002459900114 – year: 1970 ident: ref33 publication-title: Iterative Solution of Nonlinear Equations in Several Variables – year: 1993 ident: ref1 publication-title: Nonlinear Programming Theory and Algorithms – ident: ref12 doi: 10.1137/S0363012993255880 – ident: ref34 doi: 10.1016/j.matcom.2004.03.001 – ident: ref10 doi: 10.1109/72.286888 – ident: ref17 doi: 10.1109/72.883412 – ident: ref26 doi: 10.1007/BF01535411 – ident: ref35 doi: 10.1023/B:NEPL.0000023421.60208.30 – volume: 18 year: 1996 ident: ref16 article-title: ode methods for solving convex programming problems with bounded variables publication-title: Chin J Numer Math Appl (English Edition) – ident: ref21 doi: 10.1109/TNN.2004.841779 – ident: ref9 doi: 10.1109/31.1783 – ident: ref8 doi: 10.1109/TCS.1986.1085953 – ident: ref24 doi: 10.1016/j.neunet.2007.01.001 – ident: ref32 doi: 10.1023/A:1004628822745 – ident: ref22 doi: 10.1109/TNN.2006.879774 – year: 1993 ident: ref7 publication-title: Neural Networks for Optimization and Signal Processing – year: 1997 ident: ref6 publication-title: Signal Processing Systems Theory and Design – ident: ref19 doi: 10.1162/089976604322860730 – start-page: 694 year: 2005 ident: ref28 publication-title: Lecture Notes in Computer Science doi: 10.1007/11427391_111 – ident: ref25 doi: 10.1109/72.279195 – ident: ref18 doi: 10.1109/81.995659 – ident: ref31 doi: 10.1137/S1052623496305560 – ident: ref4 doi: 10.1137/S0363012994268655 – ident: ref23 doi: 10.1109/TNN.2004.824425 – volume: 2 start-page: 953 year: 2000 ident: ref27 article-title: tabu learning: a neural network search method for solving nonconvex optimization problems publication-title: Proc IEEE Int Joint Conf Neural Netw – ident: ref15 doi: 10.1109/72.485686 – ident: ref20 doi: 10.1109/TCSI.2004.830694 – ident: ref29 doi: 10.1016/S0096-3003(03)00309-6 – ident: ref11 doi: 10.1109/31.52732 |
SSID | ssj0014506 |
Score | 2.3281102 |
Snippet | This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1340 |
SubjectTerms | Algorithms Application software Applied sciences Artificial Intelligence Computer science; control theory; systems Computer Simulation Computer systems and distributed systems. User interface Connectionism. Neural networks Constraint optimization Constraints Convergence Design engineering Exact sciences and technology Global convergence Inequalities Lagrangian functions Linear matrix inequalities Linear programming Models, Theoretical Neural networks Neural Networks (Computer) nonconvex programming Nonlinear Dynamics nonlinear inequality constraints Nonlinearity nonsmooth analysis Optimization Pattern Recognition, Automated - methods Projection recurrent neural network Recurrent neural networks Software Very large scale integration |
Title | A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints |
URI | https://ieeexplore.ieee.org/document/4510845 https://www.ncbi.nlm.nih.gov/pubmed/18701366 https://www.proquest.com/docview/1671419558 https://www.proquest.com/docview/69427607 https://www.proquest.com/docview/875066525 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0093 dateEnd: 20111231 omitProxy: false ssIdentifier: ssj0014506 issn: 1045-9227 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL3a9gQPDFo-wscwEkJCIm2T-CN-rBDTQFpBsIm9VXbiaIguQWuKNH4999pJBogi3ir1tnXqk_j43utzAJ5zm1Z0ADO2lUhjjktqrEtr4lSmiVUleZVTQv94IY9O-bszcbYDr4azMM4533zmJvTS1_LLpthQqmzKEUA5F7uwq5QOZ7WGigEX3kcTdxci1mmq-pLkTE9PFovQNJkG-RYSCkWYJpmXRrxejby9CjVHmjX-P1UwttjOPP0KdLgPx_3YQ-PJ18mmtZPixx-yjv97cbfhVkdF2Txg5w7suHoE43mN2_CLK_aC-eZQn3UfwX7v_sC6h8EIbv4iZTiG8zlbNN_din2kBD5JPjHS_cDvX4RGc4bsmH1qVpTAwFAv0GEu2Xt8ZF10Z0HZh-Bus2afv7Tn7G3twpHPK0a2ot7Mol3fhdPDNyevj-LOxSEukOy0MZmuVJUS2qVOVUIi5csLXmaVEdzmHJHiKp4VUubI3OyskiazgppPTZnYzGXZPdirm9o9AJYYlRvFjcVAXmpttHRSy8LqmUGqyCOY9rO5LDqJcxrcaum3OjO9RCgE480OChG8HD7xLch7_CN2TLM2xHUTFsHBb4AZ3k-JWyKljOBZj6Al3rtUkDG1azbrZSJVwhMtRB7B0y0xUvNUyZmKgG2JwB0n1c_oh-4HfF5fSgfzh38f-iO4EdpfqJ_xMey1lxv3BDlWaw_8zfUTnQIgjw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a4wF4YNByCZfNSAgJibRNYjvxY4WYOlgDgk7sLbITR0N0KVpTpPHrOcdOO0AU8Vapp61Tf4m_c_0AnnMT19SAGZpaxCHHIzVUldFhLOPIpBVplVNAf5rLyQl_eypOd-DVphfGWuuKz-yAXrpcfrUoVxQqG3IEUMbFNbgu0KtIfbfWJmfAhVPSRP9ChCqO03VScqSGszz3ZZOxH-BCo0IRqFHihiNenUdOYIXKI_US_6HaS1ts557uDDrcg-l69b705Otg1ZpB-eOPwY7_e3l34HZHRtnYo-cu7NimB_1xg474-SV7wVx5qIu792Bvrf_AusdBD279MsywD2djli--2zn7SCF8GvrEaPIHfn_uS80Z8mP2aTGnEAaauhEd-oK9x4fWedcNyj54fZsl-_ylPWNHjfVNn5eMhEWdnEW7vAcnh29mrydhp-MQlkh32pBkV-o6FcrGNq2FRNKXlbxKai24yThixdY8KaXMkLuZUS11YgSVn-oqMolNkvuw2ywa-xBYpNNMp1wbNOSVUlpJK5UsjRppJIs8gOF6N4uyG3JOi5sXztkZqQKh4KU3OygE8HLziW9-wMc_bPu0axu7bsMC2P8NMJv3Y2KXSCoDeLZGUIF3L6VkdGMXq2URyTTikRIiC-Bgi41UPE7lKA2AbbFAn5MyaPRDDzw-ry6lg_mjvy_9AG5MZtPj4vgof_cYbvpiGKpufAK77cXKPkXG1Zp9d6P9BN68I-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+recurrent+neural+network+for+solving+nonlinear+optimization+problems+with+inequality+constraints&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Xia%2C+Youshen&rft.au=Feng%2C+Gang&rft.au=Wang%2C+Jun&rft.date=2008-08-01&rft.eissn=1941-0093&rft.volume=19&rft.issue=8&rft.spage=1340&rft_id=info:doi/10.1109%2FTNN.2008.2000273&rft_id=info%3Apmid%2F18701366&rft.externalDocID=18701366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |