A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints

This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semidefinite, it is shown that the proposed neural network is stable at a Karush...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 19; no. 8; pp. 1340 - 1353
Main Authors Xia, Youshen, Feng, Gang, Wang, Jun
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2008
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1045-9227
1941-0093
1941-0093
DOI10.1109/TNN.2008.2000273

Cover

Abstract This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semidefinite, it is shown that the proposed neural network is stable at a Karush-Kuhn-Tucker point in the sense of Lyapunov and its output trajectory is globally convergent to a minimum solution. Compared with variety of the existing projection neural networks, including their extensions and modification, for solving such nonlinearly constrained optimization problems, it is shown that the proposed neural network can solve constrained convex optimization problems and a class of constrained nonconvex optimization problems and there is no restriction on the initial point. Simulation results show the effectiveness of the proposed neural network in solving nonlinearly constrained optimization problems.
AbstractList This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semidefinite, it is shown that the proposed neural network is stable at a Karush-Kuhn-Tucker point in the sense of Lyapunov and its output trajectory is globally convergent to a minimum solution. Compared with variety of the existing projection neural networks, including their extensions and modification, for solving such nonlinearly constrained optimization problems, it is shown that the proposed neural network can solve constrained convex optimization problems and a class of constrained nonconvex optimization problems and there is no restriction on the initial point. Simulation results show the effectiveness of the proposed neural network in solving nonlinearly constrained optimization problems.This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semidefinite, it is shown that the proposed neural network is stable at a Karush-Kuhn-Tucker point in the sense of Lyapunov and its output trajectory is globally convergent to a minimum solution. Compared with variety of the existing projection neural networks, including their extensions and modification, for solving such nonlinearly constrained optimization problems, it is shown that the proposed neural network can solve constrained convex optimization problems and a class of constrained nonconvex optimization problems and there is no restriction on the initial point. Simulation results show the effectiveness of the proposed neural network in solving nonlinearly constrained optimization problems.
This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semidefinite, it is shown that the proposed neural network is stable at a Karush-Kuhn-Tucker point in the sense of Lyapunov and its output trajectory is globally convergent to a minimum solution. Compared with variety of the existing projection neural networks, including their extensions and modification, for solving such nonlinearly constrained optimization problems, it is shown that the proposed neural network can solve constrained convex optimization problems and a class of constrained nonconvex optimization problems and there is no restriction on the initial point. Simulation results show the effectiveness of the proposed neural network in solving nonlinearly constrained optimization problems.
Author Gang Feng
Jun Wang
Youshen Xia
Author_xml – sequence: 1
  givenname: Youshen
  surname: Xia
  fullname: Xia, Youshen
  email: ysxia2001@yahoo.com
  organization: College of Mathematics and Computer Science, Fuzhou University, China. ysxia2001@yahoo.com
– sequence: 2
  givenname: Gang
  surname: Feng
  fullname: Feng, Gang
– sequence: 3
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20562025$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18701366$$D View this record in MEDLINE/PubMed
BookMark eNp90s1rFDEYBvAgFfuhd0GQXKpepiaTr5ljWawWyla04jFkZt_YaDbZJpmW-teb7a57EOwlbw6_J4SX5xDthRgAoZeUnFBK-vdX8_lJS0i3Pkir2BN0QHtOG0J6tlfvhIumb1u1jw5z_kkI5YLIZ2ifdopQJuUBuj7F83gLHn-BcUoJQsFzmJLxdZS7mH5hGxP-Gv2tCz8qDd4FMAlfropbut-muBjw5xQHD8uMv7tyjc8D3EzGu3KPZzHkkowLJT9HT63xGV5s5xH6dvbhavapubj8eD47vWhGzvrSKBiktUr00IKyQnZMdCNfMGsEHzpumQDL2Shlx5kYiJWGDYJTIsyCDgwYO0JvN--uUryZIBe9dHkE702AOGXdqboCKVpR5ZtHpex5qyRRFb57FFKpKKe9EF2lr7d0Gpaw0Kvklibd678Lr-B4C0wejbfJhNHlnWuJkC15-JzcuDHFnBNYPbrysO31Pr2mRK8boGsD9LoBetuAGiT_BHd_-H_k1SbiAGDHuaCk44L9AX4gupg
CODEN ITNNEP
CitedBy_id crossref_primary_10_1016_j_neucom_2022_03_026
crossref_primary_10_1109_TCYB_2016_2611529
crossref_primary_10_1002_cplx_21673
crossref_primary_10_1002_cta_657
crossref_primary_10_1109_TNNLS_2016_2575860
crossref_primary_10_1109_TETCI_2024_3369667
crossref_primary_10_1007_s00521_019_04391_7
crossref_primary_10_1016_j_neucom_2020_02_100
crossref_primary_10_1109_TKDE_2019_2893266
crossref_primary_10_1109_TNN_2010_2045129
crossref_primary_10_1016_j_neunet_2016_01_014
crossref_primary_10_1016_j_neunet_2013_03_010
crossref_primary_10_1049_iet_pel_2019_1261
crossref_primary_10_1016_j_neunet_2023_08_014
crossref_primary_10_1049_sil2_12046
crossref_primary_10_3390_electronics10131557
crossref_primary_10_1002_acs_1075
crossref_primary_10_1177_0142331220911821
crossref_primary_10_1016_j_neucom_2012_10_026
crossref_primary_10_3390_en15249486
crossref_primary_10_1016_j_neucom_2013_04_041
crossref_primary_10_1109_TNNLS_2019_2927282
crossref_primary_10_1088_1757_899X_297_1_012042
crossref_primary_10_1016_j_compchemeng_2022_107898
crossref_primary_10_1016_j_neucom_2013_09_028
crossref_primary_10_1016_j_neucom_2014_03_072
crossref_primary_10_1109_TIE_2011_2169636
crossref_primary_10_1016_j_neunet_2021_08_001
crossref_primary_10_1002_acs_3303
crossref_primary_10_1016_j_neunet_2023_08_047
crossref_primary_10_1109_TCST_2010_2054092
crossref_primary_10_1109_TNNLS_2015_2411671
crossref_primary_10_1016_j_neucom_2018_07_005
crossref_primary_10_1109_TNNLS_2018_2884788
crossref_primary_10_1016_j_neucom_2017_01_010
crossref_primary_10_1016_j_neucom_2016_12_064
crossref_primary_10_1016_j_neunet_2013_11_007
crossref_primary_10_1109_TNNLS_2015_2500618
crossref_primary_10_1007_s11063_022_10901_x
crossref_primary_10_1016_j_neucom_2021_03_082
crossref_primary_10_1109_TCYB_2021_3090204
crossref_primary_10_3233_JIFS_182953
crossref_primary_10_1016_j_neunet_2015_03_008
crossref_primary_10_1109_TNNLS_2019_2918984
crossref_primary_10_1109_TCYB_2020_3042519
crossref_primary_10_1016_j_neucom_2015_11_014
crossref_primary_10_1109_TAC_2009_2023963
crossref_primary_10_1016_j_neunet_2021_10_007
crossref_primary_10_1109_TSMC_2015_2505687
crossref_primary_10_1002_oca_869
crossref_primary_10_1007_s10489_017_1072_3
crossref_primary_10_1016_j_engappai_2020_104115
crossref_primary_10_1016_j_neunet_2022_06_023
crossref_primary_10_1016_j_enconman_2013_11_004
crossref_primary_10_1007_s11063_019_10086_w
crossref_primary_10_1016_j_neucom_2016_02_015
crossref_primary_10_1109_TNNLS_2014_2345734
crossref_primary_10_1109_TNNLS_2019_2927639
crossref_primary_10_1109_TNNLS_2016_2570257
crossref_primary_10_1109_TNNLS_2015_2442437
crossref_primary_10_1049_iet_cta_2017_0760
crossref_primary_10_1137_15M105361X
crossref_primary_10_1016_j_neucom_2014_12_007
crossref_primary_10_1016_j_neunet_2015_09_013
crossref_primary_10_1016_j_neunet_2018_10_010
crossref_primary_10_1109_TII_2012_2205582
crossref_primary_10_1016_j_neunet_2017_05_004
crossref_primary_10_1109_TNN_2011_2169682
crossref_primary_10_1109_TNNLS_2018_2814824
crossref_primary_10_1109_TNNLS_2013_2278427
crossref_primary_10_1111_exsy_12498
crossref_primary_10_1016_j_matcom_2015_09_013
crossref_primary_10_1109_TNNLS_2013_2244908
crossref_primary_10_1016_j_neucom_2014_08_014
crossref_primary_10_1016_j_neunet_2012_02_007
crossref_primary_10_1016_j_neucom_2015_09_103
crossref_primary_10_1109_TIE_2020_2970635
crossref_primary_10_1109_TNNLS_2013_2275948
crossref_primary_10_1098_rsta_2022_0405
crossref_primary_10_1109_TNNLS_2016_2524619
crossref_primary_10_1109_TNNLS_2021_3082528
crossref_primary_10_1109_TNNLS_2015_2476348
crossref_primary_10_1016_j_neunet_2014_09_009
crossref_primary_10_1002_nme_7670
crossref_primary_10_1007_s00521_018_3422_4
crossref_primary_10_1007_s11432_009_0168_8
crossref_primary_10_1007_s10957_013_0459_5
crossref_primary_10_1109_TNNLS_2014_2334364
crossref_primary_10_1016_j_neunet_2019_02_002
crossref_primary_10_1007_s00521_023_09203_7
crossref_primary_10_1109_TNNLS_2020_3009201
crossref_primary_10_1016_j_neucom_2011_04_026
crossref_primary_10_1016_j_neucom_2020_12_045
crossref_primary_10_1007_s40747_022_00884_6
crossref_primary_10_1109_TNNLS_2020_3027471
crossref_primary_10_1016_j_neucom_2015_04_033
crossref_primary_10_1109_TNNLS_2017_2676046
crossref_primary_10_1109_TAC_2023_3319132
crossref_primary_10_1109_TNNLS_2023_3340730
crossref_primary_10_1109_TVT_2022_3187494
crossref_primary_10_1016_j_neucom_2024_127670
crossref_primary_10_1016_j_neunet_2014_03_006
crossref_primary_10_1016_j_asoc_2019_01_002
crossref_primary_10_1016_j_neunet_2022_03_033
crossref_primary_10_1109_TNNLS_2011_2181867
crossref_primary_10_1109_TNNLS_2019_2944388
crossref_primary_10_1109_TNNLS_2015_2404773
crossref_primary_10_1109_TNNLS_2013_2292893
crossref_primary_10_1109_TNN_2011_2167760
crossref_primary_10_1007_s00521_019_04283_w
crossref_primary_10_1016_j_neucom_2021_07_036
crossref_primary_10_1109_TNNLS_2015_2425734
crossref_primary_10_1007_s11063_013_9306_9
crossref_primary_10_1109_ACCESS_2020_2990298
Cites_doi 10.1109/72.207617
10.1109/82.160169
10.1137/S1052623403426556
10.1162/0899766053019926
10.1007/s002459900114
10.1137/S0363012993255880
10.1016/j.matcom.2004.03.001
10.1109/72.286888
10.1109/72.883412
10.1007/BF01535411
10.1023/B:NEPL.0000023421.60208.30
10.1109/TNN.2004.841779
10.1109/31.1783
10.1109/TCS.1986.1085953
10.1016/j.neunet.2007.01.001
10.1023/A:1004628822745
10.1109/TNN.2006.879774
10.1162/089976604322860730
10.1007/11427391_111
10.1109/72.279195
10.1109/81.995659
10.1137/S1052623496305560
10.1137/S0363012994268655
10.1109/TNN.2004.824425
10.1109/72.485686
10.1109/TCSI.2004.830694
10.1016/S0096-3003(03)00309-6
10.1109/31.52732
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright_xml – notice: 2009 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
7QO
P64
DOI 10.1109/TNN.2008.2000273
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic

Engineering Research Database
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 1353
ExternalDocumentID 18701366
20562025
10_1109_TNN_2008_2000273
4510845
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
7QO
P64
ID FETCH-LOGICAL-c439t-7eb6ff759e2e7f568358c4d3fa54b84f35ef43c668435b0f6a3b54105ad1b3e33
IEDL.DBID RIE
ISSN 1045-9227
1941-0093
IngestDate Fri Sep 05 09:09:56 EDT 2025
Fri Sep 05 08:15:15 EDT 2025
Fri Sep 05 02:59:06 EDT 2025
Mon Jul 21 06:00:55 EDT 2025
Mon Jul 21 09:17:22 EDT 2025
Wed Oct 01 03:24:47 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Tue Aug 26 16:47:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords Recurrent neural nets
nonlinear inequality constraints
Non convex programming
Global convergence
Lagrangian
recurrent neural network
Lyapunov method
nonconvex programming
Nonlinear problems
Non linear programming
Network management
Neural network
Convex programming
Constrained optimization
nonsmooth analysis
Inequality constraint
Kuhn Tucker method
Hessian matrices
Non convex analysis
Lyapunov function
Mathematical programming
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-7eb6ff759e2e7f568358c4d3fa54b84f35ef43c668435b0f6a3b54105ad1b3e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18701366
PQID 1671419558
PQPubID 23500
PageCount 14
ParticipantIDs pubmed_primary_18701366
crossref_citationtrail_10_1109_TNN_2008_2000273
proquest_miscellaneous_1671419558
crossref_primary_10_1109_TNN_2008_2000273
ieee_primary_4510845
pascalfrancis_primary_20562025
proquest_miscellaneous_875066525
proquest_miscellaneous_69427607
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-08-01
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2008
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref11
beyer (ref27) 2000; 2
ref32
ref10
ref17
ref19
kalouptisidis (ref6) 1997
ref18
bazaraa (ref1) 1993
xia (ref16) 1996; 18
kinderlehrer (ref2) 1980
ref24
ref23
ref26
ref25
sun (ref28) 2005
ref20
ref22
ref21
ref29
ref8
cichocki (ref7) 1993
ref9
ref4
ref3
ref5
ortega (ref33) 1970
References_xml – ident: ref14
  doi: 10.1109/72.207617
– year: 1980
  ident: ref2
  publication-title: An Introduction to Variational Inequalities and Their Applications
– ident: ref13
  doi: 10.1109/82.160169
– ident: ref5
  doi: 10.1137/S1052623403426556
– ident: ref30
  doi: 10.1162/0899766053019926
– ident: ref3
  doi: 10.1007/s002459900114
– year: 1970
  ident: ref33
  publication-title: Iterative Solution of Nonlinear Equations in Several Variables
– year: 1993
  ident: ref1
  publication-title: Nonlinear Programming Theory and Algorithms
– ident: ref12
  doi: 10.1137/S0363012993255880
– ident: ref34
  doi: 10.1016/j.matcom.2004.03.001
– ident: ref10
  doi: 10.1109/72.286888
– ident: ref17
  doi: 10.1109/72.883412
– ident: ref26
  doi: 10.1007/BF01535411
– ident: ref35
  doi: 10.1023/B:NEPL.0000023421.60208.30
– volume: 18
  year: 1996
  ident: ref16
  article-title: ode methods for solving convex programming problems with bounded variables
  publication-title: Chin J Numer Math Appl (English Edition)
– ident: ref21
  doi: 10.1109/TNN.2004.841779
– ident: ref9
  doi: 10.1109/31.1783
– ident: ref8
  doi: 10.1109/TCS.1986.1085953
– ident: ref24
  doi: 10.1016/j.neunet.2007.01.001
– ident: ref32
  doi: 10.1023/A:1004628822745
– ident: ref22
  doi: 10.1109/TNN.2006.879774
– year: 1993
  ident: ref7
  publication-title: Neural Networks for Optimization and Signal Processing
– year: 1997
  ident: ref6
  publication-title: Signal Processing Systems Theory and Design
– ident: ref19
  doi: 10.1162/089976604322860730
– start-page: 694
  year: 2005
  ident: ref28
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/11427391_111
– ident: ref25
  doi: 10.1109/72.279195
– ident: ref18
  doi: 10.1109/81.995659
– ident: ref31
  doi: 10.1137/S1052623496305560
– ident: ref4
  doi: 10.1137/S0363012994268655
– ident: ref23
  doi: 10.1109/TNN.2004.824425
– volume: 2
  start-page: 953
  year: 2000
  ident: ref27
  article-title: tabu learning: a neural network search method for solving nonconvex optimization problems
  publication-title: Proc IEEE Int Joint Conf Neural Netw
– ident: ref15
  doi: 10.1109/72.485686
– ident: ref20
  doi: 10.1109/TCSI.2004.830694
– ident: ref29
  doi: 10.1016/S0096-3003(03)00309-6
– ident: ref11
  doi: 10.1109/31.52732
SSID ssj0014506
Score 2.3281102
Snippet This paper presents a novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Under the condition that the...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1340
SubjectTerms Algorithms
Application software
Applied sciences
Artificial Intelligence
Computer science; control theory; systems
Computer Simulation
Computer systems and distributed systems. User interface
Connectionism. Neural networks
Constraint optimization
Constraints
Convergence
Design engineering
Exact sciences and technology
Global convergence
Inequalities
Lagrangian functions
Linear matrix inequalities
Linear programming
Models, Theoretical
Neural networks
Neural Networks (Computer)
nonconvex programming
Nonlinear Dynamics
nonlinear inequality constraints
Nonlinearity
nonsmooth analysis
Optimization
Pattern Recognition, Automated - methods
Projection
recurrent neural network
Recurrent neural networks
Software
Very large scale integration
Title A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints
URI https://ieeexplore.ieee.org/document/4510845
https://www.ncbi.nlm.nih.gov/pubmed/18701366
https://www.proquest.com/docview/1671419558
https://www.proquest.com/docview/69427607
https://www.proquest.com/docview/875066525
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0093
  dateEnd: 20111231
  omitProxy: false
  ssIdentifier: ssj0014506
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL3a9gQPDFo-wscwEkJCIm2T-CN-rBDTQFpBsIm9VXbiaIguQWuKNH4999pJBogi3ir1tnXqk_j43utzAJ5zm1Z0ADO2lUhjjktqrEtr4lSmiVUleZVTQv94IY9O-bszcbYDr4azMM4533zmJvTS1_LLpthQqmzKEUA5F7uwq5QOZ7WGigEX3kcTdxci1mmq-pLkTE9PFovQNJkG-RYSCkWYJpmXRrxejby9CjVHmjX-P1UwttjOPP0KdLgPx_3YQ-PJ18mmtZPixx-yjv97cbfhVkdF2Txg5w7suHoE43mN2_CLK_aC-eZQn3UfwX7v_sC6h8EIbv4iZTiG8zlbNN_din2kBD5JPjHS_cDvX4RGc4bsmH1qVpTAwFAv0GEu2Xt8ZF10Z0HZh-Bus2afv7Tn7G3twpHPK0a2ot7Mol3fhdPDNyevj-LOxSEukOy0MZmuVJUS2qVOVUIi5csLXmaVEdzmHJHiKp4VUubI3OyskiazgppPTZnYzGXZPdirm9o9AJYYlRvFjcVAXmpttHRSy8LqmUGqyCOY9rO5LDqJcxrcaum3OjO9RCgE480OChG8HD7xLch7_CN2TLM2xHUTFsHBb4AZ3k-JWyKljOBZj6Al3rtUkDG1azbrZSJVwhMtRB7B0y0xUvNUyZmKgG2JwB0n1c_oh-4HfF5fSgfzh38f-iO4EdpfqJ_xMey1lxv3BDlWaw_8zfUTnQIgjw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a4wF4YNByCZfNSAgJibRNYjvxY4WYOlgDgk7sLbITR0N0KVpTpPHrOcdOO0AU8Vapp61Tf4m_c_0AnnMT19SAGZpaxCHHIzVUldFhLOPIpBVplVNAf5rLyQl_eypOd-DVphfGWuuKz-yAXrpcfrUoVxQqG3IEUMbFNbgu0KtIfbfWJmfAhVPSRP9ChCqO03VScqSGszz3ZZOxH-BCo0IRqFHihiNenUdOYIXKI_US_6HaS1ts557uDDrcg-l69b705Otg1ZpB-eOPwY7_e3l34HZHRtnYo-cu7NimB_1xg474-SV7wVx5qIu792Bvrf_AusdBD279MsywD2djli--2zn7SCF8GvrEaPIHfn_uS80Z8mP2aTGnEAaauhEd-oK9x4fWedcNyj54fZsl-_ylPWNHjfVNn5eMhEWdnEW7vAcnh29mrydhp-MQlkh32pBkV-o6FcrGNq2FRNKXlbxKai24yThixdY8KaXMkLuZUS11YgSVn-oqMolNkvuw2ywa-xBYpNNMp1wbNOSVUlpJK5UsjRppJIs8gOF6N4uyG3JOi5sXztkZqQKh4KU3OygE8HLziW9-wMc_bPu0axu7bsMC2P8NMJv3Y2KXSCoDeLZGUIF3L6VkdGMXq2URyTTikRIiC-Bgi41UPE7lKA2AbbFAn5MyaPRDDzw-ry6lg_mjvy_9AG5MZtPj4vgof_cYbvpiGKpufAK77cXKPkXG1Zp9d6P9BN68I-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+recurrent+neural+network+for+solving+nonlinear+optimization+problems+with+inequality+constraints&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Xia%2C+Youshen&rft.au=Feng%2C+Gang&rft.au=Wang%2C+Jun&rft.date=2008-08-01&rft.eissn=1941-0093&rft.volume=19&rft.issue=8&rft.spage=1340&rft_id=info:doi/10.1109%2FTNN.2008.2000273&rft_id=info%3Apmid%2F18701366&rft.externalDocID=18701366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon