Artificial Intelligence Based Multimodality Imaging: A New Frontier in Coronary Artery Disease Management
Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become...
Saved in:
| Published in | Frontiers in cardiovascular medicine Vol. 8; p. 736223 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Frontiers Media S.A
22.09.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2297-055X 2297-055X |
| DOI | 10.3389/fcvm.2021.736223 |
Cover
| Abstract | Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become increasingly important to rule out CAD according to the latest guidelines. These changes and others will likely increase the request for appropriate imaging tests in the future. In this setting, artificial intelligence (AI) will play a pivotal role in echocardiography, CCTA, cardiac magnetic resonance and nuclear imaging, making multimodality imaging more efficient and reliable for clinicians, as well as more sustainable for healthcare systems. Furthermore, AI can assist clinicians in identifying early predictors of adverse outcome that human eyes cannot see in the fog of “big data.” AI algorithms applied to multimodality imaging will play a fundamental role in the management of patients with suspected or established CAD. This study aims to provide a comprehensive overview of current and future AI applications to the field of multimodality imaging of ischemic heart disease. |
|---|---|
| AbstractList | Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become increasingly important to rule out CAD according to the latest guidelines. These changes and others will likely increase the request for appropriate imaging tests in the future. In this setting, artificial intelligence (AI) will play a pivotal role in echocardiography, CCTA, cardiac magnetic resonance and nuclear imaging, making multimodality imaging more efficient and reliable for clinicians, as well as more sustainable for healthcare systems. Furthermore, AI can assist clinicians in identifying early predictors of adverse outcome that human eyes cannot see in the fog of “big data.” AI algorithms applied to multimodality imaging will play a fundamental role in the management of patients with suspected or established CAD. This study aims to provide a comprehensive overview of current and future AI applications to the field of multimodality imaging of ischemic heart disease. Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become increasingly important to rule out CAD according to the latest guidelines. These changes and others will likely increase the request for appropriate imaging tests in the future. In this setting, artificial intelligence (AI) will play a pivotal role in echocardiography, CCTA, cardiac magnetic resonance and nuclear imaging, making multimodality imaging more efficient and reliable for clinicians, as well as more sustainable for healthcare systems. Furthermore, AI can assist clinicians in identifying early predictors of adverse outcome that human eyes cannot see in the fog of "big data." AI algorithms applied to multimodality imaging will play a fundamental role in the management of patients with suspected or established CAD. This study aims to provide a comprehensive overview of current and future AI applications to the field of multimodality imaging of ischemic heart disease.Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become increasingly important to rule out CAD according to the latest guidelines. These changes and others will likely increase the request for appropriate imaging tests in the future. In this setting, artificial intelligence (AI) will play a pivotal role in echocardiography, CCTA, cardiac magnetic resonance and nuclear imaging, making multimodality imaging more efficient and reliable for clinicians, as well as more sustainable for healthcare systems. Furthermore, AI can assist clinicians in identifying early predictors of adverse outcome that human eyes cannot see in the fog of "big data." AI algorithms applied to multimodality imaging will play a fundamental role in the management of patients with suspected or established CAD. This study aims to provide a comprehensive overview of current and future AI applications to the field of multimodality imaging of ischemic heart disease. |
| Author | Maragna, Riccardo Rabbat, Mark Rossi, Alexia Guaricci, Andrea Igoren Fusini, Laura Baggiano, Andrea Guglielmo, Marco Pontone, Gianluca Giacari, Carlo Maria |
| AuthorAffiliation | 1 Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Milan , Italy 3 Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital Policlinico of Bari , Bari , Italy 5 Center for Molecular Cardiology, University Hospital Zurich , Zurich , Switzerland 6 Department of Medicine and Radiology, Division of Cardiology, Loyola University of Chicago , Chicago, IL , United States 7 Department of Medicine, Division of Cardiology, Edward Hines Jr. VA Hospital , Hines, IL , United States 2 Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan , Milan , Italy 4 Department of Nuclear Medicine, University Hospital Zurich , Zurich , Switzerland |
| AuthorAffiliation_xml | – name: 7 Department of Medicine, Division of Cardiology, Edward Hines Jr. VA Hospital , Hines, IL , United States – name: 2 Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan , Milan , Italy – name: 5 Center for Molecular Cardiology, University Hospital Zurich , Zurich , Switzerland – name: 4 Department of Nuclear Medicine, University Hospital Zurich , Zurich , Switzerland – name: 6 Department of Medicine and Radiology, Division of Cardiology, Loyola University of Chicago , Chicago, IL , United States – name: 3 Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital Policlinico of Bari , Bari , Italy – name: 1 Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Milan , Italy |
| Author_xml | – sequence: 1 givenname: Riccardo surname: Maragna fullname: Maragna, Riccardo – sequence: 2 givenname: Carlo Maria surname: Giacari fullname: Giacari, Carlo Maria – sequence: 3 givenname: Marco surname: Guglielmo fullname: Guglielmo, Marco – sequence: 4 givenname: Andrea surname: Baggiano fullname: Baggiano, Andrea – sequence: 5 givenname: Laura surname: Fusini fullname: Fusini, Laura – sequence: 6 givenname: Andrea Igoren surname: Guaricci fullname: Guaricci, Andrea Igoren – sequence: 7 givenname: Alexia surname: Rossi fullname: Rossi, Alexia – sequence: 8 givenname: Mark surname: Rabbat fullname: Rabbat, Mark – sequence: 9 givenname: Gianluca surname: Pontone fullname: Pontone, Gianluca |
| BookMark | eNqFkc1v1DAQxS1UREvpnaOPXHbxR5zEHJCWLYWVWriAxM2adcbBlWMvidNq_3u8bIUoB7h4_DHv5zd6z8lJTBEJecnZUspWv3b2blgKJviykbUQ8gk5E0I3C6bUt5M_9qfkYppuGWNcVa2q22fkVFa15K2szohfjdk7bz0EuokZQ_A9Rov0HUzY0Zs5ZD-kDoLPe7oZoPexf0NX9BPe06sxxexxpD7SdSoHGPe08LCUSz9hIdAbiNDjgDG_IE8dhAkvHuo5-Xr1_sv64-L684fNenW9sJXUedFwlFsBdcedqlGh4yA6sE4r2zmmGLbANWNV12wVqkojF4qzrWocF5I1Qp6TzZHbJbg1u9EPxZZJ4M2vizT2BsrMNqBx0BWhRVvXrrLatVj-BFZWqSQ2bWHxI2uOO9jfQwi_gZyZQwrmkII5pGCOKRTN26NmN28H7GwZfYTwyMjjl-i_mz7dmbbSkrW6AF49AMb0Y8Ypm8FPtiQDEdM8GaFappXWmpfW-thqxzRNIzpjfYbs04Hsw79Msr-E_53rJyrSw3g |
| CitedBy_id | crossref_primary_10_37349_ec_2024_00038 crossref_primary_10_1016_j_jcct_2023_07_003 crossref_primary_10_3389_fcvm_2022_896366 crossref_primary_10_1177_09287329241309771 crossref_primary_10_3389_fcvm_2022_836473 crossref_primary_10_1016_j_ejrad_2023_110855 crossref_primary_10_3390_medsci11010020 crossref_primary_10_20517_2574_1209_2023_123 crossref_primary_10_3390_jimaging8020035 crossref_primary_10_1016_j_atherosclerosis_2024_117549 |
| Cites_doi | 10.1109/ISBI.2011.5872497 10.1007/s00330-018-5822-3 10.1093/ehjci/jez033 10.1007/s12574-020-00496-4 10.1016/S2589-7500(20)30249-1 10.1155/2020/6649410 10.1016/j.jcmg.2021.04.030 10.1007/978-3-319-66179-7_28 10.1093/ehjci/jez177 10.1001/jamacardio.2020.0359 10.1016/j.amjcard.2018.11.024 10.1161/CIRCIMAGING.119.009829 10.1002/mp.12783 10.1016/j.jcct.2021.05.004 10.1001/2012.jama.11274 10.1007/s11547-020-01277-w 10.1109/TMI.2018.2883807 10.1093/eurheartj/ehz592 10.1007/s12350-014-0027-x 10.1016/j.jacc.2011.02.074 10.1109/EMBC.2018.8513063 10.1148/ryct.2021200512 10.1161/CIRCULATIONAHA.115.001593 10.1016/j.atherosclerosis.2019.12.001 10.1109/TMI.2017.2769839 10.1007/s00330-012-2726-5 10.1148/radiol.2018171291 10.21037/qims-21-99 10.2967/jnumed.112.108969 10.1016/j.jcmg.2018.07.022 10.2967/jnumed.116.179911 10.1148/ryai.2020200009 10.1016/j.jcmg.2018.01.020 10.1016/j.ejrad.2021.109835 10.1016/j.media.2017.11.008 10.1093/cvr/cvz321 10.1016/j.jcct.2017.06.002 10.1148/radiol.2020191621 10.1016/j.jcmg.2017.07.024 10.1259/bjr.20200780 10.1016/j.jcct.2018.04.011 10.1007/s00330-019-06571-4 10.1161/CIRCULATIONAHA.119.044666 10.1056/NEJMp1606181 10.1007/978-3-540-85990-1_17 10.1186/s12968-020-00610-6 10.1002/mp.13436 10.1016/j.jcct.2018.10.018 10.1117/12.2512168 10.1016/j.ejrad.2019.108657 10.1007/s12350-017-0834-y 10.1016/j.atherosclerosis.2021.02.008 10.1016/j.jacc.2011.06.066 10.1016/j.jcmg.2018.01.005 10.1016/j.jcmg.2019.06.019 10.1016/j.jacc.2018.12.054 10.1016/j.jcmg.2020.06.033 10.1007/s10334-018-0718-4 10.1148/radiol.2019182304 10.1177/0008125619864925 10.1007/978-3-642-23626-6_4 10.1016/j.jcmg.2019.03.003 10.1016/j.jcmg.2019.02.024 10.1093/eurheartj/ehz425 10.1161/CIRCIMAGING.117.006843 10.1016/j.cmpb.2018.12.002 10.1002/jmri.26983 10.3390/jcm9020604 10.1056/NEJM200011163432003 10.1016/j.compbiomed.2015.03.033 10.1148/radiol.2015151169 10.1161/JAHA.119.013958 10.1155/2021/6678029 10.1186/s12968-018-0471-x 10.1016/j.jcct.2016.03.002 10.1161/CIRCIMAGING.114.002666 10.1117/1.JMI.2.1.014003 10.1148/radiol.2017170213 10.1148/ryai.2019190045 10.1016/j.jcmg.2016.11.024 10.1016/j.bspc.2017.09.030 10.1161/CIRCIMAGING.117.007217 10.1016/j.artmed.2015.06.001 10.1126/science.aax2342 10.1007/s12350-013-9706-2 10.1118/1.4927375 10.1016/j.jacc.2018.03.521 10.1016/j.ejrad.2017.04.024 10.1016/j.compbiomed.2019.103424 10.1186/s12968-019-0575-y 10.1016/j.jcct.2009.09.004 10.1016/j.jcmg,.2019.06.027 10.1126/scitranslmed.aal2658 10.7759/cureus.9349 10.1016/j.jcct.2018.01.008 10.1038/s41467-021-20966-2 10.3348/kjr.2019.0969 10.1016/j.media.2015.05.010 10.1186/s12968-017-0388-9 10.1007/s00330-019-06489-x 10.1016/j.jacc.2013.11.043 10.1109/TMI.2015.2412651 10.1371/journal.pone.0091239 10.1016/j.media.2017.04.002 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone. Copyright © 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone. 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone |
| Copyright_xml | – notice: Copyright © 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone. – notice: Copyright © 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone. 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone |
| DBID | AAYXX CITATION 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fcvm.2021.736223 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2297-055X |
| ExternalDocumentID | oai_doaj_org_article_fadb57cec66f4c9f8ef56a0ef5353e78 10.3389/fcvm.2021.736223 PMC8493089 10_3389_fcvm_2021_736223 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c439t-71e3b2a6d1f56e5ef1a2dacf95cdf050e8a19004d7b5e549e12510b57f1230723 |
| IEDL.DBID | UNPAY |
| ISSN | 2297-055X |
| IngestDate | Fri Oct 03 12:50:02 EDT 2025 Sun Oct 26 03:50:06 EDT 2025 Thu Aug 21 18:17:06 EDT 2025 Fri Sep 05 10:59:58 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Oct 01 03:58:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-71e3b2a6d1f56e5ef1a2dacf95cdf050e8a19004d7b5e549e12510b57f1230723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Alexandros Kallifatidis, St. Luke's Hospital, Greece; Anastasios Panagopoulos, University of Nebraska Medical Center, United States This article was submitted to Cardiovascular Imaging, a section of the journal Frontiers in Cardiovascular Medicine Edited by: Grigorios Korosoglou, GRN Klinik Weinheim, Germany |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fcvm.2021.736223/pdf |
| PMID | 34631834 |
| PQID | 2580959991 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fadb57cec66f4c9f8ef56a0ef5353e78 unpaywall_primary_10_3389_fcvm_2021_736223 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8493089 proquest_miscellaneous_2580959991 crossref_citationtrail_10_3389_fcvm_2021_736223 crossref_primary_10_3389_fcvm_2021_736223 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-22 |
| PublicationDateYYYYMMDD | 2021-09-22 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in cardiovascular medicine |
| PublicationYear | 2021 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Khan (B1) 2020; 12 Rabbat (B94) 2020 Patel (B92) 2020 Betancur (B58) 2018; 11 Tesche (B95) 2018; 288 Kusunose (B27) 2021; 19 Masuda (B71) 2019; 13 Leiner (B10) 2019; 21 Schulz-Menger (B52) 2020; 22 Zreik (B72) 2019; 38 Bai (B35) 2018; 20 Hong (B67) 2019; 12 Takx (B11) 2014; 9 van Assen (B7) 2020; 125 Ma (B45) 2021; 22 Hsu (B51) 2018; 11 Min (B86) 2012; 308 Ding (B23) 2015; 42 Scannell (B46) 2020; 51 Wolterink (B12) 2015; 34 Rabbat (B89) 2017; 11 Kitabata (B90) 2018; 12 Otaki (B59) 2021; 4 Engblom (B50) 2017; 19 Takx (B98) 2015; 8 Raghavendra (B28) 2018; 40 Guglielmo (B21) 2021; 321 Oikonomou (B25) 2019; 40 Dey (B69) 2009; 3 Moccia (B42) 2019; 32 van Hamersvelt (B82) 2019; 29 Baumann (B77) 2019; 119 Tahhan (B103) 2020; 5 Kelm (B64) 2011; 14 Daubert (B54) 2021; 94 (B105) 2020 Muscogiuri (B8) 2020; 2020 Larroza (B40) 2018; 45 Baessler (B41) 2018; 286 Curiale (B36) 2019; 169 Kolossváry (B70) 2017; 10 Andreini (B83) 2020; 13 Tat (B102) 2020; 2 Liu (B81) 2021; 142 Kusunose (B29) 2020; 13 van Velzen (B15) 2020; 295 Hu (B62) 2020; 21 Lessmann (B13) 2018; 37 Betancur (B55) 2017; 58 Antonopoulos (B22) 2017; 9 Muscogiuri (B68) 2020; 294 Militello (B24) 2019; 114 Larroza (B39) 2017; 92 Gillies (B9) 2016; 278 Koo (B91) 2011; 58 Tan (B48) 2017; 39 Han (B100) 2018; 25 Obermeyer (B104) 2019; 366 Obermeyer (B5) 2016; 375 Lu (B88) 2017; 10 Arsanjani (B57) 2013; 20 Coenen (B75) 2018; 11 Betancur (B61) 2018; 11 Johnson (B101) 2018; 71 Haenlein (B3) 2019; 61 Commandeur (B17) 2019; 1 Deo (B4) 2015; 132 Commandeur (B18) 2020; 116 Benjamin (B80) 2021; 11 Omar (B32) 2018; 2018 Sandstedt (B14) 2020; 30 Baessato (B34) 2021; 2021 Xue (B47) 2020; 2 Huang (B20) 2013; 23 Kang (B65) 2015; 2 Vidya (B33) 2015; 62 Zhang (B44) 2019; 291 Kim (B49) 2000; 343 Tesche (B78) 2020; 13 van Rosendael (B84) 2018; 12 Lin (B79) 2021; 3 Celeng (B97) 2019; 12 Lin (B26) 2020; 13 Chykeyuk (B31) 2011 Knuuti (B2) 2020; 41 Mansor (B30) 2008; 11 Knott (B53) 2020; 141 Kolossváry (B85) 2019; 20 Xiong (B99) 2015; 24 Dey (B6) 2019; 73 Zabihollahy (B43) 2019; 46 Zreik (B66) 2018; 44 Nørgaard (B87) 2014; 63 Min (B63) 2011; 58 Xu (B38) 2017 Arsanjani (B56) 2013; 54 Han (B73) 2020; 9 Choi (B74) 2021; 5 Eisenberg (B19) 2020; 13 Xu (B96) 2020; 30 Arsanjani (B60) 2015; 22 Nous (B76) 2019; 123 Zeleznik (B16) 2021; 12 Kotu (B37) 2015; 64 Tesche (B93) 2016; 10 |
| References_xml | – start-page: 677 year: 2011 ident: B31 article-title: Feature extraction and wall motion classification of 2D stress echocardiography with relevance vector machines publication-title: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro doi: 10.1109/ISBI.2011.5872497 – volume: 29 start-page: 2350 year: 2019 ident: B82 article-title: Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis publication-title: Eur Radiol. doi: 10.1007/s00330-018-5822-3 – volume: 20 start-page: 1250 year: 2019 ident: B85 article-title: Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography publication-title: Eur Heart J Cardiovasc Imaging. doi: 10.1093/ehjci/jez033 – volume: 19 start-page: 21 year: 2021 ident: B27 article-title: Steps to use artificial intelligence in echocardiography publication-title: J Echocardiogr. doi: 10.1007/s12574-020-00496-4 – volume: 2 start-page: e635 year: 2020 ident: B102 article-title: Addressing bias: artificial intelligence in cardiovascular medicine publication-title: Lancet Digit Health. doi: 10.1016/S2589-7500(20)30249-1 – volume: 2020 start-page: 6649410 year: 2020 ident: B8 article-title: Artificial intelligence in coronary computed tomography angiography: from anatomy to prognosis publication-title: Biomed Res Int. doi: 10.1155/2020/6649410 – volume: 4 start-page: 30 year: 2021 ident: B59 article-title: Clinical deployment of explainable artificial intelligence of SPECT for diagnosis of coronary artery disease publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2021.04.030 – start-page: 240 volume-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2017 year: 2017 ident: B38 article-title: Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm doi: 10.1007/978-3-319-66179-7_28 – volume: 21 start-page: 549 year: 2020 ident: B62 article-title: Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry publication-title: Eur Heart J Cardiovasc Imaging. doi: 10.1093/ehjci/jez177 – volume: 5 start-page: 714 year: 2020 ident: B103 article-title: Enrollment of older patients, women, and racial/ethnic minority groups in contemporary acute coronary syndrome clinical trials: a systematic review publication-title: J Am Med Assoc Cardiol. doi: 10.1001/jamacardio.2020.0359 – volume: 123 start-page: 537 year: 2019 ident: B76 article-title: Comparison of the diagnostic performance of coronary computed tomography angiography-derived fractional flow reserve in patients with versus without diabetes mellitus (from the MACHINE Consortium) publication-title: Am J Cardiol. doi: 10.1016/j.amjcard.2018.11.024 – volume: 13 start-page: e009829 year: 2020 ident: B19 article-title: Deep learning-based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects publication-title: Circ Cardiovasc Imaging. doi: 10.1161/CIRCIMAGING.119.009829 – volume: 45 start-page: 1471 year: 2018 ident: B40 article-title: Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction publication-title: Med Phys. doi: 10.1002/mp.12783 – volume: 5 start-page: 4 year: 2021 ident: B74 article-title: CT EvaLuation by Artificial Intelligence For Atherosclerosis, Stenosis and Vascular MorphologY (CLARIFY): a multi-center, international study publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2021.05.004 – volume: 308 start-page: 1237 year: 2012 ident: B86 article-title: Diagnostic accuracy of fractional flow reserve from anatomic CT angiography publication-title: J Am Med Assoc. doi: 10.1001/2012.jama.11274 – volume: 125 start-page: 1186 year: 2020 ident: B7 article-title: Artificial intelligence in cardiac radiology publication-title: Radiol Med. doi: 10.1007/s11547-020-01277-w – volume: 38 start-page: 1588 year: 2019 ident: B72 article-title: A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography publication-title: IEEE Trans Med Imaging. doi: 10.1109/TMI.2018.2883807 – volume: 40 start-page: 3529 year: 2019 ident: B25 article-title: A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography publication-title: Eur Heart J. doi: 10.1093/eurheartj/ehz592 – volume: 22 start-page: 877 year: 2015 ident: B60 article-title: Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population publication-title: J Nucl Cardiol. doi: 10.1007/s12350-014-0027-x – volume: 58 start-page: 849 year: 2011 ident: B63 article-title: Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease publication-title: J Am Coll Cardiol. doi: 10.1016/j.jacc.2011.02.074 – volume: 2018 start-page: 3140 year: 2018 ident: B32 article-title: Automated myocardial wall motion classification using handcrafted features vs a deep CNN-based mapping publication-title: Annu Int Conf IEEE Eng Med Biol Soc. doi: 10.1109/EMBC.2018.8513063 – volume: 3 start-page: e200512 year: 2021 ident: B79 article-title: Artificial intelligence in cardiovascular imaging for risk stratification in coronary artery disease publication-title: Radiol Cardiothorac Imaging. doi: 10.1148/ryct.2021200512 – volume: 132 start-page: 1920 year: 2015 ident: B4 article-title: Machine learning in medicine publication-title: Circulation. doi: 10.1161/CIRCULATIONAHA.115.001593 – volume: 294 start-page: 25 year: 2020 ident: B68 article-title: Performance of a deep learning algorithm for the evaluation of CAD-RADS classification with CCTA publication-title: Atherosclerosis. doi: 10.1016/j.atherosclerosis.2019.12.001 – volume: 37 start-page: 615 year: 2018 ident: B13 article-title: Automatic Calcium Scoring in Low-Dose Chest CT Using Deep Neural Networks With Dilated Convolutions publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2769839 – volume: 23 start-page: 1226 year: 2013 ident: B20 article-title: Reliable categorisation of visual scoring of coronary artery calcification on low-dose CT for lung cancer screening: validation with the standard Agatston score publication-title: Eur Radiol. doi: 10.1007/s00330-012-2726-5 – volume: 288 start-page: 64 year: 2018 ident: B95 article-title: Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling publication-title: Radiology. doi: 10.1148/radiol.2018171291 – volume: 11 start-page: 2208 year: 2021 ident: B80 article-title: Machine learning-based advances in coronary computed tomography angiography publication-title: Quant Imaging Med Surg. doi: 10.21037/qims-21-99 – volume: 54 start-page: 221 year: 2013 ident: B56 article-title: Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population publication-title: J Nucl Med. doi: 10.2967/jnumed.112.108969 – volume: 12 start-page: 1316 year: 2019 ident: B97 article-title: Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease: a meta-analysis publication-title: JACC Cardiovasc Imaging. doi: 10.1016/j.jcmg.2018.07.022 – volume: 58 start-page: 961 year: 2017 ident: B55 article-title: Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomic and clinical validation publication-title: J Nucl Med. doi: 10.2967/jnumed.116.179911 – volume: 2 start-page: e200009 year: 2020 ident: B47 article-title: Automated inline analysis of myocardial perfusion MRI with deep learning publication-title: Radiol Artif Intell. doi: 10.1148/ryai.2020200009 – volume: 11 start-page: 1654 year: 2018 ident: B58 article-title: Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study publication-title: JACC Cardiovasc Imaging. doi: 10.1016/j.jcmg.2018.01.020 – volume: 142 start-page: 109835 year: 2021 ident: B81 article-title: Deep learning powered coronary CT angiography for detecting obstructive coronary artery disease: The effect of reader experience, calcification and image quality publication-title: Eur J Radiol. doi: 10.1016/j.ejrad.2021.109835 – volume: 44 start-page: 72 year: 2018 ident: B66 article-title: Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis publication-title: Med Image Anal. doi: 10.1016/j.media.2017.11.008 – volume: 116 start-page: 2216 year: 2020 ident: B18 article-title: Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study publication-title: Cardiovasc Res. doi: 10.1093/cvr/cvz321 – volume: 11 start-page: 383 year: 2017 ident: B89 article-title: Interpreting results of coronary computed tomography angiography-derived fractional flow reserve in clinical practice publication-title: J Cardiovasc Comput Tomogr. doi: 10.1016/j.jcct.2017.06.002 – volume: 295 start-page: 66 year: 2020 ident: B15 article-title: Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols publication-title: Radiology. doi: 10.1148/radiol.2020191621 – volume: 11 start-page: 1000 year: 2018 ident: B61 article-title: Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning publication-title: JACC Cardiovasc Imaging. doi: 10.1016/j.jcmg.2017.07.024 – volume: 94 start-page: 20200780 year: 2021 ident: B54 article-title: Multimodality cardiac imaging in the 21st century: evolution, advances and future opportunities for innovation publication-title: Br J Radiol. doi: 10.1259/bjr.20200780 – volume: 12 start-page: 204 year: 2018 ident: B84 article-title: Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry publication-title: J Cardiovasc Comput Tomogr. doi: 10.1016/j.jcct.2018.04.011 – volume: 30 start-page: 2525 year: 2020 ident: B96 article-title: The influence of image quality on diagnostic performance of a machine learning-based fractional flow reserve derived from coronary CT angiography publication-title: Eur Radiol. doi: 10.1007/s00330-019-06571-4 – volume: 141 start-page: 1282 year: 2020 ident: B53 article-title: The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping publication-title: Circulation. doi: 10.1161/CIRCULATIONAHA.119.044666 – volume: 375 start-page: 1216 year: 2016 ident: B5 article-title: Predicting the future - big data, machine learning, and clinical medicine publication-title: N Engl J Med. doi: 10.1056/NEJMp1606181 – volume: 11 start-page: 139 year: 2008 ident: B30 article-title: Wall motion classification of stress echocardiography based on combined rest-and-stress data publication-title: Med Image Comput Comput Assist Interv. doi: 10.1007/978-3-540-85990-1_17 – volume: 22 start-page: 19 year: 2020 ident: B52 article-title: Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): board of Trustees Task Force on Standardized Post-Processing publication-title: J Cardiovasc Magn Reson. doi: 10.1186/s12968-020-00610-6 – volume: 46 start-page: 1740 year: 2019 ident: B43 article-title: Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images publication-title: Med Phys. doi: 10.1002/mp.13436 – volume: 13 start-page: 163 year: 2019 ident: B71 article-title: Machine-learning integration of CT histogram analysis to evaluate the composition of atherosclerotic plaques: Validation with IB-IVUS publication-title: J Cardiovasc Comput Tomogr. doi: 10.1016/j.jcct.2018.10.018 – volume: 12 start-page: 10949 year: 2019 ident: B67 article-title: Deep learning-based stenosis quantification from coronary CT publication-title: Angiography Proc SPIE Int Soc Opt Eng. doi: 10.1117/12.2512168 – volume: 119 start-page: 108657 year: 2019 ident: B77 article-title: Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2019.108657 – volume: 25 start-page: 223 year: 2018 ident: B100 article-title: Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: a machine learning approach publication-title: J Nucl Cardiol. doi: 10.1007/s12350-017-0834-y – volume: 321 start-page: 30 year: 2021 ident: B21 article-title: Epicardial fat and coronary artery disease: role of cardiac imaging publication-title: Atherosclerosis. doi: 10.1016/j.atherosclerosis.2021.02.008 – volume: 58 start-page: 1989 year: 2011 ident: B91 article-title: Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study publication-title: J Am Coll Cardiol. doi: 10.1016/j.jacc.2011.06.066 – volume: 11 start-page: 697 year: 2018 ident: B51 article-title: Diagnostic performance of fully automated pixel-wise quantitative myocardial perfusion imaging by cardiovascular magnetic resonance publication-title: JACC Cardiovasc Imaging. doi: 10.1016/j.jcmg.2018.01.005 – volume: 13 start-page: 1704 year: 2020 ident: B83 article-title: Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events publication-title: JACC Cardiovasc Imaging. doi: 10.1016/j.jcmg.2019.06.019 – volume-title: European Commission White Paper. On Artificial Intelligence— A European Approach to Excellence and Trust year: 2020 ident: B105 – volume: 73 start-page: 1317 year: 2019 ident: B6 article-title: Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review publication-title: J Am Coll Cardiol. doi: 10.1016/j.jacc.2018.12.054 – volume: 13 start-page: 2371 year: 2020 ident: B26 article-title: Myocardial infarction associates with a distinct pericoronary adipose tissue radiomic phenotype: a prospective case-control study publication-title: JACC Cardiovasc Imaging. doi: 10.1016/j.jcmg.2020.06.033 – volume: 32 start-page: 187 year: 2019 ident: B42 article-title: Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images publication-title: Magma. doi: 10.1007/s10334-018-0718-4 – volume: 291 start-page: 606 year: 2019 ident: B44 article-title: Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI publication-title: Radiology. doi: 10.1148/radiol.2019182304 – volume: 61 start-page: 8125619864925 year: 2019 ident: B3 article-title: A brief history of artificial intelligence: on the past, present, and future of artificial intelligence publication-title: California Manag Rev doi: 10.1177/0008125619864925 – volume: 14 start-page: 25 year: 2011 ident: B64 article-title: Detection, grading and classification of coronary stenoses in computed tomography angiography publication-title: Med Image Comput Comput Assist Interv. doi: 10.1007/978-3-642-23626-6_4 – start-page: 97 year: 2020 ident: B92 article-title: 1-year impact on medical practice and clinical outcomes of FFR publication-title: JACC Cardiovasc Imaging 13(1 Pt 1). doi: 10.1016/j.jcmg.2019.03.003 – volume: 13 start-page: 374 year: 2020 ident: B29 article-title: A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images publication-title: JACC Cardiovasc Imag. doi: 10.1016/j.jcmg.2019.02.024 – volume: 41 start-page: 407 year: 2020 ident: B2 article-title: 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes publication-title: Eur Heart J. doi: 10.1093/eurheartj/ehz425 – volume: 10 start-page: e006843 year: 2017 ident: B70 article-title: Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign publication-title: Circ Cardiovasc Imaging. doi: 10.1161/CIRCIMAGING.117.006843 – volume: 169 start-page: 37 year: 2019 ident: B36 article-title: Automatic quantification of the LV function and mass: a deep learning approach for cardiovascular MRI publication-title: Comput Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.12.002 – volume: 51 start-page: 1689 year: 2020 ident: B46 article-title: Deep-learning-based preprocessing for quantitative myocardial perfusion MRI publication-title: J Magn Reson Imaging. doi: 10.1002/jmri.26983 – start-page: 9 year: 2020 ident: B94 article-title: Fractional flow reserve derived from coronary computed tomography angiography safely defers invasive coronary angiography in patients with stable coronary artery disease publication-title: J Clin Med. doi: 10.3390/jcm9020604 – volume: 343 start-page: 1445 year: 2000 ident: B49 article-title: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction publication-title: N Engl J Med. doi: 10.1056/NEJM200011163432003 – volume: 62 start-page: 86 year: 2015 ident: B33 article-title: Computer-aided diagnosis of Myocardial Infarction using ultrasound images with DWT, GLCM and HOS methods: a comparative study publication-title: Comput Biol Med. doi: 10.1016/j.compbiomed.2015.03.033 – volume: 278 start-page: 563 year: 2016 ident: B9 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology. doi: 10.1148/radiol.2015151169 – volume: 9 start-page: e013958 year: 2020 ident: B73 article-title: Machine learning framework to identify individuals at risk of rapid progression of coronary atherosclerosis: from the PARADIGM registry publication-title: J Am Heart Assoc. doi: 10.1161/JAHA.119.013958 – volume: 2021 start-page: 6678029 year: 2021 ident: B34 article-title: Stress CMR in known or suspected CAD: diagnostic and prognostic role publication-title: Biomed Res Int. doi: 10.1155/2021/6678029 – volume: 20 start-page: 65 year: 2018 ident: B35 article-title: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks publication-title: J Cardiovasc Magn Reson. doi: 10.1186/s12968-018-0471-x – volume: 10 start-page: 199 year: 2016 ident: B93 article-title: Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis publication-title: J Cardiovasc Comput Tomogr. doi: 10.1016/j.jcct.2016.03.002 – volume: 8 start-page: 2666 year: 2015 ident: B98 article-title: Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis publication-title: Circ Cardiovasc Imaging. doi: 10.1161/CIRCIMAGING.114.002666 – volume: 2 start-page: 014003 year: 2015 ident: B65 article-title: Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography publication-title: J Med Imaging. doi: 10.1117/1.JMI.2.1.014003 – volume: 286 start-page: 103 year: 2018 ident: B41 article-title: Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images publication-title: Radiology. doi: 10.1148/radiol.2017170213 – volume: 1 start-page: e190045 year: 2019 ident: B17 article-title: Fully automated CT quantification of epicardial adipose tissue by deep learning: a multicenter study publication-title: Radiol Artif Intell. doi: 10.1148/ryai.2019190045 – volume: 10 start-page: 1350 year: 2017 ident: B88 article-title: Noninvasive FFR derived from coronary CT angiography: management and outcomes in the PROMISE trial publication-title: JACC Cardiovasc Imaging. doi: 10.1016/j.jcmg.2016.11.024 – volume: 40 start-page: 324 year: 2018 ident: B28 article-title: Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images publication-title: Biomed Sign Proces Contr. doi: 10.1016/j.bspc.2017.09.030 – volume: 11 start-page: e007217 year: 2018 ident: B75 article-title: Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium publication-title: Circ Cardiovasc Imaging. doi: 10.1161/CIRCIMAGING.117.007217 – volume: 64 start-page: 205 year: 2015 ident: B37 article-title: Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients publication-title: Artif Intell Med. doi: 10.1016/j.artmed.2015.06.001 – volume: 366 start-page: 447 year: 2019 ident: B104 article-title: Dissecting racial bias in an algorithm used to manage the health of populations publication-title: Science. doi: 10.1126/science.aax2342 – volume: 20 start-page: 553 year: 2013 ident: B57 article-title: Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population publication-title: J Nucl Cardiol. doi: 10.1007/s12350-013-9706-2 – volume: 42 start-page: 5015 year: 2015 ident: B23 article-title: Automated pericardium delineation and epicardial fat volume quantification from noncontrast CT publication-title: Med Phys. doi: 10.1118/1.4927375 – volume: 71 start-page: 2668 year: 2018 ident: B101 article-title: Artificial intelligence in cardiology publication-title: J Am Coll Cardiol. doi: 10.1016/j.jacc.2018.03.521 – volume: 92 start-page: 78 year: 2017 ident: B39 article-title: Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging publication-title: Eur J Radiol. doi: 10.1016/j.ejrad.2017.04.024 – volume: 114 start-page: 103424 year: 2019 ident: B24 article-title: A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans publication-title: Comput Biol Med. doi: 10.1016/j.compbiomed.2019.103424 – volume: 21 start-page: 61 year: 2019 ident: B10 article-title: Machine learning in cardiovascular magnetic resonance: basic concepts and applications publication-title: J Cardiovasc Magn Reson. doi: 10.1186/s12968-019-0575-y – volume: 3 start-page: 372 year: 2009 ident: B69 article-title: Automated 3-dimensional quantification of noncalcified and calcified coronary plaque from coronary CT angiography publication-title: J Cardiovasc Comput Tomogr. doi: 10.1016/j.jcct.2009.09.004 – volume: 13 start-page: 760 year: 2020 ident: B78 article-title: Influence of coronary calcium on diagnostic performance of machine learning CT-FFR: results from MACHINE registry publication-title: JACC Cardiovasc Imaging. doi: 10.1016/j.jcmg,.2019.06.027 – volume: 9 start-page: aal2658 year: 2017 ident: B22 article-title: Detecting human coronary inflammation by imaging perivascular fat publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aal2658 – volume: 12 start-page: e9349 year: 2020 ident: B1 article-title: Global epidemiology of ischemic heart disease: results from the global burden of disease study publication-title: Cureus. doi: 10.7759/cureus.9349 – volume: 12 start-page: 95 year: 2018 ident: B90 article-title: Incidence and predictors of lesion-specific ischemia by FFR publication-title: J Cardiovasc Comput Tomogr. doi: 10.1016/j.jcct.2018.01.008 – volume: 12 start-page: 715 year: 2021 ident: B16 article-title: Deep convolutional neural networks to predict cardiovascular risk from computed tomography publication-title: Nat Commun. doi: 10.1038/s41467-021-20966-2 – volume: 22 start-page: 535 year: 2021 ident: B45 article-title: Radiomics of non-contrast-enhanced T1 mapping: diagnostic and predictive performance for myocardial injury in acute ST-segment-elevation myocardial infarction publication-title: Korean J Radiol. doi: 10.3348/kjr.2019.0969 – volume: 24 start-page: 77 year: 2015 ident: B99 article-title: Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest publication-title: Med Image Anal. doi: 10.1016/j.media.2015.05.010 – volume: 19 start-page: 78 year: 2017 ident: B50 article-title: Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography publication-title: J Cardiovasc Magn Reson. doi: 10.1186/s12968-017-0388-9 – volume: 30 start-page: 1671 year: 2020 ident: B14 article-title: Evaluation of an AI-based, automatic coronary artery calcium scoring software publication-title: Eur Radiol. doi: 10.1007/s00330-019-06489-x – volume: 63 start-page: 1145 year: 2014 ident: B87 article-title: Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps) publication-title: J Am Coll Cardiol. doi: 10.1016/j.jacc.2013.11.043 – volume: 34 start-page: 1867 year: 2015 ident: B12 article-title: Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection publication-title: IEEE Trans Med Imaging. doi: 10.1109/TMI.2015.2412651 – volume: 9 start-page: e91239 year: 2014 ident: B11 article-title: Automated coronary artery calcification scoring in non-gated chest CT: agreement and reliability publication-title: PLoS ONE. doi: 10.1371/journal.pone.0091239 – volume: 39 start-page: 78 year: 2017 ident: B48 article-title: Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences publication-title: Med Image Anal. doi: 10.1016/j.media.2017.04.002 |
| SSID | ssj0001548568 |
| Score | 2.234533 |
| SecondaryResourceType | review_article |
| Snippet | Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 736223 |
| SubjectTerms | artificial intelligence Cardiovascular Medicine coronary artery disease deep learning machine learning multimodality imaging radiomics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqHmgvCEorUh4yEhcqhU38isOtD1YtUjlRqTfLccZipW22Krug_ntm4nTZcKAXLokUO3Hsb-wZ2-NvGHtviYClrZrcq-Bz1TYm91aqHIL2TSVRJwVah7z8as6v1Jdrfb0R6ot8whI9cGq4SfRto6sAwZioQh0tRG18gVepJVT9Md_C1huTqXQ-WFltbNqXxFlYPYnhJx08F-XHCsdsIUd6qKfrH9mYf3tI7qy6W3__y8_nG-pn-ow9HexGfpz-9znbgm6PPbkcdsZfsBmlJDYIfrFBs8lPUE21vD9ne7Noe6ubX9z0sYk-8WOOgxyfEokBqkc-6_gpMRr4u3sqCfB2ljZw-B83mX12Nf387fQ8H8Io5AGtjWVelSAb4U1bYsuBhlh60foQax3aWOgCrEeroFCImAacLgLZPAU2eizJS1zIA7bdLTp4yXhtom5qik-iKsS19NobL5qogNzDQGZs8tCoLgwc4xTqYu5wrkEwOILBEQwuwZCxD-s3bhO_xj_ynhBO63zEjN0_QHlxg7y4x-QlY-8eUHbYk2h7xHewWP1wQltaFEWDOWPVCP5RieOUbva95-S2qpYohhk7WgvKo_U5_B_1ecV26ZPkwiLEa7a9vFvBG7STls3bvkv8BoONFIQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD5ohdoX8Yrxxgi-KKRN5paJINJWl1ZYn1zo2zCZzOjCNlu3u-r-e89J0m0jRcGXBDJJJsk3k_OdmTPfAXhlSIClLqrUSe9SWVc6dUbINHjlqkKgTfI0Djn-rI8m8tOJOrlcHt1_wPNrXTvKJzVZzHZ_fV-_xw7_jjxOtLd70f-gNeU83y3wd8zFTbiFdqqkRA7jnux3a4alUdp0c5XXXrgD20JqauVyYKZaNf8BBf0zgPL2qjlz659uNrtinUZ34U5PK9l-1w7uwY3Q3IftcT9x_gCmVNKJRbDjKyqc7ACtWM3aZbin87ol5ez4tE1d9JbtM_wHshFpHKD1ZNOGHZLggVusqaaAuw_d_A67jKJ5CJPRxy-HR2mfZSH1SEaWaZEHUXGn6zwqHVSIueO187FUvo6ZyoJxSBoyiYCqgN5kIEqUVaqIOQWRc_EItpp5Ex4DK3VUVUnpS2SBsOdOOe14FWWg6LEgEti7-KjW9xLklAljZtEVIUQsIWIJEdshksDrzRVnnfzGX849IJw255Fwdntgvvhq-35oo6vx0X3wWkfpy2gCvrXLcCuUCIVJ4OUFyhY7Gs2euCbMV-eWK0NjpsinEygG8A9qHJY002-tZLeRpchMmcCbTUP55_s8-e9qnsIO3YfCWjh_BlvLxSo8R-60rF60XeI31BYa_A priority: 102 providerName: Scholars Portal |
| Title | Artificial Intelligence Based Multimodality Imaging: A New Frontier in Coronary Artery Disease Management |
| URI | https://www.proquest.com/docview/2580959991 https://pubmed.ncbi.nlm.nih.gov/PMC8493089 https://www.frontiersin.org/articles/10.3389/fcvm.2021.736223/pdf https://doaj.org/article/fadb57cec66f4c9f8ef56a0ef5353e78 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2297-055X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001548568 issn: 2297-055X databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2297-055X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001548568 issn: 2297-055X databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2297-055X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001548568 issn: 2297-055X databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2297-055X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001548568 issn: 2297-055X databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 2297-055X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0001548568 issn: 2297-055X databaseCode: M48 dateStart: 20141001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CTgJeuCMCbDISLyClTRw7F966jWpD6sQDlcZTZDu2VtGl1dZuGr-ecxK3W6YJhHhJlMRWfDm2P9ufvwPwIScBlirToRJGhaLSaajyRITWSKWzBMckQ-uQ46P0YCK-Hss1m_Dc0yodHd0nR9DTulUK9hQxauE4oyoGzlzQIXIe9zPsf3kyWFTuPmylEuF4D7YmR9-GP8ipHCelUSmP2-3JO6N2hqNGtb8DNW8TJR-u6oW6ulSz2Y1RaPQE9Dr9LfnkZ3-11H3z65a0439l8Ck89hiVDdvwz-CerZ_Dg7HfhX8BU_rSKk-wwxuSnmwXh8SKNWd6T-dVg_DZ4WnjB-kzGzLsUNnIJ4pNa7ZH6gnq7Ir-ZPG2324WsWtKzkuYjL583zsIvcuG0CCyWYZZbBPNVVrFTqZWWhcrXinjCmkqF8nI5goRSCTQOqTFqaklfBVpmbmYGOk8eQW9el7b18CK1EldkC8UkaENxUqqVHHthCUqmk0CGKxrrjRez5zcasxKnNdQKZZUiiWVYtmWYgAfNzEWrZbHH8LukjFswpEKd_MC66v09VU6VWHSjTVp6oQpXG4x1yrCayITm-UBvF-bUomtlrZiVG3nq_OSy5wWYBGcB5B1bKzzx-6XenrS6H_nokiivAjg08Ya_5qfN_8S-C08oieixXD-DnrLs5XdRuy11DvNmgVexyLf8S3tN64bMYI |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CToK9cEeEm4zEC0hpE8d2Et66QbUhbeKBSuMpsh1bVHRptbVD49dzTuKWZUIgxEuiJLZ8O7Y_x5-_A_C6IAGWOjexFlbHojYq1kUmYmelNnmGc5Kl_5BHx-pgKj6eyA2b8DzQKj0d3SdH0LOmUwoOFDHq4biiKkfeXtAhcp4Ocxx_eTZa1v4m7CiJcHwAO9PjT-Mv5FSOk9KolCfd9uRvo_amo1a1vwc1rxMlb6-bpb78rufzK7PQ5C6YTf478sm34XplhvbHNWnH_yrgPbgTMCobd-Hvww3XPIBbR2EX_iHM6EunPMEOr0h6sj2cEmvWnuk9XdQtwmeHp60fpHdszHBAZZOQKTZr2D6pJ-izS0rJ4e19t1nEflFyHsF08uHz_kEcXDbEFpHNKs5TlxmuVZ16qZx0PtW81taX0tY-kYkrNCKQRKB1SIdLU0f4KjEy9ykx0nn2GAbNonFPgJXKS1OSLxSRow2lWmqlufHCERXNZRGMNi1X2aBnTm415hWua6gWK6rFimqx6moxgjfbGMtOy-MPYffIGLbhSIW7fYHtVYX2qryuMevWWaW8sKUvHJZaJ3jNZObyIoJXG1OqsNfSVoxu3GJ9XnFZ0A9YBOcR5D0b66XY_9LMvrb634Uos6QoI3i7tca_lufpvwR-Brv0RLQYzp_DYHW2di8Qe63My9C7fgJs8S-z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Based+Multimodality+Imaging%3A+A+New+Frontier+in+Coronary+Artery+Disease+Management&rft.jtitle=Frontiers+in+cardiovascular+medicine&rft.au=Maragna%2C+Riccardo&rft.au=Giacari%2C+Carlo+Maria&rft.au=Guglielmo%2C+Marco&rft.au=Baggiano%2C+Andrea&rft.date=2021-09-22&rft.pub=Frontiers+Media+S.A&rft.eissn=2297-055X&rft.volume=8&rft_id=info:doi/10.3389%2Ffcvm.2021.736223&rft_id=info%3Apmid%2F34631834&rft.externalDocID=PMC8493089 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-055X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-055X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-055X&client=summon |