Artificial Intelligence Based Multimodality Imaging: A New Frontier in Coronary Artery Disease Management

Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cardiovascular medicine Vol. 8; p. 736223
Main Authors Maragna, Riccardo, Giacari, Carlo Maria, Guglielmo, Marco, Baggiano, Andrea, Fusini, Laura, Guaricci, Andrea Igoren, Rossi, Alexia, Rabbat, Mark, Pontone, Gianluca
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 22.09.2021
Subjects
Online AccessGet full text
ISSN2297-055X
2297-055X
DOI10.3389/fcvm.2021.736223

Cover

Abstract Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become increasingly important to rule out CAD according to the latest guidelines. These changes and others will likely increase the request for appropriate imaging tests in the future. In this setting, artificial intelligence (AI) will play a pivotal role in echocardiography, CCTA, cardiac magnetic resonance and nuclear imaging, making multimodality imaging more efficient and reliable for clinicians, as well as more sustainable for healthcare systems. Furthermore, AI can assist clinicians in identifying early predictors of adverse outcome that human eyes cannot see in the fog of “big data.” AI algorithms applied to multimodality imaging will play a fundamental role in the management of patients with suspected or established CAD. This study aims to provide a comprehensive overview of current and future AI applications to the field of multimodality imaging of ischemic heart disease.
AbstractList Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become increasingly important to rule out CAD according to the latest guidelines. These changes and others will likely increase the request for appropriate imaging tests in the future. In this setting, artificial intelligence (AI) will play a pivotal role in echocardiography, CCTA, cardiac magnetic resonance and nuclear imaging, making multimodality imaging more efficient and reliable for clinicians, as well as more sustainable for healthcare systems. Furthermore, AI can assist clinicians in identifying early predictors of adverse outcome that human eyes cannot see in the fog of “big data.” AI algorithms applied to multimodality imaging will play a fundamental role in the management of patients with suspected or established CAD. This study aims to provide a comprehensive overview of current and future AI applications to the field of multimodality imaging of ischemic heart disease.
Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become increasingly important to rule out CAD according to the latest guidelines. These changes and others will likely increase the request for appropriate imaging tests in the future. In this setting, artificial intelligence (AI) will play a pivotal role in echocardiography, CCTA, cardiac magnetic resonance and nuclear imaging, making multimodality imaging more efficient and reliable for clinicians, as well as more sustainable for healthcare systems. Furthermore, AI can assist clinicians in identifying early predictors of adverse outcome that human eyes cannot see in the fog of "big data." AI algorithms applied to multimodality imaging will play a fundamental role in the management of patients with suspected or established CAD. This study aims to provide a comprehensive overview of current and future AI applications to the field of multimodality imaging of ischemic heart disease.Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become increasingly important to rule out CAD according to the latest guidelines. These changes and others will likely increase the request for appropriate imaging tests in the future. In this setting, artificial intelligence (AI) will play a pivotal role in echocardiography, CCTA, cardiac magnetic resonance and nuclear imaging, making multimodality imaging more efficient and reliable for clinicians, as well as more sustainable for healthcare systems. Furthermore, AI can assist clinicians in identifying early predictors of adverse outcome that human eyes cannot see in the fog of "big data." AI algorithms applied to multimodality imaging will play a fundamental role in the management of patients with suspected or established CAD. This study aims to provide a comprehensive overview of current and future AI applications to the field of multimodality imaging of ischemic heart disease.
Author Maragna, Riccardo
Rabbat, Mark
Rossi, Alexia
Guaricci, Andrea Igoren
Fusini, Laura
Baggiano, Andrea
Guglielmo, Marco
Pontone, Gianluca
Giacari, Carlo Maria
AuthorAffiliation 1 Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Milan , Italy
3 Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital Policlinico of Bari , Bari , Italy
5 Center for Molecular Cardiology, University Hospital Zurich , Zurich , Switzerland
6 Department of Medicine and Radiology, Division of Cardiology, Loyola University of Chicago , Chicago, IL , United States
7 Department of Medicine, Division of Cardiology, Edward Hines Jr. VA Hospital , Hines, IL , United States
2 Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan , Milan , Italy
4 Department of Nuclear Medicine, University Hospital Zurich , Zurich , Switzerland
AuthorAffiliation_xml – name: 7 Department of Medicine, Division of Cardiology, Edward Hines Jr. VA Hospital , Hines, IL , United States
– name: 2 Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan , Milan , Italy
– name: 5 Center for Molecular Cardiology, University Hospital Zurich , Zurich , Switzerland
– name: 4 Department of Nuclear Medicine, University Hospital Zurich , Zurich , Switzerland
– name: 6 Department of Medicine and Radiology, Division of Cardiology, Loyola University of Chicago , Chicago, IL , United States
– name: 3 Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital Policlinico of Bari , Bari , Italy
– name: 1 Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Milan , Italy
Author_xml – sequence: 1
  givenname: Riccardo
  surname: Maragna
  fullname: Maragna, Riccardo
– sequence: 2
  givenname: Carlo Maria
  surname: Giacari
  fullname: Giacari, Carlo Maria
– sequence: 3
  givenname: Marco
  surname: Guglielmo
  fullname: Guglielmo, Marco
– sequence: 4
  givenname: Andrea
  surname: Baggiano
  fullname: Baggiano, Andrea
– sequence: 5
  givenname: Laura
  surname: Fusini
  fullname: Fusini, Laura
– sequence: 6
  givenname: Andrea Igoren
  surname: Guaricci
  fullname: Guaricci, Andrea Igoren
– sequence: 7
  givenname: Alexia
  surname: Rossi
  fullname: Rossi, Alexia
– sequence: 8
  givenname: Mark
  surname: Rabbat
  fullname: Rabbat, Mark
– sequence: 9
  givenname: Gianluca
  surname: Pontone
  fullname: Pontone, Gianluca
BookMark eNqFkc1v1DAQxS1UREvpnaOPXHbxR5zEHJCWLYWVWriAxM2adcbBlWMvidNq_3u8bIUoB7h4_DHv5zd6z8lJTBEJecnZUspWv3b2blgKJviykbUQ8gk5E0I3C6bUt5M_9qfkYppuGWNcVa2q22fkVFa15K2szohfjdk7bz0EuokZQ_A9Rov0HUzY0Zs5ZD-kDoLPe7oZoPexf0NX9BPe06sxxexxpD7SdSoHGPe08LCUSz9hIdAbiNDjgDG_IE8dhAkvHuo5-Xr1_sv64-L684fNenW9sJXUedFwlFsBdcedqlGh4yA6sE4r2zmmGLbANWNV12wVqkojF4qzrWocF5I1Qp6TzZHbJbg1u9EPxZZJ4M2vizT2BsrMNqBx0BWhRVvXrrLatVj-BFZWqSQ2bWHxI2uOO9jfQwi_gZyZQwrmkII5pGCOKRTN26NmN28H7GwZfYTwyMjjl-i_mz7dmbbSkrW6AF49AMb0Y8Ypm8FPtiQDEdM8GaFappXWmpfW-thqxzRNIzpjfYbs04Hsw79Msr-E_53rJyrSw3g
CitedBy_id crossref_primary_10_37349_ec_2024_00038
crossref_primary_10_1016_j_jcct_2023_07_003
crossref_primary_10_3389_fcvm_2022_896366
crossref_primary_10_1177_09287329241309771
crossref_primary_10_3389_fcvm_2022_836473
crossref_primary_10_1016_j_ejrad_2023_110855
crossref_primary_10_3390_medsci11010020
crossref_primary_10_20517_2574_1209_2023_123
crossref_primary_10_3390_jimaging8020035
crossref_primary_10_1016_j_atherosclerosis_2024_117549
Cites_doi 10.1109/ISBI.2011.5872497
10.1007/s00330-018-5822-3
10.1093/ehjci/jez033
10.1007/s12574-020-00496-4
10.1016/S2589-7500(20)30249-1
10.1155/2020/6649410
10.1016/j.jcmg.2021.04.030
10.1007/978-3-319-66179-7_28
10.1093/ehjci/jez177
10.1001/jamacardio.2020.0359
10.1016/j.amjcard.2018.11.024
10.1161/CIRCIMAGING.119.009829
10.1002/mp.12783
10.1016/j.jcct.2021.05.004
10.1001/2012.jama.11274
10.1007/s11547-020-01277-w
10.1109/TMI.2018.2883807
10.1093/eurheartj/ehz592
10.1007/s12350-014-0027-x
10.1016/j.jacc.2011.02.074
10.1109/EMBC.2018.8513063
10.1148/ryct.2021200512
10.1161/CIRCULATIONAHA.115.001593
10.1016/j.atherosclerosis.2019.12.001
10.1109/TMI.2017.2769839
10.1007/s00330-012-2726-5
10.1148/radiol.2018171291
10.21037/qims-21-99
10.2967/jnumed.112.108969
10.1016/j.jcmg.2018.07.022
10.2967/jnumed.116.179911
10.1148/ryai.2020200009
10.1016/j.jcmg.2018.01.020
10.1016/j.ejrad.2021.109835
10.1016/j.media.2017.11.008
10.1093/cvr/cvz321
10.1016/j.jcct.2017.06.002
10.1148/radiol.2020191621
10.1016/j.jcmg.2017.07.024
10.1259/bjr.20200780
10.1016/j.jcct.2018.04.011
10.1007/s00330-019-06571-4
10.1161/CIRCULATIONAHA.119.044666
10.1056/NEJMp1606181
10.1007/978-3-540-85990-1_17
10.1186/s12968-020-00610-6
10.1002/mp.13436
10.1016/j.jcct.2018.10.018
10.1117/12.2512168
10.1016/j.ejrad.2019.108657
10.1007/s12350-017-0834-y
10.1016/j.atherosclerosis.2021.02.008
10.1016/j.jacc.2011.06.066
10.1016/j.jcmg.2018.01.005
10.1016/j.jcmg.2019.06.019
10.1016/j.jacc.2018.12.054
10.1016/j.jcmg.2020.06.033
10.1007/s10334-018-0718-4
10.1148/radiol.2019182304
10.1177/0008125619864925
10.1007/978-3-642-23626-6_4
10.1016/j.jcmg.2019.03.003
10.1016/j.jcmg.2019.02.024
10.1093/eurheartj/ehz425
10.1161/CIRCIMAGING.117.006843
10.1016/j.cmpb.2018.12.002
10.1002/jmri.26983
10.3390/jcm9020604
10.1056/NEJM200011163432003
10.1016/j.compbiomed.2015.03.033
10.1148/radiol.2015151169
10.1161/JAHA.119.013958
10.1155/2021/6678029
10.1186/s12968-018-0471-x
10.1016/j.jcct.2016.03.002
10.1161/CIRCIMAGING.114.002666
10.1117/1.JMI.2.1.014003
10.1148/radiol.2017170213
10.1148/ryai.2019190045
10.1016/j.jcmg.2016.11.024
10.1016/j.bspc.2017.09.030
10.1161/CIRCIMAGING.117.007217
10.1016/j.artmed.2015.06.001
10.1126/science.aax2342
10.1007/s12350-013-9706-2
10.1118/1.4927375
10.1016/j.jacc.2018.03.521
10.1016/j.ejrad.2017.04.024
10.1016/j.compbiomed.2019.103424
10.1186/s12968-019-0575-y
10.1016/j.jcct.2009.09.004
10.1016/j.jcmg,.2019.06.027
10.1126/scitranslmed.aal2658
10.7759/cureus.9349
10.1016/j.jcct.2018.01.008
10.1038/s41467-021-20966-2
10.3348/kjr.2019.0969
10.1016/j.media.2015.05.010
10.1186/s12968-017-0388-9
10.1007/s00330-019-06489-x
10.1016/j.jacc.2013.11.043
10.1109/TMI.2015.2412651
10.1371/journal.pone.0091239
10.1016/j.media.2017.04.002
ContentType Journal Article
Copyright Copyright © 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone.
Copyright © 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone. 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone
Copyright_xml – notice: Copyright © 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone.
– notice: Copyright © 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone. 2021 Maragna, Giacari, Guglielmo, Baggiano, Fusini, Guaricci, Rossi, Rabbat and Pontone
DBID AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fcvm.2021.736223
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2297-055X
ExternalDocumentID oai_doaj_org_article_fadb57cec66f4c9f8ef56a0ef5353e78
10.3389/fcvm.2021.736223
PMC8493089
10_3389_fcvm_2021_736223
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c439t-71e3b2a6d1f56e5ef1a2dacf95cdf050e8a19004d7b5e549e12510b57f1230723
IEDL.DBID UNPAY
ISSN 2297-055X
IngestDate Fri Oct 03 12:50:02 EDT 2025
Sun Oct 26 03:50:06 EDT 2025
Thu Aug 21 18:17:06 EDT 2025
Fri Sep 05 10:59:58 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Oct 01 03:58:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-71e3b2a6d1f56e5ef1a2dacf95cdf050e8a19004d7b5e549e12510b57f1230723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Alexandros Kallifatidis, St. Luke's Hospital, Greece; Anastasios Panagopoulos, University of Nebraska Medical Center, United States
This article was submitted to Cardiovascular Imaging, a section of the journal Frontiers in Cardiovascular Medicine
Edited by: Grigorios Korosoglou, GRN Klinik Weinheim, Germany
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fcvm.2021.736223/pdf
PMID 34631834
PQID 2580959991
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_fadb57cec66f4c9f8ef56a0ef5353e78
unpaywall_primary_10_3389_fcvm_2021_736223
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8493089
proquest_miscellaneous_2580959991
crossref_citationtrail_10_3389_fcvm_2021_736223
crossref_primary_10_3389_fcvm_2021_736223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-22
PublicationDateYYYYMMDD 2021-09-22
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-22
  day: 22
PublicationDecade 2020
PublicationTitle Frontiers in cardiovascular medicine
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Khan (B1) 2020; 12
Rabbat (B94) 2020
Patel (B92) 2020
Betancur (B58) 2018; 11
Tesche (B95) 2018; 288
Kusunose (B27) 2021; 19
Masuda (B71) 2019; 13
Leiner (B10) 2019; 21
Schulz-Menger (B52) 2020; 22
Zreik (B72) 2019; 38
Bai (B35) 2018; 20
Hong (B67) 2019; 12
Takx (B11) 2014; 9
van Assen (B7) 2020; 125
Ma (B45) 2021; 22
Hsu (B51) 2018; 11
Min (B86) 2012; 308
Ding (B23) 2015; 42
Scannell (B46) 2020; 51
Wolterink (B12) 2015; 34
Rabbat (B89) 2017; 11
Kitabata (B90) 2018; 12
Otaki (B59) 2021; 4
Engblom (B50) 2017; 19
Takx (B98) 2015; 8
Raghavendra (B28) 2018; 40
Guglielmo (B21) 2021; 321
Oikonomou (B25) 2019; 40
Dey (B69) 2009; 3
Moccia (B42) 2019; 32
van Hamersvelt (B82) 2019; 29
Baumann (B77) 2019; 119
Tahhan (B103) 2020; 5
Kelm (B64) 2011; 14
Daubert (B54) 2021; 94
(B105) 2020
Muscogiuri (B8) 2020; 2020
Larroza (B40) 2018; 45
Baessler (B41) 2018; 286
Curiale (B36) 2019; 169
Kolossváry (B70) 2017; 10
Andreini (B83) 2020; 13
Tat (B102) 2020; 2
Liu (B81) 2021; 142
Kusunose (B29) 2020; 13
van Velzen (B15) 2020; 295
Hu (B62) 2020; 21
Lessmann (B13) 2018; 37
Betancur (B55) 2017; 58
Antonopoulos (B22) 2017; 9
Muscogiuri (B68) 2020; 294
Militello (B24) 2019; 114
Larroza (B39) 2017; 92
Gillies (B9) 2016; 278
Koo (B91) 2011; 58
Tan (B48) 2017; 39
Han (B100) 2018; 25
Obermeyer (B104) 2019; 366
Obermeyer (B5) 2016; 375
Lu (B88) 2017; 10
Arsanjani (B57) 2013; 20
Coenen (B75) 2018; 11
Betancur (B61) 2018; 11
Johnson (B101) 2018; 71
Haenlein (B3) 2019; 61
Commandeur (B17) 2019; 1
Deo (B4) 2015; 132
Commandeur (B18) 2020; 116
Benjamin (B80) 2021; 11
Omar (B32) 2018; 2018
Sandstedt (B14) 2020; 30
Baessato (B34) 2021; 2021
Xue (B47) 2020; 2
Huang (B20) 2013; 23
Kang (B65) 2015; 2
Vidya (B33) 2015; 62
Zhang (B44) 2019; 291
Kim (B49) 2000; 343
Tesche (B78) 2020; 13
van Rosendael (B84) 2018; 12
Lin (B79) 2021; 3
Celeng (B97) 2019; 12
Lin (B26) 2020; 13
Chykeyuk (B31) 2011
Knuuti (B2) 2020; 41
Mansor (B30) 2008; 11
Knott (B53) 2020; 141
Kolossváry (B85) 2019; 20
Xiong (B99) 2015; 24
Dey (B6) 2019; 73
Zabihollahy (B43) 2019; 46
Zreik (B66) 2018; 44
Nørgaard (B87) 2014; 63
Min (B63) 2011; 58
Xu (B38) 2017
Arsanjani (B56) 2013; 54
Han (B73) 2020; 9
Choi (B74) 2021; 5
Eisenberg (B19) 2020; 13
Xu (B96) 2020; 30
Arsanjani (B60) 2015; 22
Nous (B76) 2019; 123
Zeleznik (B16) 2021; 12
Kotu (B37) 2015; 64
Tesche (B93) 2016; 10
References_xml – start-page: 677
  year: 2011
  ident: B31
  article-title: Feature extraction and wall motion classification of 2D stress echocardiography with relevance vector machines
  publication-title: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
  doi: 10.1109/ISBI.2011.5872497
– volume: 29
  start-page: 2350
  year: 2019
  ident: B82
  article-title: Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis
  publication-title: Eur Radiol.
  doi: 10.1007/s00330-018-5822-3
– volume: 20
  start-page: 1250
  year: 2019
  ident: B85
  article-title: Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography
  publication-title: Eur Heart J Cardiovasc Imaging.
  doi: 10.1093/ehjci/jez033
– volume: 19
  start-page: 21
  year: 2021
  ident: B27
  article-title: Steps to use artificial intelligence in echocardiography
  publication-title: J Echocardiogr.
  doi: 10.1007/s12574-020-00496-4
– volume: 2
  start-page: e635
  year: 2020
  ident: B102
  article-title: Addressing bias: artificial intelligence in cardiovascular medicine
  publication-title: Lancet Digit Health.
  doi: 10.1016/S2589-7500(20)30249-1
– volume: 2020
  start-page: 6649410
  year: 2020
  ident: B8
  article-title: Artificial intelligence in coronary computed tomography angiography: from anatomy to prognosis
  publication-title: Biomed Res Int.
  doi: 10.1155/2020/6649410
– volume: 4
  start-page: 30
  year: 2021
  ident: B59
  article-title: Clinical deployment of explainable artificial intelligence of SPECT for diagnosis of coronary artery disease
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2021.04.030
– start-page: 240
  volume-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2017
  year: 2017
  ident: B38
  article-title: Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm
  doi: 10.1007/978-3-319-66179-7_28
– volume: 21
  start-page: 549
  year: 2020
  ident: B62
  article-title: Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry
  publication-title: Eur Heart J Cardiovasc Imaging.
  doi: 10.1093/ehjci/jez177
– volume: 5
  start-page: 714
  year: 2020
  ident: B103
  article-title: Enrollment of older patients, women, and racial/ethnic minority groups in contemporary acute coronary syndrome clinical trials: a systematic review
  publication-title: J Am Med Assoc Cardiol.
  doi: 10.1001/jamacardio.2020.0359
– volume: 123
  start-page: 537
  year: 2019
  ident: B76
  article-title: Comparison of the diagnostic performance of coronary computed tomography angiography-derived fractional flow reserve in patients with versus without diabetes mellitus (from the MACHINE Consortium)
  publication-title: Am J Cardiol.
  doi: 10.1016/j.amjcard.2018.11.024
– volume: 13
  start-page: e009829
  year: 2020
  ident: B19
  article-title: Deep learning-based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects
  publication-title: Circ Cardiovasc Imaging.
  doi: 10.1161/CIRCIMAGING.119.009829
– volume: 45
  start-page: 1471
  year: 2018
  ident: B40
  article-title: Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction
  publication-title: Med Phys.
  doi: 10.1002/mp.12783
– volume: 5
  start-page: 4
  year: 2021
  ident: B74
  article-title: CT EvaLuation by Artificial Intelligence For Atherosclerosis, Stenosis and Vascular MorphologY (CLARIFY): a multi-center, international study
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2021.05.004
– volume: 308
  start-page: 1237
  year: 2012
  ident: B86
  article-title: Diagnostic accuracy of fractional flow reserve from anatomic CT angiography
  publication-title: J Am Med Assoc.
  doi: 10.1001/2012.jama.11274
– volume: 125
  start-page: 1186
  year: 2020
  ident: B7
  article-title: Artificial intelligence in cardiac radiology
  publication-title: Radiol Med.
  doi: 10.1007/s11547-020-01277-w
– volume: 38
  start-page: 1588
  year: 2019
  ident: B72
  article-title: A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography
  publication-title: IEEE Trans Med Imaging.
  doi: 10.1109/TMI.2018.2883807
– volume: 40
  start-page: 3529
  year: 2019
  ident: B25
  article-title: A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography
  publication-title: Eur Heart J.
  doi: 10.1093/eurheartj/ehz592
– volume: 22
  start-page: 877
  year: 2015
  ident: B60
  article-title: Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population
  publication-title: J Nucl Cardiol.
  doi: 10.1007/s12350-014-0027-x
– volume: 58
  start-page: 849
  year: 2011
  ident: B63
  article-title: Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/j.jacc.2011.02.074
– volume: 2018
  start-page: 3140
  year: 2018
  ident: B32
  article-title: Automated myocardial wall motion classification using handcrafted features vs a deep CNN-based mapping
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc.
  doi: 10.1109/EMBC.2018.8513063
– volume: 3
  start-page: e200512
  year: 2021
  ident: B79
  article-title: Artificial intelligence in cardiovascular imaging for risk stratification in coronary artery disease
  publication-title: Radiol Cardiothorac Imaging.
  doi: 10.1148/ryct.2021200512
– volume: 132
  start-page: 1920
  year: 2015
  ident: B4
  article-title: Machine learning in medicine
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.115.001593
– volume: 294
  start-page: 25
  year: 2020
  ident: B68
  article-title: Performance of a deep learning algorithm for the evaluation of CAD-RADS classification with CCTA
  publication-title: Atherosclerosis.
  doi: 10.1016/j.atherosclerosis.2019.12.001
– volume: 37
  start-page: 615
  year: 2018
  ident: B13
  article-title: Automatic Calcium Scoring in Low-Dose Chest CT Using Deep Neural Networks With Dilated Convolutions
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2769839
– volume: 23
  start-page: 1226
  year: 2013
  ident: B20
  article-title: Reliable categorisation of visual scoring of coronary artery calcification on low-dose CT for lung cancer screening: validation with the standard Agatston score
  publication-title: Eur Radiol.
  doi: 10.1007/s00330-012-2726-5
– volume: 288
  start-page: 64
  year: 2018
  ident: B95
  article-title: Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling
  publication-title: Radiology.
  doi: 10.1148/radiol.2018171291
– volume: 11
  start-page: 2208
  year: 2021
  ident: B80
  article-title: Machine learning-based advances in coronary computed tomography angiography
  publication-title: Quant Imaging Med Surg.
  doi: 10.21037/qims-21-99
– volume: 54
  start-page: 221
  year: 2013
  ident: B56
  article-title: Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population
  publication-title: J Nucl Med.
  doi: 10.2967/jnumed.112.108969
– volume: 12
  start-page: 1316
  year: 2019
  ident: B97
  article-title: Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease: a meta-analysis
  publication-title: JACC Cardiovasc Imaging.
  doi: 10.1016/j.jcmg.2018.07.022
– volume: 58
  start-page: 961
  year: 2017
  ident: B55
  article-title: Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomic and clinical validation
  publication-title: J Nucl Med.
  doi: 10.2967/jnumed.116.179911
– volume: 2
  start-page: e200009
  year: 2020
  ident: B47
  article-title: Automated inline analysis of myocardial perfusion MRI with deep learning
  publication-title: Radiol Artif Intell.
  doi: 10.1148/ryai.2020200009
– volume: 11
  start-page: 1654
  year: 2018
  ident: B58
  article-title: Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study
  publication-title: JACC Cardiovasc Imaging.
  doi: 10.1016/j.jcmg.2018.01.020
– volume: 142
  start-page: 109835
  year: 2021
  ident: B81
  article-title: Deep learning powered coronary CT angiography for detecting obstructive coronary artery disease: The effect of reader experience, calcification and image quality
  publication-title: Eur J Radiol.
  doi: 10.1016/j.ejrad.2021.109835
– volume: 44
  start-page: 72
  year: 2018
  ident: B66
  article-title: Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2017.11.008
– volume: 116
  start-page: 2216
  year: 2020
  ident: B18
  article-title: Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study
  publication-title: Cardiovasc Res.
  doi: 10.1093/cvr/cvz321
– volume: 11
  start-page: 383
  year: 2017
  ident: B89
  article-title: Interpreting results of coronary computed tomography angiography-derived fractional flow reserve in clinical practice
  publication-title: J Cardiovasc Comput Tomogr.
  doi: 10.1016/j.jcct.2017.06.002
– volume: 295
  start-page: 66
  year: 2020
  ident: B15
  article-title: Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols
  publication-title: Radiology.
  doi: 10.1148/radiol.2020191621
– volume: 11
  start-page: 1000
  year: 2018
  ident: B61
  article-title: Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning
  publication-title: JACC Cardiovasc Imaging.
  doi: 10.1016/j.jcmg.2017.07.024
– volume: 94
  start-page: 20200780
  year: 2021
  ident: B54
  article-title: Multimodality cardiac imaging in the 21st century: evolution, advances and future opportunities for innovation
  publication-title: Br J Radiol.
  doi: 10.1259/bjr.20200780
– volume: 12
  start-page: 204
  year: 2018
  ident: B84
  article-title: Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry
  publication-title: J Cardiovasc Comput Tomogr.
  doi: 10.1016/j.jcct.2018.04.011
– volume: 30
  start-page: 2525
  year: 2020
  ident: B96
  article-title: The influence of image quality on diagnostic performance of a machine learning-based fractional flow reserve derived from coronary CT angiography
  publication-title: Eur Radiol.
  doi: 10.1007/s00330-019-06571-4
– volume: 141
  start-page: 1282
  year: 2020
  ident: B53
  article-title: The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.119.044666
– volume: 375
  start-page: 1216
  year: 2016
  ident: B5
  article-title: Predicting the future - big data, machine learning, and clinical medicine
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMp1606181
– volume: 11
  start-page: 139
  year: 2008
  ident: B30
  article-title: Wall motion classification of stress echocardiography based on combined rest-and-stress data
  publication-title: Med Image Comput Comput Assist Interv.
  doi: 10.1007/978-3-540-85990-1_17
– volume: 22
  start-page: 19
  year: 2020
  ident: B52
  article-title: Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): board of Trustees Task Force on Standardized Post-Processing
  publication-title: J Cardiovasc Magn Reson.
  doi: 10.1186/s12968-020-00610-6
– volume: 46
  start-page: 1740
  year: 2019
  ident: B43
  article-title: Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images
  publication-title: Med Phys.
  doi: 10.1002/mp.13436
– volume: 13
  start-page: 163
  year: 2019
  ident: B71
  article-title: Machine-learning integration of CT histogram analysis to evaluate the composition of atherosclerotic plaques: Validation with IB-IVUS
  publication-title: J Cardiovasc Comput Tomogr.
  doi: 10.1016/j.jcct.2018.10.018
– volume: 12
  start-page: 10949
  year: 2019
  ident: B67
  article-title: Deep learning-based stenosis quantification from coronary CT
  publication-title: Angiography Proc SPIE Int Soc Opt Eng.
  doi: 10.1117/12.2512168
– volume: 119
  start-page: 108657
  year: 2019
  ident: B77
  article-title: Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.108657
– volume: 25
  start-page: 223
  year: 2018
  ident: B100
  article-title: Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: a machine learning approach
  publication-title: J Nucl Cardiol.
  doi: 10.1007/s12350-017-0834-y
– volume: 321
  start-page: 30
  year: 2021
  ident: B21
  article-title: Epicardial fat and coronary artery disease: role of cardiac imaging
  publication-title: Atherosclerosis.
  doi: 10.1016/j.atherosclerosis.2021.02.008
– volume: 58
  start-page: 1989
  year: 2011
  ident: B91
  article-title: Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/j.jacc.2011.06.066
– volume: 11
  start-page: 697
  year: 2018
  ident: B51
  article-title: Diagnostic performance of fully automated pixel-wise quantitative myocardial perfusion imaging by cardiovascular magnetic resonance
  publication-title: JACC Cardiovasc Imaging.
  doi: 10.1016/j.jcmg.2018.01.005
– volume: 13
  start-page: 1704
  year: 2020
  ident: B83
  article-title: Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events
  publication-title: JACC Cardiovasc Imaging.
  doi: 10.1016/j.jcmg.2019.06.019
– volume-title: European Commission White Paper. On Artificial Intelligence— A European Approach to Excellence and Trust
  year: 2020
  ident: B105
– volume: 73
  start-page: 1317
  year: 2019
  ident: B6
  article-title: Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/j.jacc.2018.12.054
– volume: 13
  start-page: 2371
  year: 2020
  ident: B26
  article-title: Myocardial infarction associates with a distinct pericoronary adipose tissue radiomic phenotype: a prospective case-control study
  publication-title: JACC Cardiovasc Imaging.
  doi: 10.1016/j.jcmg.2020.06.033
– volume: 32
  start-page: 187
  year: 2019
  ident: B42
  article-title: Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images
  publication-title: Magma.
  doi: 10.1007/s10334-018-0718-4
– volume: 291
  start-page: 606
  year: 2019
  ident: B44
  article-title: Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI
  publication-title: Radiology.
  doi: 10.1148/radiol.2019182304
– volume: 61
  start-page: 8125619864925
  year: 2019
  ident: B3
  article-title: A brief history of artificial intelligence: on the past, present, and future of artificial intelligence
  publication-title: California Manag Rev
  doi: 10.1177/0008125619864925
– volume: 14
  start-page: 25
  year: 2011
  ident: B64
  article-title: Detection, grading and classification of coronary stenoses in computed tomography angiography
  publication-title: Med Image Comput Comput Assist Interv.
  doi: 10.1007/978-3-642-23626-6_4
– start-page: 97
  year: 2020
  ident: B92
  article-title: 1-year impact on medical practice and clinical outcomes of FFR
  publication-title: JACC Cardiovasc Imaging 13(1 Pt 1).
  doi: 10.1016/j.jcmg.2019.03.003
– volume: 13
  start-page: 374
  year: 2020
  ident: B29
  article-title: A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images
  publication-title: JACC Cardiovasc Imag.
  doi: 10.1016/j.jcmg.2019.02.024
– volume: 41
  start-page: 407
  year: 2020
  ident: B2
  article-title: 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes
  publication-title: Eur Heart J.
  doi: 10.1093/eurheartj/ehz425
– volume: 10
  start-page: e006843
  year: 2017
  ident: B70
  article-title: Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign
  publication-title: Circ Cardiovasc Imaging.
  doi: 10.1161/CIRCIMAGING.117.006843
– volume: 169
  start-page: 37
  year: 2019
  ident: B36
  article-title: Automatic quantification of the LV function and mass: a deep learning approach for cardiovascular MRI
  publication-title: Comput Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.12.002
– volume: 51
  start-page: 1689
  year: 2020
  ident: B46
  article-title: Deep-learning-based preprocessing for quantitative myocardial perfusion MRI
  publication-title: J Magn Reson Imaging.
  doi: 10.1002/jmri.26983
– start-page: 9
  year: 2020
  ident: B94
  article-title: Fractional flow reserve derived from coronary computed tomography angiography safely defers invasive coronary angiography in patients with stable coronary artery disease
  publication-title: J Clin Med.
  doi: 10.3390/jcm9020604
– volume: 343
  start-page: 1445
  year: 2000
  ident: B49
  article-title: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction
  publication-title: N Engl J Med.
  doi: 10.1056/NEJM200011163432003
– volume: 62
  start-page: 86
  year: 2015
  ident: B33
  article-title: Computer-aided diagnosis of Myocardial Infarction using ultrasound images with DWT, GLCM and HOS methods: a comparative study
  publication-title: Comput Biol Med.
  doi: 10.1016/j.compbiomed.2015.03.033
– volume: 278
  start-page: 563
  year: 2016
  ident: B9
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology.
  doi: 10.1148/radiol.2015151169
– volume: 9
  start-page: e013958
  year: 2020
  ident: B73
  article-title: Machine learning framework to identify individuals at risk of rapid progression of coronary atherosclerosis: from the PARADIGM registry
  publication-title: J Am Heart Assoc.
  doi: 10.1161/JAHA.119.013958
– volume: 2021
  start-page: 6678029
  year: 2021
  ident: B34
  article-title: Stress CMR in known or suspected CAD: diagnostic and prognostic role
  publication-title: Biomed Res Int.
  doi: 10.1155/2021/6678029
– volume: 20
  start-page: 65
  year: 2018
  ident: B35
  article-title: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
  publication-title: J Cardiovasc Magn Reson.
  doi: 10.1186/s12968-018-0471-x
– volume: 10
  start-page: 199
  year: 2016
  ident: B93
  article-title: Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis
  publication-title: J Cardiovasc Comput Tomogr.
  doi: 10.1016/j.jcct.2016.03.002
– volume: 8
  start-page: 2666
  year: 2015
  ident: B98
  article-title: Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis
  publication-title: Circ Cardiovasc Imaging.
  doi: 10.1161/CIRCIMAGING.114.002666
– volume: 2
  start-page: 014003
  year: 2015
  ident: B65
  article-title: Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography
  publication-title: J Med Imaging.
  doi: 10.1117/1.JMI.2.1.014003
– volume: 286
  start-page: 103
  year: 2018
  ident: B41
  article-title: Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images
  publication-title: Radiology.
  doi: 10.1148/radiol.2017170213
– volume: 1
  start-page: e190045
  year: 2019
  ident: B17
  article-title: Fully automated CT quantification of epicardial adipose tissue by deep learning: a multicenter study
  publication-title: Radiol Artif Intell.
  doi: 10.1148/ryai.2019190045
– volume: 10
  start-page: 1350
  year: 2017
  ident: B88
  article-title: Noninvasive FFR derived from coronary CT angiography: management and outcomes in the PROMISE trial
  publication-title: JACC Cardiovasc Imaging.
  doi: 10.1016/j.jcmg.2016.11.024
– volume: 40
  start-page: 324
  year: 2018
  ident: B28
  article-title: Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images
  publication-title: Biomed Sign Proces Contr.
  doi: 10.1016/j.bspc.2017.09.030
– volume: 11
  start-page: e007217
  year: 2018
  ident: B75
  article-title: Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium
  publication-title: Circ Cardiovasc Imaging.
  doi: 10.1161/CIRCIMAGING.117.007217
– volume: 64
  start-page: 205
  year: 2015
  ident: B37
  article-title: Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients
  publication-title: Artif Intell Med.
  doi: 10.1016/j.artmed.2015.06.001
– volume: 366
  start-page: 447
  year: 2019
  ident: B104
  article-title: Dissecting racial bias in an algorithm used to manage the health of populations
  publication-title: Science.
  doi: 10.1126/science.aax2342
– volume: 20
  start-page: 553
  year: 2013
  ident: B57
  article-title: Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population
  publication-title: J Nucl Cardiol.
  doi: 10.1007/s12350-013-9706-2
– volume: 42
  start-page: 5015
  year: 2015
  ident: B23
  article-title: Automated pericardium delineation and epicardial fat volume quantification from noncontrast CT
  publication-title: Med Phys.
  doi: 10.1118/1.4927375
– volume: 71
  start-page: 2668
  year: 2018
  ident: B101
  article-title: Artificial intelligence in cardiology
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/j.jacc.2018.03.521
– volume: 92
  start-page: 78
  year: 2017
  ident: B39
  article-title: Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging
  publication-title: Eur J Radiol.
  doi: 10.1016/j.ejrad.2017.04.024
– volume: 114
  start-page: 103424
  year: 2019
  ident: B24
  article-title: A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans
  publication-title: Comput Biol Med.
  doi: 10.1016/j.compbiomed.2019.103424
– volume: 21
  start-page: 61
  year: 2019
  ident: B10
  article-title: Machine learning in cardiovascular magnetic resonance: basic concepts and applications
  publication-title: J Cardiovasc Magn Reson.
  doi: 10.1186/s12968-019-0575-y
– volume: 3
  start-page: 372
  year: 2009
  ident: B69
  article-title: Automated 3-dimensional quantification of noncalcified and calcified coronary plaque from coronary CT angiography
  publication-title: J Cardiovasc Comput Tomogr.
  doi: 10.1016/j.jcct.2009.09.004
– volume: 13
  start-page: 760
  year: 2020
  ident: B78
  article-title: Influence of coronary calcium on diagnostic performance of machine learning CT-FFR: results from MACHINE registry
  publication-title: JACC Cardiovasc Imaging.
  doi: 10.1016/j.jcmg,.2019.06.027
– volume: 9
  start-page: aal2658
  year: 2017
  ident: B22
  article-title: Detecting human coronary inflammation by imaging perivascular fat
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aal2658
– volume: 12
  start-page: e9349
  year: 2020
  ident: B1
  article-title: Global epidemiology of ischemic heart disease: results from the global burden of disease study
  publication-title: Cureus.
  doi: 10.7759/cureus.9349
– volume: 12
  start-page: 95
  year: 2018
  ident: B90
  article-title: Incidence and predictors of lesion-specific ischemia by FFR
  publication-title: J Cardiovasc Comput Tomogr.
  doi: 10.1016/j.jcct.2018.01.008
– volume: 12
  start-page: 715
  year: 2021
  ident: B16
  article-title: Deep convolutional neural networks to predict cardiovascular risk from computed tomography
  publication-title: Nat Commun.
  doi: 10.1038/s41467-021-20966-2
– volume: 22
  start-page: 535
  year: 2021
  ident: B45
  article-title: Radiomics of non-contrast-enhanced T1 mapping: diagnostic and predictive performance for myocardial injury in acute ST-segment-elevation myocardial infarction
  publication-title: Korean J Radiol.
  doi: 10.3348/kjr.2019.0969
– volume: 24
  start-page: 77
  year: 2015
  ident: B99
  article-title: Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2015.05.010
– volume: 19
  start-page: 78
  year: 2017
  ident: B50
  article-title: Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography
  publication-title: J Cardiovasc Magn Reson.
  doi: 10.1186/s12968-017-0388-9
– volume: 30
  start-page: 1671
  year: 2020
  ident: B14
  article-title: Evaluation of an AI-based, automatic coronary artery calcium scoring software
  publication-title: Eur Radiol.
  doi: 10.1007/s00330-019-06489-x
– volume: 63
  start-page: 1145
  year: 2014
  ident: B87
  article-title: Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps)
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/j.jacc.2013.11.043
– volume: 34
  start-page: 1867
  year: 2015
  ident: B12
  article-title: Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection
  publication-title: IEEE Trans Med Imaging.
  doi: 10.1109/TMI.2015.2412651
– volume: 9
  start-page: e91239
  year: 2014
  ident: B11
  article-title: Automated coronary artery calcification scoring in non-gated chest CT: agreement and reliability
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0091239
– volume: 39
  start-page: 78
  year: 2017
  ident: B48
  article-title: Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2017.04.002
SSID ssj0001548568
Score 2.234533
SecondaryResourceType review_article
Snippet Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 736223
SubjectTerms artificial intelligence
Cardiovascular Medicine
coronary artery disease
deep learning
machine learning
multimodality imaging
radiomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqHmgvCEorUh4yEhcqhU38isOtD1YtUjlRqTfLccZipW22Krug_ntm4nTZcKAXLokUO3Hsb-wZ2-NvGHtviYClrZrcq-Bz1TYm91aqHIL2TSVRJwVah7z8as6v1Jdrfb0R6ot8whI9cGq4SfRto6sAwZioQh0tRG18gVepJVT9Md_C1huTqXQ-WFltbNqXxFlYPYnhJx08F-XHCsdsIUd6qKfrH9mYf3tI7qy6W3__y8_nG-pn-ow9HexGfpz-9znbgm6PPbkcdsZfsBmlJDYIfrFBs8lPUE21vD9ne7Noe6ubX9z0sYk-8WOOgxyfEokBqkc-6_gpMRr4u3sqCfB2ljZw-B83mX12Nf387fQ8H8Io5AGtjWVelSAb4U1bYsuBhlh60foQax3aWOgCrEeroFCImAacLgLZPAU2eizJS1zIA7bdLTp4yXhtom5qik-iKsS19NobL5qogNzDQGZs8tCoLgwc4xTqYu5wrkEwOILBEQwuwZCxD-s3bhO_xj_ynhBO63zEjN0_QHlxg7y4x-QlY-8eUHbYk2h7xHewWP1wQltaFEWDOWPVCP5RieOUbva95-S2qpYohhk7WgvKo_U5_B_1ecV26ZPkwiLEa7a9vFvBG7STls3bvkv8BoONFIQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD5ohdoX8Yrxxgi-KKRN5paJINJWl1ZYn1zo2zCZzOjCNlu3u-r-e89J0m0jRcGXBDJJJsk3k_OdmTPfAXhlSIClLqrUSe9SWVc6dUbINHjlqkKgTfI0Djn-rI8m8tOJOrlcHt1_wPNrXTvKJzVZzHZ_fV-_xw7_jjxOtLd70f-gNeU83y3wd8zFTbiFdqqkRA7jnux3a4alUdp0c5XXXrgD20JqauVyYKZaNf8BBf0zgPL2qjlz659uNrtinUZ34U5PK9l-1w7uwY3Q3IftcT9x_gCmVNKJRbDjKyqc7ACtWM3aZbin87ol5ez4tE1d9JbtM_wHshFpHKD1ZNOGHZLggVusqaaAuw_d_A67jKJ5CJPRxy-HR2mfZSH1SEaWaZEHUXGn6zwqHVSIueO187FUvo6ZyoJxSBoyiYCqgN5kIEqUVaqIOQWRc_EItpp5Ex4DK3VUVUnpS2SBsOdOOe14FWWg6LEgEti7-KjW9xLklAljZtEVIUQsIWIJEdshksDrzRVnnfzGX849IJw255Fwdntgvvhq-35oo6vx0X3wWkfpy2gCvrXLcCuUCIVJ4OUFyhY7Gs2euCbMV-eWK0NjpsinEygG8A9qHJY002-tZLeRpchMmcCbTUP55_s8-e9qnsIO3YfCWjh_BlvLxSo8R-60rF60XeI31BYa_A
  priority: 102
  providerName: Scholars Portal
Title Artificial Intelligence Based Multimodality Imaging: A New Frontier in Coronary Artery Disease Management
URI https://www.proquest.com/docview/2580959991
https://pubmed.ncbi.nlm.nih.gov/PMC8493089
https://www.frontiersin.org/articles/10.3389/fcvm.2021.736223/pdf
https://doaj.org/article/fadb57cec66f4c9f8ef56a0ef5353e78
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2297-055X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001548568
  issn: 2297-055X
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2297-055X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001548568
  issn: 2297-055X
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2297-055X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001548568
  issn: 2297-055X
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2297-055X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001548568
  issn: 2297-055X
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 2297-055X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0001548568
  issn: 2297-055X
  databaseCode: M48
  dateStart: 20141001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CTgJeuCMCbDISLyClTRw7F966jWpD6sQDlcZTZDu2VtGl1dZuGr-ecxK3W6YJhHhJlMRWfDm2P9ufvwPwIScBlirToRJGhaLSaajyRITWSKWzBMckQ-uQ46P0YCK-Hss1m_Dc0yodHd0nR9DTulUK9hQxauE4oyoGzlzQIXIe9zPsf3kyWFTuPmylEuF4D7YmR9-GP8ipHCelUSmP2-3JO6N2hqNGtb8DNW8TJR-u6oW6ulSz2Y1RaPQE9Dr9LfnkZ3-11H3z65a0439l8Ck89hiVDdvwz-CerZ_Dg7HfhX8BU_rSKk-wwxuSnmwXh8SKNWd6T-dVg_DZ4WnjB-kzGzLsUNnIJ4pNa7ZH6gnq7Ir-ZPG2324WsWtKzkuYjL583zsIvcuG0CCyWYZZbBPNVVrFTqZWWhcrXinjCmkqF8nI5goRSCTQOqTFqaklfBVpmbmYGOk8eQW9el7b18CK1EldkC8UkaENxUqqVHHthCUqmk0CGKxrrjRez5zcasxKnNdQKZZUiiWVYtmWYgAfNzEWrZbHH8LukjFswpEKd_MC66v09VU6VWHSjTVp6oQpXG4x1yrCayITm-UBvF-bUomtlrZiVG3nq_OSy5wWYBGcB5B1bKzzx-6XenrS6H_nokiivAjg08Ya_5qfN_8S-C08oieixXD-DnrLs5XdRuy11DvNmgVexyLf8S3tN64bMYI
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CToK9cEeEm4zEC0hpE8d2Et66QbUhbeKBSuMpsh1bVHRptbVD49dzTuKWZUIgxEuiJLZ8O7Y_x5-_A_C6IAGWOjexFlbHojYq1kUmYmelNnmGc5Kl_5BHx-pgKj6eyA2b8DzQKj0d3SdH0LOmUwoOFDHq4biiKkfeXtAhcp4Ocxx_eTZa1v4m7CiJcHwAO9PjT-Mv5FSOk9KolCfd9uRvo_amo1a1vwc1rxMlb6-bpb78rufzK7PQ5C6YTf478sm34XplhvbHNWnH_yrgPbgTMCobd-Hvww3XPIBbR2EX_iHM6EunPMEOr0h6sj2cEmvWnuk9XdQtwmeHp60fpHdszHBAZZOQKTZr2D6pJ-izS0rJ4e19t1nEflFyHsF08uHz_kEcXDbEFpHNKs5TlxmuVZ16qZx0PtW81taX0tY-kYkrNCKQRKB1SIdLU0f4KjEy9ykx0nn2GAbNonFPgJXKS1OSLxSRow2lWmqlufHCERXNZRGMNi1X2aBnTm415hWua6gWK6rFimqx6moxgjfbGMtOy-MPYffIGLbhSIW7fYHtVYX2qryuMevWWaW8sKUvHJZaJ3jNZObyIoJXG1OqsNfSVoxu3GJ9XnFZ0A9YBOcR5D0b66XY_9LMvrb634Uos6QoI3i7tca_lufpvwR-Brv0RLQYzp_DYHW2di8Qe63My9C7fgJs8S-z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Based+Multimodality+Imaging%3A+A+New+Frontier+in+Coronary+Artery+Disease+Management&rft.jtitle=Frontiers+in+cardiovascular+medicine&rft.au=Maragna%2C+Riccardo&rft.au=Giacari%2C+Carlo+Maria&rft.au=Guglielmo%2C+Marco&rft.au=Baggiano%2C+Andrea&rft.date=2021-09-22&rft.pub=Frontiers+Media+S.A&rft.eissn=2297-055X&rft.volume=8&rft_id=info:doi/10.3389%2Ffcvm.2021.736223&rft_id=info%3Apmid%2F34631834&rft.externalDocID=PMC8493089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-055X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-055X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-055X&client=summon