Microstructure and corrosion behavior of laser surface-melted high-speed steels
Three high-speed steels (HSSs) M2, ASP23, ASP30 were surface-melted by a CW 2.5-kW Nd:YAG laser. The microstructure of the laser surface-melted HSSs was investigated by optical microscopy, scanning electron microscopy and X-ray diffractometry, and the hardness profiles of the laser surface-melted la...
Saved in:
Published in | Surface & coatings technology Vol. 202; no. 2; pp. 336 - 348 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
25.11.2007
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0257-8972 1879-3347 |
DOI | 10.1016/j.surfcoat.2007.05.085 |
Cover
Abstract | Three high-speed steels (HSSs) M2, ASP23, ASP30 were surface-melted by a CW 2.5-kW Nd:YAG laser. The microstructure of the laser surface-melted HSSs was investigated by optical microscopy, scanning electron microscopy and X-ray diffractometry, and the hardness profiles of the laser surface-melted layers were determined by a Vickers hardness tester. The corrosion behavior in 0.6 M NaCl and 0.5 M NaHCO
3 solutions at 25 °C was studied by potentiodynamic polarization technique. Metallographical as well as electrochemical corrosion studies illustrated the beneficial effects of laser surface melting (LSM) in refining the microstructure and in enhancing the corrosion resistance of the HSSs. The large carbide particles of annealed HSSs were dissolved after LSM and ultrafine dendrites of austenite and martensite with submicroscopic carbide precipitation were formed in the melt zones of the laser surface-melted HSSs. LSM of M2, ASP23 and ASP30 produced surface layers of hardness 615, 580 and 665 Hv, respectively. The hardness of the laser surface-melted ASP23 and ASP30 reached about 0.75 to 0.80 that of the conventionally hardened ones, while the hardness of laser-melted M2 was comparable to that of conventionally hardened M2. The corrosion resistance of all laser surface-melted HSSs in both solutions was significantly improved, as evidenced by a noble shift of the corrosion potential and a reduction in the corrosion current density. Among the HSSs, laser surface-melted ASP23 possessed the highest corrosion resistance in both solutions. The presence of cobalt in ASP30 has no beneficial effect on enhancing its corrosion resistance. The enhancement in the corrosion resistance of the laser surface-melted HSSs is attributable to the combined effects of dissociation and refinement of large carbides and the increase of the passivating alloying elements such as Cr, Mo and W in solid solution. |
---|---|
AbstractList | Three high-speed steels (HSSs) M2, ASP23, ASP30 were surface-melted by a CW 2.5-kW Nd:YAG laser. The microstructure of the laser surface-melted HSSs was investigated by optical microscopy, scanning electron microscopy and X-ray diffractometry, and the hardness profiles of the laser surface-melted layers were determined by a Vickers hardness tester. The corrosion behavior in 0.6 M NaCl and 0.5 M NaHCO
3 solutions at 25 °C was studied by potentiodynamic polarization technique. Metallographical as well as electrochemical corrosion studies illustrated the beneficial effects of laser surface melting (LSM) in refining the microstructure and in enhancing the corrosion resistance of the HSSs. The large carbide particles of annealed HSSs were dissolved after LSM and ultrafine dendrites of austenite and martensite with submicroscopic carbide precipitation were formed in the melt zones of the laser surface-melted HSSs. LSM of M2, ASP23 and ASP30 produced surface layers of hardness 615, 580 and 665 Hv, respectively. The hardness of the laser surface-melted ASP23 and ASP30 reached about 0.75 to 0.80 that of the conventionally hardened ones, while the hardness of laser-melted M2 was comparable to that of conventionally hardened M2. The corrosion resistance of all laser surface-melted HSSs in both solutions was significantly improved, as evidenced by a noble shift of the corrosion potential and a reduction in the corrosion current density. Among the HSSs, laser surface-melted ASP23 possessed the highest corrosion resistance in both solutions. The presence of cobalt in ASP30 has no beneficial effect on enhancing its corrosion resistance. The enhancement in the corrosion resistance of the laser surface-melted HSSs is attributable to the combined effects of dissociation and refinement of large carbides and the increase of the passivating alloying elements such as Cr, Mo and W in solid solution. Three high-speed steels (HSSs) M2, ASP23, ASP30 were surface-melted by a CW 2.5-kW Nd:YAG laser. The microstructure of the laser surface-melted HSSs was investigated by optical microscopy, scanning electron microscopy and X-ray diffractometry, and the hardness profiles of the laser surface-melted layers were determined by a Vickers hardness tester. The corrosion behavior in 0.6M NaCl and 0.5M NaHCO3 solutions at 25 deg C was studied by potentiodynamic polarization technique. Metallographical as well as electrochemical corrosion studies illustrated the beneficial effects of laser surface melting (LSM) in refining the microstructure and in enhancing the corrosion resistance of the HSSs. The large carbide particles of annealed HSSs were dissolved after LSM and ultrafine dendrites of austenite and martensite with submicroscopic carbide precipitation were formed in the melt zones of the laser surface-melted HSSs. LSM of M2, ASP23 and ASP30 produced surface layers of hardness 615, 580 and 665 Hv, respectively. The hardness of the laser surface-melted ASP23 and ASP30 reached about 0.75 to 0.80 that of the conventionally hardened ones, while the hardness of laser-melted M2 was comparable to that of conventionally hardened M2. The corrosion resistance of all laser surface-melted HSSs in both solutions was significantly improved, as evidenced by a noble shift of the corrosion potential and a reduction in the corrosion current density. Among the HSSs, laser surface-melted ASP23 possessed the highest corrosion resistance in both solutions. The presence of cobalt in ASP30 has no beneficial effect on enhancing its corrosion resistance. The enhancement in the corrosion resistance of the laser surface-melted HSSs is attributable to the combined effects of dissociation and refinement of large carbides and the increase of the passivating alloying elements such as Cr, Mo and W in solid solution. |
Author | Man, H.C. Kwok, C.T. Cheng, F.T. |
Author_xml | – sequence: 1 givenname: C.T. surname: Kwok fullname: Kwok, C.T. organization: Department of Electromechanical Engineering, University of Macau, Taipa, Macau, PR China – sequence: 2 givenname: F.T. surname: Cheng fullname: Cheng, F.T. email: apaftche@polyu.edu.hk organization: Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China – sequence: 3 givenname: H.C. surname: Man fullname: Man, H.C. organization: Department of Industrial & Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19225981$$DView record in Pascal Francis |
BookMark | eNqFkE1LxDAQhoMouH78BelFb61J03yBB0X8AsWL95BNJ26WbrMmqeC_N8sqgpe9zAzD887Ac4T2xzACQmcENwQTfrls0hSdDSY3LcaiwazBku2hGZFC1ZR2Yh_NcMtELZVoD9FRSkuMMRGqm6HXF29jSDlONk8RKjP2lQ2xrHwYqzkszKcPsQquGkyCWG1eGQv1CoYMfbXw74s6raGMKQMM6QQdODMkOP3px-jt_u7t9rF-fn14ur15rm1HVa476J3jtGetBDO3rhTJlBBWSOjBdpJTydqWcUUM4xI6XJZuzqElggtOj9HF9uw6ho8JUtYrnywMgxkhTElTrDilpCvg-Q9okjWDi2a0Pul19CsTvzRR5YmSpHB8y21spAjuD8F6o1kv9a9mvdGsMdNFcwle_Qtan00u9nI0ftgdv97Gizv49BB1sh5GC72PYLPug9914hviJKGw |
CODEN | SCTEEJ |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2018_09_122 crossref_primary_10_1016_j_mtcomm_2024_111077 crossref_primary_10_4028_www_scientific_net_KEM_384_125 crossref_primary_10_1002_srin_202100438 crossref_primary_10_3390_coatings13010097 crossref_primary_10_1016_j_optlastec_2018_05_025 crossref_primary_10_1016_j_surfcoat_2022_128883 crossref_primary_10_4028_www_scientific_net_KEM_875_346 crossref_primary_10_1016_j_jallcom_2020_158168 crossref_primary_10_1111_j_1365_2818_2010_03370_x crossref_primary_10_1016_j_addlet_2023_100143 crossref_primary_10_1016_j_apsusc_2013_09_083 crossref_primary_10_1007_s11665_024_09461_z crossref_primary_10_1016_j_apsusc_2020_147306 crossref_primary_10_1038_s41529_021_00187_0 crossref_primary_10_1016_j_wear_2018_03_013 crossref_primary_10_1016_j_jmrt_2025_03_025 crossref_primary_10_3390_ma15176129 crossref_primary_10_1016_j_apsusc_2016_01_256 crossref_primary_10_1016_j_matchemphys_2010_12_016 crossref_primary_10_1007_s11661_019_05319_5 crossref_primary_10_1016_j_surfcoat_2019_125325 crossref_primary_10_1016_j_cirpj_2022_06_005 crossref_primary_10_1016_j_matdes_2013_12_069 crossref_primary_10_1134_S2070205115040334 crossref_primary_10_1016_j_heliyon_2024_e33925 crossref_primary_10_1016_j_surfcoat_2019_01_022 crossref_primary_10_1142_S0217979208051637 crossref_primary_10_1016_j_nimb_2010_04_019 crossref_primary_10_3390_app132011232 crossref_primary_10_1016_j_surfcoat_2009_08_013 crossref_primary_10_1007_s11041_014_9742_9 crossref_primary_10_1016_j_apsusc_2009_04_030 crossref_primary_10_1080_09507116_2011_592706 crossref_primary_10_3139_146_111624 crossref_primary_10_1016_j_matdes_2010_01_054 crossref_primary_10_3390_ma12223714 crossref_primary_10_1016_j_arabjc_2024_105940 crossref_primary_10_5781_JWJ_2016_34_1_75 crossref_primary_10_1016_j_corsci_2013_05_003 crossref_primary_10_1016_j_surfcoat_2012_09_039 crossref_primary_10_1080_09507116_2010_540834 crossref_primary_10_1002_maco_202414456 crossref_primary_10_1002_sia_3279 crossref_primary_10_1002_srin_202100389 crossref_primary_10_1007_s00170_022_10109_2 crossref_primary_10_1016_j_surfcoat_2019_02_044 crossref_primary_10_1002_srin_202100225 crossref_primary_10_1016_j_matdes_2014_09_058 crossref_primary_10_4028_www_scientific_net_AMR_295_297_520 crossref_primary_10_5781_JWJ_2015_33_5_53 crossref_primary_10_1016_j_matdes_2009_11_034 crossref_primary_10_3390_ma16103649 crossref_primary_10_1016_j_heliyon_2024_e25452 crossref_primary_10_1016_j_ijpvp_2022_104687 crossref_primary_10_1016_j_apsusc_2014_11_050 crossref_primary_10_1080_02670836_2015_1126906 crossref_primary_10_1016_j_surfcoat_2024_130609 crossref_primary_10_3390_ma15030769 crossref_primary_10_1243_09544062JMES1858 crossref_primary_10_3989_revmetalm_0918 |
Cites_doi | 10.1016/j.corsci.2005.09.004 10.1002/maco.200503969 10.1007/BF02664896 10.1016/0025-5416(78)90074-5 10.1179/sur.1993.9.4.300 10.1016/S0254-0584(03)00062-2 10.1007/BF00326481 10.1016/S0013-4686(02)00077-4 10.1016/j.nimb.2005.03.292 10.1007/BF01729397 10.1016/S0257-8972(02)00782-X 10.1016/S0257-8972(00)00533-8 10.1016/S0254-0584(03)00058-0 10.1016/j.surfcoat.2006.07.085 10.1016/j.corsci.2004.03.013 10.1016/S0010-938X(02)00019-7 10.1179/pom.1981.24.2.70 10.1016/S0169-4332(99)00328-1 10.1016/S0010-938X(02)00050-1 10.1016/S0921-5093(03)00228-4 10.5006/0010-9312-36.8.416 10.1016/0010-938X(95)00066-S 10.1023/B:JACH.0000003855.95788.12 10.1016/0169-4332(94)00449-8 10.1016/S0257-8972(01)01542-0 10.1002/maco.200503958 10.1023/A:1004157623466 10.1016/j.wear.2005.06.006 |
ContentType | Journal Article |
Copyright | 2007 Elsevier B.V. 2008 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier B.V. – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SE 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.surfcoat.2007.05.085 |
DatabaseName | CrossRef Pascal-Francis Corrosion Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Corrosion Abstracts METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Applied Sciences Physics |
EISSN | 1879-3347 |
EndPage | 348 |
ExternalDocumentID | 19225981 10_1016_j_surfcoat_2007_05_085 S0257897207006020 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HX~ HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AFXIZ EFKBS IQODW 7SE 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c439t-4edff63d528eabcfeab85977c78edec486385225691a568e40ec4fb6e2176763 |
IEDL.DBID | .~1 |
ISSN | 0257-8972 |
IngestDate | Thu Sep 04 20:13:41 EDT 2025 Mon Jul 21 09:13:33 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Tue Jul 01 04:01:51 EDT 2025 Fri Feb 23 02:30:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | High-speed steels Corrosion Hardness Microstructure Laser surface melting Surface melting Surface treatments High speed tool steel Laser fusion |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-4edff63d528eabcfeab85977c78edec486385225691a568e40ec4fb6e2176763 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 30963314 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_30963314 pascalfrancis_primary_19225981 crossref_primary_10_1016_j_surfcoat_2007_05_085 crossref_citationtrail_10_1016_j_surfcoat_2007_05_085 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2007_05_085 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-11-25 |
PublicationDateYYYYMMDD | 2007-11-25 |
PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-25 day: 25 |
PublicationDecade | 2000 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Surface & coatings technology |
PublicationYear | 2007 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ahman (bib26) 1984; 15 Arzola, Palomar-Pardave, Genesca (bib28) 2003; 33 Cheng, Wilmott, Luo (bib32) 1999; 152 Kac, Kusinski (bib7) 2003; 81 Mei, Hao, Ma, Wang, Liu (bib14) 2005; 239 Peissl, Mori, Leitner, Ebner, Egisaer (bib30) 2006; 57 Colaço, Gordo, Ruiz-Navas, Otasevic, Vilar (bib4) 2006; 260 Lalvani, Zhang (bib27) 1995; 37 Delanty, Beime (bib15) 1992; 90 Kwok, Leong, Cheng, Man (bib6) 2003; 357 Molian, Rajasekhara (bib24) 1986; 5 Vilar, Colaco, Almeida (bib11) 1995; 27 Alves, Brett (bib20) 2002; 47 Yu, Zheng, Yao (bib17) 2006; 57 Ivanov, Matzu, Rotshtein, Gunzel, Shevchenko (bib12) 2002; 150 Moreno, Morris, Alvarez, Duffo (bib16) 2004; 46 Hlawka, Marchione, Jacura, Conet (bib2) 1993; 9 Davies, Burstein (bib31) 1980; 36 Kirk (bib1) 1981; 24 Porterm, Easterling (bib25) 1992 MacDougall, Graham (bib33) 1995 Alves, Brett (bib21) 2002; 44 Ras, Pistorius (bib29) 2002; 44 Kwok, Man, Cheng (bib3) 2000; 126 ASTM Standard (bib23) 1986 Strutt, Nowotny, Tuli, Kear (bib5) 1978; 36 Alves, Brett, Cavaleiro (bib19) 2001; 31 Mei, Sun, Hao, Ma, Dong (bib13) 2007; 201 Jiang, Zheng, Yao (bib18) 2006; 48 Kusinski (bib10) 1995; 86 ASTM Standard (bib22) 1992 Bochnowski, Leitner, Major, Ebner, Major (bib8) 2003; 81 Kwok, Lo, Cheng, Man (bib9) 2003; 166 Hlawka (10.1016/j.surfcoat.2007.05.085_bib2) 1993; 9 Delanty (10.1016/j.surfcoat.2007.05.085_bib15) 1992; 90 Moreno (10.1016/j.surfcoat.2007.05.085_bib16) 2004; 46 Kwok (10.1016/j.surfcoat.2007.05.085_bib3) 2000; 126 Kusinski (10.1016/j.surfcoat.2007.05.085_bib10) 1995; 86 Alves (10.1016/j.surfcoat.2007.05.085_bib19) 2001; 31 Kwok (10.1016/j.surfcoat.2007.05.085_bib6) 2003; 357 Alves (10.1016/j.surfcoat.2007.05.085_bib21) 2002; 44 Arzola (10.1016/j.surfcoat.2007.05.085_bib28) 2003; 33 Kwok (10.1016/j.surfcoat.2007.05.085_bib9) 2003; 166 Molian (10.1016/j.surfcoat.2007.05.085_bib24) 1986; 5 Kirk (10.1016/j.surfcoat.2007.05.085_bib1) 1981; 24 Jiang (10.1016/j.surfcoat.2007.05.085_bib18) 2006; 48 Ras (10.1016/j.surfcoat.2007.05.085_bib29) 2002; 44 Cheng (10.1016/j.surfcoat.2007.05.085_bib32) 1999; 152 Ahman (10.1016/j.surfcoat.2007.05.085_bib26) 1984; 15 Ivanov (10.1016/j.surfcoat.2007.05.085_bib12) 2002; 150 Bochnowski (10.1016/j.surfcoat.2007.05.085_bib8) 2003; 81 Mei (10.1016/j.surfcoat.2007.05.085_bib14) 2005; 239 Mei (10.1016/j.surfcoat.2007.05.085_bib13) 2007; 201 Vilar (10.1016/j.surfcoat.2007.05.085_bib11) 1995; 27 Davies (10.1016/j.surfcoat.2007.05.085_bib31) 1980; 36 Yu (10.1016/j.surfcoat.2007.05.085_bib17) 2006; 57 Colaço (10.1016/j.surfcoat.2007.05.085_bib4) 2006; 260 Kac (10.1016/j.surfcoat.2007.05.085_bib7) 2003; 81 ASTM Standard (10.1016/j.surfcoat.2007.05.085_bib22) 1992 ASTM Standard (10.1016/j.surfcoat.2007.05.085_bib23) 1986 MacDougall (10.1016/j.surfcoat.2007.05.085_bib33) 1995 Alves (10.1016/j.surfcoat.2007.05.085_bib20) 2002; 47 Lalvani (10.1016/j.surfcoat.2007.05.085_bib27) 1995; 37 Porterm (10.1016/j.surfcoat.2007.05.085_bib25) 1992 Peissl (10.1016/j.surfcoat.2007.05.085_bib30) 2006; 57 Strutt (10.1016/j.surfcoat.2007.05.085_bib5) 1978; 36 |
References_xml | – volume: 357 start-page: 94 year: 2003 ident: bib6 publication-title: Mater. Sci. Eng., A – volume: 90 start-page: 39 year: 1992 ident: bib15 publication-title: Oil Gas J. – year: 1992 ident: bib22 publication-title: G5-92: ‘Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements’, ASTM Standards – volume: 46 start-page: 2681 year: 2004 ident: bib16 publication-title: Corros. Sci. – volume: 48 start-page: 2614 year: 2006 ident: bib18 publication-title: Corros. Sci. – volume: 152 start-page: 161 year: 1999 ident: bib32 publication-title: Appl. Surf. Sci. – volume: 260 start-page: 949 year: 2006 ident: bib4 publication-title: Wear – volume: 5 start-page: 1292 year: 1986 ident: bib24 publication-title: J. Mater. Sci. Lett. – volume: 37 start-page: 1567 year: 1995 ident: bib27 publication-title: Corros. Sci. – volume: 81 start-page: 510 year: 2003 ident: bib7 publication-title: Mater. Chem. Phys. – volume: 166 start-page: 221 year: 2003 ident: bib9 publication-title: Surf. Coat. Technol. – volume: 47 start-page: 2081 year: 2002 ident: bib20 publication-title: Electrochim. Acta – volume: 24 start-page: 70 year: 1981 ident: bib1 publication-title: Powder Metall. – volume: 81 start-page: 503 year: 2003 ident: bib8 publication-title: Mater. Chem. Phys. – volume: 44 start-page: 1949 year: 2002 ident: bib21 publication-title: Corros. Sci. – volume: 36 start-page: 416 year: 1980 ident: bib31 publication-title: Corrosion – volume: 57 start-page: 705 year: 2006 ident: bib17 publication-title: Mater. Corros. – volume: 31 start-page: 65 year: 2001 ident: bib19 publication-title: J. Appl. Electrochem. – year: 1995 ident: bib33 publication-title: Corrosion Mechanisms in Theory and Practice – volume: 36 start-page: 217 year: 1978 ident: bib5 publication-title: Mater. Sci. Eng. – volume: 126 start-page: 238 year: 2000 ident: bib3 publication-title: Surf. Coat. Technol. – volume: 27 start-page: 1273 year: 1995 ident: bib11 publication-title: Opt. Quantum Electron. – start-page: 251 year: 1992 ident: bib25 publication-title: Phase Transformation in Metals and Alloys – volume: 86 start-page: 317 year: 1995 ident: bib10 publication-title: Appl. Surf. Sci. – volume: 57 start-page: 759 year: 2006 ident: bib30 publication-title: Mater. Corros. – volume: 201 start-page: 5072 year: 2007 ident: bib13 publication-title: Surf. Coat. Technol. – volume: 150 start-page: 188 year: 2002 ident: bib12 publication-title: Surf. Coat. Technol. – volume: 33 start-page: 1223 year: 2003 ident: bib28 publication-title: J. Appl. Electrochem. – volume: 9 start-page: 300 year: 1993 ident: bib2 publication-title: Surf. Eng. – year: 1986 ident: bib23 publication-title: G61-86: ‘Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility in Iron-, Nickel-, or Cobalt-Based Alloys’, ASTM Standards – volume: 15 start-page: 1829 year: 1984 ident: bib26 publication-title: Metall. Trans., A – volume: 239 start-page: 152 year: 2005 ident: bib14 publication-title: Nucl. Instrum. Methods Phys. Res., B – volume: 44 start-page: 2479 year: 2002 ident: bib29 publication-title: Corros. Sci. – volume: 48 start-page: 2614 year: 2006 ident: 10.1016/j.surfcoat.2007.05.085_bib18 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2005.09.004 – volume: 57 start-page: 759 year: 2006 ident: 10.1016/j.surfcoat.2007.05.085_bib30 publication-title: Mater. Corros. doi: 10.1002/maco.200503969 – volume: 15 start-page: 1829 year: 1984 ident: 10.1016/j.surfcoat.2007.05.085_bib26 publication-title: Metall. Trans., A doi: 10.1007/BF02664896 – volume: 36 start-page: 217 year: 1978 ident: 10.1016/j.surfcoat.2007.05.085_bib5 publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(78)90074-5 – year: 1986 ident: 10.1016/j.surfcoat.2007.05.085_bib23 – start-page: 251 year: 1992 ident: 10.1016/j.surfcoat.2007.05.085_bib25 – volume: 9 start-page: 300 year: 1993 ident: 10.1016/j.surfcoat.2007.05.085_bib2 publication-title: Surf. Eng. doi: 10.1179/sur.1993.9.4.300 – volume: 81 start-page: 510 year: 2003 ident: 10.1016/j.surfcoat.2007.05.085_bib7 publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(03)00062-2 – volume: 27 start-page: 1273 year: 1995 ident: 10.1016/j.surfcoat.2007.05.085_bib11 publication-title: Opt. Quantum Electron. doi: 10.1007/BF00326481 – volume: 47 start-page: 2081 year: 2002 ident: 10.1016/j.surfcoat.2007.05.085_bib20 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00077-4 – volume: 239 start-page: 152 year: 2005 ident: 10.1016/j.surfcoat.2007.05.085_bib14 publication-title: Nucl. Instrum. Methods Phys. Res., B doi: 10.1016/j.nimb.2005.03.292 – volume: 5 start-page: 1292 year: 1986 ident: 10.1016/j.surfcoat.2007.05.085_bib24 publication-title: J. Mater. Sci. Lett. doi: 10.1007/BF01729397 – volume: 166 start-page: 221 year: 2003 ident: 10.1016/j.surfcoat.2007.05.085_bib9 publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(02)00782-X – volume: 126 start-page: 238 year: 2000 ident: 10.1016/j.surfcoat.2007.05.085_bib3 publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(00)00533-8 – volume: 81 start-page: 503 year: 2003 ident: 10.1016/j.surfcoat.2007.05.085_bib8 publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(03)00058-0 – volume: 201 start-page: 5072 year: 2007 ident: 10.1016/j.surfcoat.2007.05.085_bib13 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2006.07.085 – volume: 46 start-page: 2681 year: 2004 ident: 10.1016/j.surfcoat.2007.05.085_bib16 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2004.03.013 – year: 1995 ident: 10.1016/j.surfcoat.2007.05.085_bib33 – volume: 44 start-page: 1949 year: 2002 ident: 10.1016/j.surfcoat.2007.05.085_bib21 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(02)00019-7 – volume: 24 start-page: 70 year: 1981 ident: 10.1016/j.surfcoat.2007.05.085_bib1 publication-title: Powder Metall. doi: 10.1179/pom.1981.24.2.70 – volume: 152 start-page: 161 year: 1999 ident: 10.1016/j.surfcoat.2007.05.085_bib32 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(99)00328-1 – volume: 90 start-page: 39 year: 1992 ident: 10.1016/j.surfcoat.2007.05.085_bib15 publication-title: Oil Gas J. – year: 1992 ident: 10.1016/j.surfcoat.2007.05.085_bib22 – volume: 44 start-page: 2479 year: 2002 ident: 10.1016/j.surfcoat.2007.05.085_bib29 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(02)00050-1 – volume: 357 start-page: 94 year: 2003 ident: 10.1016/j.surfcoat.2007.05.085_bib6 publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(03)00228-4 – volume: 36 start-page: 416 year: 1980 ident: 10.1016/j.surfcoat.2007.05.085_bib31 publication-title: Corrosion doi: 10.5006/0010-9312-36.8.416 – volume: 37 start-page: 1567 year: 1995 ident: 10.1016/j.surfcoat.2007.05.085_bib27 publication-title: Corros. Sci. doi: 10.1016/0010-938X(95)00066-S – volume: 33 start-page: 1223 year: 2003 ident: 10.1016/j.surfcoat.2007.05.085_bib28 publication-title: J. Appl. Electrochem. doi: 10.1023/B:JACH.0000003855.95788.12 – volume: 86 start-page: 317 year: 1995 ident: 10.1016/j.surfcoat.2007.05.085_bib10 publication-title: Appl. Surf. Sci. doi: 10.1016/0169-4332(94)00449-8 – volume: 150 start-page: 188 year: 2002 ident: 10.1016/j.surfcoat.2007.05.085_bib12 publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(01)01542-0 – volume: 57 start-page: 705 year: 2006 ident: 10.1016/j.surfcoat.2007.05.085_bib17 publication-title: Mater. Corros. doi: 10.1002/maco.200503958 – volume: 31 start-page: 65 year: 2001 ident: 10.1016/j.surfcoat.2007.05.085_bib19 publication-title: J. Appl. Electrochem. doi: 10.1023/A:1004157623466 – volume: 260 start-page: 949 year: 2006 ident: 10.1016/j.surfcoat.2007.05.085_bib4 publication-title: Wear doi: 10.1016/j.wear.2005.06.006 |
SSID | ssj0001794 |
Score | 2.1548994 |
Snippet | Three high-speed steels (HSSs) M2, ASP23, ASP30 were surface-melted by a CW 2.5-kW Nd:YAG laser. The microstructure of the laser surface-melted HSSs was... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 336 |
SubjectTerms | Applied sciences Corrosion Corrosion environments Cross-disciplinary physics: materials science; rheology Exact sciences and technology Hardness High-speed steels Laser surface melting Materials science Metals. Metallurgy Microstructure Physics Production techniques Surface treatment Surface treatments |
Title | Microstructure and corrosion behavior of laser surface-melted high-speed steels |
URI | https://dx.doi.org/10.1016/j.surfcoat.2007.05.085 https://www.proquest.com/docview/30963314 |
Volume | 202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-3347 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001794 issn: 0257-8972 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-3347 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001794 issn: 0257-8972 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1879-3347 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001794 issn: 0257-8972 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3347 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001794 issn: 0257-8972 databaseCode: AKRWK dateStart: 19860101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDIAQ4inKo3hgNXUS23HGqgIVUGEAJDbLcc8SCNKqj5XfzjkPCgKJgSWDlUusu8vdZ-f8HSFnUrvAOgIsVRaY0Lllecotc477PDSgikqy6sGt6j-K6yf5tER6zVmYUFZZx_4qppfRuh7p1NrsjJ-fO_c8eFuWxui0XCHqCSfYhQplfefvizKP4HDlPovEaIx3fzkl_ILxaeLdyM5qKkN5zkNP5d8T1MbYTlFtvup38SN0l_nocots1kCSdqu5bpMlKHbIaq_p37ZD1r9QDe6Su0GovKvYYucToLYYUlx44hAahjaH9enIU4TTMKFhztYBe4NXxKQ0sBqz6RhTHUW3wOnukYfLi4den9XNFJhDzDFjAobeq2QoYw02dx4vOnDPuVTDEJzQ-CEiFpMqi6xUGgTHQZ8rwDWLwiC0T5aLUQEHhEpMZ4mPBSLdWLgkyTzEXDmd51ok-NAWkY0CjauJxkO_i1fTVJS9mEbxoQtmarg0PMh1PuXGFdXGnxJZYx_zzWkM5oM_ZdvfDLp4ZYZayHTUIqeNhQ1aLvxHsQWM5lOT4LIvSSJx-I_XH5G1cpc4ilgsj8kymh9OEN7M8nbpv22y0r266d9-AE4e_PQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UBRhShQAW3BB65mncR2nCNaFS2FXQ5dJG6W4x1LIJpd7S7_n3E-KIhKHLjkYGkSa2by5jmx3wCcKOOj6gjyXDvk0pSOl7lw3HsRytiAKqnFqkdjPbyRv2_V7RoMurMwcVtli_0Nptdo3Y70W2_253d3_T8iZluRp5S0QhPr-QTrUhEm92D97OJyOH4G5Jhz9acWRYBMBi8OCt8TRC2Cn7lVq2aoTkVsq_z_GvVl7pbkudC0vHiD3nVJOt-GrZZLsrNmul9hDasd2Bh0Ldx2YPOF2uAuXI_i5rtGMPZxgcxVU0ZrTxqi2LDuvD6bBUaMGhcsztl55H_xgWgpi8LGfDmnascoM2i6ezA5_zUZDHnbT4F7oh0rLnEags6mKjXoSh_oYqL8nM8NTtFLQ-8i0TGli8QpbVAKGgylRlq2aMKhb9CrZhXuA1NU0bKQSiK7qfRZVgRMhfamLI3M6KYHoDoHWt9qjceWFw-221R2bzvHx0aYuRXKimjXf7abN2ob71oUXXzsq7yxVBLetT16FdB_jyzIC4VJDuC4i7ClyMVfKa7C2ePSZrTyy7JEHn7g8cewMZyMruzVxfjyO3yuPxonCU_VD-hRKuBPYjur8qjN5ifecP-f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+corrosion+behavior+of+laser+surface-melted+high-speed+steels&rft.jtitle=Surface+%26+coatings+technology&rft.au=KWOK%2C+C.+T&rft.au=CHENG%2C+F.+T&rft.au=MAN%2C+H.+C&rft.date=2007-11-25&rft.pub=Elsevier&rft.issn=0257-8972&rft.volume=202&rft.issue=2&rft.spage=336&rft.epage=348&rft_id=info:doi/10.1016%2Fj.surfcoat.2007.05.085&rft.externalDBID=n%2Fa&rft.externalDocID=19225981 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |