Microstructure and corrosion behavior of laser surface-melted high-speed steels

Three high-speed steels (HSSs) M2, ASP23, ASP30 were surface-melted by a CW 2.5-kW Nd:YAG laser. The microstructure of the laser surface-melted HSSs was investigated by optical microscopy, scanning electron microscopy and X-ray diffractometry, and the hardness profiles of the laser surface-melted la...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 202; no. 2; pp. 336 - 348
Main Authors Kwok, C.T., Cheng, F.T., Man, H.C.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.11.2007
Elsevier
Subjects
Online AccessGet full text
ISSN0257-8972
1879-3347
DOI10.1016/j.surfcoat.2007.05.085

Cover

Abstract Three high-speed steels (HSSs) M2, ASP23, ASP30 were surface-melted by a CW 2.5-kW Nd:YAG laser. The microstructure of the laser surface-melted HSSs was investigated by optical microscopy, scanning electron microscopy and X-ray diffractometry, and the hardness profiles of the laser surface-melted layers were determined by a Vickers hardness tester. The corrosion behavior in 0.6 M NaCl and 0.5 M NaHCO 3 solutions at 25 °C was studied by potentiodynamic polarization technique. Metallographical as well as electrochemical corrosion studies illustrated the beneficial effects of laser surface melting (LSM) in refining the microstructure and in enhancing the corrosion resistance of the HSSs. The large carbide particles of annealed HSSs were dissolved after LSM and ultrafine dendrites of austenite and martensite with submicroscopic carbide precipitation were formed in the melt zones of the laser surface-melted HSSs. LSM of M2, ASP23 and ASP30 produced surface layers of hardness 615, 580 and 665 Hv, respectively. The hardness of the laser surface-melted ASP23 and ASP30 reached about 0.75 to 0.80 that of the conventionally hardened ones, while the hardness of laser-melted M2 was comparable to that of conventionally hardened M2. The corrosion resistance of all laser surface-melted HSSs in both solutions was significantly improved, as evidenced by a noble shift of the corrosion potential and a reduction in the corrosion current density. Among the HSSs, laser surface-melted ASP23 possessed the highest corrosion resistance in both solutions. The presence of cobalt in ASP30 has no beneficial effect on enhancing its corrosion resistance. The enhancement in the corrosion resistance of the laser surface-melted HSSs is attributable to the combined effects of dissociation and refinement of large carbides and the increase of the passivating alloying elements such as Cr, Mo and W in solid solution.
AbstractList Three high-speed steels (HSSs) M2, ASP23, ASP30 were surface-melted by a CW 2.5-kW Nd:YAG laser. The microstructure of the laser surface-melted HSSs was investigated by optical microscopy, scanning electron microscopy and X-ray diffractometry, and the hardness profiles of the laser surface-melted layers were determined by a Vickers hardness tester. The corrosion behavior in 0.6 M NaCl and 0.5 M NaHCO 3 solutions at 25 °C was studied by potentiodynamic polarization technique. Metallographical as well as electrochemical corrosion studies illustrated the beneficial effects of laser surface melting (LSM) in refining the microstructure and in enhancing the corrosion resistance of the HSSs. The large carbide particles of annealed HSSs were dissolved after LSM and ultrafine dendrites of austenite and martensite with submicroscopic carbide precipitation were formed in the melt zones of the laser surface-melted HSSs. LSM of M2, ASP23 and ASP30 produced surface layers of hardness 615, 580 and 665 Hv, respectively. The hardness of the laser surface-melted ASP23 and ASP30 reached about 0.75 to 0.80 that of the conventionally hardened ones, while the hardness of laser-melted M2 was comparable to that of conventionally hardened M2. The corrosion resistance of all laser surface-melted HSSs in both solutions was significantly improved, as evidenced by a noble shift of the corrosion potential and a reduction in the corrosion current density. Among the HSSs, laser surface-melted ASP23 possessed the highest corrosion resistance in both solutions. The presence of cobalt in ASP30 has no beneficial effect on enhancing its corrosion resistance. The enhancement in the corrosion resistance of the laser surface-melted HSSs is attributable to the combined effects of dissociation and refinement of large carbides and the increase of the passivating alloying elements such as Cr, Mo and W in solid solution.
Three high-speed steels (HSSs) M2, ASP23, ASP30 were surface-melted by a CW 2.5-kW Nd:YAG laser. The microstructure of the laser surface-melted HSSs was investigated by optical microscopy, scanning electron microscopy and X-ray diffractometry, and the hardness profiles of the laser surface-melted layers were determined by a Vickers hardness tester. The corrosion behavior in 0.6M NaCl and 0.5M NaHCO3 solutions at 25 deg C was studied by potentiodynamic polarization technique. Metallographical as well as electrochemical corrosion studies illustrated the beneficial effects of laser surface melting (LSM) in refining the microstructure and in enhancing the corrosion resistance of the HSSs. The large carbide particles of annealed HSSs were dissolved after LSM and ultrafine dendrites of austenite and martensite with submicroscopic carbide precipitation were formed in the melt zones of the laser surface-melted HSSs. LSM of M2, ASP23 and ASP30 produced surface layers of hardness 615, 580 and 665 Hv, respectively. The hardness of the laser surface-melted ASP23 and ASP30 reached about 0.75 to 0.80 that of the conventionally hardened ones, while the hardness of laser-melted M2 was comparable to that of conventionally hardened M2. The corrosion resistance of all laser surface-melted HSSs in both solutions was significantly improved, as evidenced by a noble shift of the corrosion potential and a reduction in the corrosion current density. Among the HSSs, laser surface-melted ASP23 possessed the highest corrosion resistance in both solutions. The presence of cobalt in ASP30 has no beneficial effect on enhancing its corrosion resistance. The enhancement in the corrosion resistance of the laser surface-melted HSSs is attributable to the combined effects of dissociation and refinement of large carbides and the increase of the passivating alloying elements such as Cr, Mo and W in solid solution.
Author Man, H.C.
Kwok, C.T.
Cheng, F.T.
Author_xml – sequence: 1
  givenname: C.T.
  surname: Kwok
  fullname: Kwok, C.T.
  organization: Department of Electromechanical Engineering, University of Macau, Taipa, Macau, PR China
– sequence: 2
  givenname: F.T.
  surname: Cheng
  fullname: Cheng, F.T.
  email: apaftche@polyu.edu.hk
  organization: Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
– sequence: 3
  givenname: H.C.
  surname: Man
  fullname: Man, H.C.
  organization: Department of Industrial & Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19225981$$DView record in Pascal Francis
BookMark eNqFkE1LxDAQhoMouH78BelFb61J03yBB0X8AsWL95BNJ26WbrMmqeC_N8sqgpe9zAzD887Ac4T2xzACQmcENwQTfrls0hSdDSY3LcaiwazBku2hGZFC1ZR2Yh_NcMtELZVoD9FRSkuMMRGqm6HXF29jSDlONk8RKjP2lQ2xrHwYqzkszKcPsQquGkyCWG1eGQv1CoYMfbXw74s6raGMKQMM6QQdODMkOP3px-jt_u7t9rF-fn14ur15rm1HVa476J3jtGetBDO3rhTJlBBWSOjBdpJTydqWcUUM4xI6XJZuzqElggtOj9HF9uw6ho8JUtYrnywMgxkhTElTrDilpCvg-Q9okjWDi2a0Pul19CsTvzRR5YmSpHB8y21spAjuD8F6o1kv9a9mvdGsMdNFcwle_Qtan00u9nI0ftgdv97Gizv49BB1sh5GC72PYLPug9914hviJKGw
CODEN SCTEEJ
CitedBy_id crossref_primary_10_1016_j_jallcom_2018_09_122
crossref_primary_10_1016_j_mtcomm_2024_111077
crossref_primary_10_4028_www_scientific_net_KEM_384_125
crossref_primary_10_1002_srin_202100438
crossref_primary_10_3390_coatings13010097
crossref_primary_10_1016_j_optlastec_2018_05_025
crossref_primary_10_1016_j_surfcoat_2022_128883
crossref_primary_10_4028_www_scientific_net_KEM_875_346
crossref_primary_10_1016_j_jallcom_2020_158168
crossref_primary_10_1111_j_1365_2818_2010_03370_x
crossref_primary_10_1016_j_addlet_2023_100143
crossref_primary_10_1016_j_apsusc_2013_09_083
crossref_primary_10_1007_s11665_024_09461_z
crossref_primary_10_1016_j_apsusc_2020_147306
crossref_primary_10_1038_s41529_021_00187_0
crossref_primary_10_1016_j_wear_2018_03_013
crossref_primary_10_1016_j_jmrt_2025_03_025
crossref_primary_10_3390_ma15176129
crossref_primary_10_1016_j_apsusc_2016_01_256
crossref_primary_10_1016_j_matchemphys_2010_12_016
crossref_primary_10_1007_s11661_019_05319_5
crossref_primary_10_1016_j_surfcoat_2019_125325
crossref_primary_10_1016_j_cirpj_2022_06_005
crossref_primary_10_1016_j_matdes_2013_12_069
crossref_primary_10_1134_S2070205115040334
crossref_primary_10_1016_j_heliyon_2024_e33925
crossref_primary_10_1016_j_surfcoat_2019_01_022
crossref_primary_10_1142_S0217979208051637
crossref_primary_10_1016_j_nimb_2010_04_019
crossref_primary_10_3390_app132011232
crossref_primary_10_1016_j_surfcoat_2009_08_013
crossref_primary_10_1007_s11041_014_9742_9
crossref_primary_10_1016_j_apsusc_2009_04_030
crossref_primary_10_1080_09507116_2011_592706
crossref_primary_10_3139_146_111624
crossref_primary_10_1016_j_matdes_2010_01_054
crossref_primary_10_3390_ma12223714
crossref_primary_10_1016_j_arabjc_2024_105940
crossref_primary_10_5781_JWJ_2016_34_1_75
crossref_primary_10_1016_j_corsci_2013_05_003
crossref_primary_10_1016_j_surfcoat_2012_09_039
crossref_primary_10_1080_09507116_2010_540834
crossref_primary_10_1002_maco_202414456
crossref_primary_10_1002_sia_3279
crossref_primary_10_1002_srin_202100389
crossref_primary_10_1007_s00170_022_10109_2
crossref_primary_10_1016_j_surfcoat_2019_02_044
crossref_primary_10_1002_srin_202100225
crossref_primary_10_1016_j_matdes_2014_09_058
crossref_primary_10_4028_www_scientific_net_AMR_295_297_520
crossref_primary_10_5781_JWJ_2015_33_5_53
crossref_primary_10_1016_j_matdes_2009_11_034
crossref_primary_10_3390_ma16103649
crossref_primary_10_1016_j_heliyon_2024_e25452
crossref_primary_10_1016_j_ijpvp_2022_104687
crossref_primary_10_1016_j_apsusc_2014_11_050
crossref_primary_10_1080_02670836_2015_1126906
crossref_primary_10_1016_j_surfcoat_2024_130609
crossref_primary_10_3390_ma15030769
crossref_primary_10_1243_09544062JMES1858
crossref_primary_10_3989_revmetalm_0918
Cites_doi 10.1016/j.corsci.2005.09.004
10.1002/maco.200503969
10.1007/BF02664896
10.1016/0025-5416(78)90074-5
10.1179/sur.1993.9.4.300
10.1016/S0254-0584(03)00062-2
10.1007/BF00326481
10.1016/S0013-4686(02)00077-4
10.1016/j.nimb.2005.03.292
10.1007/BF01729397
10.1016/S0257-8972(02)00782-X
10.1016/S0257-8972(00)00533-8
10.1016/S0254-0584(03)00058-0
10.1016/j.surfcoat.2006.07.085
10.1016/j.corsci.2004.03.013
10.1016/S0010-938X(02)00019-7
10.1179/pom.1981.24.2.70
10.1016/S0169-4332(99)00328-1
10.1016/S0010-938X(02)00050-1
10.1016/S0921-5093(03)00228-4
10.5006/0010-9312-36.8.416
10.1016/0010-938X(95)00066-S
10.1023/B:JACH.0000003855.95788.12
10.1016/0169-4332(94)00449-8
10.1016/S0257-8972(01)01542-0
10.1002/maco.200503958
10.1023/A:1004157623466
10.1016/j.wear.2005.06.006
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SE
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2007.05.085
DatabaseName CrossRef
Pascal-Francis
Corrosion Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Corrosion Abstracts
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Applied Sciences
Physics
EISSN 1879-3347
EndPage 348
ExternalDocumentID 19225981
10_1016_j_surfcoat_2007_05_085
S0257897207006020
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HX~
HZ~
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AFXIZ
EFKBS
IQODW
7SE
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c439t-4edff63d528eabcfeab85977c78edec486385225691a568e40ec4fb6e2176763
IEDL.DBID .~1
ISSN 0257-8972
IngestDate Thu Sep 04 20:13:41 EDT 2025
Mon Jul 21 09:13:33 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Jul 01 04:01:51 EDT 2025
Fri Feb 23 02:30:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords High-speed steels
Corrosion
Hardness
Microstructure
Laser surface melting
Surface melting
Surface treatments
High speed tool steel
Laser fusion
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-4edff63d528eabcfeab85977c78edec486385225691a568e40ec4fb6e2176763
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 30963314
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_30963314
pascalfrancis_primary_19225981
crossref_primary_10_1016_j_surfcoat_2007_05_085
crossref_citationtrail_10_1016_j_surfcoat_2007_05_085
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2007_05_085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-25
PublicationDateYYYYMMDD 2007-11-25
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-25
  day: 25
PublicationDecade 2000
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2007
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ahman (bib26) 1984; 15
Arzola, Palomar-Pardave, Genesca (bib28) 2003; 33
Cheng, Wilmott, Luo (bib32) 1999; 152
Kac, Kusinski (bib7) 2003; 81
Mei, Hao, Ma, Wang, Liu (bib14) 2005; 239
Peissl, Mori, Leitner, Ebner, Egisaer (bib30) 2006; 57
Colaço, Gordo, Ruiz-Navas, Otasevic, Vilar (bib4) 2006; 260
Lalvani, Zhang (bib27) 1995; 37
Delanty, Beime (bib15) 1992; 90
Kwok, Leong, Cheng, Man (bib6) 2003; 357
Molian, Rajasekhara (bib24) 1986; 5
Vilar, Colaco, Almeida (bib11) 1995; 27
Alves, Brett (bib20) 2002; 47
Yu, Zheng, Yao (bib17) 2006; 57
Ivanov, Matzu, Rotshtein, Gunzel, Shevchenko (bib12) 2002; 150
Moreno, Morris, Alvarez, Duffo (bib16) 2004; 46
Hlawka, Marchione, Jacura, Conet (bib2) 1993; 9
Davies, Burstein (bib31) 1980; 36
Kirk (bib1) 1981; 24
Porterm, Easterling (bib25) 1992
MacDougall, Graham (bib33) 1995
Alves, Brett (bib21) 2002; 44
Ras, Pistorius (bib29) 2002; 44
Kwok, Man, Cheng (bib3) 2000; 126
ASTM Standard (bib23) 1986
Strutt, Nowotny, Tuli, Kear (bib5) 1978; 36
Alves, Brett, Cavaleiro (bib19) 2001; 31
Mei, Sun, Hao, Ma, Dong (bib13) 2007; 201
Jiang, Zheng, Yao (bib18) 2006; 48
Kusinski (bib10) 1995; 86
ASTM Standard (bib22) 1992
Bochnowski, Leitner, Major, Ebner, Major (bib8) 2003; 81
Kwok, Lo, Cheng, Man (bib9) 2003; 166
Hlawka (10.1016/j.surfcoat.2007.05.085_bib2) 1993; 9
Delanty (10.1016/j.surfcoat.2007.05.085_bib15) 1992; 90
Moreno (10.1016/j.surfcoat.2007.05.085_bib16) 2004; 46
Kwok (10.1016/j.surfcoat.2007.05.085_bib3) 2000; 126
Kusinski (10.1016/j.surfcoat.2007.05.085_bib10) 1995; 86
Alves (10.1016/j.surfcoat.2007.05.085_bib19) 2001; 31
Kwok (10.1016/j.surfcoat.2007.05.085_bib6) 2003; 357
Alves (10.1016/j.surfcoat.2007.05.085_bib21) 2002; 44
Arzola (10.1016/j.surfcoat.2007.05.085_bib28) 2003; 33
Kwok (10.1016/j.surfcoat.2007.05.085_bib9) 2003; 166
Molian (10.1016/j.surfcoat.2007.05.085_bib24) 1986; 5
Kirk (10.1016/j.surfcoat.2007.05.085_bib1) 1981; 24
Jiang (10.1016/j.surfcoat.2007.05.085_bib18) 2006; 48
Ras (10.1016/j.surfcoat.2007.05.085_bib29) 2002; 44
Cheng (10.1016/j.surfcoat.2007.05.085_bib32) 1999; 152
Ahman (10.1016/j.surfcoat.2007.05.085_bib26) 1984; 15
Ivanov (10.1016/j.surfcoat.2007.05.085_bib12) 2002; 150
Bochnowski (10.1016/j.surfcoat.2007.05.085_bib8) 2003; 81
Mei (10.1016/j.surfcoat.2007.05.085_bib14) 2005; 239
Mei (10.1016/j.surfcoat.2007.05.085_bib13) 2007; 201
Vilar (10.1016/j.surfcoat.2007.05.085_bib11) 1995; 27
Davies (10.1016/j.surfcoat.2007.05.085_bib31) 1980; 36
Yu (10.1016/j.surfcoat.2007.05.085_bib17) 2006; 57
Colaço (10.1016/j.surfcoat.2007.05.085_bib4) 2006; 260
Kac (10.1016/j.surfcoat.2007.05.085_bib7) 2003; 81
ASTM Standard (10.1016/j.surfcoat.2007.05.085_bib22) 1992
ASTM Standard (10.1016/j.surfcoat.2007.05.085_bib23) 1986
MacDougall (10.1016/j.surfcoat.2007.05.085_bib33) 1995
Alves (10.1016/j.surfcoat.2007.05.085_bib20) 2002; 47
Lalvani (10.1016/j.surfcoat.2007.05.085_bib27) 1995; 37
Porterm (10.1016/j.surfcoat.2007.05.085_bib25) 1992
Peissl (10.1016/j.surfcoat.2007.05.085_bib30) 2006; 57
Strutt (10.1016/j.surfcoat.2007.05.085_bib5) 1978; 36
References_xml – volume: 357
  start-page: 94
  year: 2003
  ident: bib6
  publication-title: Mater. Sci. Eng., A
– volume: 90
  start-page: 39
  year: 1992
  ident: bib15
  publication-title: Oil Gas J.
– year: 1992
  ident: bib22
  publication-title: G5-92: ‘Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements’, ASTM Standards
– volume: 46
  start-page: 2681
  year: 2004
  ident: bib16
  publication-title: Corros. Sci.
– volume: 48
  start-page: 2614
  year: 2006
  ident: bib18
  publication-title: Corros. Sci.
– volume: 152
  start-page: 161
  year: 1999
  ident: bib32
  publication-title: Appl. Surf. Sci.
– volume: 260
  start-page: 949
  year: 2006
  ident: bib4
  publication-title: Wear
– volume: 5
  start-page: 1292
  year: 1986
  ident: bib24
  publication-title: J. Mater. Sci. Lett.
– volume: 37
  start-page: 1567
  year: 1995
  ident: bib27
  publication-title: Corros. Sci.
– volume: 81
  start-page: 510
  year: 2003
  ident: bib7
  publication-title: Mater. Chem. Phys.
– volume: 166
  start-page: 221
  year: 2003
  ident: bib9
  publication-title: Surf. Coat. Technol.
– volume: 47
  start-page: 2081
  year: 2002
  ident: bib20
  publication-title: Electrochim. Acta
– volume: 24
  start-page: 70
  year: 1981
  ident: bib1
  publication-title: Powder Metall.
– volume: 81
  start-page: 503
  year: 2003
  ident: bib8
  publication-title: Mater. Chem. Phys.
– volume: 44
  start-page: 1949
  year: 2002
  ident: bib21
  publication-title: Corros. Sci.
– volume: 36
  start-page: 416
  year: 1980
  ident: bib31
  publication-title: Corrosion
– volume: 57
  start-page: 705
  year: 2006
  ident: bib17
  publication-title: Mater. Corros.
– volume: 31
  start-page: 65
  year: 2001
  ident: bib19
  publication-title: J. Appl. Electrochem.
– year: 1995
  ident: bib33
  publication-title: Corrosion Mechanisms in Theory and Practice
– volume: 36
  start-page: 217
  year: 1978
  ident: bib5
  publication-title: Mater. Sci. Eng.
– volume: 126
  start-page: 238
  year: 2000
  ident: bib3
  publication-title: Surf. Coat. Technol.
– volume: 27
  start-page: 1273
  year: 1995
  ident: bib11
  publication-title: Opt. Quantum Electron.
– start-page: 251
  year: 1992
  ident: bib25
  publication-title: Phase Transformation in Metals and Alloys
– volume: 86
  start-page: 317
  year: 1995
  ident: bib10
  publication-title: Appl. Surf. Sci.
– volume: 57
  start-page: 759
  year: 2006
  ident: bib30
  publication-title: Mater. Corros.
– volume: 201
  start-page: 5072
  year: 2007
  ident: bib13
  publication-title: Surf. Coat. Technol.
– volume: 150
  start-page: 188
  year: 2002
  ident: bib12
  publication-title: Surf. Coat. Technol.
– volume: 33
  start-page: 1223
  year: 2003
  ident: bib28
  publication-title: J. Appl. Electrochem.
– volume: 9
  start-page: 300
  year: 1993
  ident: bib2
  publication-title: Surf. Eng.
– year: 1986
  ident: bib23
  publication-title: G61-86: ‘Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility in Iron-, Nickel-, or Cobalt-Based Alloys’, ASTM Standards
– volume: 15
  start-page: 1829
  year: 1984
  ident: bib26
  publication-title: Metall. Trans., A
– volume: 239
  start-page: 152
  year: 2005
  ident: bib14
  publication-title: Nucl. Instrum. Methods Phys. Res., B
– volume: 44
  start-page: 2479
  year: 2002
  ident: bib29
  publication-title: Corros. Sci.
– volume: 48
  start-page: 2614
  year: 2006
  ident: 10.1016/j.surfcoat.2007.05.085_bib18
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2005.09.004
– volume: 57
  start-page: 759
  year: 2006
  ident: 10.1016/j.surfcoat.2007.05.085_bib30
  publication-title: Mater. Corros.
  doi: 10.1002/maco.200503969
– volume: 15
  start-page: 1829
  year: 1984
  ident: 10.1016/j.surfcoat.2007.05.085_bib26
  publication-title: Metall. Trans., A
  doi: 10.1007/BF02664896
– volume: 36
  start-page: 217
  year: 1978
  ident: 10.1016/j.surfcoat.2007.05.085_bib5
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(78)90074-5
– year: 1986
  ident: 10.1016/j.surfcoat.2007.05.085_bib23
– start-page: 251
  year: 1992
  ident: 10.1016/j.surfcoat.2007.05.085_bib25
– volume: 9
  start-page: 300
  year: 1993
  ident: 10.1016/j.surfcoat.2007.05.085_bib2
  publication-title: Surf. Eng.
  doi: 10.1179/sur.1993.9.4.300
– volume: 81
  start-page: 510
  year: 2003
  ident: 10.1016/j.surfcoat.2007.05.085_bib7
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(03)00062-2
– volume: 27
  start-page: 1273
  year: 1995
  ident: 10.1016/j.surfcoat.2007.05.085_bib11
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/BF00326481
– volume: 47
  start-page: 2081
  year: 2002
  ident: 10.1016/j.surfcoat.2007.05.085_bib20
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(02)00077-4
– volume: 239
  start-page: 152
  year: 2005
  ident: 10.1016/j.surfcoat.2007.05.085_bib14
  publication-title: Nucl. Instrum. Methods Phys. Res., B
  doi: 10.1016/j.nimb.2005.03.292
– volume: 5
  start-page: 1292
  year: 1986
  ident: 10.1016/j.surfcoat.2007.05.085_bib24
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1007/BF01729397
– volume: 166
  start-page: 221
  year: 2003
  ident: 10.1016/j.surfcoat.2007.05.085_bib9
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(02)00782-X
– volume: 126
  start-page: 238
  year: 2000
  ident: 10.1016/j.surfcoat.2007.05.085_bib3
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(00)00533-8
– volume: 81
  start-page: 503
  year: 2003
  ident: 10.1016/j.surfcoat.2007.05.085_bib8
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(03)00058-0
– volume: 201
  start-page: 5072
  year: 2007
  ident: 10.1016/j.surfcoat.2007.05.085_bib13
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2006.07.085
– volume: 46
  start-page: 2681
  year: 2004
  ident: 10.1016/j.surfcoat.2007.05.085_bib16
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2004.03.013
– year: 1995
  ident: 10.1016/j.surfcoat.2007.05.085_bib33
– volume: 44
  start-page: 1949
  year: 2002
  ident: 10.1016/j.surfcoat.2007.05.085_bib21
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(02)00019-7
– volume: 24
  start-page: 70
  year: 1981
  ident: 10.1016/j.surfcoat.2007.05.085_bib1
  publication-title: Powder Metall.
  doi: 10.1179/pom.1981.24.2.70
– volume: 152
  start-page: 161
  year: 1999
  ident: 10.1016/j.surfcoat.2007.05.085_bib32
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(99)00328-1
– volume: 90
  start-page: 39
  year: 1992
  ident: 10.1016/j.surfcoat.2007.05.085_bib15
  publication-title: Oil Gas J.
– year: 1992
  ident: 10.1016/j.surfcoat.2007.05.085_bib22
– volume: 44
  start-page: 2479
  year: 2002
  ident: 10.1016/j.surfcoat.2007.05.085_bib29
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(02)00050-1
– volume: 357
  start-page: 94
  year: 2003
  ident: 10.1016/j.surfcoat.2007.05.085_bib6
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(03)00228-4
– volume: 36
  start-page: 416
  year: 1980
  ident: 10.1016/j.surfcoat.2007.05.085_bib31
  publication-title: Corrosion
  doi: 10.5006/0010-9312-36.8.416
– volume: 37
  start-page: 1567
  year: 1995
  ident: 10.1016/j.surfcoat.2007.05.085_bib27
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938X(95)00066-S
– volume: 33
  start-page: 1223
  year: 2003
  ident: 10.1016/j.surfcoat.2007.05.085_bib28
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/B:JACH.0000003855.95788.12
– volume: 86
  start-page: 317
  year: 1995
  ident: 10.1016/j.surfcoat.2007.05.085_bib10
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0169-4332(94)00449-8
– volume: 150
  start-page: 188
  year: 2002
  ident: 10.1016/j.surfcoat.2007.05.085_bib12
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(01)01542-0
– volume: 57
  start-page: 705
  year: 2006
  ident: 10.1016/j.surfcoat.2007.05.085_bib17
  publication-title: Mater. Corros.
  doi: 10.1002/maco.200503958
– volume: 31
  start-page: 65
  year: 2001
  ident: 10.1016/j.surfcoat.2007.05.085_bib19
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1004157623466
– volume: 260
  start-page: 949
  year: 2006
  ident: 10.1016/j.surfcoat.2007.05.085_bib4
  publication-title: Wear
  doi: 10.1016/j.wear.2005.06.006
SSID ssj0001794
Score 2.1548994
Snippet Three high-speed steels (HSSs) M2, ASP23, ASP30 were surface-melted by a CW 2.5-kW Nd:YAG laser. The microstructure of the laser surface-melted HSSs was...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 336
SubjectTerms Applied sciences
Corrosion
Corrosion environments
Cross-disciplinary physics: materials science; rheology
Exact sciences and technology
Hardness
High-speed steels
Laser surface melting
Materials science
Metals. Metallurgy
Microstructure
Physics
Production techniques
Surface treatment
Surface treatments
Title Microstructure and corrosion behavior of laser surface-melted high-speed steels
URI https://dx.doi.org/10.1016/j.surfcoat.2007.05.085
https://www.proquest.com/docview/30963314
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: AKRWK
  dateStart: 19860101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDIAQ4inKo3hgNXUS23HGqgIVUGEAJDbLcc8SCNKqj5XfzjkPCgKJgSWDlUusu8vdZ-f8HSFnUrvAOgIsVRaY0Lllecotc477PDSgikqy6sGt6j-K6yf5tER6zVmYUFZZx_4qppfRuh7p1NrsjJ-fO_c8eFuWxui0XCHqCSfYhQplfefvizKP4HDlPovEaIx3fzkl_ILxaeLdyM5qKkN5zkNP5d8T1MbYTlFtvup38SN0l_nocots1kCSdqu5bpMlKHbIaq_p37ZD1r9QDe6Su0GovKvYYucToLYYUlx44hAahjaH9enIU4TTMKFhztYBe4NXxKQ0sBqz6RhTHUW3wOnukYfLi4den9XNFJhDzDFjAobeq2QoYw02dx4vOnDPuVTDEJzQ-CEiFpMqi6xUGgTHQZ8rwDWLwiC0T5aLUQEHhEpMZ4mPBSLdWLgkyTzEXDmd51ok-NAWkY0CjauJxkO_i1fTVJS9mEbxoQtmarg0PMh1PuXGFdXGnxJZYx_zzWkM5oM_ZdvfDLp4ZYZayHTUIqeNhQ1aLvxHsQWM5lOT4LIvSSJx-I_XH5G1cpc4ilgsj8kymh9OEN7M8nbpv22y0r266d9-AE4e_PQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UBRhShQAW3BB65mncR2nCNaFS2FXQ5dJG6W4x1LIJpd7S7_n3E-KIhKHLjkYGkSa2by5jmx3wCcKOOj6gjyXDvk0pSOl7lw3HsRytiAKqnFqkdjPbyRv2_V7RoMurMwcVtli_0Nptdo3Y70W2_253d3_T8iZluRp5S0QhPr-QTrUhEm92D97OJyOH4G5Jhz9acWRYBMBi8OCt8TRC2Cn7lVq2aoTkVsq_z_GvVl7pbkudC0vHiD3nVJOt-GrZZLsrNmul9hDasd2Bh0Ldx2YPOF2uAuXI_i5rtGMPZxgcxVU0ZrTxqi2LDuvD6bBUaMGhcsztl55H_xgWgpi8LGfDmnascoM2i6ezA5_zUZDHnbT4F7oh0rLnEags6mKjXoSh_oYqL8nM8NTtFLQ-8i0TGli8QpbVAKGgylRlq2aMKhb9CrZhXuA1NU0bKQSiK7qfRZVgRMhfamLI3M6KYHoDoHWt9qjceWFw-221R2bzvHx0aYuRXKimjXf7abN2ob71oUXXzsq7yxVBLetT16FdB_jyzIC4VJDuC4i7ClyMVfKa7C2ePSZrTyy7JEHn7g8cewMZyMruzVxfjyO3yuPxonCU_VD-hRKuBPYjur8qjN5ifecP-f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+corrosion+behavior+of+laser+surface-melted+high-speed+steels&rft.jtitle=Surface+%26+coatings+technology&rft.au=KWOK%2C+C.+T&rft.au=CHENG%2C+F.+T&rft.au=MAN%2C+H.+C&rft.date=2007-11-25&rft.pub=Elsevier&rft.issn=0257-8972&rft.volume=202&rft.issue=2&rft.spage=336&rft.epage=348&rft_id=info:doi/10.1016%2Fj.surfcoat.2007.05.085&rft.externalDBID=n%2Fa&rft.externalDocID=19225981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon