Bend-twist-stretch model for coarse elastic network simulation of biomolecular motion
The empirical harmonic potential function of elastic network models (ENMs) is augmented by three- and four-body interactions as well as by a parameter-free connection rule. In the new bend-twist-stretch (BTS) model the complexity of the parametrization is shifted from the spatial level of detail to...
        Saved in:
      
    
          | Published in | The Journal of chemical physics Vol. 131; no. 7; p. 074112 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Institute of Physics
    
        21.08.2009
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0021-9606 1089-7690 1520-9032 1089-7690  | 
| DOI | 10.1063/1.3167410 | 
Cover
| Abstract | The empirical harmonic potential function of elastic network models (ENMs) is augmented by three- and four-body interactions as well as by a parameter-free connection rule. In the new bend-twist-stretch (BTS) model the complexity of the parametrization is shifted from the spatial level of detail to the potential function, enabling an arbitrary coarse graining of the network. Compared to distance cutoff-based Hookean springs, the approach yields a more stable parametrization of coarse-grained ENMs for biomolecular dynamics. Traditional ENMs give rise to unbounded zero-frequency vibrations when (pseudo)atoms are connected to fewer than three neighbors. A large cutoff is therefore chosen in an ENM (about twice the average nearest-neighbor distance), resulting in many false-positive connections that reduce the spatial detail that can be resolved. More importantly, the required three-neighbor connectedness also limits the coarse graining, i.e., the network must be dense, even in the case of low-resolution structures that exhibit few spatial features. The new BTS model achieves such coarse graining by extending the ENM potential to include three-and four-atom interactions (bending and twisting, respectively) in addition to the traditional two-atom stretching. Thus, the BTS model enables reliable modeling of any three-dimensional graph irrespective of the atom connectedness. The additional potential terms were parametrized using continuum elastic theory of elastic rods, and the distance cutoff was replaced by a competitive Hebb connection rule, setting all free parameters in the model. We validate the approach on a carbon-alpha representation of adenylate kinase and illustrate its use with electron microscopy maps of E. coli RNA polymerase, E. coli ribosome, and eukaryotic chaperonin containing T-complex polypeptide 1, which were difficult to model with traditional ENMs. For adenylate kinase, we find excellent reproduction (>90% overlap) of the ENM modes and B factors when BTS is applied to the carbon-alpha representation as well as to coarser descriptions. For the volumetric maps, coarse BTS yields similar motions (70%–90% overlap) to those obtained from significantly denser representations with ENM. Our Python-based algorithms of ENM and BTS implementations are freely available. | 
    
|---|---|
| AbstractList | The empirical harmonic potential function of elastic network models (ENMs) is augmented by three- and four-body interactions as well as by a parameter-free connection rule. In the new bend-twist-stretch (BTS) model the complexity of the parametrization is shifted from the spatial level of detail to the potential function, enabling an arbitrary coarse graining of the network. Compared to distance cutoff-based Hookean springs, the approach yields a more stable parametrization of coarse-grained ENMs for biomolecular dynamics. Traditional ENMs give rise to unbounded zero-frequency vibrations when (pseudo)atoms are connected to fewer than three neighbors. A large cutoff is therefore chosen in an ENM (about twice the average nearest-neighbor distance), resulting in many false-positive connections that reduce the spatial detail that can be resolved. More importantly, the required three-neighbor connectedness also limits the coarse graining, i.e., the network must be dense, even in the case of low-resolution structures that exhibit few spatial features. The new BTS model achieves such coarse graining by extending the ENM potential to include three-and four-atom interactions (bending and twisting, respectively) in addition to the traditional two-atom stretching. Thus, the BTS model enables reliable modeling of any three-dimensional graph irrespective of the atom connectedness. The additional potential terms were parametrized using continuum elastic theory of elastic rods, and the distance cutoff was replaced by a competitive Hebb connection rule, setting all free parameters in the model. We validate the approach on a carbon-alpha representation of adenylate kinase and illustrate its use with electron microscopy maps of E. coli RNA polymerase, E. coli ribosome, and eukaryotic chaperonin containing T-complex polypeptide 1, which were difficult to model with traditional ENMs. For adenylate kinase, we find excellent reproduction (>90% overlap) of the ENM modes and B factors when BTS is applied to the carbon-alpha representation as well as to coarser descriptions. For the volumetric maps, coarse BTS yields similar motions (70%-90% overlap) to those obtained from significantly denser representations with ENM. Our Python-based algorithms of ENM and BTS implementations are freely available. The empirical harmonic potential function of elastic network models (ENMs) is augmented by three- and four-body interactions as well as by a parameter-free connection rule. In the new bend-twist-stretch (BTS) model the complexity of the parametrization is shifted from the spatial level of detail to the potential function, enabling an arbitrary coarse graining of the network. Compared to distance cutoff-based Hookean springs, the approach yields a more stable parametrization of coarse-grained ENMs for biomolecular dynamics. Traditional ENMs give rise to unbounded zero-frequency vibrations when (pseudo)atoms are connected to fewer than three neighbors. A large cutoff is therefore chosen in an ENM (about twice the average nearest-neighbor distance), resulting in many false-positive connections that reduce the spatial detail that can be resolved. More importantly, the required three-neighbor connectedness also limits the coarse graining, i.e., the network must be dense, even in the case of low-resolution structures that exhibit few spatial features. The new BTS model achieves such coarse graining by extending the ENM potential to include three-and four-atom interactions (bending and twisting, respectively) in addition to the traditional two-atom stretching. Thus, the BTS model enables reliable modeling of any three-dimensional graph irrespective of the atom connectedness. The additional potential terms were parametrized using continuum elastic theory of elastic rods, and the distance cutoff was replaced by a competitive Hebb connection rule, setting all free parameters in the model. We validate the approach on a carbon-alpha representation of adenylate kinase and illustrate its use with electron microscopy maps of E. coli RNA polymerase, E. coli ribosome, and eukaryotic chaperonin containing T-complex polypeptide 1, which were difficult to model with traditional ENMs. For adenylate kinase, we find excellent reproduction (>90% overlap) of the ENM modes and B factors when BTS is applied to the carbon-alpha representation as well as to coarser descriptions. For the volumetric maps, coarse BTS yields similar motions (70%-90% overlap) to those obtained from significantly denser representations with ENM. Our Python-based algorithms of ENM and BTS implementations are freely available.The empirical harmonic potential function of elastic network models (ENMs) is augmented by three- and four-body interactions as well as by a parameter-free connection rule. In the new bend-twist-stretch (BTS) model the complexity of the parametrization is shifted from the spatial level of detail to the potential function, enabling an arbitrary coarse graining of the network. Compared to distance cutoff-based Hookean springs, the approach yields a more stable parametrization of coarse-grained ENMs for biomolecular dynamics. Traditional ENMs give rise to unbounded zero-frequency vibrations when (pseudo)atoms are connected to fewer than three neighbors. A large cutoff is therefore chosen in an ENM (about twice the average nearest-neighbor distance), resulting in many false-positive connections that reduce the spatial detail that can be resolved. More importantly, the required three-neighbor connectedness also limits the coarse graining, i.e., the network must be dense, even in the case of low-resolution structures that exhibit few spatial features. The new BTS model achieves such coarse graining by extending the ENM potential to include three-and four-atom interactions (bending and twisting, respectively) in addition to the traditional two-atom stretching. Thus, the BTS model enables reliable modeling of any three-dimensional graph irrespective of the atom connectedness. The additional potential terms were parametrized using continuum elastic theory of elastic rods, and the distance cutoff was replaced by a competitive Hebb connection rule, setting all free parameters in the model. We validate the approach on a carbon-alpha representation of adenylate kinase and illustrate its use with electron microscopy maps of E. coli RNA polymerase, E. coli ribosome, and eukaryotic chaperonin containing T-complex polypeptide 1, which were difficult to model with traditional ENMs. For adenylate kinase, we find excellent reproduction (>90% overlap) of the ENM modes and B factors when BTS is applied to the carbon-alpha representation as well as to coarser descriptions. For the volumetric maps, coarse BTS yields similar motions (70%-90% overlap) to those obtained from significantly denser representations with ENM. Our Python-based algorithms of ENM and BTS implementations are freely available.  | 
    
| Author | Wriggers, Willy Stember, Joseph N.  | 
    
| Author_xml | – sequence: 1 givenname: Joseph N. surname: Stember fullname: Stember, Joseph N. – sequence: 2 givenname: Willy surname: Wriggers fullname: Wriggers, Willy  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19708737$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp1kEFP3DAQha0KVBbaQ_8AyqlSKwXGsWM7l0otagEJqZdytrzOBNw69mI7XfHvm2VXgiI4jTTzvXkz75DshRiQkA8UTigIdkpPGBWSU3hDFhRUV0vRwR5ZADS07gSIA3KY828AoLLhb8kB7SQoyeSCXH_D0Ndl7XKpc0lY7G01xh59NcRU2WhSxgq9ycXZKmBZx_Snym6cvCkuhioO1dLFMXq0cyvN2k37HdkfjM_4flePyPWP77_OLuqrn-eXZ1-vastZV2reDi0bhAGukFpA7DtUArpBwbJlsukFE6aZx0vOGKcCWtuqoWGKcqGEaNkR-bzdO4WVuV8b7_UqudGke01Bb7LRVO-ymeEvW3g1LUfsLYaSzKMgGqf_nwR3q2_iX91IrkS3cfu4W5Di3YS56NFli96bgHHKWkhBG942M3j81Onxpl3sM3C6BWyKOScctHXlIdDZ2PkXj__0TPH6o_8Alb2hNg | 
    
| CitedBy_id | crossref_primary_10_1371_journal_pone_0082207 crossref_primary_10_1016_j_jsb_2014_09_005 crossref_primary_10_1039_C7CP07177A crossref_primary_10_1016_j_abb_2010_12_031 crossref_primary_10_1109_JSTSP_2015_2489186 crossref_primary_10_1016_j_jmb_2012_12_026 crossref_primary_10_1039_C8CP07442A crossref_primary_10_3390_ijms241814245 crossref_primary_10_1146_annurev_biophys_083012_130348 crossref_primary_10_1371_journal_pone_0183889 crossref_primary_10_1107_S2059798322001966 crossref_primary_10_1063_1_4958321 crossref_primary_10_1021_acs_jpcb_4c05077 crossref_primary_10_1021_jp303839t crossref_primary_10_1063_1_3647314 crossref_primary_10_1371_journal_pone_0021809 crossref_primary_10_1002_prot_24680 crossref_primary_10_1371_journal_pone_0183057 crossref_primary_10_1107_S139900471501528X crossref_primary_10_1186_1471_2105_12_264 crossref_primary_10_1007_s10278_014_9732_x crossref_primary_10_1007_s00205_014_0745_x crossref_primary_10_1093_bioadv_vbae181 crossref_primary_10_1021_jp301726s crossref_primary_10_1155_2013_628536 crossref_primary_10_1021_ct100374a crossref_primary_10_1080_21681163_2016_1154483 crossref_primary_10_1002_prot_24153 crossref_primary_10_1063_1_3613678 crossref_primary_10_1261_rna_041269_113  | 
    
| Cites_doi | 10.1006/jsbi.1998.4080 10.1016/j.neucom.2003.09.007 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8 10.1002/bip.360210318 10.1038/nature06893 10.1016/S0969-2126(01)00648-7 10.1103/PhysRevLett.77.1905 10.1016/0263-7855(96)00018-5 10.1038/296776a0 10.1021/bi00188a001 10.1016/S0092-8674(00)81515-9 10.1016/0022-2836(85)90230-X 10.1006/jmbi.1998.2232 10.1016/S0022-2836(02)00627-7 10.1016/S0022-2836(02)01426-2 10.1073/pnas.1632476100 10.1007/978-94-017-1120-3 10.1073/pnas.052054099 10.1016/S0969-2126(96)00018-4 10.1146/annurev.biophys.31.082901.134202 10.1109/72.238311 10.1016/S0959-440X(02)00315-9 10.1016/j.jmgm.2005.09.006 10.1002/jcc.1160 10.1080/08927020600771415 10.1093/protein/14.1.1 10.1073/pnas.0802496105 10.1146/annurev.biophys.35.040405.102010 10.1016/j.jmb.2008.01.027 10.1002/prot.20743 10.1021/ct050307u 10.1529/biophysj.105.065904 10.1073/pnas.082148899 10.1038/35018597 10.1016/S1359-0278(97)00024-2 10.1063/1.3027989 10.1002/prot.340100204  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2009 American Institute of Physics 2009 American Institute of Physics | 
    
| Copyright_xml | – notice: Copyright © 2009 American Institute of Physics 2009 American Institute of Physics | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1063/1.3167410 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry Physics  | 
    
| EISSN | 1089-7690 | 
    
| ExternalDocumentID | 10.1063/1.3167410 PMC2748695 19708737 10_1063_1_3167410  | 
    
| Genre | Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM062968 – fundername: NIDA NIH HHS grantid: P01 DA012923 – fundername: NIDA NIH HHS grantid: P01 DA012408 – fundername: NIDA NIH HHS grantid: DA012923 – fundername: NIDA NIH HHS grantid: DA012408 – fundername: NIGMS NIH HHS grantid: R01GM62968  | 
    
| GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS ADXHL AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 CGR CUY CVF ECM EIF NPM 7X8 5PM .GJ 0ZJ 186 2WC 3O- 41~ 9M8 AAYJJ ABDPE ABUFD ACBNA ADTOC AETEA AI. H~9 NEUPN NHB OHT QZG RDFOP T9H UBC UNPAY VH1 VOH X7L XJT XOL ZCG ZGI ZXP  | 
    
| ID | FETCH-LOGICAL-c439t-45f53f6a048e1c0eed9e8609f80b5372d636a2a04b43341605c58f23814686653 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0021-9606 1089-7690 1520-9032  | 
    
| IngestDate | Sun Oct 26 04:10:43 EDT 2025 Tue Sep 30 16:51:23 EDT 2025 Fri Jul 11 09:52:13 EDT 2025 Mon Jul 21 05:48:55 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Wed Oct 01 06:03:36 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c439t-45f53f6a048e1c0eed9e8609f80b5372d636a2a04b43341605c58f23814686653 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Permanent address: D. E. Shaw Research, 120 W. 45th St., New York, NY 10036, USA. Electronic mail: willy.wriggers@deshawresearch.com.  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3167410/15700254/074112_1_online.pdf | 
    
| PMID | 19708737 | 
    
| PQID | 67612452 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | unpaywall_primary_10_1063_1_3167410 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2748695 proquest_miscellaneous_67612452 pubmed_primary_19708737 crossref_citationtrail_10_1063_1_3167410 crossref_primary_10_1063_1_3167410  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-08-21 | 
    
| PublicationDateYYYYMMDD | 2009-08-21 | 
    
| PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-21 day: 21  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | The Journal of chemical physics | 
    
| PublicationTitleAlternate | J Chem Phys | 
    
| PublicationYear | 2009 | 
    
| Publisher | American Institute of Physics | 
    
| Publisher_xml | – name: American Institute of Physics | 
    
| References | (2023062604251256600_c42) 2000; 406 (2023062604251256600_c3) 1994; 33 (2023062604251256600_c1) 2006 (2023062604251256600_c2) 1991; 10 (2023062604251256600_c5) 1955 (2023062604251256600_c12) 1997; 2 (2023062604251256600_c35) 1991 (2023062604251256600_c45) 2001; 14 (2023062604251256600_c11) 1996; 77 2023062604251256600_c32 (2023062604251256600_c8) 1985; 181 (2023062604251256600_c36) 2006; 62 (2023062604251256600_c10) 1976 (2023062604251256600_c50) 1996; 14 van Gunsteren (2023062604251256600_c9) 1997 (2023062604251256600_c44) 2002; 12 (2023062604251256600_c20) 2003; 326 2023062604251256600_c29 (2023062604251256600_c43) 2003; 100 (2023062604251256600_c38) 1996; 4 (2023062604251256600_c41) 1999; 98 (2023062604251256600_c23) 2008; 377 (2023062604251256600_c16) 2006; 35 (2023062604251256600_c39) 2008; 453 (2023062604251256600_c15) 2002; 321 (2023062604251256600_c28) 1999; 125 (2023062604251256600_c37) 2008; 105 (2023062604251256600_c25) 1982 (2023062604251256600_c7) 1982; 296 (2023062604251256600_c27) 1999 (2023062604251256600_c4) 2001 (2023062604251256600_c31) 2004; 56 2023062604251256600_c18 (2023062604251256600_c22) 2002; 31 (2023062604251256600_c14) 2002; 23 (2023062604251256600_c30) 1998; 284 (2023062604251256600_c49) 2008; 61 2023062604251256600_c19 (2023062604251256600_c46) 2001; 9 (2023062604251256600_c6) 1982; 21 (2023062604251256600_c17) 2005; 89 (2023062604251256600_c47) 2006; 24 (2023062604251256600_c26) 2005 (2023062604251256600_c13) 1998; 33 (2023062604251256600_c33) 1993; 4 (2023062604251256600_c21) 2002; 99 (2023062604251256600_c24) 2006; 32 (2023062604251256600_c40) 2002; 99 (2023062604251256600_c48) 2006; 2 (2023062604251256600_c34) 2000 10917535 - Nature. 2000 Jul 20;406(6793):318-22 7066480 - Biopolymers. 1982 Mar;21(3):711-4 8805521 - Structure. 1996 Feb 15;4(2):147-56 11287673 - Protein Eng. 2001 Jan;14(1):1-6 11959502 - Curr Opin Struct Biol. 2002 Apr;12(2):231-8 16288462 - Proteins. 2006 Jan 1;62(1):152-8 18267757 - IEEE Trans Neural Netw. 1993;4(4):558-69 8744570 - J Mol Graph. 1996 Feb;14(1):33-8, 27-8 11566128 - Structure. 2001 Sep;9(9):779-88 9878345 - J Mol Biol. 1998 Dec 18;284(5):1247-54 12144786 - J Mol Biol. 2002 Aug 9;321(2):297-305 11913377 - J Comput Chem. 2002 Jan 15;23(1):119-27 16289973 - J Mol Graph Model. 2006 Jan;24(4):296-306 9829700 - Proteins. 1998 Nov 15;33(3):417-29 16689630 - Annu Rev Biophys Biomol Struct. 2006;35:115-33 12084922 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8620-5 21760758 - J Chem Theory Comput. 2006;2(3):464-471 10499798 - Cell. 1999 Sep 17;98(6):811-24 18641126 - Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10390-5 12878726 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9319-23 10063201 - Phys Rev Lett. 1996 Aug 26;77(9):1905-1908 18449192 - Nature. 2008 May 15;453(7193):415-9 8204609 - Biochemistry. 1994 Jun 7;33(22):6739-49 11988472 - Annu Rev Biophys Biomol Struct. 2002;31:303-19 11904365 - Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4296-301 2580101 - J Mol Biol. 1985 Feb 5;181(3):423-47 12559916 - J Mol Biol. 2003 Feb 14;326(2):485-92 10222274 - J Struct Biol. 1999 Apr-May;125(2-3):185-95 16055547 - Biophys J. 2005 Oct;89(4):2395-401 9218955 - Fold Des. 1997;2(3):173-81 18262542 - J Mol Biol. 2008 Mar 21;377(2):489-500 7070518 - Nature. 1982 Apr 22;296(5859):776-8 1896424 - Proteins. 1991;10(2):106-16  | 
    
| References_xml | – volume: 125 start-page: 185 year: 1999 ident: 2023062604251256600_c28 publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1998.4080 – volume-title: Statistical Mechanics year: 1976 ident: 2023062604251256600_c10 – ident: 2023062604251256600_c29 – volume-title: Computational Geometry: Algorithms and Applications year: 2000 ident: 2023062604251256600_c34 – volume: 56 start-page: 365 year: 2004 ident: 2023062604251256600_c31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2003.09.007 – volume-title: Molecular Vibrations year: 1955 ident: 2023062604251256600_c5 – volume: 33 start-page: 417 year: 1998 ident: 2023062604251256600_c13 publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8 – volume: 21 start-page: 711 year: 1982 ident: 2023062604251256600_c6 publication-title: Biopolymers doi: 10.1002/bip.360210318 – volume: 453 start-page: 415 year: 2008 ident: 2023062604251256600_c39 publication-title: Nature (London) doi: 10.1038/nature06893 – volume: 9 start-page: 779 year: 2001 ident: 2023062604251256600_c46 publication-title: Structure (London) doi: 10.1016/S0969-2126(01)00648-7 – volume: 77 start-page: 1905 year: 1996 ident: 2023062604251256600_c11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.1905 – volume: 14 start-page: 33 year: 1996 ident: 2023062604251256600_c50 publication-title: J. Mol. Graphics doi: 10.1016/0263-7855(96)00018-5 – volume: 296 start-page: 776 year: 1982 ident: 2023062604251256600_c7 publication-title: Nature (London) doi: 10.1038/296776a0 – volume: 33 start-page: 6739 year: 1994 ident: 2023062604251256600_c3 publication-title: Biochemistry doi: 10.1021/bi00188a001 – volume-title: Twentieth Century Harmonic Analysis - A Celebration year: 2001 ident: 2023062604251256600_c4 – year: 1999 ident: 2023062604251256600_c27 – volume: 98 start-page: 811 year: 1999 ident: 2023062604251256600_c41 publication-title: Cell doi: 10.1016/S0092-8674(00)81515-9 – volume: 181 start-page: 423 year: 1985 ident: 2023062604251256600_c8 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(85)90230-X – volume: 284 start-page: 1247 year: 1998 ident: 2023062604251256600_c30 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.2232 – volume: 321 start-page: 297 year: 2002 ident: 2023062604251256600_c15 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00627-7 – volume: 326 start-page: 485 year: 2003 ident: 2023062604251256600_c20 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)01426-2 – volume: 100 start-page: 9319 year: 2003 ident: 2023062604251256600_c43 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1632476100 – start-page: 284 volume-title: Computer Simulation of Biomolecular Systems year: 1997 ident: 2023062604251256600_c9 doi: 10.1007/978-94-017-1120-3 – volume: 99 start-page: 4296 year: 2002 ident: 2023062604251256600_c40 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.052054099 – volume: 4 start-page: 147 year: 1996 ident: 2023062604251256600_c38 publication-title: Structure (London) doi: 10.1016/S0969-2126(96)00018-4 – volume: 31 start-page: 303 year: 2002 ident: 2023062604251256600_c22 publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.31.082901.134202 – ident: 2023062604251256600_c18 – volume: 4 start-page: 558 year: 1993 ident: 2023062604251256600_c33 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.238311 – volume: 12 start-page: 231 year: 2002 ident: 2023062604251256600_c44 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(02)00315-9 – volume: 24 start-page: 296 year: 2006 ident: 2023062604251256600_c47 publication-title: J. Mol. Graphics Modell. doi: 10.1016/j.jmgm.2005.09.006 – volume: 23 start-page: 119 year: 2002 ident: 2023062604251256600_c14 publication-title: J. Comput. Chem. doi: 10.1002/jcc.1160 – volume-title: Physics of Continuous Matter year: 2005 ident: 2023062604251256600_c26 – volume-title: Morphometric Tools for Landmark Data year: 1991 ident: 2023062604251256600_c35 – volume: 32 start-page: 803 year: 2006 ident: 2023062604251256600_c24 publication-title: Mol. Simul. doi: 10.1080/08927020600771415 – ident: 2023062604251256600_c32 – volume: 14 start-page: 1 year: 2001 ident: 2023062604251256600_c45 publication-title: Protein Eng. doi: 10.1093/protein/14.1.1 – volume-title: Normal Mode Analysis year: 2006 ident: 2023062604251256600_c1 – volume: 105 start-page: 10390 year: 2008 ident: 2023062604251256600_c37 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0802496105 – volume-title: Mechanics - Course of Theoretical Physics year: 1982 ident: 2023062604251256600_c25 – volume: 35 start-page: 115 year: 2006 ident: 2023062604251256600_c16 publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.35.040405.102010 – volume: 377 start-page: 489 year: 2008 ident: 2023062604251256600_c23 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.01.027 – volume: 62 start-page: 152 year: 2006 ident: 2023062604251256600_c36 publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.20743 – ident: 2023062604251256600_c19 – volume: 2 start-page: 464 year: 2006 ident: 2023062604251256600_c48 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct050307u – volume: 89 start-page: 2395 year: 2005 ident: 2023062604251256600_c17 publication-title: Biophys. J. doi: 10.1529/biophysj.105.065904 – volume: 99 start-page: 8620 year: 2002 ident: 2023062604251256600_c21 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.082148899 – volume: 406 start-page: 318 year: 2000 ident: 2023062604251256600_c42 publication-title: Nature (London) doi: 10.1038/35018597 – volume: 2 start-page: 173 year: 1997 ident: 2023062604251256600_c12 publication-title: Folding Des. doi: 10.1016/S1359-0278(97)00024-2 – volume: 61 start-page: 33 year: 2008 ident: 2023062604251256600_c49 publication-title: Phys. Today doi: 10.1063/1.3027989 – volume: 10 start-page: 106 year: 1991 ident: 2023062604251256600_c2 publication-title: Proteins: Struct., Funct., Genet. doi: 10.1002/prot.340100204 – reference: 11904365 - Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4296-301 – reference: 12559916 - J Mol Biol. 2003 Feb 14;326(2):485-92 – reference: 1896424 - Proteins. 1991;10(2):106-16 – reference: 21760758 - J Chem Theory Comput. 2006;2(3):464-471 – reference: 9218955 - Fold Des. 1997;2(3):173-81 – reference: 11287673 - Protein Eng. 2001 Jan;14(1):1-6 – reference: 8805521 - Structure. 1996 Feb 15;4(2):147-56 – reference: 11959502 - Curr Opin Struct Biol. 2002 Apr;12(2):231-8 – reference: 8204609 - Biochemistry. 1994 Jun 7;33(22):6739-49 – reference: 10222274 - J Struct Biol. 1999 Apr-May;125(2-3):185-95 – reference: 9829700 - Proteins. 1998 Nov 15;33(3):417-29 – reference: 11988472 - Annu Rev Biophys Biomol Struct. 2002;31:303-19 – reference: 9878345 - J Mol Biol. 1998 Dec 18;284(5):1247-54 – reference: 10063201 - Phys Rev Lett. 1996 Aug 26;77(9):1905-1908 – reference: 18449192 - Nature. 2008 May 15;453(7193):415-9 – reference: 2580101 - J Mol Biol. 1985 Feb 5;181(3):423-47 – reference: 16689630 - Annu Rev Biophys Biomol Struct. 2006;35:115-33 – reference: 12144786 - J Mol Biol. 2002 Aug 9;321(2):297-305 – reference: 10499798 - Cell. 1999 Sep 17;98(6):811-24 – reference: 18267757 - IEEE Trans Neural Netw. 1993;4(4):558-69 – reference: 11566128 - Structure. 2001 Sep;9(9):779-88 – reference: 12084922 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8620-5 – reference: 16289973 - J Mol Graph Model. 2006 Jan;24(4):296-306 – reference: 16055547 - Biophys J. 2005 Oct;89(4):2395-401 – reference: 12878726 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9319-23 – reference: 11913377 - J Comput Chem. 2002 Jan 15;23(1):119-27 – reference: 10917535 - Nature. 2000 Jul 20;406(6793):318-22 – reference: 16288462 - Proteins. 2006 Jan 1;62(1):152-8 – reference: 7070518 - Nature. 1982 Apr 22;296(5859):776-8 – reference: 18262542 - J Mol Biol. 2008 Mar 21;377(2):489-500 – reference: 18641126 - Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10390-5 – reference: 8744570 - J Mol Graph. 1996 Feb;14(1):33-8, 27-8 – reference: 7066480 - Biopolymers. 1982 Mar;21(3):711-4  | 
    
| SSID | ssj0001724 | 
    
| Score | 2.1380546 | 
    
| Snippet | The empirical harmonic potential function of elastic network models (ENMs) is augmented by three- and four-body interactions as well as by a parameter-free... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 074112 | 
    
| SubjectTerms | Adenylate Kinase - chemistry Adenylate Kinase - metabolism Biomechanical Phenomena Chaperonins - chemistry Chaperonins - metabolism DNA-Directed RNA Polymerases - chemistry DNA-Directed RNA Polymerases - metabolism Elasticity Escherichia coli - enzymology Microscopy, Electron Models, Molecular Movement Reproducibility of Results Ribosomes - chemistry Ribosomes - metabolism Theoretical Methods and Algorithms  | 
    
| Title | Bend-twist-stretch model for coarse elastic network simulation of biomolecular motion | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19708737 https://www.proquest.com/docview/67612452 https://pubmed.ncbi.nlm.nih.gov/PMC2748695 https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3167410/15700254/074112_1_online.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 131 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001724 issn: 1520-9032 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXaFy4VEoXR7FAg5cnMTxKz4uhapCtEKClYo4RInXEQtLNupmVYH48Yzz2HYpSFw4e-w4k4nns2f8DcBzLriQ_tDdGWcoWginJpcJLaQVTtgk5g2R9vGJOpqIN6fydAs-9XdhcBLLIJtVLUXwrAq_2CrslEiraXHBOKB4yAJ_j1uwKGSeph33OqH3kCxOWdoSTQTY5RoMlUSgPoDh5OTd-GOb9MGox-5t-r2hWjWnMejMImoiHvccRJcfsum5rsDRq1mV26uyyr6fZ_P5JZd1eAt-rl-2yVT5GqzqPLA_fuOB_E_auA03O6hLxu1Ad2DLlTuwfdBXmNuB6036qV3ehclLV05pfY4N1N9eQVMiTY0egpia2AXuvh1xCPRxKFK2metkOfvW1R4ji4J4HoG-1C9paxPdg8nh6w8HR7Qr-EAt4qKaCllIXqgMVxXHbITu27hERaZIolxyHU8VV1mMzbng6H1xJ2ZlUnjQIZTn7eO7MCgXpdsDkuXY08qI5REXhVG5ZhYFER_LbMo0H8GL_mOmtmND90U55mkTlVccldapcwRP16JVSwHyJ6EnvUWkqEUfdclKt1gtU6URRAoZj-B-ax8XgxgdJZrrEegNy1kLeOrvzZZy9rmhAI-1SJSRI3i2trG_z-3BP0k9hBttpAxXTvYIBvXZyj1GwFXn-zAcvzp--36_-4F-AQnXIQw | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVC58Civ8LSAAxcncfyKj6WiqpCoOLBSEYco8TpiYclGbFYViB_POE62XQoSF84eO85k4vnsGX8D8IILLqQ_dHfGGYoWwqmpZE5raYUTNs94T6T99kQdT8WbU3m6Ax_HuzA4iVVczttAETxvk8-2TQYl0nZWnzMOKJ6w2N_jFixNmKdpx71O4j0kywpWBKKJGLtcgV0lEahPYHd68u7gQ0j6YNRj95B-b6hW_WkMOrOUmpRnIwfRxYdse65LcPRyVuXeumnL72flYnHBZR3dgJ-bl-0zVb7E666K7Y_feCD_kzZuwvUB6pKDMNAt2HHNPuwdjhXm9uFqn35qV7dh-so1M9qdYQP1t1fQlEhfo4cgpiZ2ibtvRxwCfRyKNCFznazmX4faY2RZE88jMJb6JaE20R2YHr1-f3hMh4IP1CIu6qiQteS1KnFVccym6L6Ny1Vq6jytJNfZTHFVZthcCY7eF3diVua1Bx1Ced4-fhcmzbJx94GUFfa0MmVVykVtVKWZRUHEx7KcMc0jeDl-zMIObOi-KMei6KPyiqPSBnVG8Gwj2gYKkD8JPR0tokAt-qhL2bjlelUojSBSyCyCe8E-zgcxOs011xHoLcvZCHjq7-2WZv6ppwDPtMiVkRE839jY3-f24J-kHsK1ECnDlZM9gkn3be0eI-DqqifDj_MLCbMfeA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bend-twist-stretch+model+for+coarse+elastic+network+simulation+of+biomolecular+motion&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Stember%2C+Joseph+N&rft.au=Wriggers%2C+Willy&rft.date=2009-08-21&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=131&rft.issue=7&rft.spage=074112&rft_id=info:doi/10.1063%2F1.3167410&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |