Model-Free Deep Recurrent Q-Network Reinforcement Learning for Quantum Circuit Architectures Design
Artificial intelligence (AI) technology leads to new insights into the manipulation of quantum systems in the Noisy Intermediate-Scale Quantum (NISQ) era. Classical agent-based artificial intelligence algorithms provide a framework for the design or control of quantum systems. Traditional reinforcem...
Saved in:
| Published in | Quantum reports Vol. 4; no. 4; pp. 380 - 389 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2624-960X 2624-960X |
| DOI | 10.3390/quantum4040027 |
Cover
| Abstract | Artificial intelligence (AI) technology leads to new insights into the manipulation of quantum systems in the Noisy Intermediate-Scale Quantum (NISQ) era. Classical agent-based artificial intelligence algorithms provide a framework for the design or control of quantum systems. Traditional reinforcement learning methods are designed for the Markov Decision Process (MDP) and, hence, have difficulty in dealing with partially observable or quantum observable decision processes. Due to the difficulty of building or inferring a model of a specified quantum system, a model-free-based control approach is more practical and feasible than its counterpart of a model-based approach. In this work, we apply a model-free deep recurrent Q-network (DRQN) reinforcement learning method for qubit-based quantum circuit architecture design problems. This paper is the first attempt to solve the quantum circuit design problem from the recurrent reinforcement learning algorithm, while using discrete policy. Simulation results suggest that our long short-term memory (LSTM)-based DRQN method is able to learn quantum circuits for entangled Bell–Greenberger–Horne–Zeilinger (Bell–GHZ) states. However, since we also observe unstable learning curves in experiments, suggesting that the DRQN could be a promising method for AI-based quantum circuit design application, more investigation on the stability issue would be required. |
|---|---|
| AbstractList | Artificial intelligence (AI) technology leads to new insights into the manipulation of quantum systems in the Noisy Intermediate-Scale Quantum (NISQ) era. Classical agent-based artificial intelligence algorithms provide a framework for the design or control of quantum systems. Traditional reinforcement learning methods are designed for the Markov Decision Process (MDP) and, hence, have difficulty in dealing with partially observable or quantum observable decision processes. Due to the difficulty of building or inferring a model of a specified quantum system, a model-free-based control approach is more practical and feasible than its counterpart of a model-based approach. In this work, we apply a model-free deep recurrent Q-network (DRQN) reinforcement learning method for qubit-based quantum circuit architecture design problems. This paper is the first attempt to solve the quantum circuit design problem from the recurrent reinforcement learning algorithm, while using discrete policy. Simulation results suggest that our long short-term memory (LSTM)-based DRQN method is able to learn quantum circuits for entangled Bell–Greenberger–Horne–Zeilinger (Bell–GHZ) states. However, since we also observe unstable learning curves in experiments, suggesting that the DRQN could be a promising method for AI-based quantum circuit design application, more investigation on the stability issue would be required. |
| Author | Chen, Chih-Chieh Sogabe, Masaru Kasahara, Nobuhiro Sakamoto, Katsuyoshi Shiba, Kodai Kimura, Tomoaki Sogabe, Tomah |
| Author_xml | – sequence: 1 givenname: Tomah surname: Sogabe fullname: Sogabe, Tomah – sequence: 2 givenname: Tomoaki surname: Kimura fullname: Kimura, Tomoaki – sequence: 3 givenname: Chih-Chieh orcidid: 0000-0003-3092-4346 surname: Chen fullname: Chen, Chih-Chieh – sequence: 4 givenname: Kodai surname: Shiba fullname: Shiba, Kodai – sequence: 5 givenname: Nobuhiro surname: Kasahara fullname: Kasahara, Nobuhiro – sequence: 6 givenname: Masaru surname: Sogabe fullname: Sogabe, Masaru – sequence: 7 givenname: Katsuyoshi surname: Sakamoto fullname: Sakamoto, Katsuyoshi |
| BookMark | eNqFkM1r3DAQxUVJoGmaa8-Gnp3oy5J1DNsmDWxTEhLoTcjj0VZbr7SRZUL--zp1KWmh9DTD473ffLwhBzFFJOQdo6dCGHr2MLlYpp2kklKuX5EjrrisjaJfD170r8nJOG7pbGkpN6o9IvA59TjUFxmx-oC4r24RppwxluqmvsbymPL3WQvRpwy4e9bX6HIMcVPNUnWzzK1WIcMUSnWe4VsoCGXKOM7EMWziW3Lo3TDiya96TO4vPt6tPtXrL5dXq_N1DVKYUjPTtdQYj7yXHPqOeym9UNSDBwmyEehVqxkzvXKy65gDqoRsPCjNG9cYcUyuFm6f3Nbuc9i5_GSTC_ankPLGulwCDGg71XkQjGlPQSrmWg-mF6x1tNU95TizzhbWFPfu6dENw28go_b55fbPl8-J90tin9PDhGOx2zTlOB9suW6U1q3mbHbJxQU5jWNGbyEUV0KKJbsw_Bt--lfsP9v8ABVbpmE |
| CitedBy_id | crossref_primary_10_35848_1347_4065_acd34f |
| Cites_doi | 10.1109/MCSE.2007.55 10.1016/j.ic.2018.09.001 10.1609/aaai.v31i1.10827 10.1007/s42484-021-00051-z 10.1613/jair.301 10.1038/s41534-019-0201-8 10.1088/2399-6528/ac7d39 10.1155/2021/3511029 10.1016/j.cpc.2012.11.019 10.1007/s42484-020-00016-8 10.1088/1361-6633/aab406 10.1038/ncomms5213 10.1038/s41586-019-1666-5 10.1088/1367-2630/18/2/023023 10.1017/CBO9780511813948 10.1038/nature24270 10.1038/s41534-019-0141-3 10.1287/moor.12.3.441 10.1017/CBO9780511813870 10.1561/2200000042 10.22331/q-2018-08-06-79 10.1007/BF00992698 10.1007/978-3-319-55201-9 10.1038/nature14236 10.1007/s11633-021-1278-z 10.1016/0016-0032(65)90528-4 10.1103/PhysRevLett.127.190403 10.1140/epjqt/s40507-021-00119-6 10.1007/978-94-017-0849-4 10.1007/BF02650179 10.1103/PhysRevA.52.3457 10.1162/neco.1997.9.8.1735 10.1103/PRXQuantum.2.040324 10.1038/s41598-019-52275-6 10.1016/0022-247X(65)90154-X 10.1162/089976600300015015 10.1016/S0004-3702(98)00023-X 10.1038/nature23879 10.1038/s42254-021-00348-9 10.1038/s41586-020-2649-2 10.1007/978-3-031-01551-9 10.3390/make3030029 10.1103/PhysRevA.90.032311 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/quantum4040027 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2624-960X |
| EndPage | 389 |
| ExternalDocumentID | oai_doaj_org_article_b6bfc3117f0c461a8fc9d318a087d02e 10.3390/quantum4040027 10_3390_quantum4040027 |
| GroupedDBID | AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IGS ITC UNPAY |
| ID | FETCH-LOGICAL-c439t-19b8099fe2d42cdb2f44f360fcfc4c453ef687119d6a4bb1ac06345fc6725a593 |
| IEDL.DBID | DOA |
| ISSN | 2624-960X |
| IngestDate | Tue Oct 14 19:08:52 EDT 2025 Tue Aug 19 15:33:28 EDT 2025 Fri Jul 25 09:36:17 EDT 2025 Thu Oct 16 04:32:38 EDT 2025 Thu Apr 24 22:54:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-19b8099fe2d42cdb2f44f360fcfc4c453ef687119d6a4bb1ac06345fc6725a593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3092-4346 |
| OpenAccessLink | https://doaj.org/article/b6bfc3117f0c461a8fc9d318a087d02e |
| PQID | 2756778721 |
| PQPubID | 5046865 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b6bfc3117f0c461a8fc9d318a087d02e unpaywall_primary_10_3390_quantum4040027 proquest_journals_2756778721 crossref_citationtrail_10_3390_quantum4040027 crossref_primary_10_3390_quantum4040027 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Quantum reports |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Xiang (ref_18) 2021; 3 Hochreiter (ref_52) 1997; 9 Ying (ref_24) 2021; 18 Preskill (ref_2) 2018; 2 Gers (ref_53) 2000; 12 ref_14 ref_58 ref_57 Baum (ref_42) 2021; 2 ref_54 Borah (ref_35) 2021; 127 Peruzzo (ref_60) 2014; 5 ref_51 Kimura (ref_50) 2020; 9 ref_59 Watkins (ref_12) 1992; 8 Cerezo (ref_26) 2021; 3 Kimura (ref_19) 2021; 2021 Zhang (ref_41) 2019; 5 Pirhooshyaran (ref_44) 2021; 3 Harris (ref_55) 2020; 585 Aoki (ref_15) 1965; 280 ref_21 Barenco (ref_28) 1995; 52 Ying (ref_23) 2018; 263 Chen (ref_33) 2019; 9 Kaelbling (ref_9) 1996; 4 ref_27 Mackeprang (ref_40) 2020; 2 Papadimitriou (ref_17) 1987; 12 Mnih (ref_11) 2015; 518 He (ref_38) 2021; 8 Geramifard (ref_10) 2013; 6 ref_31 Silver (ref_13) 2017; 550 McClean (ref_61) 2016; 18 Arute (ref_32) 2019; 574 Kaelbling (ref_20) 1998; 101 Hunter (ref_56) 2007; 9 Deutsch (ref_29) 1985; 400 Dunjko (ref_1) 2018; 81 Kandala (ref_62) 2017; 549 Barry (ref_22) 2014; 90 Johansson (ref_5) 2013; 184 ref_47 ref_46 Bukov (ref_39) 2018; 8 ref_43 Ostaszewski (ref_45) 2021; 34 ref_3 Sivak (ref_36) 2022; 12 Abhijith (ref_25) 2022; 3 ref_49 ref_48 Kimura (ref_34) 2022; 6 ref_8 Niu (ref_37) 2019; 5 ref_4 (ref_16) 1965; 10 ref_7 ref_6 Feynman (ref_30) 1982; 21 |
| References_xml | – ident: ref_49 – ident: ref_51 – volume: 12 start-page: 011059 year: 2022 ident: ref_36 article-title: Model-Free Quantum Control with Reinforcement Learning publication-title: Phys. Rev. X – volume: 400 start-page: 97 year: 1985 ident: ref_29 article-title: Quantum theory, the Church–Turing principle and the universal quantum computer publication-title: Proc. R. Soc. Lond. Math. Phys. Sci. – volume: 9 start-page: 90 year: 2007 ident: ref_56 article-title: Matplotlib: A 2D Graphics Environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 34 start-page: 18182 year: 2021 ident: ref_45 article-title: Reinforcement learning for optimization of variational quantum circuit architectures publication-title: Adv. Neural Inf. Process. Syst. – volume: 263 start-page: 31 year: 2018 ident: ref_23 article-title: Reachability analysis of quantum Markov decision processes publication-title: Inf. Comput. doi: 10.1016/j.ic.2018.09.001 – ident: ref_48 doi: 10.1609/aaai.v31i1.10827 – volume: 3 start-page: 25 year: 2021 ident: ref_44 article-title: Quantum circuit design search publication-title: Quantum Mach. Intell. doi: 10.1007/s42484-021-00051-z – volume: 4 start-page: 237 year: 1996 ident: ref_9 article-title: Reinforcement Learning: A Survey publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.301 – volume: 5 start-page: 1 year: 2019 ident: ref_41 article-title: When does reinforcement learning stand out in quantum control? A comparative study on state preparation publication-title: NPJ Quantum Inf. doi: 10.1038/s41534-019-0201-8 – volume: 6 start-page: 075006 year: 2022 ident: ref_34 article-title: Quantum circuit architectures via quantum observable Markov decision process planning publication-title: J. Phys. Commun. doi: 10.1088/2399-6528/ac7d39 – volume: 8 start-page: 031086 year: 2018 ident: ref_39 article-title: Reinforcement Learning in Different Phases of Quantum Control publication-title: Phys. Rev. X – volume: 2021 start-page: 3511029 year: 2021 ident: ref_19 article-title: Variational Quantum Circuit-Based Reinforcement Learning for POMDP and Experimental Implementation publication-title: Math. Probl. Eng. doi: 10.1155/2021/3511029 – volume: 184 start-page: 1234 year: 2013 ident: ref_5 article-title: QuTiP 2: A Python framework for the dynamics of open quantum systems publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.11.019 – volume: 2 start-page: 5 year: 2020 ident: ref_40 article-title: A reinforcement learning approach for quantum state engineering publication-title: Quantum Mach. Intell. doi: 10.1007/s42484-020-00016-8 – volume: 81 start-page: 074001 year: 2018 ident: ref_1 article-title: Machine learning & artificial intelligence in the quantum domain: A review of recent progress publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aab406 – volume: 5 start-page: 4213 year: 2014 ident: ref_60 article-title: A variational eigenvalue solver on a photonic quantum processor publication-title: Nat. Commun. doi: 10.1038/ncomms5213 – volume: 574 start-page: 505 year: 2019 ident: ref_32 article-title: Quantum supremacy using a programmable superconducting processor publication-title: Nature doi: 10.1038/s41586-019-1666-5 – ident: ref_27 – volume: 9 start-page: 69 year: 2020 ident: ref_50 article-title: Development of AlphaZero-based Reinforcment Learning Algorithm for Solving Partially Observable Markov Decision Process (POMDP) Problem publication-title: Bull. Netw. Comput. Syst. Softw. – volume: 18 start-page: 023023 year: 2016 ident: ref_61 article-title: The theory of variational hybrid quantum-classical algorithms publication-title: New J. Phys. doi: 10.1088/1367-2630/18/2/023023 – ident: ref_3 doi: 10.1017/CBO9780511813948 – volume: 550 start-page: 354 year: 2017 ident: ref_13 article-title: Mastering the game of Go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – volume: 5 start-page: 33 year: 2019 ident: ref_37 article-title: Universal quantum control through deep reinforcement learning publication-title: NPJ Quantum Inf. doi: 10.1038/s41534-019-0141-3 – volume: 12 start-page: 441 year: 1987 ident: ref_17 article-title: The Complexity of Markov Decision Processes publication-title: Math. Oper. Res. doi: 10.1287/moor.12.3.441 – ident: ref_59 – ident: ref_31 doi: 10.1017/CBO9780511813870 – volume: 6 start-page: 375 year: 2013 ident: ref_10 article-title: A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000042 – volume: 2 start-page: 79 year: 2018 ident: ref_2 article-title: Quantum Computing in the NISQ era and beyond publication-title: Quantum doi: 10.22331/q-2018-08-06-79 – volume: 8 start-page: 279 year: 1992 ident: ref_12 article-title: Q-learning publication-title: Mach. Learn. doi: 10.1007/BF00992698 – ident: ref_7 – ident: ref_4 doi: 10.1007/978-3-319-55201-9 – volume: 518 start-page: 529 year: 2015 ident: ref_11 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 18 start-page: 410 year: 2021 ident: ref_24 article-title: Optimal Policies for Quantum Markov Decision Processes publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-021-1278-z – volume: 280 start-page: 367 year: 1965 ident: ref_15 article-title: Optimal control of partially observable Markovian systems publication-title: J. Frankl. Inst. doi: 10.1016/0016-0032(65)90528-4 – volume: 127 start-page: 190403 year: 2021 ident: ref_35 article-title: Measurement-Based Feedback Quantum Control with Deep Reinforcement Learning for a Double-Well Nonlinear Potential publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.190403 – volume: 8 start-page: 29 year: 2021 ident: ref_38 article-title: Deep reinforcement learning for universal quantum state preparation via dynamic pulse control publication-title: EPJ Quantum Technol. doi: 10.1140/epjqt/s40507-021-00119-6 – ident: ref_58 doi: 10.1007/978-94-017-0849-4 – ident: ref_47 – volume: 21 start-page: 467 year: 1982 ident: ref_30 article-title: Simulating physics with computers publication-title: Int. J. Theor. Phys. doi: 10.1007/BF02650179 – volume: 52 start-page: 3457 year: 1995 ident: ref_28 article-title: Elementary gates for quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.3457 – volume: 9 start-page: 1735 year: 1997 ident: ref_52 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_14 – volume: 2 start-page: 040324 year: 2021 ident: ref_42 article-title: Experimental Deep Reinforcement Learning for Error-Robust Gate-Set Design on a Superconducting Quantum Computer publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.040324 – ident: ref_21 – volume: 9 start-page: 16251 year: 2019 ident: ref_33 article-title: Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines publication-title: Sci. Rep. doi: 10.1038/s41598-019-52275-6 – ident: ref_6 – volume: 10 start-page: 174 year: 1965 ident: ref_16 article-title: Optimal control of Markov processes with incomplete state information publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(65)90154-X – volume: 12 start-page: 2451 year: 2000 ident: ref_53 article-title: Learning to Forget: Continual Prediction with LSTM publication-title: Neural Comput. doi: 10.1162/089976600300015015 – volume: 101 start-page: 99 year: 1998 ident: ref_20 article-title: Planning and acting in partially observable stochastic domains publication-title: Artif. Intell. doi: 10.1016/S0004-3702(98)00023-X – ident: ref_54 – volume: 3 start-page: 18:1 year: 2022 ident: ref_25 article-title: Quantum Algorithm Implementations for Beginners publication-title: ACM Trans. Quantum Comput. – ident: ref_46 – volume: 549 start-page: 242 year: 2017 ident: ref_62 article-title: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets publication-title: Nature doi: 10.1038/nature23879 – volume: 3 start-page: 625 year: 2021 ident: ref_26 article-title: Variational quantum algorithms publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00348-9 – volume: 585 start-page: 357 year: 2020 ident: ref_55 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – ident: ref_8 doi: 10.1007/978-3-031-01551-9 – ident: ref_43 – ident: ref_57 – volume: 3 start-page: 554 year: 2021 ident: ref_18 article-title: Recent Advances in Deep Reinforcement Learning Applications for Solving Partially Observable Markov Decision Processes (POMDP) Problems: Part 1—Fundamentals and Applications in Games, Robotics and Natural Language Processing publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make3030029 – volume: 90 start-page: 032311 year: 2014 ident: ref_22 article-title: Quantum partially observable Markov decision processes publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.032311 |
| SSID | ssj0002802968 |
| Score | 2.3148656 |
| Snippet | Artificial intelligence (AI) technology leads to new insights into the manipulation of quantum systems in the Noisy Intermediate-Scale Quantum (NISQ) era.... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 380 |
| SubjectTerms | Algorithms Approximation Artificial intelligence Circuit design Circuits Discount rates Hilbert space Learning curves LSTM Machine learning Markov analysis Markov processes Neural networks Q-learning quantum circuits Quantum theory Qubits (quantum computing) reinforcement learning Teaching methods Time series |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fSxwxEA72fLAvUmml19qSh0L7EtzNJrvJQylqPaTQQ0XBtyWZJCJc767nHdL_vjP74zwfbB83JCGbmSQzk8n3MfbJZ8Gi1W8FaBuFsi4XBkIU4JN0OulUNCn_P8fl2bX6caNvtti4fwtDaZX9nths1GEGFCM_JJjyCrVL5t_mvwWxRtHtak-h4TpqhfC1gRh7wbYlIWMN2Pbx6fj8ch11kSaTtjQtemOB_j76i_gHq1-KlJmoZTZOpwbE_4nlubOazt2fBzeZbBxCo1dst7Me-VEr7j22FaevGRCf2USMFjHy7zHO-SXF0Al1iV-IcZvmjWUNRCo00UDeoareciziF-3Y-MndAlZ3S360cbdwjz1Siscbdj06vTo5Ex13ggA0MZYit96g8ZeiDEpC8DIplYoyS5BAgdJFTCX6SrkNpVPe5w7QVlE6QVlJ7bQt9tlgOpvGt4z7zEOlMsAWSQWnDX6bAh0TpY1Xqhgy0c9ZDR2wOPFbTGp0MGiO66dzPGSf1_XnLaTGszWPSQTrWgSF3RTMFrd1t7JqX_oEOJwqZaDK3JkENuBO5TJThUzGITvoBVh36_O-ftSmIfuyFup_hvPu3z29Zy8lvY1ocl0O2GC5WMUPaLEs_cdODf8C8v_uvA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA71-qAvVVHxbJU8CPqSuptNshsQ5KweRfCw4sH5IEsyScrR83pcd1vav97J_jiugiiyTxsmy4SZJN9kJ98Q8tImTiPq1wyk9kxok7ICnGdgAzcyyJA1Kf-fJ-p4Kj7N5GyHvO3vwsS0SgzF580izRUXDCH27I3AB4P0lQvvLrtzpBT3ygLxgM7ukF0lUWxAdqeTL6PvsZ5c37PlacwwssfIEHWtf4rotrGIzNY-1ND138KYd-vlylxfmcVia7sZ3yc_ekXbLJOzw7qyh3DzG4fj_47kAdnrcCgdtY7zkOz45SMCsTLago3X3tMP3q_o13gaH_mb6AmbtAnj2NaQrUJzrkg7ftZTik30pB07PZqvoZ5XdLT1l-ICvxiTRR6T6fjjt6Nj1lVhYIBgpWKptgXCyOC5Exyc5UGIkKkkQAABQmY-KIy6Uu2UEdamBhD1CBlA5VwaqbMnZLA8X_qnhNrEQi4SwB5BOCMLfC8yDHGELKwQ2ZCw3iYldBTlsVLGosRQJdqwvG3DIXm1kV-15Bx_lHwfTbyRiqTaTcP5-rTs5mhplQ2A6uQhAaFSUwTQDtc8kxS5S7gfkoPeQcpupl-UkT4_x1WPp0PyeuM0f1Hn2b-L7pN7PN64aDJoDsigWtf-OeKgyr7o3P0XIcoG-A priority: 102 providerName: Unpaywall |
| Title | Model-Free Deep Recurrent Q-Network Reinforcement Learning for Quantum Circuit Architectures Design |
| URI | https://www.proquest.com/docview/2756778721 https://www.mdpi.com/2624-960X/4/4/27/pdf?version=1663823293 https://doaj.org/article/b6bfc3117f0c461a8fc9d318a087d02e |
| UnpaywallVersion | publishedVersion |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-960X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002802968 issn: 2624-960X databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-960X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002802968 issn: 2624-960X databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2624-960X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002802968 issn: 2624-960X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-wwEA9-HPTyUFRcny45CHoJpmnSJsf1YxXBRcUFPZVkmoiPfeuy7vJ4_72Tti71IF48JkzLMJkmv5lMf0PIoeOlQdRvGCjjmTQ2YRpKz8AFYVVQIa1K_m8G2dVQXj-qx1arr1gTVtMD14Y7cZkLkCZJHjjILLE6gCnRES3XecmFj7sv16YVTP2pUkZcmEzXLI0pxvUYF6Km878yOm1sIdM6hSqy_k8Ic20-ntj__-xo1Dps-hvkV4MSaa_WbpMs-fEWgdi3bMT6U-_pufcTeh9z5ZFdid6xQV3OjXMVFSpUWT_asKc-U5yid7Vu9OxlCvOXGe217hDe8I2xlGObDPsXD2dXrOmRwAChxIwlxmkEecGLUgoonQhShjTjAQJIkCr1IcOYKDFlZqVziQXEJFIFyHKhrDLpDlkZv479LqGOO8glB3wiyNIqjWONltdSaSdl2iHsw2YFNATisY_FqMBAItq4-GzjDjlayE9q6owvJU_jEiykIuV1NYGOUDSOUHznCB2y_7GARfMdvhWR3D7HPUkkHXK8WNRv1Nn7CXV-k3UR_5SoKl_2ycpsOvcHiF9mrkuWdf-yS1ZPLwa3993KcXE0HNz2nt4BzhT1PQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYQHOilKmqrpgXqA1V7ser12rvrA0K8olAgKggkblt7bCOkNEnzEOLP9bd1vI8QDm1PHNfyWtbMeF4ef0PIjuVOo9evGSjtmdQmYQU4z8AGYVRQIa1K_s_7We9afrtRNyvkd_sWJpZVtjqxUtRuBDFH_jXClOcoXSLZG_9isWtUvF1tW2iYprWC260gxpqHHaf-4R5DuOnuyRHy-5MQ3eOrwx5rugwwQGM8Y4m2BbpJwQsnBTgrgpQhzXiAABKkSn3IMKpItMuMtDYxgFZdqgBZLpRREYwJTcCaTKXG4G_t4Lj__XKR5REFFzorarTINNUc41Ok2PynjIcntrJZsoZV04Annu76fDg2D_dmMFgyet1X5GXjrdL9Wrw2yIofviYQ-6cNWHfiPT3yfkwvY84-ojzRC9avy8pxrIJkhSr7SBsU11uKQ_Si3hs9vJvA_G5G95fuMqa4YiwpeUOun4WKb8nqcDT07wi13EIuOeAfQTqjCvwuUgyEpCqslGmHsJZmJTRA5rGfxqDEgCbSuHxK4w75vJg_riE8_jrzILJgMStCb1cDo8lt2Zzk0mY2AG4nDxxklpgigHaoGQ0vcseF75DNloFlow-m5aP0dsiXBVP_s533_17pI1nvXZ2flWcn_dMP5IWI7zKqOptNsjqbzP0Wekszu92IJCU_nvsU_AG5riv9 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXBALEQgEfQHCx6jh24hwQKl1CS2FFEZV6C_bEriotu8s-VPWv8euYyWPZHoBTj7Ecy5oZz8vjbxh74WVdoNdfCDBFELpwibBQBwE-KmeiiWlT8v95lB2c6I-n5nSL_erfwlBZZa8TG0VdT4Fy5LsEU56jdKlkN3ZlEV-G5dvZT0EdpOimtW-n0YrIUbi8wPBt8eZwiLx-qVT5_tv-geg6DAhAQ7wUSeEtukgxqForqL2KWsc0kxEiaNAmDTHDiCIp6sxp7xMHaNG1iZDlyjhDQEyo_m_khOJOr9TLD-v8jrJSFZltcSLTtJAYmSKtVj80HRtqYrNhB5t2AVd83FurycxdXrjxeMPclXfZnc5P5XutYN1jW2FynwF1ThuLch4CH4Yw418pW0_4TvxYjNqCchxrwFihyTvyDr_1jOMQP273xvfP57A6X_K9jVuMBa5IxSQP2Mm10PAh255MJ-ER4156yLUE_CPq2hmL3zbFEEgb67VOB0z0NKuggzCnThrjCkMZonF1lcYD9mo9f9aCd_x15jtiwXoWgW43A9P5WdWd4cpnPgJuJ48SdJY4G6GoUSc6afNaqjBgOz0Dq04TLKo_cjtgr9dM_c92Hv97pefsJsp-9elwdPSE3Vb0IKMpsNlh28v5KjxFN2npnzXyyNn36z4AvwGV_ymX |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA71-qAvVVHxbJU8CPqSuptNshsQ5KweRfCw4sH5IEsyScrR83pcd1vav97J_jiugiiyTxsmy4SZJN9kJ98Q8tImTiPq1wyk9kxok7ICnGdgAzcyyJA1Kf-fJ-p4Kj7N5GyHvO3vwsS0SgzF580izRUXDCH27I3AB4P0lQvvLrtzpBT3ygLxgM7ukF0lUWxAdqeTL6PvsZ5c37PlacwwssfIEHWtf4rotrGIzNY-1ND138KYd-vlylxfmcVia7sZ3yc_ekXbLJOzw7qyh3DzG4fj_47kAdnrcCgdtY7zkOz45SMCsTLago3X3tMP3q_o13gaH_mb6AmbtAnj2NaQrUJzrkg7ftZTik30pB07PZqvoZ5XdLT1l-ICvxiTRR6T6fjjt6Nj1lVhYIBgpWKptgXCyOC5Exyc5UGIkKkkQAABQmY-KIy6Uu2UEdamBhD1CBlA5VwaqbMnZLA8X_qnhNrEQi4SwB5BOCMLfC8yDHGELKwQ2ZCw3iYldBTlsVLGosRQJdqwvG3DIXm1kV-15Bx_lHwfTbyRiqTaTcP5-rTs5mhplQ2A6uQhAaFSUwTQDtc8kxS5S7gfkoPeQcpupl-UkT4_x1WPp0PyeuM0f1Hn2b-L7pN7PN64aDJoDsigWtf-OeKgyr7o3P0XIcoG-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Free+Deep+Recurrent+Q-Network+Reinforcement+Learning+for+Quantum+Circuit+Architectures+Design&rft.jtitle=Quantum+reports&rft.au=Tomah+Sogabe&rft.au=Tomoaki+Kimura&rft.au=Chih-Chieh+Chen&rft.au=Kodai+Shiba&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2624-960X&rft.volume=4&rft.issue=4&rft.spage=380&rft.epage=389&rft_id=info:doi/10.3390%2Fquantum4040027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b6bfc3117f0c461a8fc9d318a087d02e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-960X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-960X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-960X&client=summon |