Model-Free Deep Recurrent Q-Network Reinforcement Learning for Quantum Circuit Architectures Design

Artificial intelligence (AI) technology leads to new insights into the manipulation of quantum systems in the Noisy Intermediate-Scale Quantum (NISQ) era. Classical agent-based artificial intelligence algorithms provide a framework for the design or control of quantum systems. Traditional reinforcem...

Full description

Saved in:
Bibliographic Details
Published inQuantum reports Vol. 4; no. 4; pp. 380 - 389
Main Authors Sogabe, Tomah, Kimura, Tomoaki, Chen, Chih-Chieh, Shiba, Kodai, Kasahara, Nobuhiro, Sogabe, Masaru, Sakamoto, Katsuyoshi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
Subjects
Online AccessGet full text
ISSN2624-960X
2624-960X
DOI10.3390/quantum4040027

Cover

Abstract Artificial intelligence (AI) technology leads to new insights into the manipulation of quantum systems in the Noisy Intermediate-Scale Quantum (NISQ) era. Classical agent-based artificial intelligence algorithms provide a framework for the design or control of quantum systems. Traditional reinforcement learning methods are designed for the Markov Decision Process (MDP) and, hence, have difficulty in dealing with partially observable or quantum observable decision processes. Due to the difficulty of building or inferring a model of a specified quantum system, a model-free-based control approach is more practical and feasible than its counterpart of a model-based approach. In this work, we apply a model-free deep recurrent Q-network (DRQN) reinforcement learning method for qubit-based quantum circuit architecture design problems. This paper is the first attempt to solve the quantum circuit design problem from the recurrent reinforcement learning algorithm, while using discrete policy. Simulation results suggest that our long short-term memory (LSTM)-based DRQN method is able to learn quantum circuits for entangled Bell–Greenberger–Horne–Zeilinger (Bell–GHZ) states. However, since we also observe unstable learning curves in experiments, suggesting that the DRQN could be a promising method for AI-based quantum circuit design application, more investigation on the stability issue would be required.
AbstractList Artificial intelligence (AI) technology leads to new insights into the manipulation of quantum systems in the Noisy Intermediate-Scale Quantum (NISQ) era. Classical agent-based artificial intelligence algorithms provide a framework for the design or control of quantum systems. Traditional reinforcement learning methods are designed for the Markov Decision Process (MDP) and, hence, have difficulty in dealing with partially observable or quantum observable decision processes. Due to the difficulty of building or inferring a model of a specified quantum system, a model-free-based control approach is more practical and feasible than its counterpart of a model-based approach. In this work, we apply a model-free deep recurrent Q-network (DRQN) reinforcement learning method for qubit-based quantum circuit architecture design problems. This paper is the first attempt to solve the quantum circuit design problem from the recurrent reinforcement learning algorithm, while using discrete policy. Simulation results suggest that our long short-term memory (LSTM)-based DRQN method is able to learn quantum circuits for entangled Bell–Greenberger–Horne–Zeilinger (Bell–GHZ) states. However, since we also observe unstable learning curves in experiments, suggesting that the DRQN could be a promising method for AI-based quantum circuit design application, more investigation on the stability issue would be required.
Author Chen, Chih-Chieh
Sogabe, Masaru
Kasahara, Nobuhiro
Sakamoto, Katsuyoshi
Shiba, Kodai
Kimura, Tomoaki
Sogabe, Tomah
Author_xml – sequence: 1
  givenname: Tomah
  surname: Sogabe
  fullname: Sogabe, Tomah
– sequence: 2
  givenname: Tomoaki
  surname: Kimura
  fullname: Kimura, Tomoaki
– sequence: 3
  givenname: Chih-Chieh
  orcidid: 0000-0003-3092-4346
  surname: Chen
  fullname: Chen, Chih-Chieh
– sequence: 4
  givenname: Kodai
  surname: Shiba
  fullname: Shiba, Kodai
– sequence: 5
  givenname: Nobuhiro
  surname: Kasahara
  fullname: Kasahara, Nobuhiro
– sequence: 6
  givenname: Masaru
  surname: Sogabe
  fullname: Sogabe, Masaru
– sequence: 7
  givenname: Katsuyoshi
  surname: Sakamoto
  fullname: Sakamoto, Katsuyoshi
BookMark eNqFkM1r3DAQxUVJoGmaa8-Gnp3oy5J1DNsmDWxTEhLoTcjj0VZbr7SRZUL--zp1KWmh9DTD473ffLwhBzFFJOQdo6dCGHr2MLlYpp2kklKuX5EjrrisjaJfD170r8nJOG7pbGkpN6o9IvA59TjUFxmx-oC4r24RppwxluqmvsbymPL3WQvRpwy4e9bX6HIMcVPNUnWzzK1WIcMUSnWe4VsoCGXKOM7EMWziW3Lo3TDiya96TO4vPt6tPtXrL5dXq_N1DVKYUjPTtdQYj7yXHPqOeym9UNSDBwmyEehVqxkzvXKy65gDqoRsPCjNG9cYcUyuFm6f3Nbuc9i5_GSTC_ankPLGulwCDGg71XkQjGlPQSrmWg-mF6x1tNU95TizzhbWFPfu6dENw28go_b55fbPl8-J90tin9PDhGOx2zTlOB9suW6U1q3mbHbJxQU5jWNGbyEUV0KKJbsw_Bt--lfsP9v8ABVbpmE
CitedBy_id crossref_primary_10_35848_1347_4065_acd34f
Cites_doi 10.1109/MCSE.2007.55
10.1016/j.ic.2018.09.001
10.1609/aaai.v31i1.10827
10.1007/s42484-021-00051-z
10.1613/jair.301
10.1038/s41534-019-0201-8
10.1088/2399-6528/ac7d39
10.1155/2021/3511029
10.1016/j.cpc.2012.11.019
10.1007/s42484-020-00016-8
10.1088/1361-6633/aab406
10.1038/ncomms5213
10.1038/s41586-019-1666-5
10.1088/1367-2630/18/2/023023
10.1017/CBO9780511813948
10.1038/nature24270
10.1038/s41534-019-0141-3
10.1287/moor.12.3.441
10.1017/CBO9780511813870
10.1561/2200000042
10.22331/q-2018-08-06-79
10.1007/BF00992698
10.1007/978-3-319-55201-9
10.1038/nature14236
10.1007/s11633-021-1278-z
10.1016/0016-0032(65)90528-4
10.1103/PhysRevLett.127.190403
10.1140/epjqt/s40507-021-00119-6
10.1007/978-94-017-0849-4
10.1007/BF02650179
10.1103/PhysRevA.52.3457
10.1162/neco.1997.9.8.1735
10.1103/PRXQuantum.2.040324
10.1038/s41598-019-52275-6
10.1016/0022-247X(65)90154-X
10.1162/089976600300015015
10.1016/S0004-3702(98)00023-X
10.1038/nature23879
10.1038/s42254-021-00348-9
10.1038/s41586-020-2649-2
10.1007/978-3-031-01551-9
10.3390/make3030029
10.1103/PhysRevA.90.032311
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/quantum4040027
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2624-960X
EndPage 389
ExternalDocumentID oai_doaj_org_article_b6bfc3117f0c461a8fc9d318a087d02e
10.3390/quantum4040027
10_3390_quantum4040027
GroupedDBID AADQD
AAFWJ
AAYXX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IGS
ITC
UNPAY
ID FETCH-LOGICAL-c439t-19b8099fe2d42cdb2f44f360fcfc4c453ef687119d6a4bb1ac06345fc6725a593
IEDL.DBID DOA
ISSN 2624-960X
IngestDate Tue Oct 14 19:08:52 EDT 2025
Tue Aug 19 15:33:28 EDT 2025
Fri Jul 25 09:36:17 EDT 2025
Thu Oct 16 04:32:38 EDT 2025
Thu Apr 24 22:54:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-19b8099fe2d42cdb2f44f360fcfc4c453ef687119d6a4bb1ac06345fc6725a593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3092-4346
OpenAccessLink https://doaj.org/article/b6bfc3117f0c461a8fc9d318a087d02e
PQID 2756778721
PQPubID 5046865
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_b6bfc3117f0c461a8fc9d318a087d02e
unpaywall_primary_10_3390_quantum4040027
proquest_journals_2756778721
crossref_citationtrail_10_3390_quantum4040027
crossref_primary_10_3390_quantum4040027
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Quantum reports
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xiang (ref_18) 2021; 3
Hochreiter (ref_52) 1997; 9
Ying (ref_24) 2021; 18
Preskill (ref_2) 2018; 2
Gers (ref_53) 2000; 12
ref_14
ref_58
ref_57
Baum (ref_42) 2021; 2
ref_54
Borah (ref_35) 2021; 127
Peruzzo (ref_60) 2014; 5
ref_51
Kimura (ref_50) 2020; 9
ref_59
Watkins (ref_12) 1992; 8
Cerezo (ref_26) 2021; 3
Kimura (ref_19) 2021; 2021
Zhang (ref_41) 2019; 5
Pirhooshyaran (ref_44) 2021; 3
Harris (ref_55) 2020; 585
Aoki (ref_15) 1965; 280
ref_21
Barenco (ref_28) 1995; 52
Ying (ref_23) 2018; 263
Chen (ref_33) 2019; 9
Kaelbling (ref_9) 1996; 4
ref_27
Mackeprang (ref_40) 2020; 2
Papadimitriou (ref_17) 1987; 12
Mnih (ref_11) 2015; 518
He (ref_38) 2021; 8
Geramifard (ref_10) 2013; 6
ref_31
Silver (ref_13) 2017; 550
McClean (ref_61) 2016; 18
Arute (ref_32) 2019; 574
Kaelbling (ref_20) 1998; 101
Hunter (ref_56) 2007; 9
Deutsch (ref_29) 1985; 400
Dunjko (ref_1) 2018; 81
Kandala (ref_62) 2017; 549
Barry (ref_22) 2014; 90
Johansson (ref_5) 2013; 184
ref_47
ref_46
Bukov (ref_39) 2018; 8
ref_43
Ostaszewski (ref_45) 2021; 34
ref_3
Sivak (ref_36) 2022; 12
Abhijith (ref_25) 2022; 3
ref_49
ref_48
Kimura (ref_34) 2022; 6
ref_8
Niu (ref_37) 2019; 5
ref_4
(ref_16) 1965; 10
ref_7
ref_6
Feynman (ref_30) 1982; 21
References_xml – ident: ref_49
– ident: ref_51
– volume: 12
  start-page: 011059
  year: 2022
  ident: ref_36
  article-title: Model-Free Quantum Control with Reinforcement Learning
  publication-title: Phys. Rev. X
– volume: 400
  start-page: 97
  year: 1985
  ident: ref_29
  article-title: Quantum theory, the Church–Turing principle and the universal quantum computer
  publication-title: Proc. R. Soc. Lond. Math. Phys. Sci.
– volume: 9
  start-page: 90
  year: 2007
  ident: ref_56
  article-title: Matplotlib: A 2D Graphics Environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 34
  start-page: 18182
  year: 2021
  ident: ref_45
  article-title: Reinforcement learning for optimization of variational quantum circuit architectures
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 263
  start-page: 31
  year: 2018
  ident: ref_23
  article-title: Reachability analysis of quantum Markov decision processes
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2018.09.001
– ident: ref_48
  doi: 10.1609/aaai.v31i1.10827
– volume: 3
  start-page: 25
  year: 2021
  ident: ref_44
  article-title: Quantum circuit design search
  publication-title: Quantum Mach. Intell.
  doi: 10.1007/s42484-021-00051-z
– volume: 4
  start-page: 237
  year: 1996
  ident: ref_9
  article-title: Reinforcement Learning: A Survey
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.301
– volume: 5
  start-page: 1
  year: 2019
  ident: ref_41
  article-title: When does reinforcement learning stand out in quantum control? A comparative study on state preparation
  publication-title: NPJ Quantum Inf.
  doi: 10.1038/s41534-019-0201-8
– volume: 6
  start-page: 075006
  year: 2022
  ident: ref_34
  article-title: Quantum circuit architectures via quantum observable Markov decision process planning
  publication-title: J. Phys. Commun.
  doi: 10.1088/2399-6528/ac7d39
– volume: 8
  start-page: 031086
  year: 2018
  ident: ref_39
  article-title: Reinforcement Learning in Different Phases of Quantum Control
  publication-title: Phys. Rev. X
– volume: 2021
  start-page: 3511029
  year: 2021
  ident: ref_19
  article-title: Variational Quantum Circuit-Based Reinforcement Learning for POMDP and Experimental Implementation
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/3511029
– volume: 184
  start-page: 1234
  year: 2013
  ident: ref_5
  article-title: QuTiP 2: A Python framework for the dynamics of open quantum systems
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.11.019
– volume: 2
  start-page: 5
  year: 2020
  ident: ref_40
  article-title: A reinforcement learning approach for quantum state engineering
  publication-title: Quantum Mach. Intell.
  doi: 10.1007/s42484-020-00016-8
– volume: 81
  start-page: 074001
  year: 2018
  ident: ref_1
  article-title: Machine learning & artificial intelligence in the quantum domain: A review of recent progress
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/aab406
– volume: 5
  start-page: 4213
  year: 2014
  ident: ref_60
  article-title: A variational eigenvalue solver on a photonic quantum processor
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5213
– volume: 574
  start-page: 505
  year: 2019
  ident: ref_32
  article-title: Quantum supremacy using a programmable superconducting processor
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– ident: ref_27
– volume: 9
  start-page: 69
  year: 2020
  ident: ref_50
  article-title: Development of AlphaZero-based Reinforcment Learning Algorithm for Solving Partially Observable Markov Decision Process (POMDP) Problem
  publication-title: Bull. Netw. Comput. Syst. Softw.
– volume: 18
  start-page: 023023
  year: 2016
  ident: ref_61
  article-title: The theory of variational hybrid quantum-classical algorithms
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/2/023023
– ident: ref_3
  doi: 10.1017/CBO9780511813948
– volume: 550
  start-page: 354
  year: 2017
  ident: ref_13
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– volume: 5
  start-page: 33
  year: 2019
  ident: ref_37
  article-title: Universal quantum control through deep reinforcement learning
  publication-title: NPJ Quantum Inf.
  doi: 10.1038/s41534-019-0141-3
– volume: 12
  start-page: 441
  year: 1987
  ident: ref_17
  article-title: The Complexity of Markov Decision Processes
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.12.3.441
– ident: ref_59
– ident: ref_31
  doi: 10.1017/CBO9780511813870
– volume: 6
  start-page: 375
  year: 2013
  ident: ref_10
  article-title: A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000042
– volume: 2
  start-page: 79
  year: 2018
  ident: ref_2
  article-title: Quantum Computing in the NISQ era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 8
  start-page: 279
  year: 1992
  ident: ref_12
  article-title: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
– ident: ref_7
– ident: ref_4
  doi: 10.1007/978-3-319-55201-9
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_11
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 18
  start-page: 410
  year: 2021
  ident: ref_24
  article-title: Optimal Policies for Quantum Markov Decision Processes
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-021-1278-z
– volume: 280
  start-page: 367
  year: 1965
  ident: ref_15
  article-title: Optimal control of partially observable Markovian systems
  publication-title: J. Frankl. Inst.
  doi: 10.1016/0016-0032(65)90528-4
– volume: 127
  start-page: 190403
  year: 2021
  ident: ref_35
  article-title: Measurement-Based Feedback Quantum Control with Deep Reinforcement Learning for a Double-Well Nonlinear Potential
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.190403
– volume: 8
  start-page: 29
  year: 2021
  ident: ref_38
  article-title: Deep reinforcement learning for universal quantum state preparation via dynamic pulse control
  publication-title: EPJ Quantum Technol.
  doi: 10.1140/epjqt/s40507-021-00119-6
– ident: ref_58
  doi: 10.1007/978-94-017-0849-4
– ident: ref_47
– volume: 21
  start-page: 467
  year: 1982
  ident: ref_30
  article-title: Simulating physics with computers
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF02650179
– volume: 52
  start-page: 3457
  year: 1995
  ident: ref_28
  article-title: Elementary gates for quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.3457
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_52
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_14
– volume: 2
  start-page: 040324
  year: 2021
  ident: ref_42
  article-title: Experimental Deep Reinforcement Learning for Error-Robust Gate-Set Design on a Superconducting Quantum Computer
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.040324
– ident: ref_21
– volume: 9
  start-page: 16251
  year: 2019
  ident: ref_33
  article-title: Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-52275-6
– ident: ref_6
– volume: 10
  start-page: 174
  year: 1965
  ident: ref_16
  article-title: Optimal control of Markov processes with incomplete state information
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(65)90154-X
– volume: 12
  start-page: 2451
  year: 2000
  ident: ref_53
  article-title: Learning to Forget: Continual Prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– volume: 101
  start-page: 99
  year: 1998
  ident: ref_20
  article-title: Planning and acting in partially observable stochastic domains
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(98)00023-X
– ident: ref_54
– volume: 3
  start-page: 18:1
  year: 2022
  ident: ref_25
  article-title: Quantum Algorithm Implementations for Beginners
  publication-title: ACM Trans. Quantum Comput.
– ident: ref_46
– volume: 549
  start-page: 242
  year: 2017
  ident: ref_62
  article-title: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
  publication-title: Nature
  doi: 10.1038/nature23879
– volume: 3
  start-page: 625
  year: 2021
  ident: ref_26
  article-title: Variational quantum algorithms
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00348-9
– volume: 585
  start-page: 357
  year: 2020
  ident: ref_55
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: ref_8
  doi: 10.1007/978-3-031-01551-9
– ident: ref_43
– ident: ref_57
– volume: 3
  start-page: 554
  year: 2021
  ident: ref_18
  article-title: Recent Advances in Deep Reinforcement Learning Applications for Solving Partially Observable Markov Decision Processes (POMDP) Problems: Part 1—Fundamentals and Applications in Games, Robotics and Natural Language Processing
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make3030029
– volume: 90
  start-page: 032311
  year: 2014
  ident: ref_22
  article-title: Quantum partially observable Markov decision processes
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.032311
SSID ssj0002802968
Score 2.3148656
Snippet Artificial intelligence (AI) technology leads to new insights into the manipulation of quantum systems in the Noisy Intermediate-Scale Quantum (NISQ) era....
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 380
SubjectTerms Algorithms
Approximation
Artificial intelligence
Circuit design
Circuits
Discount rates
Hilbert space
Learning curves
LSTM
Machine learning
Markov analysis
Markov processes
Neural networks
Q-learning
quantum circuits
Quantum theory
Qubits (quantum computing)
reinforcement learning
Teaching methods
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fSxwxEA72fLAvUmml19qSh0L7EtzNJrvJQylqPaTQQ0XBtyWZJCJc767nHdL_vjP74zwfbB83JCGbmSQzk8n3MfbJZ8Gi1W8FaBuFsi4XBkIU4JN0OulUNCn_P8fl2bX6caNvtti4fwtDaZX9nths1GEGFCM_JJjyCrVL5t_mvwWxRtHtak-h4TpqhfC1gRh7wbYlIWMN2Pbx6fj8ch11kSaTtjQtemOB_j76i_gHq1-KlJmoZTZOpwbE_4nlubOazt2fBzeZbBxCo1dst7Me-VEr7j22FaevGRCf2USMFjHy7zHO-SXF0Al1iV-IcZvmjWUNRCo00UDeoareciziF-3Y-MndAlZ3S360cbdwjz1Siscbdj06vTo5Ex13ggA0MZYit96g8ZeiDEpC8DIplYoyS5BAgdJFTCX6SrkNpVPe5w7QVlE6QVlJ7bQt9tlgOpvGt4z7zEOlMsAWSQWnDX6bAh0TpY1Xqhgy0c9ZDR2wOPFbTGp0MGiO66dzPGSf1_XnLaTGszWPSQTrWgSF3RTMFrd1t7JqX_oEOJwqZaDK3JkENuBO5TJThUzGITvoBVh36_O-ftSmIfuyFup_hvPu3z29Zy8lvY1ocl0O2GC5WMUPaLEs_cdODf8C8v_uvA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA71-qAvVVHxbJU8CPqSuptNshsQ5KweRfCw4sH5IEsyScrR83pcd1vav97J_jiugiiyTxsmy4SZJN9kJ98Q8tImTiPq1wyk9kxok7ICnGdgAzcyyJA1Kf-fJ-p4Kj7N5GyHvO3vwsS0SgzF580izRUXDCH27I3AB4P0lQvvLrtzpBT3ygLxgM7ukF0lUWxAdqeTL6PvsZ5c37PlacwwssfIEHWtf4rotrGIzNY-1ND138KYd-vlylxfmcVia7sZ3yc_ekXbLJOzw7qyh3DzG4fj_47kAdnrcCgdtY7zkOz45SMCsTLago3X3tMP3q_o13gaH_mb6AmbtAnj2NaQrUJzrkg7ftZTik30pB07PZqvoZ5XdLT1l-ICvxiTRR6T6fjjt6Nj1lVhYIBgpWKptgXCyOC5Exyc5UGIkKkkQAABQmY-KIy6Uu2UEdamBhD1CBlA5VwaqbMnZLA8X_qnhNrEQi4SwB5BOCMLfC8yDHGELKwQ2ZCw3iYldBTlsVLGosRQJdqwvG3DIXm1kV-15Bx_lHwfTbyRiqTaTcP5-rTs5mhplQ2A6uQhAaFSUwTQDtc8kxS5S7gfkoPeQcpupl-UkT4_x1WPp0PyeuM0f1Hn2b-L7pN7PN64aDJoDsigWtf-OeKgyr7o3P0XIcoG-A
  priority: 102
  providerName: Unpaywall
Title Model-Free Deep Recurrent Q-Network Reinforcement Learning for Quantum Circuit Architectures Design
URI https://www.proquest.com/docview/2756778721
https://www.mdpi.com/2624-960X/4/4/27/pdf?version=1663823293
https://doaj.org/article/b6bfc3117f0c461a8fc9d318a087d02e
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-960X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002802968
  issn: 2624-960X
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-960X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002802968
  issn: 2624-960X
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2624-960X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002802968
  issn: 2624-960X
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-wwEA9-HPTyUFRcny45CHoJpmnSJsf1YxXBRcUFPZVkmoiPfeuy7vJ4_72Tti71IF48JkzLMJkmv5lMf0PIoeOlQdRvGCjjmTQ2YRpKz8AFYVVQIa1K_m8G2dVQXj-qx1arr1gTVtMD14Y7cZkLkCZJHjjILLE6gCnRES3XecmFj7sv16YVTP2pUkZcmEzXLI0pxvUYF6Km878yOm1sIdM6hSqy_k8Ic20-ntj__-xo1Dps-hvkV4MSaa_WbpMs-fEWgdi3bMT6U-_pufcTeh9z5ZFdid6xQV3OjXMVFSpUWT_asKc-U5yid7Vu9OxlCvOXGe217hDe8I2xlGObDPsXD2dXrOmRwAChxIwlxmkEecGLUgoonQhShjTjAQJIkCr1IcOYKDFlZqVziQXEJFIFyHKhrDLpDlkZv479LqGOO8glB3wiyNIqjWONltdSaSdl2iHsw2YFNATisY_FqMBAItq4-GzjDjlayE9q6owvJU_jEiykIuV1NYGOUDSOUHznCB2y_7GARfMdvhWR3D7HPUkkHXK8WNRv1Nn7CXV-k3UR_5SoKl_2ycpsOvcHiF9mrkuWdf-yS1ZPLwa3993KcXE0HNz2nt4BzhT1PQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYQHOilKmqrpgXqA1V7ser12rvrA0K8olAgKggkblt7bCOkNEnzEOLP9bd1vI8QDm1PHNfyWtbMeF4ef0PIjuVOo9evGSjtmdQmYQU4z8AGYVRQIa1K_s_7We9afrtRNyvkd_sWJpZVtjqxUtRuBDFH_jXClOcoXSLZG_9isWtUvF1tW2iYprWC260gxpqHHaf-4R5DuOnuyRHy-5MQ3eOrwx5rugwwQGM8Y4m2BbpJwQsnBTgrgpQhzXiAABKkSn3IMKpItMuMtDYxgFZdqgBZLpRREYwJTcCaTKXG4G_t4Lj__XKR5REFFzorarTINNUc41Ok2PynjIcntrJZsoZV04Annu76fDg2D_dmMFgyet1X5GXjrdL9Wrw2yIofviYQ-6cNWHfiPT3yfkwvY84-ojzRC9avy8pxrIJkhSr7SBsU11uKQ_Si3hs9vJvA_G5G95fuMqa4YiwpeUOun4WKb8nqcDT07wi13EIuOeAfQTqjCvwuUgyEpCqslGmHsJZmJTRA5rGfxqDEgCbSuHxK4w75vJg_riE8_jrzILJgMStCb1cDo8lt2Zzk0mY2AG4nDxxklpgigHaoGQ0vcseF75DNloFlow-m5aP0dsiXBVP_s533_17pI1nvXZ2flWcn_dMP5IWI7zKqOptNsjqbzP0Wekszu92IJCU_nvsU_AG5riv9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXBALEQgEfQHCx6jh24hwQKl1CS2FFEZV6C_bEriotu8s-VPWv8euYyWPZHoBTj7Ecy5oZz8vjbxh74WVdoNdfCDBFELpwibBQBwE-KmeiiWlT8v95lB2c6I-n5nSL_erfwlBZZa8TG0VdT4Fy5LsEU56jdKlkN3ZlEV-G5dvZT0EdpOimtW-n0YrIUbi8wPBt8eZwiLx-qVT5_tv-geg6DAhAQ7wUSeEtukgxqForqL2KWsc0kxEiaNAmDTHDiCIp6sxp7xMHaNG1iZDlyjhDQEyo_m_khOJOr9TLD-v8jrJSFZltcSLTtJAYmSKtVj80HRtqYrNhB5t2AVd83FurycxdXrjxeMPclXfZnc5P5XutYN1jW2FynwF1ThuLch4CH4Yw418pW0_4TvxYjNqCchxrwFihyTvyDr_1jOMQP273xvfP57A6X_K9jVuMBa5IxSQP2Mm10PAh255MJ-ER4156yLUE_CPq2hmL3zbFEEgb67VOB0z0NKuggzCnThrjCkMZonF1lcYD9mo9f9aCd_x15jtiwXoWgW43A9P5WdWd4cpnPgJuJ48SdJY4G6GoUSc6afNaqjBgOz0Dq04TLKo_cjtgr9dM_c92Hv97pefsJsp-9elwdPSE3Vb0IKMpsNlh28v5KjxFN2npnzXyyNn36z4AvwGV_ymX
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEA71-qAvVVHxbJU8CPqSuptNshsQ5KweRfCw4sH5IEsyScrR83pcd1vav97J_jiugiiyTxsmy4SZJN9kJ98Q8tImTiPq1wyk9kxok7ICnGdgAzcyyJA1Kf-fJ-p4Kj7N5GyHvO3vwsS0SgzF580izRUXDCH27I3AB4P0lQvvLrtzpBT3ygLxgM7ukF0lUWxAdqeTL6PvsZ5c37PlacwwssfIEHWtf4rotrGIzNY-1ND138KYd-vlylxfmcVia7sZ3yc_ekXbLJOzw7qyh3DzG4fj_47kAdnrcCgdtY7zkOz45SMCsTLago3X3tMP3q_o13gaH_mb6AmbtAnj2NaQrUJzrkg7ftZTik30pB07PZqvoZ5XdLT1l-ICvxiTRR6T6fjjt6Nj1lVhYIBgpWKptgXCyOC5Exyc5UGIkKkkQAABQmY-KIy6Uu2UEdamBhD1CBlA5VwaqbMnZLA8X_qnhNrEQi4SwB5BOCMLfC8yDHGELKwQ2ZCw3iYldBTlsVLGosRQJdqwvG3DIXm1kV-15Bx_lHwfTbyRiqTaTcP5-rTs5mhplQ2A6uQhAaFSUwTQDtc8kxS5S7gfkoPeQcpupl-UkT4_x1WPp0PyeuM0f1Hn2b-L7pN7PN64aDJoDsigWtf-OeKgyr7o3P0XIcoG-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Free+Deep+Recurrent+Q-Network+Reinforcement+Learning+for+Quantum+Circuit+Architectures+Design&rft.jtitle=Quantum+reports&rft.au=Tomah+Sogabe&rft.au=Tomoaki+Kimura&rft.au=Chih-Chieh+Chen&rft.au=Kodai+Shiba&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2624-960X&rft.volume=4&rft.issue=4&rft.spage=380&rft.epage=389&rft_id=info:doi/10.3390%2Fquantum4040027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b6bfc3117f0c461a8fc9d318a087d02e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-960X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-960X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-960X&client=summon