The role of T‐type calcium channels in the subiculum: to burst or not to burst?

Key points Pharmacological, molecular and genetic data indicate a prominent role of low‐voltage‐activated T‐type calcium channels (T‐channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T‐channels switched burst firing with lo...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 595; no. 19; pp. 6327 - 6348
Main Authors Joksimovic, Srdjan M., Eggan, Pierce, Izumi, Yukitoshi, Joksimovic, Sonja Lj, Tesic, Vesna, Dietz, Robert M., Orfila, James E., DiGruccio, Michael R., Herson, Paco S., Jevtovic‐Todorovic, Vesna, Zorumski, Charles F., Todorovic, Slobodan M.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.10.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
1469-7793
DOI10.1113/JP274565

Cover

Abstract Key points Pharmacological, molecular and genetic data indicate a prominent role of low‐voltage‐activated T‐type calcium channels (T‐channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T‐channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization‐induced burst firing. Our molecular studies showed that CaV3.1 is the most abundantly expressed isoform of T‐channels in the rat subiculum. Consistent with this finding, both regular‐spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of CaV3.1 isoform of T‐channels. Selective inhibition of T‐channels and global deletion of CaV3.1 channels completely suppressed development of long‐term potentiation (LTP) in the CA1–subiculum, but not in the CA3–CA1 pathway. Several studies suggest that voltage‐gated calcium currents are involved in generating high frequency burst firing in the subiculum, but the exact nature of these currents remains unknown. Here, we used selective pharmacology, molecular and genetic approaches to implicate Cav3.1‐containing T‐channels in subicular burst firing, in contrast to several previous reports discounting T‐channels as major contributors to subicular neuron physiology. Furthermore, pharmacological antagonism of T‐channels, as well as global deletion of CaV3.1 isoform, completely suppressed development of long‐term potentiation (LTP) in the CA1–subiculum, but not in the CA3–CA1 pathway. Our results indicate that excitability and synaptic plasticity of subicular neurons relies heavily on T‐channels. Hence, T‐channels may be a promising new drug target for different cognitive deficits. Key points Pharmacological, molecular and genetic data indicate a prominent role of low‐voltage‐activated T‐type calcium channels (T‐channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T‐channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization‐induced burst firing. Our molecular studies showed that CaV3.1 is the most abundantly expressed isoform of T‐channels in the rat subiculum. Consistent with this finding, both regular‐spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of CaV3.1 isoform of T‐channels. Selective inhibition of T‐channels and global deletion of CaV3.1 channels completely suppressed development of long‐term potentiation (LTP) in the CA1–subiculum, but not in the CA3–CA1 pathway.
AbstractList Pharmacological, molecular and genetic data indicate a prominent role of low-voltage-activated T-type calcium channels (T-channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T-channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization-induced burst firing. Our molecular studies showed that Ca 3.1 is the most abundantly expressed isoform of T-channels in the rat subiculum. Consistent with this finding, both regular-spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of Ca 3.1 isoform of T-channels. Selective inhibition of T-channels and global deletion of Ca 3.1 channels completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway. Several studies suggest that voltage-gated calcium currents are involved in generating high frequency burst firing in the subiculum, but the exact nature of these currents remains unknown. Here, we used selective pharmacology, molecular and genetic approaches to implicate Cav3.1-containing T-channels in subicular burst firing, in contrast to several previous reports discounting T-channels as major contributors to subicular neuron physiology. Furthermore, pharmacological antagonism of T-channels, as well as global deletion of CaV3.1 isoform, completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway. Our results indicate that excitability and synaptic plasticity of subicular neurons relies heavily on T-channels. Hence, T-channels may be a promising new drug target for different cognitive deficits.
Key points Pharmacological, molecular and genetic data indicate a prominent role of low‐voltage‐activated T‐type calcium channels (T‐channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T‐channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization‐induced burst firing. Our molecular studies showed that CaV3.1 is the most abundantly expressed isoform of T‐channels in the rat subiculum. Consistent with this finding, both regular‐spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of CaV3.1 isoform of T‐channels. Selective inhibition of T‐channels and global deletion of CaV3.1 channels completely suppressed development of long‐term potentiation (LTP) in the CA1–subiculum, but not in the CA3–CA1 pathway. Several studies suggest that voltage‐gated calcium currents are involved in generating high frequency burst firing in the subiculum, but the exact nature of these currents remains unknown. Here, we used selective pharmacology, molecular and genetic approaches to implicate Cav3.1‐containing T‐channels in subicular burst firing, in contrast to several previous reports discounting T‐channels as major contributors to subicular neuron physiology. Furthermore, pharmacological antagonism of T‐channels, as well as global deletion of CaV3.1 isoform, completely suppressed development of long‐term potentiation (LTP) in the CA1–subiculum, but not in the CA3–CA1 pathway. Our results indicate that excitability and synaptic plasticity of subicular neurons relies heavily on T‐channels. Hence, T‐channels may be a promising new drug target for different cognitive deficits. Key points Pharmacological, molecular and genetic data indicate a prominent role of low‐voltage‐activated T‐type calcium channels (T‐channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T‐channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization‐induced burst firing. Our molecular studies showed that CaV3.1 is the most abundantly expressed isoform of T‐channels in the rat subiculum. Consistent with this finding, both regular‐spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of CaV3.1 isoform of T‐channels. Selective inhibition of T‐channels and global deletion of CaV3.1 channels completely suppressed development of long‐term potentiation (LTP) in the CA1–subiculum, but not in the CA3–CA1 pathway.
Key points Pharmacological, molecular and genetic data indicate a prominent role of low-voltage-activated T-type calcium channels (T-channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T-channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization-induced burst firing. Our molecular studies showed that CaV3.1 is the most abundantly expressed isoform of T-channels in the rat subiculum. Consistent with this finding, both regular-spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of CaV3.1 isoform of T-channels. Selective inhibition of T-channels and global deletion of CaV3.1 channels completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway. Several studies suggest that voltage-gated calcium currents are involved in generating high frequency burst firing in the subiculum, but the exact nature of these currents remains unknown. Here, we used selective pharmacology, molecular and genetic approaches to implicate Cav3.1-containing T-channels in subicular burst firing, in contrast to several previous reports discounting T-channels as major contributors to subicular neuron physiology. Furthermore, pharmacological antagonism of T-channels, as well as global deletion of CaV3.1 isoform, completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway. Our results indicate that excitability and synaptic plasticity of subicular neurons relies heavily on T-channels. Hence, T-channels may be a promising new drug target for different cognitive deficits. Key points Pharmacological, molecular and genetic data indicate a prominent role of low-voltage-activated T-type calcium channels (T-channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T-channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization-induced burst firing. Our molecular studies showed that CaV3.1 is the most abundantly expressed isoform of T-channels in the rat subiculum. Consistent with this finding, both regular-spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of CaV3.1 isoform of T-channels. Selective inhibition of T-channels and global deletion of CaV3.1 channels completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway.
Pharmacological, molecular and genetic data indicate a prominent role of low-voltage-activated T-type calcium channels (T-channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T-channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization-induced burst firing. Our molecular studies showed that CaV 3.1 is the most abundantly expressed isoform of T-channels in the rat subiculum. Consistent with this finding, both regular-spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of CaV 3.1 isoform of T-channels. Selective inhibition of T-channels and global deletion of CaV 3.1 channels completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway.KEY POINTSPharmacological, molecular and genetic data indicate a prominent role of low-voltage-activated T-type calcium channels (T-channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T-channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization-induced burst firing. Our molecular studies showed that CaV 3.1 is the most abundantly expressed isoform of T-channels in the rat subiculum. Consistent with this finding, both regular-spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of CaV 3.1 isoform of T-channels. Selective inhibition of T-channels and global deletion of CaV 3.1 channels completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway.Several studies suggest that voltage-gated calcium currents are involved in generating high frequency burst firing in the subiculum, but the exact nature of these currents remains unknown. Here, we used selective pharmacology, molecular and genetic approaches to implicate Cav3.1-containing T-channels in subicular burst firing, in contrast to several previous reports discounting T-channels as major contributors to subicular neuron physiology. Furthermore, pharmacological antagonism of T-channels, as well as global deletion of CaV3.1 isoform, completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway. Our results indicate that excitability and synaptic plasticity of subicular neurons relies heavily on T-channels. Hence, T-channels may be a promising new drug target for different cognitive deficits.ABSTRACTSeveral studies suggest that voltage-gated calcium currents are involved in generating high frequency burst firing in the subiculum, but the exact nature of these currents remains unknown. Here, we used selective pharmacology, molecular and genetic approaches to implicate Cav3.1-containing T-channels in subicular burst firing, in contrast to several previous reports discounting T-channels as major contributors to subicular neuron physiology. Furthermore, pharmacological antagonism of T-channels, as well as global deletion of CaV3.1 isoform, completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway. Our results indicate that excitability and synaptic plasticity of subicular neurons relies heavily on T-channels. Hence, T-channels may be a promising new drug target for different cognitive deficits.
Pharmacological, molecular and genetic data indicate a prominent role of low‐voltage‐activated T‐type calcium channels (T‐channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T‐channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization‐induced burst firing. Our molecular studies showed that Ca V 3.1 is the most abundantly expressed isoform of T‐channels in the rat subiculum. Consistent with this finding, both regular‐spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of Ca V 3.1 isoform of T‐channels. Selective inhibition of T‐channels and global deletion of Ca V 3.1 channels completely suppressed development of long‐term potentiation (LTP) in the CA1–subiculum, but not in the CA3–CA1 pathway.
Author Eggan, Pierce
Herson, Paco S.
Joksimovic, Sonja Lj
Jevtovic‐Todorovic, Vesna
Todorovic, Slobodan M.
DiGruccio, Michael R.
Tesic, Vesna
Izumi, Yukitoshi
Orfila, James E.
Joksimovic, Srdjan M.
Zorumski, Charles F.
Dietz, Robert M.
AuthorAffiliation 2 Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine St Louis MO 63110 USA
1 Department of Anesthesiology University of Colorado, School of Medicine Aurora CO 80045 USA
3 Department of Neurobiology, Physiology and Behavior, College of Biological Sciences University of California Davis CA 95616 USA
AuthorAffiliation_xml – name: 3 Department of Neurobiology, Physiology and Behavior, College of Biological Sciences University of California Davis CA 95616 USA
– name: 2 Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine St Louis MO 63110 USA
– name: 1 Department of Anesthesiology University of Colorado, School of Medicine Aurora CO 80045 USA
Author_xml – sequence: 1
  givenname: Srdjan M.
  surname: Joksimovic
  fullname: Joksimovic, Srdjan M.
  organization: University of Colorado, School of Medicine
– sequence: 2
  givenname: Pierce
  surname: Eggan
  fullname: Eggan, Pierce
  organization: University of Colorado, School of Medicine
– sequence: 3
  givenname: Yukitoshi
  orcidid: 0000-0002-5596-1031
  surname: Izumi
  fullname: Izumi, Yukitoshi
  organization: Washington University School of Medicine
– sequence: 4
  givenname: Sonja Lj
  surname: Joksimovic
  fullname: Joksimovic, Sonja Lj
  organization: University of Colorado, School of Medicine
– sequence: 5
  givenname: Vesna
  orcidid: 0000-0002-7247-1034
  surname: Tesic
  fullname: Tesic, Vesna
  organization: University of Colorado, School of Medicine
– sequence: 6
  givenname: Robert M.
  surname: Dietz
  fullname: Dietz, Robert M.
  organization: University of Colorado, School of Medicine
– sequence: 7
  givenname: James E.
  surname: Orfila
  fullname: Orfila, James E.
  organization: University of Colorado, School of Medicine
– sequence: 8
  givenname: Michael R.
  surname: DiGruccio
  fullname: DiGruccio, Michael R.
  organization: University of California
– sequence: 9
  givenname: Paco S.
  surname: Herson
  fullname: Herson, Paco S.
  organization: University of Colorado, School of Medicine
– sequence: 10
  givenname: Vesna
  surname: Jevtovic‐Todorovic
  fullname: Jevtovic‐Todorovic, Vesna
  organization: University of Colorado, School of Medicine
– sequence: 11
  givenname: Charles F.
  surname: Zorumski
  fullname: Zorumski, Charles F.
  organization: Washington University School of Medicine
– sequence: 12
  givenname: Slobodan M.
  orcidid: 0000-0003-2613-0391
  surname: Todorovic
  fullname: Todorovic, Slobodan M.
  email: slobodan.todorovic@ucdenver.edu
  organization: University of Colorado, School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28744923$$D View this record in MEDLINE/PubMed
BookMark eNp1kdFqFDEUhoNU7LYKPoEEvPFmak6SSSZeKFK0WgpWWK9DJpNxUzLJmswoe-cj-Iw-Sad0d1tFr8Ih3_n4zzlH6CCm6BB6CuQEANjL80sqeS3qB2gBXKhKSsUO0IIQSismazhER6VcEQKMKPUIHdJGcq4oW6DPy5XDOQWHU4-Xv3_-Gjdrh60J1k8DtisTowsF-4jHGSxT6-0UpuEVHhNup1xGnDKOadzXbx6jh70JxT3Zvsfoy_t3y9MP1cWns4-nby8qy5lqqhpoK5SDHhwoY1lnQInW0k7UBBSlxDbQOmY5mEYBSGlZy0hnu75vpTCCHaPXt9711A6usy6O2QS9zn4weaOT8frPn-hX-mv6rmtBgSs2C15sBTl9m1wZ9eCLdSGY6NJU9JyCzVslpJnR53-hV2nKcR5vpjinEoSEmXp2P9E-ym7bM3ByC9icSsmu19aPZvTpJqAPGoi-OafenfMu4r5h5_wHunX_8MFt_svp5fkl0Jo27BoeLKxr
CitedBy_id crossref_primary_10_3389_fnins_2024_1483708
crossref_primary_10_1113_JP274981
crossref_primary_10_3389_fncel_2021_670998
crossref_primary_10_1007_s00213_018_5040_3
crossref_primary_10_1016_j_pnpbp_2023_110913
crossref_primary_10_1523_ENEURO_0201_20_2020
crossref_primary_10_1016_j_pneurobio_2021_102029
crossref_primary_10_1016_j_bbrc_2018_12_073
crossref_primary_10_3390_cells10092277
crossref_primary_10_1016_j_neuropharm_2018_03_028
crossref_primary_10_1523_ENEURO_0016_18_2018
crossref_primary_10_1152_jn_00564_2020
crossref_primary_10_1523_ENEURO_0083_20_2020
crossref_primary_10_1515_revneuro_2020_0091
crossref_primary_10_1016_j_neuropharm_2021_108565
crossref_primary_10_1016_j_heliyon_2021_e08612
crossref_primary_10_3389_fncel_2021_741292
crossref_primary_10_1007_s00424_020_02429_7
crossref_primary_10_1523_JNEUROSCI_1656_18_2019
crossref_primary_10_1016_j_bja_2017_12_039
crossref_primary_10_1016_j_bja_2019_01_029
crossref_primary_10_1096_fj_202002754R
crossref_primary_10_1186_s13041_022_00923_w
crossref_primary_10_1016_j_neuropharm_2025_110424
crossref_primary_10_1038_s41467_022_32742_x
Cites_doi 10.1113/jphysiol.1991.sp018577
10.1016/S0166-2236(03)00034-1
10.1113/jphysiol.2010.203836
10.1523/JNEUROSCI.0624-05.2005
10.1152/physrev.00018.2002
10.1152/jn.1999.82.4.1895
10.1152/jn.1998.80.1.162
10.1111/j.1535-7511.2005.00049.x
10.1523/JNEUROSCI.19-06-01895.1999
10.1016/S0959-4388(00)00076-3
10.1523/JNEUROSCI.4101-10.2010
10.1093/cercor/bhm056
10.1016/j.neuroscience.2006.07.019
10.1016/0006-8993(96)00149-7
10.1097/00001756-199812210-00019
10.1371/journal.pbio.0030175
10.1152/jn.1993.70.1.232
10.1523/JNEUROSCI.23-29-09650.2003
10.1152/jn.00536.2001
10.1038/sj.bjp.0706020
10.1126/science.1089268
10.1016/S0306-4522(99)00521-7
10.1016/0304-3940(94)11127-5
10.1111/j.1460-9568.2008.06384.x
10.1097/01.anes.0000267601.09764.e6
10.1523/JNEUROSCI.18-19-07613.1998
10.1046/j.1460-9568.2002.02086.x
10.1371/journal.pone.0123636
10.1523/JNEUROSCI.0362-10.2010
10.1124/mol.111.073205
10.1124/jpet.110.171058
10.1007/s002329900059
10.1523/JNEUROSCI.4883-13.2015
10.1038/sj.emboj.7600515
10.1523/JNEUROSCI.4866-06.2007
10.1152/jn.1991.65.1.148
10.1152/jn.00166.2006
10.1016/S0166-2236(96)10070-9
10.1002/hipo.10123
10.1016/j.neuroscience.2016.03.052
10.1038/nrn2402
10.1113/jphysiol.2005.084590
10.1152/jn.2000.84.5.2398
10.1523/JNEUROSCI.21-10-03312.2001
10.1111/ejn.12683
10.1111/j.1469-7580.2005.00446.x
10.1097/j.pain.0000000000000263
10.1523/JNEUROSCI.4305-09.2010
10.1152/jn.1998.79.1.240
10.1016/j.neuropharm.2010.03.016
10.1021/bi981255g
10.1523/JNEUROSCI.18-18-07118.1998
10.1002/hup.2289
10.1111/j.1469-7793.1999.0571p.x
10.1111/j.1460-9568.2006.05136.x
10.1523/JNEUROSCI.1362-12.2012
10.1152/jn.1993.70.1.223
10.1152/jn.1995.73.6.2553
10.1002/hipo.20931
10.1016/S0006-3495(99)77134-1
10.1016/j.celrep.2017.01.011
10.1371/journal.pone.0029384
10.1021/jm800419w
10.1073/pnas.1311686110
10.1007/BF00227110
ContentType Journal Article
Copyright 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society
2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Journal compilation © 2017 The Physiological Society
Copyright_xml – notice: 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society
– notice: 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
– notice: Journal compilation © 2017 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/JP274565
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

Technology Research Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate S. M. Joksimovic and others
EISSN 1469-7793
EndPage 6348
ExternalDocumentID PMC5621493
28744923
10_1113_JP274565
TJP12528
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: University of Virginia
– fundername: Department of Anesthesiology
– fundername: National Institute of General Medical Sciences
  funderid: R01GM102525; R01GM118197
– fundername: Bantly Foundation
– fundername: Department of Anesthesiology University of Colorado Anschutz Medical Camus
– fundername: National Institute of Mental Health
  funderid: MH077791
– fundername: NIGMS NIH HHS
  grantid: R01 GM118197
– fundername: NIGMS NIH HHS
  grantid: R01 GM102525
– fundername: NICHD NIH HHS
  grantid: K12 HD068372
– fundername: NIMH NIH HHS
  grantid: R01 MH077791
– fundername: National Institute of General Medical Sciences
  grantid: R01GM102525; R01GM118197
– fundername: National Institute of Mental Health
  grantid: MH077791
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
0YM
10A
123
18M
1OC
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
31~
3EH
3O-
AAHHS
AAYJJ
AAYXX
ACCFJ
ADXHL
AEEZP
AEQDE
AFFNX
AIWBW
AJBDE
C1A
CAG
CHEAL
CITATION
COF
FA8
H13
HF~
H~9
MVM
NEJ
OHT
RIG
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
1OB
24P
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
NPM
WRC
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c4398-512b69e1f1e19ac3da196bc2d65019220c81be3c41a891177c3b30dcdffb76a63
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 14:34:54 EDT 2025
Fri Jul 11 03:53:47 EDT 2025
Fri Jul 25 12:13:45 EDT 2025
Wed Feb 19 02:23:58 EST 2025
Thu Apr 24 22:57:53 EDT 2025
Tue Jul 01 04:29:19 EDT 2025
Sun Sep 21 06:18:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords hippocampus
low-threshold-activated
calcium
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-512b69e1f1e19ac3da196bc2d65019220c81be3c41a891177c3b30dcdffb76a63
Notes https://doi.org/10.1113/JP274981
Linked articles
This article is highlighted by a Perspective by Turner. To read this Perspective, visit
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Linked articles This article is highlighted by a Perspective by Turner. To read this Perspective, visit https://doi.org/10.1113/JP274981.
ORCID 0000-0003-2613-0391
0000-0002-5596-1031
0000-0002-7247-1034
OpenAccessLink https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP274565
PMID 28744923
PQID 1944271671
PQPubID 1086388
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5621493
proquest_miscellaneous_1923745008
proquest_journals_1944271671
pubmed_primary_28744923
crossref_citationtrail_10_1113_JP274565
crossref_primary_10_1113_JP274565
wiley_primary_10_1113_JP274565_TJP12528
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 October 2017
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 1 October 2017
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 35
2002; 16
1995; 73
2010; 59
2013; 28
2007; 106
2003; 13
2008; 9
2000; 95
1998; 80
1999; 82
1991; 436
2005; 24
2005; 25
1998; 18
2005; 144
2006; 24
1999; 19
1993; 70
2000; 10
2002; 87
2008; 28
2013; 110
2003; 83
2012; 22
2010; 30
2007; 27
2006; 95
2011; 80
1997; 20
2008; 18
2015; 10
1995
2016; 325
2014; 40
2008; 51
2012; 32
1996; 721
2001; 21
2011; 589
1998; 37
1991; 65
2010; 335
2015; 156
2005; 567
1993; 96
2005; 5
1996; 151
2005; 207
2000; 84
2003; 26
1999; 77
2006; 143
2017; 18
2005; 3
2003; 302
2012; 7
1995; 183
1999; 518
1998; 9
2003; 23
1998; 79
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Amaral DG (e_1_2_6_2_1) 1995
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
28786112 - J Physiol. 2017 Oct 1;595(19):6223
References_xml – volume: 79
  start-page: 240
  year: 1998
  end-page: 252
  article-title: Pharmacological properties of T‐type Ca current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents
  publication-title: J Neurophysiol
– volume: 302
  start-page: 1416
  year: 2003
  end-page: 1418
  article-title: Abnormal coronary function in mice deficient in α1H T‐type Ca channels
  publication-title: Science
– volume: 32
  start-page: 12228
  year: 2012
  end-page: 12236
  article-title: T‐type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex
  publication-title: J Neurosci
– volume: 24
  start-page: 2581
  year: 2006
  end-page: 2594
  article-title: Ca 3 T‐type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons
  publication-title: Eur J Neurosci
– volume: 207
  start-page: 271
  year: 2005
  end-page: 282
  article-title: The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us
  publication-title: J Anat
– volume: 83
  start-page: 117
  year: 2003
  end-page: 161
  article-title: Molecular physiology of low‐voltage‐activated T‐type calcium channels
  publication-title: Physiol Rev
– volume: 65
  start-page: 148
  year: 1991
  end-page: 155
  article-title: Kinetic properties of T‐type Ca currents in isolated rat hippocampal CA1 pyramidal neurons
  publication-title: J Neurophysiol
– volume: 59
  start-page: 58
  year: 2010
  end-page: 69
  article-title: Mechanisms of inhibition of CaV3.1 T‐type calcium current by aliphatic alcohols
  publication-title: Neuropharmacology
– volume: 95
  start-page: 3297
  year: 2006
  end-page: 3308
  article-title: Bursting of thalamic neurons and states of vigilance
  publication-title: J Neurophysiol
– volume: 18
  start-page: 7118
  year: 1998
  end-page: 7126
  article-title: Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation
  publication-title: J Neurosci
– volume: 589
  start-page: 1707
  year: 2011
  end-page: 1724
  article-title: Minimal alterations in T‐type calcium channel gating markedly modify physiological firing dynamics
  publication-title: J Physiol
– volume: 335
  start-page: 409
  year: 2010
  end-page: 417
  article-title: In vitro characterization of T‐type calcium channel antagonist TTA‐A2 and in vivo effects on arousal in mice
  publication-title: J Pharmacol Exp Ther
– volume: 567
  start-page: 79
  year: 2005
  end-page: 93
  article-title: A transitional period of Ca ‐dependent spike afterdepolarization and bursting in developing rat CA1 pyramidal cells
  publication-title: J Physiol
– volume: 9
  start-page: 557
  year: 2008
  end-page: 568
  article-title: Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex
  publication-title: Nat Rev Neurosci
– volume: 51
  start-page: 3692
  year: 2008
  end-page: 3695
  article-title: Design, synthesis, and evaluation of a novel 4‐aminomethyl‐4‐fluoropiperidine as a T‐type Ca channel antagonist
  publication-title: J Med Chem
– volume: 35
  start-page: 1481
  year: 2015
  end-page: 1492
  article-title: Hyperexcitability of rat thalamocortical networks after exposure to general anesthesia during brain development
  publication-title: J Neurosci
– volume: 80
  start-page: 162
  year: 1998
  end-page: 171
  article-title: Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons
  publication-title: J Neurophysiol
– volume: 721
  start-page: 59
  year: 1996
  end-page: 65
  article-title: Activation of 5‐HT1B receptors suppresses low but not high frequency synaptic transmission in the rat subicular cortex in vitro
  publication-title: Brain Res
– volume: 18
  start-page: 1109
  year: 2017
  end-page: 1117
  article-title: Autonomous CaMKII Activity as a drug target for histological and functional neuroprotection after resuscitation from cardiac arrest
  publication-title: Cell Rep
– volume: 70
  start-page: 223
  year: 1993
  end-page: 231
  article-title: Contribution of the low‐threshold T‐type calcium current in generating the post‐spike depolarizing afterpotential in dentate granule neurons of immature rats
  publication-title: J Neurophysiol
– volume: 30
  start-page: 99
  year: 2010
  end-page: 109
  article-title: Selective T‐type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of
  publication-title: J Neurosci
– volume: 95
  start-page: 965
  year: 2000
  end-page: 972
  article-title: Subthreshold inward membrane currents in guinea‐pig frontal cortex neurons
  publication-title: Neuroscience
– volume: 18
  start-page: 7613
  year: 1998
  end-page: 7624
  article-title: Dendritic hyperpolarization‐activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons
  publication-title: J Neurosci
– volume: 106
  start-page: 1177
  year: 2007
  end-page: 1185
  article-title: Mutation of α1GT‐type calcium channels in mice does not change anesthetic requirements for loss of the righting reflex and minimum alveolar concentration but delays the onset of anesthetic induction
  publication-title: Anesthesiology
– volume: 9
  start-page: 4109
  year: 1998
  end-page: 4113
  article-title: Interaction between paired‐pulse facilitation and long‐term potentiation in the projection from hippocampal area CA1 to the subiculum
  publication-title: Neuroreport
– volume: 87
  start-page: 1169
  year: 2002
  end-page: 1174
  article-title: Distance‐dependent Ni ‐sensitivity of synaptic plasticity in apical dendrites of hippocampal CA1 pyramidal cells
  publication-title: J Neurophysiol
– volume: 70
  start-page: 232
  year: 1993
  end-page: 245
  article-title: Intrinsic properties and evoked responses of guinea pig subicular neurons in vitro
  publication-title: J Neurophysiol
– volume: 73
  start-page: 2553
  year: 1995
  end-page: 2557
  article-title: Different Ca channels in soma and dendrites of hippocampal pyramidal neurons mediate spike‐induced Ca influx
  publication-title: J Neurophysiol
– volume: 28
  start-page: 124
  year: 2013
  end-page: 133
  article-title: Randomized controlled study of the T‐type calcium channel antagonist MK‐8998 for the treatment of acute psychosis in patients with schizophrenia
  publication-title: Hum Psychopharmacol
– volume: 151
  start-page: 77
  year: 1996
  end-page: 90
  article-title: Nickel block of a family of neuronal calcium channels: subtype‐ and subunit‐dependent action at multiple sites
  publication-title: J Membr Biol
– volume: 37
  start-page: 15353
  year: 1998
  end-page: 15362
  article-title: Selective peptide antagonist of the class E calcium channel from the venom of the tarantula
  publication-title: Biochemistry
– volume: 22
  start-page: 693
  year: 2012
  end-page: 706
  article-title: Target‐specific output patterns are predicted by the distribution of regular‐spiking and bursting pyramidal neurons in the subiculum
  publication-title: Hippocampus
– volume: 77
  start-page: 3034
  year: 1999
  end-page: 3042
  article-title: Nickel block of three cloned T‐type calcium channels: low concentrations selectively block alpha1H
  publication-title: Biophys J
– volume: 82
  start-page: 1895
  year: 1999
  end-page: 901
  article-title: Dendritic voltage‐gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons
  publication-title: J Neurophysiol
– volume: 19
  start-page: 1895
  year: 1999
  end-page: 1911
  article-title: Differential distribution of three members of a gene family encoding low voltage‐activated (T‐type) calcium channels
  publication-title: J Neurosci
– volume: 325
  start-page: 132
  year: 2016
  end-page: 141
  article-title: Therapeutic hypothermia protects against ischemia‐induced impairment of synaptic plasticity following juvenile cardiac arrest in sex‐dependent manner
  publication-title: Neuroscience
– volume: 16
  start-page: 259
  year: 2002
  end-page: 266
  article-title: Long‐lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus
  publication-title: Eur J Neurosci
– volume: 80
  start-page: 900
  year: 2011
  end-page: 910
  article-title: TTA‐P2 is a potent and selective blocker of T‐type calcium channels in rat sensory neurons and a novel antinociceptive agent
  publication-title: Mol Pharmacol
– volume: 436
  start-page: 739
  year: 1991
  end-page: 767
  article-title: Single calcium channels in rat and guinea‐pig hippocampal neurons
  publication-title: J Physiol
– volume: 26
  start-page: 161
  year: 2003
  end-page: 167
  article-title: Bursts as a unit of neural information: selective communication via resonance
  publication-title: Trends Neurosci
– volume: 110
  start-page: 20302
  year: 2013
  end-page: 20307
  article-title: T‐type channel blockade impairs long‐term potentiation at the parallel fiber–Purkinje cell synapse and cerebellar learning
  publication-title: Proc Natl Acad Sci USA
– volume: 40
  start-page: 3179
  year: 2014
  end-page: 3188
  article-title: Increasing small conductance Ca ‐activated potassium channel activity reverses ischemia‐induced impairment of long‐term potentiation
  publication-title: Eur J Neurosci
– volume: 518
  start-page: 571
  year: 1999
  end-page: 576
  article-title: Postsynaptic bursting is essential for ‘Hebbian’ induction of associative longterm potentiation at excitatory synapses in rat hippocampus
  publication-title: J Physiol
– volume: 156
  start-page: 2013
  year: 2015
  end-page: 2020
  article-title: A randomized double‐blind, placebo‐, and active‐controlled study of T‐type calcium channel blocker ABT‐639 in patients with diabetic peripheral neuropathic pain
  publication-title: Pain
– start-page: 247
  year: 1995
  end-page: 291
– volume: 10
  start-page: 172
  year: 2000
  end-page: 179
  article-title: Natural patterns of activity and long‐term synaptic plasticity
  publication-title: Curr Opin Neurobiol
– volume: 84
  start-page: 2398
  year: 2000
  end-page: 2408
  article-title: Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus
  publication-title: J Neurophysiol
– volume: 144
  start-page: 59
  year: 2005
  end-page: 70
  article-title: Contrasting anesthetic sensitivities of T‐type Ca channels of reticular thalamic neurons and recombinant Ca 3.3 channels
  publication-title: Br J Pharmacol
– volume: 13
  start-page: 728
  year: 2003
  end-page: 744
  article-title: Electrophysiological and morphological diversity of neurons from the rat subicular complex in vitro
  publication-title: Hippocampus
– volume: 143
  start-page: 189
  year: 2006
  end-page: 212
  article-title: Expression pattern of voltage‐dependent calcium channel subunits in hippocampal inhibitory neurons in mice
  publication-title: Neuroscience
– volume: 21
  start-page: 3312
  year: 2001
  end-page: 3321
  article-title: Action potential bursting in subicular pyramidal neurons is driven by a calcium tail current
  publication-title: J Neurosci
– volume: 25
  start-page: 5763
  year: 2005
  end-page: 5773
  article-title: R‐type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons
  publication-title: J Neurosci
– volume: 96
  start-page: 304
  year: 1993
  end-page: 318
  article-title: Electrophysiological properties of neurons in the rat subiculum in vitro
  publication-title: Exp Brain Res
– volume: 20
  start-page: 38
  year: 1997
  end-page: 43
  article-title: Bursts as a unit of neural information: making unreliable synapses reliable
  publication-title: Trends Neurosci
– volume: 28
  start-page: 730
  year: 2008
  end-page: 743
  article-title: Involvement of T‐type Ca channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex
  publication-title: Eur J Neurosci
– volume: 7
  start-page: e29384
  year: 2012
  article-title: Retrieval of context‐associated memory is dependent on the Cav3.2 T‐s
  publication-title: PLoS One
– volume: 183
  start-page: 112
  year: 1995
  end-page: 115
  article-title: Voltage‐gated Ca channel blockers, omega‐AgaIVA and Ni , suppress the induction of theta‐burst induced long‐term potentiation in guinea‐pig hippocampal CA1 neurons
  publication-title: Neurosci Lett
– volume: 3
  start-page: e175
  year: 2005
  article-title: Output‐mode transitions are controlled by prolonged inactivation of sodium channels in pyramidal neurons of subiculum
  publication-title: PLoS Biology
– volume: 27
  start-page: 3305
  year: 2007
  end-page: 3316
  article-title: Cell‐specific alterations of T‐type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons
  publication-title: J Neurosci
– volume: 10
  start-page: e0123636
  year: 2015
  article-title: Cell type‐specific separation of subicular principal neurons during network activities
  publication-title: PLoS One
– volume: 18
  start-page: 315
  year: 2008
  end-page: 330
  article-title: Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic Venus‐expressing rats
  publication-title: Cereb Cortex
– volume: 24
  start-page: 315
  year: 2005
  end-page: 324
  article-title: Silencing of the Cav3.2 T‐type calcium channel gene in sensory neurons demonstrates its major role in nociception
  publication-title: EMBO J
– volume: 30
  start-page: 10601
  year: 2010
  end-page: 10608
  article-title: A study of clustered data and approaches to its analysis
  publication-title: J Neurosci
– volume: 30
  start-page: 16788
  year: 2010
  end-page: 16795
  article-title: Midazolam inhibits hippocampal long‐term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis
  publication-title: J Neurosci
– volume: 5
  start-page: 121
  year: 2005
  end-page: 129
  article-title: The role of the subiculum in epilepsy and epileptogenesis
  publication-title: Epilepsy Curr
– volume: 23
  start-page: 9650
  year: 2003
  end-page: 9663
  article-title: Ionic mechanisms of burst firing in dissociated Purkinje neurons
  publication-title: J Neurosci
– ident: e_1_2_6_40_1
  doi: 10.1113/jphysiol.1991.sp018577
– ident: e_1_2_6_24_1
  doi: 10.1016/S0166-2236(03)00034-1
– ident: e_1_2_6_60_1
  doi: 10.1113/jphysiol.2010.203836
– ident: e_1_2_6_38_1
  doi: 10.1523/JNEUROSCI.0624-05.2005
– ident: e_1_2_6_44_1
  doi: 10.1152/physrev.00018.2002
– ident: e_1_2_6_36_1
  doi: 10.1152/jn.1999.82.4.1895
– ident: e_1_2_6_51_1
  doi: 10.1152/jn.1998.80.1.162
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1535-7511.2005.00049.x
– ident: e_1_2_6_55_1
  doi: 10.1523/JNEUROSCI.19-06-01895.1999
– ident: e_1_2_6_43_1
  doi: 10.1016/S0959-4388(00)00076-3
– ident: e_1_2_6_59_1
  doi: 10.1523/JNEUROSCI.4101-10.2010
– ident: e_1_2_6_61_1
  doi: 10.1093/cercor/bhm056
– ident: e_1_2_6_62_1
  doi: 10.1016/j.neuroscience.2006.07.019
– ident: e_1_2_6_3_1
  doi: 10.1016/0006-8993(96)00149-7
– ident: e_1_2_6_5_1
  doi: 10.1097/00001756-199812210-00019
– ident: e_1_2_6_11_1
  doi: 10.1371/journal.pbio.0030175
– ident: e_1_2_6_52_1
  doi: 10.1152/jn.1993.70.1.232
– ident: e_1_2_6_53_1
  doi: 10.1523/JNEUROSCI.23-29-09650.2003
– ident: e_1_2_6_22_1
  doi: 10.1152/jn.00536.2001
– ident: e_1_2_6_26_1
  doi: 10.1038/sj.bjp.0706020
– ident: e_1_2_6_6_1
  doi: 10.1126/science.1089268
– ident: e_1_2_6_21_1
  doi: 10.1016/S0306-4522(99)00521-7
– ident: e_1_2_6_23_1
  doi: 10.1016/0304-3940(94)11127-5
– ident: e_1_2_6_64_1
  doi: 10.1111/j.1460-9568.2008.06384.x
– ident: e_1_2_6_46_1
  doi: 10.1097/01.anes.0000267601.09764.e6
– ident: e_1_2_6_35_1
  doi: 10.1523/JNEUROSCI.18-19-07613.1998
– ident: e_1_2_6_63_1
  doi: 10.1046/j.1460-9568.2002.02086.x
– ident: e_1_2_6_19_1
  doi: 10.1371/journal.pone.0123636
– ident: e_1_2_6_20_1
  doi: 10.1523/JNEUROSCI.0362-10.2010
– ident: e_1_2_6_9_1
  doi: 10.1124/mol.111.073205
– ident: e_1_2_6_29_1
  doi: 10.1124/jpet.110.171058
– ident: e_1_2_6_65_1
  doi: 10.1007/s002329900059
– ident: e_1_2_6_15_1
  doi: 10.1523/JNEUROSCI.4883-13.2015
– ident: e_1_2_6_4_1
  doi: 10.1038/sj.emboj.7600515
– ident: e_1_2_6_25_1
  doi: 10.1523/JNEUROSCI.4866-06.2007
– ident: e_1_2_6_54_1
  doi: 10.1152/jn.1991.65.1.148
– ident: e_1_2_6_32_1
  doi: 10.1152/jn.00166.2006
– ident: e_1_2_6_31_1
  doi: 10.1016/S0166-2236(96)10070-9
– ident: e_1_2_6_37_1
  doi: 10.1002/hipo.10123
– ident: e_1_2_6_13_1
  doi: 10.1016/j.neuroscience.2016.03.052
– ident: e_1_2_6_45_1
  doi: 10.1038/nrn2402
– ident: e_1_2_6_8_1
  doi: 10.1113/jphysiol.2005.084590
– ident: e_1_2_6_49_1
  doi: 10.1152/jn.2000.84.5.2398
– ident: e_1_2_6_27_1
  doi: 10.1523/JNEUROSCI.21-10-03312.2001
– ident: e_1_2_6_42_1
  doi: 10.1111/ejn.12683
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1469-7580.2005.00446.x
– ident: e_1_2_6_67_1
  doi: 10.1097/j.pain.0000000000000263
– ident: e_1_2_6_16_1
  doi: 10.1523/JNEUROSCI.4305-09.2010
– ident: e_1_2_6_58_1
  doi: 10.1152/jn.1998.79.1.240
– ident: e_1_2_6_17_1
  doi: 10.1016/j.neuropharm.2010.03.016
– ident: e_1_2_6_39_1
  doi: 10.1021/bi981255g
– ident: e_1_2_6_57_1
  doi: 10.1523/JNEUROSCI.18-18-07118.1998
– ident: e_1_2_6_18_1
  doi: 10.1002/hup.2289
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1469-7793.1999.0571p.x
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1460-9568.2006.05136.x
– ident: e_1_2_6_12_1
  doi: 10.1523/JNEUROSCI.1362-12.2012
– ident: e_1_2_6_66_1
  doi: 10.1152/jn.1993.70.1.223
– ident: e_1_2_6_10_1
  doi: 10.1152/jn.1995.73.6.2553
– ident: e_1_2_6_28_1
  doi: 10.1002/hipo.20931
– ident: e_1_2_6_30_1
  doi: 10.1016/S0006-3495(99)77134-1
– ident: e_1_2_6_14_1
  doi: 10.1016/j.celrep.2017.01.011
– ident: e_1_2_6_7_1
  doi: 10.1371/journal.pone.0029384
– ident: e_1_2_6_48_1
  doi: 10.1021/jm800419w
– start-page: 247
  volume-title: The Rat Nervous System
  year: 1995
  ident: e_1_2_6_2_1
– ident: e_1_2_6_33_1
  doi: 10.1073/pnas.1311686110
– ident: e_1_2_6_56_1
  doi: 10.1007/BF00227110
– reference: 28786112 - J Physiol. 2017 Oct 1;595(19):6223
SSID ssj0013099
Score 2.3981209
Snippet Key points Pharmacological, molecular and genetic data indicate a prominent role of low‐voltage‐activated T‐type calcium channels (T‐channels) in the firing...
Pharmacological, molecular and genetic data indicate a prominent role of low‐voltage‐activated T‐type calcium channels (T‐channels) in the firing activity of...
Pharmacological, molecular and genetic data indicate a prominent role of low-voltage-activated T-type calcium channels (T-channels) in the firing activity of...
Key points Pharmacological, molecular and genetic data indicate a prominent role of low-voltage-activated T-type calcium channels (T-channels) in the firing...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6327
SubjectTerms Action Potentials
Animals
Antagonism
calcium
Calcium channels
Calcium channels (T-type)
Calcium channels (voltage-gated)
Calcium Channels, T-Type - metabolism
Cognitive ability
Depolarization
Excitability
Female
Firing pattern
Firing rate
Hippocampus
Hippocampus - metabolism
Hippocampus - physiology
Hyperpolarization
Interneurons
Long-Term Potentiation
low‐threshold‐activated
Male
Mice
Mice, Inbred C57BL
Neuroscience ‐ Cellular/Molecular
Rats
Rats, Sprague-Dawley
Rats, Wistar
Research Paper
Rodents
Subiculum
Synaptic plasticity
Title The role of T‐type calcium channels in the subiculum: to burst or not to burst?
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP274565
https://www.ncbi.nlm.nih.gov/pubmed/28744923
https://www.proquest.com/docview/1944271671
https://www.proquest.com/docview/1923745008
https://pubmed.ncbi.nlm.nih.gov/PMC5621493
Volume 595
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iyYuv9bG-iCB6qm6aNt14EfHJgqKywoKHkqQpLmorbnvQkz_B3-gvcZI-dF0F8VIomTRpZyb5kky_QWhDuBHAYqUcYXiGPMa4w7VqO6wVKSp9L_Js_pSzc3Z67XV6fq-MqjT_whT8EPWGm_EMO14bBxeyzEJCDNlA5wIWVABHYPgllBna_MMr9_MAocV5TRQe-KTknYWqO1XF4ZloBF6ORkl-Ra92-jmeQjdVx4uok7vtPJPb6uUbp-P_3mwaTZaoFO8XZjSDxnQyixr7CazIH57xJrZxonYDvoEuwbKwCUrEaYy7769vZhcXg6pVP3_A5kdiaH-A-wkGbIkHuSx2GHdxlmLQ4CDD6RNO0qy-35tD18dH3YNTp0zM4CjAL20HQIJkXJOYaMKFopEAP5YK1O4bxOi2FIBhTZVHRJubU2FQOwXlR3EsAyYYnUfjSZroRYQBX0hJfUKFJp4bBFxFgYgj6sZBBMJxE21VSgpVyVpukmfch8XqhYbV12qi9VrysWDq-EFmpdJzWPrqICTcg5YJCwg8oi4GLzNHJyLRaW5kXApPAMDURAuFWdSN2AwCUN5EwZDB1AKGwXu4JOnfWiZvAJ-wQoWaW9Yefu132O1cABJ120t_llxGE65BIDbucAWNZ0-5XgX8lMk16ylwPemRD4EfFkk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFH5iOZRLy9oOZTESKqfAOM4yLgeEEGg6LKLVIHFAimzHUUdAgpjk0J74CfzG_hKenaUMi4Q4Rn5ekvde_Pn5-TPAunBjhMVKOcLwDHlBwB2uVccJ2rFi0vdiz96fcnwSdM-83rl_Pgbb9VmYkh-iCbgZz7D_a-PgJiBdeblhG-id4ooK8cg4TNrtOYOIfrn_txDanDdU4aFPK-ZZrLtV1xydi54BzOd5ko_xq52ADj7BRT30Mu_kcrPI5ab6-4TV8Z3vNg0fK2BKdktLmoExnc7C3G6Ki_LrP-QbsamiNgY_Bz_RuIjJSyRZQvr_7u5NIJegttWguCbmLDEOYEgGKUF4SYaFLIOM30meEVTiMCfZLUmzvHnemYezg_3-Xtep7mZwFEKYjoM4QQZc04RqyoVisUBXlgo17xvQ6LYV4mHNlEdFh5uNYdQ8Q_3HSSLDQARsASbSLNVfgCDEkJL5lAlNPTcMuYpDkcTMTcIYhZMWbNRailRFXG7uz7iKygUMi-qv1YK1RvKmJOt4QWapVnRUueswotzDnmkQUmyiKUZHM7snItVZYWRchi0gZmrB59Iumk7sJQJY3oJwxGIaAUPiPVqSDn5bMm_En7hIxZob1iBeHXfU750iGHU7i2-WXIUP3f7xUXT04-TwK0y5BpDYNMQlmMhvC72McCqXK9ZtHgBJGRl2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIqFeKNACWwp1JURPaddx4qy5oApYlW2pFrSVKnGI_IpYtZtU3eQAJ34Cv5Ffwth50G2phDhGHj-SmYm_scefAV7K0CAs1jqQjmco4lwEwupBwPtGMxVHJvL3p3w85gcn0eg0Pm2yKt1ZmJofoltwc57h_9fOwS9M1ji5IxsYjTGgQjiyBHcjjrOkA0Sfwz87CH0hOqbwJKYN8SzW3WtrLk5FN_DlzTTJq_DVzz_DVfjSjrxOOznbrUq1q79fI3X8v1d7APcbWEr2azt6CHds_gjW9nMMyWffyCviE0X9CvwafELTIi4rkRQZmfz68dMt4xLUtZ5WM-JOEmP_czLNCYJLMq9UvcT4mpQFQRXOS1Jckrwou-c363AyfD95exA0NzMEGgHMIECUoLiwNKOWCqmZkejISqPeYwcZw75GNGyZjqgcCLctjHpnqH2TZSrhkrPHsJwXuX0KBAGGUiymTFoahUkitElkZliYJQaFsx7stEpKdUNb7m7POE_r8IWl7dfqwXYneVFTdfxFZrPVc9o46zylIsKeKU8oNtEVo5u5vROZ26JyMiHDFhAx9eBJbRZdJ_4KASzvQbJgMJ2Ao_BeLMmnXz2VN6JPDFGx5o63h1vHnU5GY4Si4WDjnyW34N743TA9-nB8-AxWQodGfA7iJiyXl5V9jliqVC-80_wG7JcYJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+T%E2%80%90type+calcium+channels+in+the+subiculum%3A+to+burst+or+not+to+burst%3F&rft.jtitle=The+Journal+of+physiology&rft.au=Joksimovic%2C+Srdjan+M.&rft.au=Eggan%2C+Pierce&rft.au=Izumi%2C+Yukitoshi&rft.au=Joksimovic%2C+Sonja+Lj&rft.date=2017-10-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=595&rft.issue=19&rft.spage=6327&rft.epage=6348&rft_id=info:doi/10.1113%2FJP274565&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_JP274565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon