Synergistic Interactions in Sequential Process Doping of Polymer/Single‐Walled Carbon Nanotube Nanocomposites for Enhanced n‐Type Thermoelectric Performance

This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1 or NDI‐T2), or an isoindigo (IID)‐based conjugated polymer (IID‐T2), with single‐walled carbon nanotubes (SWCNTs). This is followed by sequent...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 9; pp. e2306166 - n/a
Main Authors Lin, Po‐Shen, Lin, Jhih‐Min, Tung, Shih‐Huang, Higashihara, Tomoya, Liu, Cheng‐Liang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2024
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202306166

Cover

Abstract This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1 or NDI‐T2), or an isoindigo (IID)‐based conjugated polymer (IID‐T2), with single‐walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4‐(2,3‐dihydro‐1,3‐dimethyl‐1H‐benzimidazol‐2‐yl)‐N,N‐dimethylbenzenamine (N‐DMBI) to provide the nanocomposite with n‐type thermoelectric properties. Experiments in which the concentrations of the N‐DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p‐type to n‐type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N‐DMBI‐doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI‐T1/SWCNT exhibits the highest n‐type Seebeck coefficient and power factor of −57.7 µV K−1 and 240.6 µW m−1 K−2, respectively. However, because the undoped NDI‐T2/SWCNT exhibits a slightly higher p‐type performance, an integral p–n thermoelectric generator is fabricated using the doped and undoped NDI‐T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K. The chemical structures of various conjugated polymers affect the doping process in polymer/single‐walled carbon nanotube (SWCNT) nanocomposites with 4‐(2,3‐dihydro‐1,3‐dimethyl‐1H‐benzimidazol‐2‐yl)‐N,N‐dimethylbenzenamine (N‐DMBI). The successful doping outcomes are attributed to strong polymer‐dopant interaction, coupled with a moderate polymer‐SWCNT interaction . Under a temperature difference of 20 K, a p–n integrated thermoelectric generator with ten legs generates an output power of 27.2 nW.
AbstractList This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1 or NDI‐T2), or an isoindigo (IID)‐based conjugated polymer (IID‐T2), with single‐walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4‐(2,3‐dihydro‐1,3‐dimethyl‐1H‐benzimidazol‐2‐yl)‐N,N‐dimethylbenzenamine (N‐DMBI) to provide the nanocomposite with n‐type thermoelectric properties. Experiments in which the concentrations of the N‐DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p‐type to n‐type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N‐DMBI‐doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI‐T1/SWCNT exhibits the highest n‐type Seebeck coefficient and power factor of −57.7 µV K−1 and 240.6 µW m−1 K−2, respectively. However, because the undoped NDI‐T2/SWCNT exhibits a slightly higher p‐type performance, an integral p–n thermoelectric generator is fabricated using the doped and undoped NDI‐T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K. The chemical structures of various conjugated polymers affect the doping process in polymer/single‐walled carbon nanotube (SWCNT) nanocomposites with 4‐(2,3‐dihydro‐1,3‐dimethyl‐1H‐benzimidazol‐2‐yl)‐N,N‐dimethylbenzenamine (N‐DMBI). The successful doping outcomes are attributed to strong polymer‐dopant interaction, coupled with a moderate polymer‐SWCNT interaction . Under a temperature difference of 20 K, a p–n integrated thermoelectric generator with ten legs generates an output power of 27.2 nW.
This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene-diimide (NDI)-based conjugated polymer (NDI-T1 or NDI-T2), or an isoindigo (IID)-based conjugated polymer (IID-T2), with single-walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) to provide the nanocomposite with n-type thermoelectric properties. Experiments in which the concentrations of the N-DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p-type to n-type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N-DMBI-doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI-T1/SWCNT exhibits the highest n-type Seebeck coefficient and power factor of -57.7 µV K-1 and 240.6 µW m-1 K-2 , respectively. However, because the undoped NDI-T2/SWCNT exhibits a slightly higher p-type performance, an integral p-n thermoelectric generator is fabricated using the doped and undoped NDI-T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K.This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene-diimide (NDI)-based conjugated polymer (NDI-T1 or NDI-T2), or an isoindigo (IID)-based conjugated polymer (IID-T2), with single-walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) to provide the nanocomposite with n-type thermoelectric properties. Experiments in which the concentrations of the N-DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p-type to n-type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N-DMBI-doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI-T1/SWCNT exhibits the highest n-type Seebeck coefficient and power factor of -57.7 µV K-1 and 240.6 µW m-1 K-2 , respectively. However, because the undoped NDI-T2/SWCNT exhibits a slightly higher p-type performance, an integral p-n thermoelectric generator is fabricated using the doped and undoped NDI-T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K.
This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1 or NDI‐T2), or an isoindigo (IID)‐based conjugated polymer (IID‐T2), with single‐walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4‐(2,3‐dihydro‐1,3‐dimethyl‐1 H ‐benzimidazol‐2‐yl)‐ N , N ‐dimethylbenzenamine (N‐DMBI) to provide the nanocomposite with n‐type thermoelectric properties. Experiments in which the concentrations of the N‐DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p‐type to n‐type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N‐DMBI‐doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI‐T1/SWCNT exhibits the highest n‐type Seebeck coefficient and power factor of −57.7 µV K −1 and 240.6 µW m −1 K −2 , respectively. However, because the undoped NDI‐T2/SWCNT exhibits a slightly higher p‐type performance, an integral p–n thermoelectric generator is fabricated using the doped and undoped NDI‐T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K.
This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene-diimide (NDI)-based conjugated polymer (NDI-T1 or NDI-T2), or an isoindigo (IID)-based conjugated polymer (IID-T2), with single-walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) to provide the nanocomposite with n-type thermoelectric properties. Experiments in which the concentrations of the N-DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p-type to n-type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N-DMBI-doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI-T1/SWCNT exhibits the highest n-type Seebeck coefficient and power factor of -57.7 µV K and 240.6 µW m K , respectively. However, because the undoped NDI-T2/SWCNT exhibits a slightly higher p-type performance, an integral p-n thermoelectric generator is fabricated using the doped and undoped NDI-T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K.
This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1 or NDI‐T2), or an isoindigo (IID)‐based conjugated polymer (IID‐T2), with single‐walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4‐(2,3‐dihydro‐1,3‐dimethyl‐1H‐benzimidazol‐2‐yl)‐N,N‐dimethylbenzenamine (N‐DMBI) to provide the nanocomposite with n‐type thermoelectric properties. Experiments in which the concentrations of the N‐DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p‐type to n‐type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N‐DMBI‐doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI‐T1/SWCNT exhibits the highest n‐type Seebeck coefficient and power factor of −57.7 µV K−1 and 240.6 µW m−1 K−2, respectively. However, because the undoped NDI‐T2/SWCNT exhibits a slightly higher p‐type performance, an integral p–n thermoelectric generator is fabricated using the doped and undoped NDI‐T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K.
Author Tung, Shih‐Huang
Liu, Cheng‐Liang
Lin, Jhih‐Min
Lin, Po‐Shen
Higashihara, Tomoya
Author_xml – sequence: 1
  givenname: Po‐Shen
  orcidid: 0000-0001-7141-1315
  surname: Lin
  fullname: Lin, Po‐Shen
  organization: National Taiwan University
– sequence: 2
  givenname: Jhih‐Min
  surname: Lin
  fullname: Lin, Jhih‐Min
  organization: National Synchrotron Radiation Research Center
– sequence: 3
  givenname: Shih‐Huang
  orcidid: 0000-0002-6787-4955
  surname: Tung
  fullname: Tung, Shih‐Huang
  organization: National Taiwan University
– sequence: 4
  givenname: Tomoya
  orcidid: 0000-0003-2115-1281
  surname: Higashihara
  fullname: Higashihara, Tomoya
  email: thigashihara@yz.yamagata-u.ac.jp
  organization: Yamagata University
– sequence: 5
  givenname: Cheng‐Liang
  orcidid: 0000-0002-8778-5386
  surname: Liu
  fullname: Liu, Cheng‐Liang
  email: liucl@ntu.edu.tw
  organization: National Taiwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37847895$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9uFCEUh4mpsX_01ktD4o03uwWGgZlLs621yaqb7BovJwxzpqVhYAUmZu58hD6Cz-aTyLp1TZoYrziE7-Mc-J2iI-cdIPSSkjklhJ3Hwdo5I6wgggrxBJ1QQYuZqFh9dKgpOUanMd4RUlDG5TN0XMiKy6ouT9CP9eQg3JiYjMbXLkFQOhnvIjYOr-HrCC4ZZfEqeA0x4gu_Ne4G-x6vvJ0GCOfrvLfw8_v9F2UtdHihQusd_qicT2MLvwvth62PJkHEvQ_40t0qpzPrsraZtoA3txAGDxZ0CnmQFYTMDTvoOXraKxvhxcN6hj6_u9ws3s-Wn66uF2-XM82LWsw0qwvF-xq4LEjLoGxBQkWh76uy6wjviJAkHwpNuW5rXdUcKAjR676EkoviDL3Z37sNPr86pmYwUYO1yoEfY8MqWUnKpCwz-voReufH4PJ0TZ6i4IzUTGbq1QM1tgN0zTaYQYWp-fP3GZjvAR18jAH6A0JJswu32YXbHMLNAn8kaJPULq0UlLH_1uq99s1YmP7TpFl_WC7_ur8AhFe-xw
CitedBy_id crossref_primary_10_1080_25740881_2024_2400665
crossref_primary_10_1002_smtd_202301387
crossref_primary_10_1039_D4TA07611G
crossref_primary_10_1177_20412479241266953
crossref_primary_10_1002_adfm_202406165
crossref_primary_10_1002_smll_202306125
crossref_primary_10_1039_D4CS01045K
crossref_primary_10_3390_s24092946
crossref_primary_10_1109_TED_2024_3415016
Cites_doi 10.1002/aelm.202100557
10.1016/j.pmatsci.2021.100840
10.1039/C6TA05120K
10.1021/ja111066r
10.1039/c2ee22838f
10.1038/s41467-021-25208-z
10.1016/j.nanoen.2022.107678
10.1021/nl048055c
10.1039/D0CS00204F
10.1021/acsanm.9b01174
10.1002/aelm.201800943
10.1126/science.290.5496.1552
10.1002/adma.201704386
10.1021/acsami.9b16012
10.1021/acs.chemrev.1c00218
10.1038/nmat976
10.1021/acsami.0c16740
10.1039/D2TA08131H
10.1021/ol801918y
10.1038/ncomms14886
10.1021/nn200076r
10.1016/j.nanoen.2021.106774
10.3389/fchem.2020.00394
10.1002/aelm.202201293
10.1016/j.coco.2021.100883
10.1016/j.pmatsci.2022.101003
10.1002/smll.202104922
10.1039/D0TA03247F
10.1021/acsaelm.1c00547
10.1143/APEX.5.125102
10.1021/nn202868a
10.1021/acsami.9b21527
10.1016/j.cej.2023.141366
10.1016/j.cej.2019.122817
10.1063/1.1467702
10.1002/anie.202216049
10.1016/j.nanoen.2019.104265
10.1016/j.cej.2022.135526
10.1021/jacs.5b00945
10.1002/adma.202102990
10.1038/s41893-022-01003-6
10.1016/j.mtphys.2021.100402
10.1002/adma.202110236
10.1016/j.progpolymsci.2022.101548
10.1002/adfm.202208813
10.1021/acsami.2c21347
10.1007/s10971-019-04973-w
10.1039/D1MA00871D
10.1088/0957-4484/16/8/008
10.1039/D0TA12166E
10.1002/aelm.202201310
10.1038/s41598-021-85248-9
10.1002/adfm.202003092
10.1002/cssc.202102420
10.1039/D0TA01087A
10.1002/adma.202208272
10.1021/acs.chemmater.0c00229
10.1016/j.apenergy.2019.114370
10.1002/adfm.202210770
10.1002/adfm.202207886
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202306166
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 37847895
10_1002_smll_202306166
SMLL202306166
Genre article
Journal Article
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: 111‐2628‐E‐002‐014; 112‐2628‐E‐002‐013; 108‐2926‐I‐002‐002‐MY4
– fundername: National Taiwan Normal University
  funderid: NTU112L7856
– fundername: Japan Society for the Promotion of Science
  funderid: 21H02009; 21KK0251
– fundername: Ministry of Education, Taiwan
  funderid: 112L9006
– fundername: National Science and Technology Council
  grantid: 111-2628-E-002-014
– fundername: Japan Society for the Promotion of Science
  grantid: 21KK0251
– fundername: National Science and Technology Council
  grantid: 108-2926-I-002-002-MY4
– fundername: National Taiwan Normal University
  grantid: NTU112L7856
– fundername: Japan Society for the Promotion of Science
  grantid: 21H02009
– fundername: Ministry of Education, Taiwan
  grantid: 112L9006
– fundername: National Science and Technology Council
  grantid: 112-2628-E-002-013
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-c4396-c293a4f9e4730b2e5be7e81eff85dd04d0670e476c14cb9c894e1e66fcf5e5463
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Sep 04 23:00:06 EDT 2025
Fri Jul 25 12:05:59 EDT 2025
Thu Apr 03 07:00:12 EDT 2025
Tue Jul 01 02:54:45 EDT 2025
Thu Apr 24 23:10:39 EDT 2025
Wed Jan 22 16:14:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords thermoelectric
carbon nanotubes
nanocomposites
n-type doping
conjugated polymers
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4396-c293a4f9e4730b2e5be7e81eff85dd04d0670e476c14cb9c894e1e66fcf5e5463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8778-5386
0000-0001-7141-1315
0000-0003-2115-1281
0000-0002-6787-4955
PMID 37847895
PQID 2933420927
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_2878712775
proquest_journals_2933420927
pubmed_primary_37847895
crossref_primary_10_1002_smll_202306166
crossref_citationtrail_10_1002_smll_202306166
wiley_primary_10_1002_smll_202306166_SMLL202306166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 1, 2024
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 27
2017; 8
2019; 90
2023; 35
2023; 6
2019; 11
2023; 9
2020; 12
2021; 121
2000; 290
2020; 8
2023; 62
2021; 33
2023; 131
2015; 137
2023; 458
2003; 2
2020; 49
2018; 30
2022; 32
2022; 33
2022; 129
2021; 9
2021; 7
2023; 11
2021; 3
2019; 5
2015; 3
2020; 262
2022; 92
2020; 382
2023; 15
2019; 2
2008; 10
2020; 32
2002; 80
2022; 438
2011; 5
2011; 133
2016; 4
2021; 13
2021; 12
2021; 11
2022; 3
2020; 30
2021; 18
2005; 5
2022; 15
2020; 67
2022; 10
2005; 16
2012; 5
2022; 18
2022; 102
e_1_2_8_28_1
e_1_2_8_24_1
Tripathi A. (e_1_2_8_44_1) 2022; 10
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Puchades I. (e_1_2_8_56_1) 2015; 3
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 33
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 18
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 458
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 7885
  year: 2011
  publication-title: ACS Nano
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 6909
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 80
  start-page: 2773
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 129
  year: 2022
  publication-title: Prog. Polym. Sci.
– volume: 382
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 1048
  year: 2005
  publication-title: Nanotechnology
– volume: 6
  start-page: 180
  year: 2023
  publication-title: Nat. Sustainability
– volume: 121
  year: 2021
  publication-title: Prog. Mater. Sci.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 4931
  year: 2021
  publication-title: Nat. Commun.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 137
  start-page: 6979
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 6099
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 102
  year: 2022
  publication-title: Nano Energy
– volume: 5
  start-page: 3714
  year: 2011
  publication-title: ACS Nano
– volume: 15
  start-page: 9873
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2023
  publication-title: Adv. Electron. Mater.
– volume: 27
  year: 2021
  publication-title: Compos. Commun.
– volume: 438
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 131
  year: 2023
  publication-title: Prog. Mater. Sci.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 373
  year: 2022
  publication-title: Mater. Adv.
– volume: 8
  start-page: 8323
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 49
  start-page: 7210
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 32
  start-page: 2688
  year: 2020
  publication-title: Chem. Mater.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 2
  start-page: 683
  year: 2003
  publication-title: Nat. Mater.
– volume: 5
  start-page: 555
  year: 2005
  publication-title: Nano Lett.
– volume: 8
  start-page: 394
  year: 2020
  publication-title: Front. Chem.
– volume: 11
  start-page: 5758
  year: 2021
  publication-title: Sci. Rep.
– volume: 2
  start-page: 4703
  year: 2019
  publication-title: ACS Appl. Nano Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 262
  year: 2020
  publication-title: Appl. Energy
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 5149
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 92
  year: 2022
  publication-title: Nano Energy
– volume: 3
  start-page: 3641
  year: 2021
  publication-title: ACS Appl. Electron. Mater.
– volume: 290
  start-page: 1552
  year: 2000
  publication-title: Science
– volume: 5
  start-page: 9481
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 5333
  year: 2008
  publication-title: Org. Lett.
– volume: 5
  year: 2012
  publication-title: Appl. Phys. Express
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem.
– volume: 90
  start-page: 498
  year: 2019
  publication-title: J. Sol‐Gel Sci. Technol.
– volume: 13
  start-page: 411
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 6114
  year: 2022
  publication-title: J. Mater. Chem.
– volume: 15
  year: 2022
  publication-title: ChemSusChem
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_8_53_1
  doi: 10.1002/aelm.202100557
– ident: e_1_2_8_4_1
  doi: 10.1016/j.pmatsci.2021.100840
– volume: 10
  start-page: 6114
  year: 2022
  ident: e_1_2_8_44_1
  publication-title: J. Mater. Chem.
– ident: e_1_2_8_33_1
  doi: 10.1039/C6TA05120K
– ident: e_1_2_8_62_1
  doi: 10.1021/ja111066r
– ident: e_1_2_8_34_1
  doi: 10.1039/c2ee22838f
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-021-25208-z
– ident: e_1_2_8_13_1
  doi: 10.1016/j.nanoen.2022.107678
– ident: e_1_2_8_32_1
  doi: 10.1021/nl048055c
– ident: e_1_2_8_46_1
  doi: 10.1039/D0CS00204F
– ident: e_1_2_8_60_1
  doi: 10.1021/acsanm.9b01174
– ident: e_1_2_8_24_1
  doi: 10.1002/aelm.201800943
– ident: e_1_2_8_57_1
  doi: 10.1126/science.290.5496.1552
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.201704386
– ident: e_1_2_8_22_1
  doi: 10.1021/acsami.9b16012
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.chemrev.1c00218
– ident: e_1_2_8_48_1
  doi: 10.1038/nmat976
– volume: 3
  year: 2015
  ident: e_1_2_8_56_1
  publication-title: J. Mater. Chem.
– ident: e_1_2_8_42_1
  doi: 10.1021/acsami.0c16740
– ident: e_1_2_8_37_1
  doi: 10.1039/D2TA08131H
– ident: e_1_2_8_61_1
  doi: 10.1021/ol801918y
– ident: e_1_2_8_17_1
  doi: 10.1038/ncomms14886
– ident: e_1_2_8_31_1
  doi: 10.1021/nn200076r
– ident: e_1_2_8_14_1
  doi: 10.1016/j.nanoen.2021.106774
– ident: e_1_2_8_50_1
  doi: 10.3389/fchem.2020.00394
– ident: e_1_2_8_58_1
  doi: 10.1002/aelm.202201293
– ident: e_1_2_8_52_1
  doi: 10.1016/j.coco.2021.100883
– ident: e_1_2_8_1_1
  doi: 10.1016/j.pmatsci.2022.101003
– ident: e_1_2_8_3_1
  doi: 10.1002/smll.202104922
– ident: e_1_2_8_36_1
  doi: 10.1039/D0TA03247F
– ident: e_1_2_8_55_1
  doi: 10.1021/acsaelm.1c00547
– ident: e_1_2_8_49_1
  doi: 10.1143/APEX.5.125102
– ident: e_1_2_8_35_1
  doi: 10.1021/nn202868a
– ident: e_1_2_8_38_1
  doi: 10.1021/acsami.9b21527
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cej.2023.141366
– ident: e_1_2_8_41_1
  doi: 10.1016/j.cej.2019.122817
– ident: e_1_2_8_26_1
  doi: 10.1063/1.1467702
– ident: e_1_2_8_45_1
  doi: 10.1002/anie.202216049
– ident: e_1_2_8_8_1
  doi: 10.1016/j.nanoen.2019.104265
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cej.2022.135526
– ident: e_1_2_8_39_1
  doi: 10.1021/jacs.5b00945
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.202102990
– ident: e_1_2_8_11_1
  doi: 10.1038/s41893-022-01003-6
– ident: e_1_2_8_12_1
  doi: 10.1016/j.mtphys.2021.100402
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.202110236
– ident: e_1_2_8_2_1
  doi: 10.1016/j.progpolymsci.2022.101548
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.202208813
– ident: e_1_2_8_59_1
  doi: 10.1021/acsami.2c21347
– ident: e_1_2_8_51_1
  doi: 10.1007/s10971-019-04973-w
– ident: e_1_2_8_28_1
  doi: 10.1039/D1MA00871D
– ident: e_1_2_8_27_1
  doi: 10.1088/0957-4484/16/8/008
– ident: e_1_2_8_47_1
  doi: 10.1039/D0TA12166E
– ident: e_1_2_8_18_1
  doi: 10.1002/aelm.202201310
– ident: e_1_2_8_29_1
  doi: 10.1038/s41598-021-85248-9
– ident: e_1_2_8_54_1
  doi: 10.1002/adfm.202003092
– ident: e_1_2_8_25_1
  doi: 10.1002/cssc.202102420
– ident: e_1_2_8_40_1
  doi: 10.1039/D0TA01087A
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.202208272
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.chemmater.0c00229
– ident: e_1_2_8_7_1
  doi: 10.1016/j.apenergy.2019.114370
– ident: e_1_2_8_20_1
  doi: 10.1002/adfm.202210770
– ident: e_1_2_8_43_1
  doi: 10.1002/adfm.202207886
SSID ssj0031247
Score 2.5091136
Snippet This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1...
This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene-diimide (NDI)-based conjugated polymer (NDI-T1...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2306166
SubjectTerms carbon nanotubes
conjugated polymers
Diimide
Doping
Nanocomposites
Naphthalene
n‐type doping
Polymers
Power factor
Seebeck effect
Single wall carbon nanotubes
thermoelectric
Thermoelectric generators
Thermoelectricity
Title Synergistic Interactions in Sequential Process Doping of Polymer/Single‐Walled Carbon Nanotube Nanocomposites for Enhanced n‐Type Thermoelectric Performance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306166
https://www.ncbi.nlm.nih.gov/pubmed/37847895
https://www.proquest.com/docview/2933420927
https://www.proquest.com/docview/2878712775
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT3Dg_2dpQUZC4uRunDhOckT9UYVaVLFU6i2KnbFAzSZos3sopz4Cj8Cz8STM2Nm0C0JIcItlW7GdmfEXe-Ybxl4byOj2KBVVHmVC6boQVWVAFJHT4HQNUlKg8Ml7fXSm3p2n5zei-AM_xHjgRprh7TUpeGX66TVpaD9v6OqAILTUxLktE03k-fsfRv6oBDcvn10F9yxBxFtr1sYonm5239yVfoOam8jVbz2H91i1HnTwOLnYXS3Nrv36C5_j_8zqPrs74FL-NgjSA3YL2ofszg22wkfs--ySAgU9szP3J4khKKLnn1s-8y7ZaC4aPsQe8H0fi8U7x0-75nIOi-kMyw38uPpGx_dQ871qYbqWo4XvlisD_oF83MmRDHqOeJoftJ-8jwJvsRv9NHMU7MW8C-l7cCCn15EPj9nZ4cHHvSMxJHgQFnGQFhaxRqVcAQrtjIkhRcmBXIJzeVrXkaopiAgrtZXKmsLmhQIJWjvrUiAe_ydsq-1aeMY45CbJapnUxikVZ5FBWBRpl1rEO1hlJ0ysP3BpB_ZzSsLRlIG3OS5p5ctx5Sfszdj-S-D9-GPLnbW8lIP-9yVOLFFxVMTZhL0aq1Fz6TqmaqFbYZscjaWMsyydsKdBzsZXJRmihrzAmthLy1_GUM5Ojo_H0vN_6bTNbuOzCu51O2xruVjBC8RbS_PS69RPF9Entg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD78dCASMhcXI3D8dJjqi0WmC3qthW4hbFzlggsgnax6Gc-An8BH4bv4QZO0lZEEKCW5KxFduZGX-xZz4z9kxDSrtHiSizIBVSVbkoSw0iD6wCqyoIQ0oUnh2pyal8_S7powkpF8bzQwwLbmQZzl-TgdOC9PicNXS1qGnvgDB0qNRFdslt0hEuejswSMU4fbnzVXDWEkS91fM2BtF4u_72vPQb2NzGrm7yObzOdN9sH3PycW-z1nvm8y-Mjv_VrxvsWgdN-QuvSzfZBWhusas_ERbeZt_mZ5Qr6MiduVtM9HkRK_6h4XMXlY0eo-Zd-gF_6dKxeGv5cVufLWA5nuN9Dd-_fKUVfKj4frnUbcPRybfrjQZ3QWHuFEsGK46Qmh80712YAm-wGv03c9Tt5aL1J_hgQ47Pkx_usNPDg5P9iejOeBAGoZASBuFGKW0OEl2NjiBB5YEsBGuzpKoCWVEeEQqVCaXRuclyCSEoZY1NgKj877Kdpm3gPuOQ6TitwrjSVsooDTQio0DZxCDkQZEZMdF_4cJ0BOh0DkddeOrmqKCRL4aRH7HnQ_lPnvrjjyV3e4UpOhewKrBjsYyCPEpH7OkgRuOlHZmygXaDZTL0l2GUpsmI3fOKNrwqThE4ZDlKIqcuf2lDMZ9Np8Pdg3-p9IRdnpzMpsX01dGbh-wKPpc-2m6X7ayXG3iE8GutHzsD-wF7ACvU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSAgO_BcWChgJiVO6-XGc5IjargpsqxVLpd6i2B4LRDap9udQTjwCj8Cz8STM2Nm0C0JIcEsytmI745kv9sxnxl4qyGj3KA2qPMwCIU0RVJWCoAitBCsNRBElCh8dy8MT8fY0Pb2Uxe_5IfoFN5oZzl7TBD8zdnhBGrqY1bR1QBA6kvIquyYk-kqCRe97AqkEvZc7XgWdVkDMW2vaxjAebtbfdEu_Yc1N6Op8z-g2q9at9iEnn3dXS7Wrv_xC6Pg_3brDbnXAlL_2mnSXXYHmHrt5ia7wPvs-PadMQUftzN1Sos-KWPBPDZ-6mGy0FzXvkg_4vkvG4q3lk7Y-n8F8OMX7Gn58_Ubr92D4XjVXbcPRxLfLlQJ3QUHuFEkGC46Amh80H12QAm-wGv01c9Ts-az15_dgQyYXqQ8P2Mno4MPeYdCd8BBoBEIy0Ag2KmELEGhoVAwpqg7kEVibp8aEwlAWEQqljoRWhc4LARFIabVNgYj8t9lW0zbwiHHIVZKZKDHKChFnoUJcFEqbagQ8KNIDFqw_cKk7-nM6haMuPXFzXNLIl_3ID9irvvyZJ_74Y8mdtb6UnQFYlNixRMRhEWcD9qIX49Sl_ZiqgXaFZXK0llGcZemAPfR61r8qyRA25AVKYqctf2lDOT0aj_u7x_9S6Tm7PtkfleM3x--esBv4WPhQux22tZyv4Clir6V65qbXT9zpKoM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Interactions+in+Sequential+Process+Doping+of+Polymer%2FSingle-Walled+Carbon+Nanotube+Nanocomposites+for+Enhanced+n-Type+Thermoelectric+Performance&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lin%2C+Po-Shen&rft.au=Lin%2C+Jhih-Min&rft.au=Tung%2C+Shih-Huang&rft.au=Higashihara%2C+Tomoya&rft.date=2024-03-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=9&rft.spage=e2306166&rft_id=info:doi/10.1002%2Fsmll.202306166&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon