Synergistic Interactions in Sequential Process Doping of Polymer/Single‐Walled Carbon Nanotube Nanocomposites for Enhanced n‐Type Thermoelectric Performance
This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1 or NDI‐T2), or an isoindigo (IID)‐based conjugated polymer (IID‐T2), with single‐walled carbon nanotubes (SWCNTs). This is followed by sequent...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 9; pp. e2306166 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202306166 |
Cover
Abstract | This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1 or NDI‐T2), or an isoindigo (IID)‐based conjugated polymer (IID‐T2), with single‐walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4‐(2,3‐dihydro‐1,3‐dimethyl‐1H‐benzimidazol‐2‐yl)‐N,N‐dimethylbenzenamine (N‐DMBI) to provide the nanocomposite with n‐type thermoelectric properties. Experiments in which the concentrations of the N‐DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p‐type to n‐type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N‐DMBI‐doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI‐T1/SWCNT exhibits the highest n‐type Seebeck coefficient and power factor of −57.7 µV K−1 and 240.6 µW m−1 K−2, respectively. However, because the undoped NDI‐T2/SWCNT exhibits a slightly higher p‐type performance, an integral p–n thermoelectric generator is fabricated using the doped and undoped NDI‐T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K.
The chemical structures of various conjugated polymers affect the doping process in polymer/single‐walled carbon nanotube (SWCNT) nanocomposites with 4‐(2,3‐dihydro‐1,3‐dimethyl‐1H‐benzimidazol‐2‐yl)‐N,N‐dimethylbenzenamine (N‐DMBI). The successful doping outcomes are attributed to strong polymer‐dopant interaction, coupled with a moderate polymer‐SWCNT interaction . Under a temperature difference of 20 K, a p–n integrated thermoelectric generator with ten legs generates an output power of 27.2 nW. |
---|---|
AbstractList | This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1 or NDI‐T2), or an isoindigo (IID)‐based conjugated polymer (IID‐T2), with single‐walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4‐(2,3‐dihydro‐1,3‐dimethyl‐1H‐benzimidazol‐2‐yl)‐N,N‐dimethylbenzenamine (N‐DMBI) to provide the nanocomposite with n‐type thermoelectric properties. Experiments in which the concentrations of the N‐DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p‐type to n‐type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N‐DMBI‐doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI‐T1/SWCNT exhibits the highest n‐type Seebeck coefficient and power factor of −57.7 µV K−1 and 240.6 µW m−1 K−2, respectively. However, because the undoped NDI‐T2/SWCNT exhibits a slightly higher p‐type performance, an integral p–n thermoelectric generator is fabricated using the doped and undoped NDI‐T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K.
The chemical structures of various conjugated polymers affect the doping process in polymer/single‐walled carbon nanotube (SWCNT) nanocomposites with 4‐(2,3‐dihydro‐1,3‐dimethyl‐1H‐benzimidazol‐2‐yl)‐N,N‐dimethylbenzenamine (N‐DMBI). The successful doping outcomes are attributed to strong polymer‐dopant interaction, coupled with a moderate polymer‐SWCNT interaction . Under a temperature difference of 20 K, a p–n integrated thermoelectric generator with ten legs generates an output power of 27.2 nW. This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene-diimide (NDI)-based conjugated polymer (NDI-T1 or NDI-T2), or an isoindigo (IID)-based conjugated polymer (IID-T2), with single-walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) to provide the nanocomposite with n-type thermoelectric properties. Experiments in which the concentrations of the N-DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p-type to n-type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N-DMBI-doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI-T1/SWCNT exhibits the highest n-type Seebeck coefficient and power factor of -57.7 µV K-1 and 240.6 µW m-1 K-2 , respectively. However, because the undoped NDI-T2/SWCNT exhibits a slightly higher p-type performance, an integral p-n thermoelectric generator is fabricated using the doped and undoped NDI-T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K.This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene-diimide (NDI)-based conjugated polymer (NDI-T1 or NDI-T2), or an isoindigo (IID)-based conjugated polymer (IID-T2), with single-walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) to provide the nanocomposite with n-type thermoelectric properties. Experiments in which the concentrations of the N-DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p-type to n-type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N-DMBI-doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI-T1/SWCNT exhibits the highest n-type Seebeck coefficient and power factor of -57.7 µV K-1 and 240.6 µW m-1 K-2 , respectively. However, because the undoped NDI-T2/SWCNT exhibits a slightly higher p-type performance, an integral p-n thermoelectric generator is fabricated using the doped and undoped NDI-T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K. This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1 or NDI‐T2), or an isoindigo (IID)‐based conjugated polymer (IID‐T2), with single‐walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4‐(2,3‐dihydro‐1,3‐dimethyl‐1 H ‐benzimidazol‐2‐yl)‐ N , N ‐dimethylbenzenamine (N‐DMBI) to provide the nanocomposite with n‐type thermoelectric properties. Experiments in which the concentrations of the N‐DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p‐type to n‐type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N‐DMBI‐doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI‐T1/SWCNT exhibits the highest n‐type Seebeck coefficient and power factor of −57.7 µV K −1 and 240.6 µW m −1 K −2 , respectively. However, because the undoped NDI‐T2/SWCNT exhibits a slightly higher p‐type performance, an integral p–n thermoelectric generator is fabricated using the doped and undoped NDI‐T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K. This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene-diimide (NDI)-based conjugated polymer (NDI-T1 or NDI-T2), or an isoindigo (IID)-based conjugated polymer (IID-T2), with single-walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) to provide the nanocomposite with n-type thermoelectric properties. Experiments in which the concentrations of the N-DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p-type to n-type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N-DMBI-doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI-T1/SWCNT exhibits the highest n-type Seebeck coefficient and power factor of -57.7 µV K and 240.6 µW m K , respectively. However, because the undoped NDI-T2/SWCNT exhibits a slightly higher p-type performance, an integral p-n thermoelectric generator is fabricated using the doped and undoped NDI-T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K. This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1 or NDI‐T2), or an isoindigo (IID)‐based conjugated polymer (IID‐T2), with single‐walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4‐(2,3‐dihydro‐1,3‐dimethyl‐1H‐benzimidazol‐2‐yl)‐N,N‐dimethylbenzenamine (N‐DMBI) to provide the nanocomposite with n‐type thermoelectric properties. Experiments in which the concentrations of the N‐DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p‐type to n‐type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N‐DMBI‐doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI‐T1/SWCNT exhibits the highest n‐type Seebeck coefficient and power factor of −57.7 µV K−1 and 240.6 µW m−1 K−2, respectively. However, because the undoped NDI‐T2/SWCNT exhibits a slightly higher p‐type performance, an integral p–n thermoelectric generator is fabricated using the doped and undoped NDI‐T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K. |
Author | Tung, Shih‐Huang Liu, Cheng‐Liang Lin, Jhih‐Min Lin, Po‐Shen Higashihara, Tomoya |
Author_xml | – sequence: 1 givenname: Po‐Shen orcidid: 0000-0001-7141-1315 surname: Lin fullname: Lin, Po‐Shen organization: National Taiwan University – sequence: 2 givenname: Jhih‐Min surname: Lin fullname: Lin, Jhih‐Min organization: National Synchrotron Radiation Research Center – sequence: 3 givenname: Shih‐Huang orcidid: 0000-0002-6787-4955 surname: Tung fullname: Tung, Shih‐Huang organization: National Taiwan University – sequence: 4 givenname: Tomoya orcidid: 0000-0003-2115-1281 surname: Higashihara fullname: Higashihara, Tomoya email: thigashihara@yz.yamagata-u.ac.jp organization: Yamagata University – sequence: 5 givenname: Cheng‐Liang orcidid: 0000-0002-8778-5386 surname: Liu fullname: Liu, Cheng‐Liang email: liucl@ntu.edu.tw organization: National Taiwan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37847895$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd9uFCEUh4mpsX_01ktD4o03uwWGgZlLs621yaqb7BovJwxzpqVhYAUmZu58hD6Cz-aTyLp1TZoYrziE7-Mc-J2iI-cdIPSSkjklhJ3Hwdo5I6wgggrxBJ1QQYuZqFh9dKgpOUanMd4RUlDG5TN0XMiKy6ouT9CP9eQg3JiYjMbXLkFQOhnvIjYOr-HrCC4ZZfEqeA0x4gu_Ne4G-x6vvJ0GCOfrvLfw8_v9F2UtdHihQusd_qicT2MLvwvth62PJkHEvQ_40t0qpzPrsraZtoA3txAGDxZ0CnmQFYTMDTvoOXraKxvhxcN6hj6_u9ws3s-Wn66uF2-XM82LWsw0qwvF-xq4LEjLoGxBQkWh76uy6wjviJAkHwpNuW5rXdUcKAjR676EkoviDL3Z37sNPr86pmYwUYO1yoEfY8MqWUnKpCwz-voReufH4PJ0TZ6i4IzUTGbq1QM1tgN0zTaYQYWp-fP3GZjvAR18jAH6A0JJswu32YXbHMLNAn8kaJPULq0UlLH_1uq99s1YmP7TpFl_WC7_ur8AhFe-xw |
CitedBy_id | crossref_primary_10_1080_25740881_2024_2400665 crossref_primary_10_1002_smtd_202301387 crossref_primary_10_1039_D4TA07611G crossref_primary_10_1177_20412479241266953 crossref_primary_10_1002_adfm_202406165 crossref_primary_10_1002_smll_202306125 crossref_primary_10_1039_D4CS01045K crossref_primary_10_3390_s24092946 crossref_primary_10_1109_TED_2024_3415016 |
Cites_doi | 10.1002/aelm.202100557 10.1016/j.pmatsci.2021.100840 10.1039/C6TA05120K 10.1021/ja111066r 10.1039/c2ee22838f 10.1038/s41467-021-25208-z 10.1016/j.nanoen.2022.107678 10.1021/nl048055c 10.1039/D0CS00204F 10.1021/acsanm.9b01174 10.1002/aelm.201800943 10.1126/science.290.5496.1552 10.1002/adma.201704386 10.1021/acsami.9b16012 10.1021/acs.chemrev.1c00218 10.1038/nmat976 10.1021/acsami.0c16740 10.1039/D2TA08131H 10.1021/ol801918y 10.1038/ncomms14886 10.1021/nn200076r 10.1016/j.nanoen.2021.106774 10.3389/fchem.2020.00394 10.1002/aelm.202201293 10.1016/j.coco.2021.100883 10.1016/j.pmatsci.2022.101003 10.1002/smll.202104922 10.1039/D0TA03247F 10.1021/acsaelm.1c00547 10.1143/APEX.5.125102 10.1021/nn202868a 10.1021/acsami.9b21527 10.1016/j.cej.2023.141366 10.1016/j.cej.2019.122817 10.1063/1.1467702 10.1002/anie.202216049 10.1016/j.nanoen.2019.104265 10.1016/j.cej.2022.135526 10.1021/jacs.5b00945 10.1002/adma.202102990 10.1038/s41893-022-01003-6 10.1016/j.mtphys.2021.100402 10.1002/adma.202110236 10.1016/j.progpolymsci.2022.101548 10.1002/adfm.202208813 10.1021/acsami.2c21347 10.1007/s10971-019-04973-w 10.1039/D1MA00871D 10.1088/0957-4484/16/8/008 10.1039/D0TA12166E 10.1002/aelm.202201310 10.1038/s41598-021-85248-9 10.1002/adfm.202003092 10.1002/cssc.202102420 10.1039/D0TA01087A 10.1002/adma.202208272 10.1021/acs.chemmater.0c00229 10.1016/j.apenergy.2019.114370 10.1002/adfm.202210770 10.1002/adfm.202207886 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202306166 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 37847895 10_1002_smll_202306166 SMLL202306166 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Council funderid: 111‐2628‐E‐002‐014; 112‐2628‐E‐002‐013; 108‐2926‐I‐002‐002‐MY4 – fundername: National Taiwan Normal University funderid: NTU112L7856 – fundername: Japan Society for the Promotion of Science funderid: 21H02009; 21KK0251 – fundername: Ministry of Education, Taiwan funderid: 112L9006 – fundername: National Science and Technology Council grantid: 111-2628-E-002-014 – fundername: Japan Society for the Promotion of Science grantid: 21KK0251 – fundername: National Science and Technology Council grantid: 108-2926-I-002-002-MY4 – fundername: National Taiwan Normal University grantid: NTU112L7856 – fundername: Japan Society for the Promotion of Science grantid: 21H02009 – fundername: Ministry of Education, Taiwan grantid: 112L9006 – fundername: National Science and Technology Council grantid: 112-2628-E-002-013 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 LH4 |
ID | FETCH-LOGICAL-c4396-c293a4f9e4730b2e5be7e81eff85dd04d0670e476c14cb9c894e1e66fcf5e5463 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Sep 04 23:00:06 EDT 2025 Fri Jul 25 12:05:59 EDT 2025 Thu Apr 03 07:00:12 EDT 2025 Tue Jul 01 02:54:45 EDT 2025 Thu Apr 24 23:10:39 EDT 2025 Wed Jan 22 16:14:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | thermoelectric carbon nanotubes nanocomposites n-type doping conjugated polymers |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4396-c293a4f9e4730b2e5be7e81eff85dd04d0670e476c14cb9c894e1e66fcf5e5463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8778-5386 0000-0001-7141-1315 0000-0003-2115-1281 0000-0002-6787-4955 |
PMID | 37847895 |
PQID | 2933420927 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2878712775 proquest_journals_2933420927 pubmed_primary_37847895 crossref_primary_10_1002_smll_202306166 crossref_citationtrail_10_1002_smll_202306166 wiley_primary_10_1002_smll_202306166_SMLL202306166 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 1, 2024 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 1, 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 27 2017; 8 2019; 90 2023; 35 2023; 6 2019; 11 2023; 9 2020; 12 2021; 121 2000; 290 2020; 8 2023; 62 2021; 33 2023; 131 2015; 137 2023; 458 2003; 2 2020; 49 2018; 30 2022; 32 2022; 33 2022; 129 2021; 9 2021; 7 2023; 11 2021; 3 2019; 5 2015; 3 2020; 262 2022; 92 2020; 382 2023; 15 2019; 2 2008; 10 2020; 32 2002; 80 2022; 438 2011; 5 2011; 133 2016; 4 2021; 13 2021; 12 2021; 11 2022; 3 2020; 30 2021; 18 2005; 5 2022; 15 2020; 67 2022; 10 2005; 16 2012; 5 2022; 18 2022; 102 e_1_2_8_28_1 e_1_2_8_24_1 Tripathi A. (e_1_2_8_44_1) 2022; 10 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Puchades I. (e_1_2_8_56_1) 2015; 3 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 33 year: 2022 publication-title: Adv. Funct. Mater. – volume: 18 year: 2022 publication-title: Small – volume: 18 year: 2021 publication-title: Mater. Today Phys. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 67 year: 2020 publication-title: Nano Energy – volume: 458 year: 2023 publication-title: Chem. Eng. J. – volume: 5 start-page: 7885 year: 2011 publication-title: ACS Nano – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 6909 year: 2023 publication-title: J. Mater. Chem. A – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 80 start-page: 2773 year: 2002 publication-title: Appl. Phys. Lett. – volume: 129 year: 2022 publication-title: Prog. Polym. Sci. – volume: 382 year: 2020 publication-title: Chem. Eng. J. – volume: 16 start-page: 1048 year: 2005 publication-title: Nanotechnology – volume: 6 start-page: 180 year: 2023 publication-title: Nat. Sustainability – volume: 121 year: 2021 publication-title: Prog. Mater. Sci. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 4931 year: 2021 publication-title: Nat. Commun. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 137 start-page: 6979 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 6099 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 102 year: 2022 publication-title: Nano Energy – volume: 5 start-page: 3714 year: 2011 publication-title: ACS Nano – volume: 15 start-page: 9873 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2023 publication-title: Adv. Electron. Mater. – volume: 27 year: 2021 publication-title: Compos. Commun. – volume: 438 year: 2022 publication-title: Chem. Eng. J. – volume: 131 year: 2023 publication-title: Prog. Mater. Sci. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 3 start-page: 373 year: 2022 publication-title: Mater. Adv. – volume: 8 start-page: 8323 year: 2020 publication-title: J. Mater. Chem. A – volume: 49 start-page: 7210 year: 2020 publication-title: Chem. Soc. Rev. – volume: 32 start-page: 2688 year: 2020 publication-title: Chem. Mater. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 2 start-page: 683 year: 2003 publication-title: Nat. Mater. – volume: 5 start-page: 555 year: 2005 publication-title: Nano Lett. – volume: 8 start-page: 394 year: 2020 publication-title: Front. Chem. – volume: 11 start-page: 5758 year: 2021 publication-title: Sci. Rep. – volume: 2 start-page: 4703 year: 2019 publication-title: ACS Appl. Nano Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 262 year: 2020 publication-title: Appl. Energy – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 5149 year: 2021 publication-title: J. Mater. Chem. A – volume: 92 year: 2022 publication-title: Nano Energy – volume: 3 start-page: 3641 year: 2021 publication-title: ACS Appl. Electron. Mater. – volume: 290 start-page: 1552 year: 2000 publication-title: Science – volume: 5 start-page: 9481 year: 2012 publication-title: Energy Environ. Sci. – volume: 10 start-page: 5333 year: 2008 publication-title: Org. Lett. – volume: 5 year: 2012 publication-title: Appl. Phys. Express – volume: 3 year: 2015 publication-title: J. Mater. Chem. – volume: 90 start-page: 498 year: 2019 publication-title: J. Sol‐Gel Sci. Technol. – volume: 13 start-page: 411 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 6114 year: 2022 publication-title: J. Mater. Chem. – volume: 15 year: 2022 publication-title: ChemSusChem – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_8_53_1 doi: 10.1002/aelm.202100557 – ident: e_1_2_8_4_1 doi: 10.1016/j.pmatsci.2021.100840 – volume: 10 start-page: 6114 year: 2022 ident: e_1_2_8_44_1 publication-title: J. Mater. Chem. – ident: e_1_2_8_33_1 doi: 10.1039/C6TA05120K – ident: e_1_2_8_62_1 doi: 10.1021/ja111066r – ident: e_1_2_8_34_1 doi: 10.1039/c2ee22838f – ident: e_1_2_8_16_1 doi: 10.1038/s41467-021-25208-z – ident: e_1_2_8_13_1 doi: 10.1016/j.nanoen.2022.107678 – ident: e_1_2_8_32_1 doi: 10.1021/nl048055c – ident: e_1_2_8_46_1 doi: 10.1039/D0CS00204F – ident: e_1_2_8_60_1 doi: 10.1021/acsanm.9b01174 – ident: e_1_2_8_24_1 doi: 10.1002/aelm.201800943 – ident: e_1_2_8_57_1 doi: 10.1126/science.290.5496.1552 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201704386 – ident: e_1_2_8_22_1 doi: 10.1021/acsami.9b16012 – ident: e_1_2_8_5_1 doi: 10.1021/acs.chemrev.1c00218 – ident: e_1_2_8_48_1 doi: 10.1038/nmat976 – volume: 3 year: 2015 ident: e_1_2_8_56_1 publication-title: J. Mater. Chem. – ident: e_1_2_8_42_1 doi: 10.1021/acsami.0c16740 – ident: e_1_2_8_37_1 doi: 10.1039/D2TA08131H – ident: e_1_2_8_61_1 doi: 10.1021/ol801918y – ident: e_1_2_8_17_1 doi: 10.1038/ncomms14886 – ident: e_1_2_8_31_1 doi: 10.1021/nn200076r – ident: e_1_2_8_14_1 doi: 10.1016/j.nanoen.2021.106774 – ident: e_1_2_8_50_1 doi: 10.3389/fchem.2020.00394 – ident: e_1_2_8_58_1 doi: 10.1002/aelm.202201293 – ident: e_1_2_8_52_1 doi: 10.1016/j.coco.2021.100883 – ident: e_1_2_8_1_1 doi: 10.1016/j.pmatsci.2022.101003 – ident: e_1_2_8_3_1 doi: 10.1002/smll.202104922 – ident: e_1_2_8_36_1 doi: 10.1039/D0TA03247F – ident: e_1_2_8_55_1 doi: 10.1021/acsaelm.1c00547 – ident: e_1_2_8_49_1 doi: 10.1143/APEX.5.125102 – ident: e_1_2_8_35_1 doi: 10.1021/nn202868a – ident: e_1_2_8_38_1 doi: 10.1021/acsami.9b21527 – ident: e_1_2_8_23_1 doi: 10.1016/j.cej.2023.141366 – ident: e_1_2_8_41_1 doi: 10.1016/j.cej.2019.122817 – ident: e_1_2_8_26_1 doi: 10.1063/1.1467702 – ident: e_1_2_8_45_1 doi: 10.1002/anie.202216049 – ident: e_1_2_8_8_1 doi: 10.1016/j.nanoen.2019.104265 – ident: e_1_2_8_30_1 doi: 10.1016/j.cej.2022.135526 – ident: e_1_2_8_39_1 doi: 10.1021/jacs.5b00945 – ident: e_1_2_8_6_1 doi: 10.1002/adma.202102990 – ident: e_1_2_8_11_1 doi: 10.1038/s41893-022-01003-6 – ident: e_1_2_8_12_1 doi: 10.1016/j.mtphys.2021.100402 – ident: e_1_2_8_10_1 doi: 10.1002/adma.202110236 – ident: e_1_2_8_2_1 doi: 10.1016/j.progpolymsci.2022.101548 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.202208813 – ident: e_1_2_8_59_1 doi: 10.1021/acsami.2c21347 – ident: e_1_2_8_51_1 doi: 10.1007/s10971-019-04973-w – ident: e_1_2_8_28_1 doi: 10.1039/D1MA00871D – ident: e_1_2_8_27_1 doi: 10.1088/0957-4484/16/8/008 – ident: e_1_2_8_47_1 doi: 10.1039/D0TA12166E – ident: e_1_2_8_18_1 doi: 10.1002/aelm.202201310 – ident: e_1_2_8_29_1 doi: 10.1038/s41598-021-85248-9 – ident: e_1_2_8_54_1 doi: 10.1002/adfm.202003092 – ident: e_1_2_8_25_1 doi: 10.1002/cssc.202102420 – ident: e_1_2_8_40_1 doi: 10.1039/D0TA01087A – ident: e_1_2_8_9_1 doi: 10.1002/adma.202208272 – ident: e_1_2_8_21_1 doi: 10.1021/acs.chemmater.0c00229 – ident: e_1_2_8_7_1 doi: 10.1016/j.apenergy.2019.114370 – ident: e_1_2_8_20_1 doi: 10.1002/adfm.202210770 – ident: e_1_2_8_43_1 doi: 10.1002/adfm.202207886 |
SSID | ssj0031247 |
Score | 2.5091136 |
Snippet | This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene‐diimide (NDI)‐based conjugated polymer (NDI‐T1... This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene-diimide (NDI)-based conjugated polymer (NDI-T1... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2306166 |
SubjectTerms | carbon nanotubes conjugated polymers Diimide Doping Nanocomposites Naphthalene n‐type doping Polymers Power factor Seebeck effect Single wall carbon nanotubes thermoelectric Thermoelectric generators Thermoelectricity |
Title | Synergistic Interactions in Sequential Process Doping of Polymer/Single‐Walled Carbon Nanotube Nanocomposites for Enhanced n‐Type Thermoelectric Performance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306166 https://www.ncbi.nlm.nih.gov/pubmed/37847895 https://www.proquest.com/docview/2933420927 https://www.proquest.com/docview/2878712775 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT3Dg_2dpQUZC4uRunDhOckT9UYVaVLFU6i2KnbFAzSZos3sopz4Cj8Cz8STM2Nm0C0JIcItlW7GdmfEXe-Ybxl4byOj2KBVVHmVC6boQVWVAFJHT4HQNUlKg8Ml7fXSm3p2n5zei-AM_xHjgRprh7TUpeGX66TVpaD9v6OqAILTUxLktE03k-fsfRv6oBDcvn10F9yxBxFtr1sYonm5239yVfoOam8jVbz2H91i1HnTwOLnYXS3Nrv36C5_j_8zqPrs74FL-NgjSA3YL2ofszg22wkfs--ySAgU9szP3J4khKKLnn1s-8y7ZaC4aPsQe8H0fi8U7x0-75nIOi-kMyw38uPpGx_dQ871qYbqWo4XvlisD_oF83MmRDHqOeJoftJ-8jwJvsRv9NHMU7MW8C-l7cCCn15EPj9nZ4cHHvSMxJHgQFnGQFhaxRqVcAQrtjIkhRcmBXIJzeVrXkaopiAgrtZXKmsLmhQIJWjvrUiAe_ydsq-1aeMY45CbJapnUxikVZ5FBWBRpl1rEO1hlJ0ysP3BpB_ZzSsLRlIG3OS5p5ctx5Sfszdj-S-D9-GPLnbW8lIP-9yVOLFFxVMTZhL0aq1Fz6TqmaqFbYZscjaWMsyydsKdBzsZXJRmihrzAmthLy1_GUM5Ojo_H0vN_6bTNbuOzCu51O2xruVjBC8RbS_PS69RPF9Entg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD78dCASMhcXI3D8dJjqi0WmC3qthW4hbFzlggsgnax6Gc-An8BH4bv4QZO0lZEEKCW5KxFduZGX-xZz4z9kxDSrtHiSizIBVSVbkoSw0iD6wCqyoIQ0oUnh2pyal8_S7powkpF8bzQwwLbmQZzl-TgdOC9PicNXS1qGnvgDB0qNRFdslt0hEuejswSMU4fbnzVXDWEkS91fM2BtF4u_72vPQb2NzGrm7yObzOdN9sH3PycW-z1nvm8y-Mjv_VrxvsWgdN-QuvSzfZBWhusas_ERbeZt_mZ5Qr6MiduVtM9HkRK_6h4XMXlY0eo-Zd-gF_6dKxeGv5cVufLWA5nuN9Dd-_fKUVfKj4frnUbcPRybfrjQZ3QWHuFEsGK46Qmh80712YAm-wGv03c9Tt5aL1J_hgQ47Pkx_usNPDg5P9iejOeBAGoZASBuFGKW0OEl2NjiBB5YEsBGuzpKoCWVEeEQqVCaXRuclyCSEoZY1NgKj877Kdpm3gPuOQ6TitwrjSVsooDTQio0DZxCDkQZEZMdF_4cJ0BOh0DkddeOrmqKCRL4aRH7HnQ_lPnvrjjyV3e4UpOhewKrBjsYyCPEpH7OkgRuOlHZmygXaDZTL0l2GUpsmI3fOKNrwqThE4ZDlKIqcuf2lDMZ9Np8Pdg3-p9IRdnpzMpsX01dGbh-wKPpc-2m6X7ayXG3iE8GutHzsD-wF7ACvU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSAgO_BcWChgJiVO6-XGc5IjargpsqxVLpd6i2B4LRDap9udQTjwCj8Cz8STM2Nm0C0JIcEsytmI745kv9sxnxl4qyGj3KA2qPMwCIU0RVJWCoAitBCsNRBElCh8dy8MT8fY0Pb2Uxe_5IfoFN5oZzl7TBD8zdnhBGrqY1bR1QBA6kvIquyYk-kqCRe97AqkEvZc7XgWdVkDMW2vaxjAebtbfdEu_Yc1N6Op8z-g2q9at9iEnn3dXS7Wrv_xC6Pg_3brDbnXAlL_2mnSXXYHmHrt5ia7wPvs-PadMQUftzN1Sos-KWPBPDZ-6mGy0FzXvkg_4vkvG4q3lk7Y-n8F8OMX7Gn58_Ubr92D4XjVXbcPRxLfLlQJ3QUHuFEkGC46Amh80H12QAm-wGv01c9Ts-az15_dgQyYXqQ8P2Mno4MPeYdCd8BBoBEIy0Ag2KmELEGhoVAwpqg7kEVibp8aEwlAWEQqljoRWhc4LARFIabVNgYj8t9lW0zbwiHHIVZKZKDHKChFnoUJcFEqbagQ8KNIDFqw_cKk7-nM6haMuPXFzXNLIl_3ID9irvvyZJ_74Y8mdtb6UnQFYlNixRMRhEWcD9qIX49Sl_ZiqgXaFZXK0llGcZemAPfR61r8qyRA25AVKYqctf2lDOT0aj_u7x_9S6Tm7PtkfleM3x--esBv4WPhQux22tZyv4Clir6V65qbXT9zpKoM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Interactions+in+Sequential+Process+Doping+of+Polymer%2FSingle-Walled+Carbon+Nanotube+Nanocomposites+for+Enhanced+n-Type+Thermoelectric+Performance&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lin%2C+Po-Shen&rft.au=Lin%2C+Jhih-Min&rft.au=Tung%2C+Shih-Huang&rft.au=Higashihara%2C+Tomoya&rft.date=2024-03-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=9&rft.spage=e2306166&rft_id=info:doi/10.1002%2Fsmll.202306166&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |