Intrinsically Stretchable, Highly Efficient Organic Solar Cells Enabled by Polymer Donors Featuring Hydrogen‐Bonding Spacers

Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structure...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 50; pp. e2207544 - n/a
Main Authors Lee, Jin‐Woo, Seo, Soodeok, Lee, Sun‐Woo, Kim, Geon‐U, Han, Seungseok, Phan, Tan Ngoc‐Lan, Lee, Seungjin, Li, Sheng, Kim, Taek‐Soo, Lee, Jung‐Yong, Kim, Bumjoon J.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2022
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202207544

Cover

Abstract Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (PDs, PhAmX) featuring phenyl amide (N1,N3‐bis((5‐bromothiophen‐2‐yl)methyl)isophthalamide, PhAm)‐based flexible spacer (FS) inducing hydrogen‐bonding (H‐bonding) interactions is developed. These PDs enable IS‐OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS‐OSCs to date. The incorporation of PhAm‐based FS enhances the molecular ordering of PDs as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm‐FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated. Efficient, intrinsically stretchable organic solar cells (IS‐OSCs) are developed by designing a new series of polymer donors (PDs, PhAm) featuring hydrogen‐bonding‐capable flexible spacers. High power conversion efficiency (PCE = 12.7%) and stretchability (PCE retention of > 80% at 32% strain) are demonstrated, which represent the best performances in terms of both PCE and stretchability among the IS‐OSCs reported to date.
AbstractList Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (PDs, PhAmX) featuring phenyl amide (N1,N3‐bis((5‐bromothiophen‐2‐yl)methyl)isophthalamide, PhAm)‐based flexible spacer (FS) inducing hydrogen‐bonding (H‐bonding) interactions is developed. These PDs enable IS‐OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS‐OSCs to date. The incorporation of PhAm‐based FS enhances the molecular ordering of PDs as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm‐FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated.
Intrinsically stretchable organic solar cells (IS-OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (P s, PhAmX) featuring phenyl amide (N ,N -bis((5-bromothiophen-2-yl)methyl)isophthalamide, PhAm)-based flexible spacer (FS) inducing hydrogen-bonding (H-bonding) interactions is developed. These P s enable IS-OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS-OSCs to date. The incorporation of PhAm-based FS enhances the molecular ordering of P s as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm-FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated.
Intrinsically stretchable organic solar cells (IS-OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (PD s, PhAmX) featuring phenyl amide (N1 ,N3 -bis((5-bromothiophen-2-yl)methyl)isophthalamide, PhAm)-based flexible spacer (FS) inducing hydrogen-bonding (H-bonding) interactions is developed. These PD s enable IS-OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS-OSCs to date. The incorporation of PhAm-based FS enhances the molecular ordering of PD s as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm-FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated.Intrinsically stretchable organic solar cells (IS-OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (PD s, PhAmX) featuring phenyl amide (N1 ,N3 -bis((5-bromothiophen-2-yl)methyl)isophthalamide, PhAm)-based flexible spacer (FS) inducing hydrogen-bonding (H-bonding) interactions is developed. These PD s enable IS-OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS-OSCs to date. The incorporation of PhAm-based FS enhances the molecular ordering of PD s as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm-FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated.
Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (PDs, PhAmX) featuring phenyl amide (N1,N3‐bis((5‐bromothiophen‐2‐yl)methyl)isophthalamide, PhAm)‐based flexible spacer (FS) inducing hydrogen‐bonding (H‐bonding) interactions is developed. These PDs enable IS‐OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS‐OSCs to date. The incorporation of PhAm‐based FS enhances the molecular ordering of PDs as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm‐FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated. Efficient, intrinsically stretchable organic solar cells (IS‐OSCs) are developed by designing a new series of polymer donors (PDs, PhAm) featuring hydrogen‐bonding‐capable flexible spacers. High power conversion efficiency (PCE = 12.7%) and stretchability (PCE retention of > 80% at 32% strain) are demonstrated, which represent the best performances in terms of both PCE and stretchability among the IS‐OSCs reported to date.
Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (P D s, PhAm X ) featuring phenyl amide ( N 1 , N 3 ‐bis((5‐bromothiophen‐2‐yl)methyl)isophthalamide, PhAm)‐based flexible spacer (FS) inducing hydrogen‐bonding (H‐bonding) interactions is developed. These P D s enable IS‐OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS‐OSCs to date. The incorporation of PhAm‐based FS enhances the molecular ordering of P D s as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm‐FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated.
Author Lee, Jin‐Woo
Seo, Soodeok
Lee, Jung‐Yong
Kim, Bumjoon J.
Lee, Seungjin
Li, Sheng
Kim, Taek‐Soo
Kim, Geon‐U
Lee, Sun‐Woo
Phan, Tan Ngoc‐Lan
Han, Seungseok
Author_xml – sequence: 1
  givenname: Jin‐Woo
  surname: Lee
  fullname: Lee, Jin‐Woo
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 2
  givenname: Soodeok
  surname: Seo
  fullname: Seo, Soodeok
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 3
  givenname: Sun‐Woo
  surname: Lee
  fullname: Lee, Sun‐Woo
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 4
  givenname: Geon‐U
  surname: Kim
  fullname: Kim, Geon‐U
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 5
  givenname: Seungseok
  surname: Han
  fullname: Han, Seungseok
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 6
  givenname: Tan Ngoc‐Lan
  surname: Phan
  fullname: Phan, Tan Ngoc‐Lan
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 7
  givenname: Seungjin
  surname: Lee
  fullname: Lee, Seungjin
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 8
  givenname: Sheng
  surname: Li
  fullname: Li, Sheng
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 9
  givenname: Taek‐Soo
  surname: Kim
  fullname: Kim, Taek‐Soo
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 10
  givenname: Jung‐Yong
  orcidid: 0000-0002-5347-8230
  surname: Lee
  fullname: Lee, Jung‐Yong
  email: jungyong.lee@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 11
  givenname: Bumjoon J.
  orcidid: 0000-0001-7783-9689
  surname: Kim
  fullname: Kim, Bumjoon J.
  email: bumjoonkim@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology (KAIST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36153847$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEUx4NU7LZ69SgBLx6cNT9nJsd1u3ULlQrbnodsJtmmZJI1maHMpfgn-Df6l5hha4WCeHrw-Hzee8n3BBz54DUAbzGaY4TIJ9l2ck4QIajijL0AM8wJLhgS_AjMkKC8ECWrj8FJSncIIVGi8hU4piXmtGbVDDxc-D5an6ySzo1w00fdq1u5dfojXNvdbe6tjLHKat_Dq7iT3iq4CU5GuNTOJbjyE9zC7Qi_BTd2OsKz4ENM8FzLfsizd3A9tjHstP_14-fn4NuptdlLpWN6DV4a6ZJ-81hPwc356nq5Li6vvlwsF5eFYlSwgnKmKtNi1BKGiKzKuuWiZqI2rKaGGk6JrOvSqAxgg9qKYrNlvNRCEakQoafgw2HuPobvg05909mk8gOk12FIDalwVQoq6IS-f4behSH6fF2meN5XC8Iz9e6RGradbpt9tJ2MY_PnZzMwPwAqhpSiNk8IRs0UXTNF1zxFlwX2TFC2l70NOSBp3b81cdDurdPjf5Y0i7Ovi7_ub-nfrlU
CitedBy_id crossref_primary_10_1002_rpm_20230022
crossref_primary_10_1002_marc_202400637
crossref_primary_10_1002_adfm_202406501
crossref_primary_10_1002_anie_202420121
crossref_primary_10_1002_anie_202310034
crossref_primary_10_1039_D2TA09874A
crossref_primary_10_1039_D3CS00492A
crossref_primary_10_1002_ange_202403139
crossref_primary_10_1002_adma_202307278
crossref_primary_10_1002_adma_202406879
crossref_primary_10_1039_D4CP00814F
crossref_primary_10_1021_acsaelm_2c01791
crossref_primary_10_1063_5_0202910
crossref_primary_10_1002_aenm_202405451
crossref_primary_10_1021_acs_chemmater_3c01970
crossref_primary_10_1021_acs_macromol_3c02277
crossref_primary_10_1038_s41578_022_00499_w
crossref_primary_10_1021_acsami_2c16908
crossref_primary_10_1002_smll_202401966
crossref_primary_10_1002_adma_202311170
crossref_primary_10_1039_D3EE00272A
crossref_primary_10_1039_D4EE04208E
crossref_primary_10_1002_smll_202403267
crossref_primary_10_1002_ange_202421430
crossref_primary_10_1039_D3BM02070C
crossref_primary_10_1039_D3TC01579C
crossref_primary_10_1016_j_cej_2024_156116
crossref_primary_10_1039_D5EE00002E
crossref_primary_10_1002_smll_202412767
crossref_primary_10_1038_s41560_024_01651_2
crossref_primary_10_1002_adma_202307280
crossref_primary_10_1002_anie_202403139
crossref_primary_10_3389_fchem_2023_1200644
crossref_primary_10_1002_adfm_202312289
crossref_primary_10_1016_j_nanoen_2023_109023
crossref_primary_10_1016_j_nanoen_2024_109541
crossref_primary_10_1002_adma_202300820
crossref_primary_10_1021_jacs_3c02764
crossref_primary_10_1039_D4TA00117F
crossref_primary_10_26599_NRE_2022_9120088
crossref_primary_10_1002_ange_202407040
crossref_primary_10_1002_anie_202421430
crossref_primary_10_1021_jacs_2c13247
crossref_primary_10_1038_s41467_024_51359_w
crossref_primary_10_1002_adma_202411449
crossref_primary_10_1002_adfm_202400702
crossref_primary_10_1002_aenm_202404233
crossref_primary_10_1126_science_adp9709
crossref_primary_10_1002_advs_202305356
crossref_primary_10_1039_D4TA02429J
crossref_primary_10_1002_aenm_202301283
crossref_primary_10_1021_acsami_4c03679
crossref_primary_10_1021_acs_chemmater_4c01516
crossref_primary_10_1021_acsami_2c17418
crossref_primary_10_1002_ange_202310034
crossref_primary_10_1002_advs_202206580
crossref_primary_10_1002_anie_202407040
crossref_primary_10_1038_s41467_024_49352_4
crossref_primary_10_1002_aenm_202401191
crossref_primary_10_1021_acsaem_3c01204
crossref_primary_10_1039_D3CS00895A
crossref_primary_10_1039_D4EE02724H
crossref_primary_10_1002_ange_202420121
crossref_primary_10_35848_1347_4065_adba69
crossref_primary_10_1002_cjoc_202300636
crossref_primary_10_1002_adfm_202301573
crossref_primary_10_1002_adfm_202305851
crossref_primary_10_1021_acsami_3c11753
crossref_primary_10_1038_s41467_024_55375_8
crossref_primary_10_1002_adma_202305562
crossref_primary_10_1039_D2NR03992C
crossref_primary_10_1002_aenm_202304286
crossref_primary_10_1002_adfm_202403770
crossref_primary_10_1021_acsami_3c01519
crossref_primary_10_1002_adma_202308159
crossref_primary_10_1016_j_nanoen_2024_109338
crossref_primary_10_1039_D3TA03935H
crossref_primary_10_1002_adma_202300230
crossref_primary_10_1002_aenm_202303872
crossref_primary_10_26599_NRE_2023_9120088
Cites_doi 10.1002/adma.202105803
10.1002/adma.202102635
10.1021/ja00057a015
10.1021/acsomega.2c01451
10.1002/aenm.202003367
10.1038/s41467-020-16509-w
10.1021/acsami.8b10608
10.1039/D1EE01062J
10.1021/cr3001109
10.1002/adma.202205844
10.1002/aenm.202002709
10.1021/j100165a007
10.1016/j.matt.2021.12.002
10.1016/j.joule.2019.10.007
10.1002/aenm.202200887
10.1351/PAC-REP-10-01-01
10.1021/jacsau.1c00064
10.1021/acs.macromol.0c02496
10.1021/acs.chemmater.9b04464
10.1002/anie.201807513
10.1021/acs.chemmater.0c01437
10.1038/s41560-021-00923-5
10.1039/CS9932200397
10.1039/C8TC06206D
10.1002/adma.202107361
10.1002/adfm.202003654
10.1002/adfm.202008494
10.1021/acsenergylett.1c00829
10.1007/BF03218918
10.1002/adma.202106732
10.1002/aenm.202103239
10.1021/acs.macromol.1c00534
10.1002/advs.201900813
10.1016/j.joule.2021.06.017
10.1021/acs.chemmater.9b04574
10.1038/nnano.2012.192
10.1016/j.joule.2019.01.004
10.1002/anie.200904215
10.1039/D0EE04012F
10.1021/jacs.2c00072
10.1038/ncomms3520
10.1002/adma.202201623
10.1103/PhysRevB.70.235207
10.1021/acs.chemmater.0c04721
10.1021/jacs.5b09737
10.1021/ja0011966
10.1016/j.joule.2020.01.014
10.1039/D1EE02320A
10.1021/acs.macromol.0c00889
10.1002/adma.202204718
10.1038/nature20102
10.1002/adfm.201804222
10.1021/acs.macromol.8b02337
10.1002/aenm.201701791
10.1021/acs.chemmater.0c00055
10.1002/adfm.202108508
10.1021/acs.accounts.7b00293
10.1039/D1EE01220G
10.1002/adfm.202100870
10.1002/inf2.12270
10.1002/adma.201908205
10.1021/acs.chemmater.1c04055
10.1039/b605478a
10.1038/ncomms6293
10.1039/D0TA11320D
10.1021/acsnano.1c07471
10.1002/adma.200601093
10.1038/natrevmats.2018.3
10.1002/adfm.202103534
10.1038/s41467-020-18378-9
10.1002/adma.201004311
10.1039/c1sm06174g
10.1021/acs.macromol.1c02111
10.1038/s41560-021-00820-x
10.1002/adma.202102420
10.1103/PhysRevB.82.245207
10.1016/j.cplett.2008.06.060
10.1016/j.joule.2019.12.004
10.1016/j.joule.2022.02.006
10.1002/adma.202110639
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202207544
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36153847
10_1002_adma_202207544
ADMA202207544
Genre article
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: NRF‐2020R1A4A1018516; 2021M3H4A1A01004332; 2022R1A2B5B03001761
– fundername: National Research Foundation of Korea
  grantid: 2021M3H4A1A01004332
– fundername: National Research Foundation of Korea
  grantid: NRF-2020R1A4A1018516
– fundername: National Research Foundation of Korea
  grantid: 2022R1A2B5B03001761
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4394-354c7fd10d2402a768d598498f483f3f532a886fc0d21f0d731fb456e9c2ac023
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:36:51 EDT 2025
Fri Jul 25 09:29:30 EDT 2025
Wed Feb 19 02:26:02 EST 2025
Thu Apr 24 23:01:29 EDT 2025
Wed Oct 01 03:14:20 EDT 2025
Wed Jan 22 16:25:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords hydrogen bonding
intrinsically stretchable organic solar cells
flexible spacers
mechanical robustness
stretchability
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4394-354c7fd10d2402a768d598498f483f3f532a886fc0d21f0d731fb456e9c2ac023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7783-9689
0000-0002-5347-8230
PMID 36153847
PQID 2754838925
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2717693932
proquest_journals_2754838925
pubmed_primary_36153847
crossref_primary_10_1002_adma_202207544
crossref_citationtrail_10_1002_adma_202207544
wiley_primary_10_1002_adma_202207544_ADMA202207544
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2012 2021; 112 33
2011 1993 2008 1991; 83 22 463 95
2007; 19
2018 2022 2020; 57 55 30
2018 2018 2012; 28 10 7
2020 2021 2021 2021; 4 33 1 14
2018 2021 2020 2020; 8 5 4 4
2021 2022; 54 12
2006 1993; 35 115
2021 2021 2020 2022; 15 14 53 144
2020; 11
2022 2022; 5 4
2021 2013 2022; 33 4 7
2014 2017; 5 50
2004 2022; 70 32
2021 2022 2022; 31 34 12
2021; 54
2021; 31
2021; 11
2021 2019 2020 2022 2022 2018 2021 2020 2021 2021 2022 2022; 6 3 11 6 34 3 6 32 33 31 34 34
2021 2020; 11 32
2010 2020 2016 2022 2020; 49 32 539 34 32
2022; 34
2011 2021 2009 2019; 7 6 17 6
2016 2019 2019; 138 7 52
2010 2011; 82 23
2000; 122
2021 2021 2020; 14 14 32
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_22_3
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_26_2
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_9_5
e_1_2_8_9_4
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_11_3
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_30_3
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_30_4
e_1_2_8_2_11
e_1_2_8_2_10
e_1_2_8_30_1
e_1_2_8_2_12
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_27_1
e_1_2_8_8_4
e_1_2_8_2_9
e_1_2_8_8_3
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_2_6
e_1_2_8_4_4
e_1_2_8_6_2
e_1_2_8_2_5
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_2_8
e_1_2_8_6_4
e_1_2_8_8_2
e_1_2_8_2_7
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_12_2
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_12_1
References_xml – volume: 112 33
  start-page: 5488
  year: 2012 2021
  publication-title: Chem. Rev. Adv. Mater.
– volume: 82 23
  start-page: 1670
  year: 2010 2011
  publication-title: Phys. Rev. B Adv. Mater.
– volume: 138 7 52
  start-page: 173 1681 738
  year: 2016 2019 2019
  publication-title: J. Am. Chem. Soc. J. Mater. Chem. C Macromolecules
– volume: 4 33 1 14
  start-page: 658 612 5968
  year: 2020 2021 2021 2021
  publication-title: Joule Adv. Mater. JACS Au Energy Environ. Sci.
– volume: 7 6 17 6
  start-page: 2512 616
  year: 2011 2021 2009 2019
  publication-title: Soft Matter ACS Energy Lett. Macromol. Res. Adv. Sci.
– volume: 31 34 12
  year: 2021 2022 2022
  publication-title: Adv. Funct. Mater. Adv. Mater. Adv. Energy Mater.
– volume: 83 22 463 95
  start-page: 1619 397 1 4601
  year: 2011 1993 2008 1991
  publication-title: Pure Appl. Chem. Chem. Soc. Rev. Chem. Phys. Lett. J. Phys. Chem.
– volume: 57 55 30
  start-page: 322
  year: 2018 2022 2020
  publication-title: Angew. Chem., Int. Ed. Macromolecules Adv. Funct. Mater.
– volume: 5 4
  start-page: 725
  year: 2022 2022
  publication-title: Matter InfoMat
– volume: 11 32
  start-page: 582
  year: 2021 2020
  publication-title: Adv. Energy Mater. Chem. Mater.
– volume: 11
  start-page: 4612
  year: 2020
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 8 5 4 4
  start-page: 2395 128 407
  year: 2018 2021 2020 2020
  publication-title: Adv. Energy Mater. Joule Joule Joule
– volume: 54
  start-page: 7388
  year: 2021
  publication-title: Macromolecules
– volume: 70 32
  year: 2004 2022
  publication-title: Phys. Rev. B Adv. Funct. Mater.
– volume: 9
  start-page: 2775
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 28 10 7
  start-page: 825
  year: 2018 2018 2012
  publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces Nat. Nanotechnol.
– volume: 6 3 11 6 34 3 6 32 33 31 34 34
  start-page: 605 1140 2726 647 1045
  year: 2021 2019 2020 2022 2022 2018 2021 2020 2021 2021 2022 2022
  publication-title: Nat. Energy Joule Nat. Commun. Joule Adv. Mater. Nat. Rev. Mater. Nat. Energy Adv. Mater. Adv. Mater. Adv. Funct. Mater. Adv. Mater. Adv. Mater.
– volume: 14 14 32
  start-page: 4341 3044 2572
  year: 2021 2021 2020
  publication-title: Energy Environ. Sci. Energy Environ. Sci. Chem. Mater.
– volume: 33 4 7
  start-page: 1070 2520
  year: 2021 2013 2022
  publication-title: Chem. Mater. Nat. Commun. ACS Omega
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 15 14 53 144
  start-page: 4067 6032 4699
  year: 2021 2021 2020 2022
  publication-title: ACS Nano Energy Environ. Sci. Macromolecules J. Am. Chem. Soc.
– volume: 35 115
  start-page: 1305 1321
  year: 2006 1993
  publication-title: Chem. Soc. Rev. J. Am. Chem. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 34
  start-page: 2259
  year: 2022
  publication-title: Chem. Mater.
– volume: 122
  start-page: 5895
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 49 32 539 34 32
  start-page: 740 5700 411 1914
  year: 2010 2020 2016 2022 2020
  publication-title: Angew. Chem., Int. Ed. Chem. Mater. Nature Adv. Mater. Chem. Mater.
– volume: 5 50
  start-page: 5293 2519
  year: 2014 2017
  publication-title: Nat. Commun. Acc. Chem. Res.
– volume: 54 12
  start-page: 53
  year: 2021 2022
  publication-title: Macromolecules Adv. Energy Mater.
– volume: 19
  start-page: 1551
  year: 2007
  publication-title: Adv. Mater.
– ident: e_1_2_8_2_5
  doi: 10.1002/adma.202105803
– ident: e_1_2_8_21_2
  doi: 10.1002/adma.202102635
– ident: e_1_2_8_12_2
  doi: 10.1021/ja00057a015
– ident: e_1_2_8_28_3
  doi: 10.1021/acsomega.2c01451
– ident: e_1_2_8_5_1
  doi: 10.1002/aenm.202003367
– ident: e_1_2_8_2_3
  doi: 10.1038/s41467-020-16509-w
– ident: e_1_2_8_16_2
  doi: 10.1021/acsami.8b10608
– ident: e_1_2_8_6_2
  doi: 10.1039/D1EE01062J
– ident: e_1_2_8_21_1
  doi: 10.1021/cr3001109
– ident: e_1_2_8_2_12
  doi: 10.1002/adma.202205844
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.202002709
– ident: e_1_2_8_8_4
  doi: 10.1021/j100165a007
– ident: e_1_2_8_13_1
  doi: 10.1016/j.matt.2021.12.002
– ident: e_1_2_8_1_3
  doi: 10.1016/j.joule.2019.10.007
– ident: e_1_2_8_3_3
  doi: 10.1002/aenm.202200887
– ident: e_1_2_8_8_1
  doi: 10.1351/PAC-REP-10-01-01
– ident: e_1_2_8_4_3
  doi: 10.1021/jacsau.1c00064
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.macromol.0c02496
– ident: e_1_2_8_19_2
  doi: 10.1021/acs.chemmater.9b04464
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.201807513
– ident: e_1_2_8_9_2
  doi: 10.1021/acs.chemmater.0c01437
– ident: e_1_2_8_2_7
  doi: 10.1038/s41560-021-00923-5
– ident: e_1_2_8_8_2
  doi: 10.1039/CS9932200397
– ident: e_1_2_8_22_2
  doi: 10.1039/C8TC06206D
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.202107361
– ident: e_1_2_8_7_3
  doi: 10.1002/adfm.202003654
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.202008494
– ident: e_1_2_8_30_2
  doi: 10.1021/acsenergylett.1c00829
– ident: e_1_2_8_30_3
  doi: 10.1007/BF03218918
– ident: e_1_2_8_4_2
  doi: 10.1002/adma.202106732
– ident: e_1_2_8_23_2
  doi: 10.1002/aenm.202103239
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.macromol.1c00534
– ident: e_1_2_8_30_4
  doi: 10.1002/advs.201900813
– ident: e_1_2_8_1_2
  doi: 10.1016/j.joule.2021.06.017
– ident: e_1_2_8_9_5
  doi: 10.1021/acs.chemmater.9b04574
– ident: e_1_2_8_16_3
  doi: 10.1038/nnano.2012.192
– ident: e_1_2_8_2_2
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_8_9_1
  doi: 10.1002/anie.200904215
– ident: e_1_2_8_11_2
  doi: 10.1039/D0EE04012F
– ident: e_1_2_8_6_4
  doi: 10.1021/jacs.2c00072
– ident: e_1_2_8_28_2
  doi: 10.1038/ncomms3520
– ident: e_1_2_8_3_2
  doi: 10.1002/adma.202201623
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevB.70.235207
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.chemmater.0c04721
– ident: e_1_2_8_22_1
  doi: 10.1021/jacs.5b09737
– ident: e_1_2_8_18_1
  doi: 10.1021/ja0011966
– ident: e_1_2_8_4_1
  doi: 10.1016/j.joule.2020.01.014
– ident: e_1_2_8_4_4
  doi: 10.1039/D1EE02320A
– ident: e_1_2_8_6_3
  doi: 10.1021/acs.macromol.0c00889
– ident: e_1_2_8_2_11
  doi: 10.1002/adma.202204718
– ident: e_1_2_8_9_3
  doi: 10.1038/nature20102
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.201804222
– ident: e_1_2_8_22_3
  doi: 10.1021/acs.macromol.8b02337
– ident: e_1_2_8_1_1
  doi: 10.1002/aenm.201701791
– ident: e_1_2_8_11_3
  doi: 10.1021/acs.chemmater.0c00055
– ident: e_1_2_8_25_2
  doi: 10.1002/adfm.202108508
– ident: e_1_2_8_20_2
  doi: 10.1021/acs.accounts.7b00293
– ident: e_1_2_8_11_1
  doi: 10.1039/D1EE01220G
– ident: e_1_2_8_2_10
  doi: 10.1002/adfm.202100870
– ident: e_1_2_8_13_2
  doi: 10.1002/inf2.12270
– ident: e_1_2_8_2_8
  doi: 10.1002/adma.201908205
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.chemmater.1c04055
– ident: e_1_2_8_12_1
  doi: 10.1039/b605478a
– ident: e_1_2_8_20_1
  doi: 10.1038/ncomms6293
– ident: e_1_2_8_15_1
  doi: 10.1039/D0TA11320D
– ident: e_1_2_8_6_1
  doi: 10.1021/acsnano.1c07471
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.200601093
– ident: e_1_2_8_2_6
  doi: 10.1038/natrevmats.2018.3
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.202103534
– ident: e_1_2_8_29_1
  doi: 10.1038/s41467-020-18378-9
– ident: e_1_2_8_26_2
  doi: 10.1002/adma.201004311
– ident: e_1_2_8_30_1
  doi: 10.1039/c1sm06174g
– ident: e_1_2_8_7_2
  doi: 10.1021/acs.macromol.1c02111
– ident: e_1_2_8_2_1
  doi: 10.1038/s41560-021-00820-x
– ident: e_1_2_8_2_9
  doi: 10.1002/adma.202102420
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevB.82.245207
– ident: e_1_2_8_8_3
  doi: 10.1016/j.cplett.2008.06.060
– ident: e_1_2_8_1_4
  doi: 10.1016/j.joule.2019.12.004
– ident: e_1_2_8_2_4
  doi: 10.1016/j.joule.2022.02.006
– ident: e_1_2_8_9_4
  doi: 10.1002/adma.202110639
SSID ssj0009606
Score 2.624364
Snippet Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source...
Intrinsically stretchable organic solar cells (IS-OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2207544
SubjectTerms Electrical properties
Energy conversion efficiency
flexible spacers
Hydrogen bonding
Hydrogen embrittlement
intrinsically stretchable organic solar cells
Materials science
mechanical robustness
Molecular structure
Optical properties
Photovoltaic cells
Polymers
Power sources
Solar cells
Stretchability
Title Intrinsically Stretchable, Highly Efficient Organic Solar Cells Enabled by Polymer Donors Featuring Hydrogen‐Bonding Spacers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202207544
https://www.ncbi.nlm.nih.gov/pubmed/36153847
https://www.proquest.com/docview/2754838925
https://www.proquest.com/docview/2717693932
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: ADMLS
  dateStart: 20120605
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0935-9648
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPbWHUqCFlBYZqVIvpE3sJHWOq3arBakVolTqLfLzQkjQPg7bQ8VP4DfyS5hxdtMuCCHBzfFDcTwz9ufY8w3AofbCF6lBCRTSxZmRJlZeu9jpxBmfuqJU5O98eVWMbrL3t_ntIy_-jh-i_-FGlhHmazJwpScnD6ShygbeIM4T4nDDSTgVeTin_fjAH0XwPJDtiTwui0wuWRsTfrLafHVV-g1qriLXsPRcPAG17HR34-Tz8Wyqj83dL3yO__NV27C1wKVs0CnSU1hzzTPYfMRW-Bzu3zVTTAWx1nNG59kocnK9esvougjmDQMhBa5jrPPxNOyats7szNX1hA2Dn5Zles4-tPX8ixuz87ZpxxNGQDT4S7LR3I5bVOof375TxGPKusZtPYLUHbi5GH46G8WL8A2xIXfbWOSZOfU2TSyd4Cjc19i8lFkpfSYFqkguuJKy8AYrpD6xpyL1GvGcKw1XBrHELqw3beNeArNKao3QJXMyySxPtDAyKbmxqc4dzlERxEvxVWbBbU4hNuqqY2XmFY1r1Y9rBEd9_a8dq8cfa-4vtaFaWPek4lgiEenxPII3fTHaJR22qMa1M6qTUphJhMcRvOi0qH-VIJSNsCACHnThL32oBueXg_5p718avYINSnf3cPZhfTqeuQNEU1P9OljMTxl7F9Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619NByoPQFKdC6UqVeGkicB85xxS5aWhZVBaTeovh1aUjQPg7LAfET-I39Jcw4m9BtVVVqb4k9VhzPjP35MZ8B3ksb2TRUqIFUGD9WQvmFlcY3MjDKhibNCop3Hp2kw_P407ekPU1IsTANP0S34Eae4fprcnBakN67Zw0ttCMO4jwgEreH8Ig26cg3-1_vGaQIoDu6vSjxszQWLW9jwPeWyy-PS7-BzWXs6gafw6cg22o3Z06-786mcldd_cLo-F__tQ5rC2jKeo0tPYMHpnoOqz8RFr6A66Nqik9Os-Wc0ZY2ap2irz4yOjGCaQPHSYFDGWvCPBU7pdkzOzBlOWEDF6qlmZyzL3U5vzBj1q-rejxhhEVdyCQbzvW4Rrv-cXNLlx5T0inO7BGnvoTzw8HZwdBf3ODgK4q49aMkVvtWh4GmTZwCpzY6yUScCRuLCK0kiXghRGoVCoQ20PtRaCVCOpMpXiiEE69gpaorswlMF0JKRC-xEUGseSAjJYKMKx3KxGA35YHf6i9XC3pzumWjzBtiZp5Tu-Zdu3rwoZO_bIg9_ii53ZpDvnDwSc4xRyDY44kH77psdE3abykqU89IJqSbJhEhe7DRmFH3qYiANiIDD7gzhr_UIe_1R73u7fW_FHoLj4dno-P8-Ojk8xY8ofTmWM42rEzHM7OD4Goq3zj3uQORDhvw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyExIW0ieOkznHV3dUWaFVRKvUW-XkhJNU-DssB8RP4jfwSZpzdtAtCSHBL7LHieGbiz7HnG4BX2me-SA1qoJAuFkaaWHntYqcTZ3zqilJRvPPhUTE5FW_P8rNLUfwdP0T_w408I3yvycHPrd-9IA1VNvAGcZ4Qh9tVuCYKXGIRLPpwQSBF-Dyw7WV5XBZCrmkbE7672X5zWvoNa25C1zD3jG-DWve6O3LyaWcx1zvmyy-Ejv_zWnfg1gqYskFnSXfhimvuwc1LdIX34etBM8eroNd6yWhDG3VOsVdvGJ0XwbJRYKTAiYx1QZ6GndDame27up6xUQjUskwv2XFbLz-7KRu2TTudMUKiIWCSTZZ22qJV__j2nVIeU9EJrusRpT6A0_Ho4_4kXuVviA3F28ZZLsyet2liaQtH4cLG5qUUpfRCZmgjecaVlIU3KJD6xO5lqdcI6FxpuDIIJh7CVtM27jEwq6TWiF2Ek4mwPNGZkUnJjU117vAjFUG8Vl9lVuTmlGOjrjpaZl7RuFb9uEbwupc_72g9_ii5vbaGauXes4pjjUSox_MIXvbV6Ji026Ia1y5IJqU8k4iPI3jUWVH_qIxgNuKCCHiwhb_0oRoMDwf93ZN_afQCrh8Px9X7g6N3T-EGFXdncrZhaz5duGeIrOb6eXCenyHTGp8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsically+Stretchable%2C+Highly+Efficient+Organic+Solar+Cells+Enabled+by+Polymer+Donors+Featuring+Hydrogen-Bonding+Spacers&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lee%2C+Jin-Woo&rft.au=Seo%2C+Soodeok&rft.au=Lee%2C+Sun-Woo&rft.au=Kim%2C+Geon-U&rft.date=2022-12-01&rft.eissn=1521-4095&rft.volume=34&rft.issue=50&rft.spage=e2207544&rft_id=info:doi/10.1002%2Fadma.202207544&rft_id=info%3Apmid%2F36153847&rft.externalDocID=36153847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon