Intrinsically Stretchable, Highly Efficient Organic Solar Cells Enabled by Polymer Donors Featuring Hydrogen‐Bonding Spacers
Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structure...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 50; pp. e2207544 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202207544 |
Cover
Abstract | Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (PDs, PhAmX) featuring phenyl amide (N1,N3‐bis((5‐bromothiophen‐2‐yl)methyl)isophthalamide, PhAm)‐based flexible spacer (FS) inducing hydrogen‐bonding (H‐bonding) interactions is developed. These PDs enable IS‐OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS‐OSCs to date. The incorporation of PhAm‐based FS enhances the molecular ordering of PDs as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm‐FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated.
Efficient, intrinsically stretchable organic solar cells (IS‐OSCs) are developed by designing a new series of polymer donors (PDs, PhAm) featuring hydrogen‐bonding‐capable flexible spacers. High power conversion efficiency (PCE = 12.7%) and stretchability (PCE retention of > 80% at 32% strain) are demonstrated, which represent the best performances in terms of both PCE and stretchability among the IS‐OSCs reported to date. |
---|---|
AbstractList | Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (PDs, PhAmX) featuring phenyl amide (N1,N3‐bis((5‐bromothiophen‐2‐yl)methyl)isophthalamide, PhAm)‐based flexible spacer (FS) inducing hydrogen‐bonding (H‐bonding) interactions is developed. These PDs enable IS‐OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS‐OSCs to date. The incorporation of PhAm‐based FS enhances the molecular ordering of PDs as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm‐FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated. Intrinsically stretchable organic solar cells (IS-OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (P s, PhAmX) featuring phenyl amide (N ,N -bis((5-bromothiophen-2-yl)methyl)isophthalamide, PhAm)-based flexible spacer (FS) inducing hydrogen-bonding (H-bonding) interactions is developed. These P s enable IS-OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS-OSCs to date. The incorporation of PhAm-based FS enhances the molecular ordering of P s as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm-FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated. Intrinsically stretchable organic solar cells (IS-OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (PD s, PhAmX) featuring phenyl amide (N1 ,N3 -bis((5-bromothiophen-2-yl)methyl)isophthalamide, PhAm)-based flexible spacer (FS) inducing hydrogen-bonding (H-bonding) interactions is developed. These PD s enable IS-OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS-OSCs to date. The incorporation of PhAm-based FS enhances the molecular ordering of PD s as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm-FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated.Intrinsically stretchable organic solar cells (IS-OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (PD s, PhAmX) featuring phenyl amide (N1 ,N3 -bis((5-bromothiophen-2-yl)methyl)isophthalamide, PhAm)-based flexible spacer (FS) inducing hydrogen-bonding (H-bonding) interactions is developed. These PD s enable IS-OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS-OSCs to date. The incorporation of PhAm-based FS enhances the molecular ordering of PD s as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm-FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated. Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (PDs, PhAmX) featuring phenyl amide (N1,N3‐bis((5‐bromothiophen‐2‐yl)methyl)isophthalamide, PhAm)‐based flexible spacer (FS) inducing hydrogen‐bonding (H‐bonding) interactions is developed. These PDs enable IS‐OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS‐OSCs to date. The incorporation of PhAm‐based FS enhances the molecular ordering of PDs as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm‐FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated. Efficient, intrinsically stretchable organic solar cells (IS‐OSCs) are developed by designing a new series of polymer donors (PDs, PhAm) featuring hydrogen‐bonding‐capable flexible spacers. High power conversion efficiency (PCE = 12.7%) and stretchability (PCE retention of > 80% at 32% strain) are demonstrated, which represent the best performances in terms of both PCE and stretchability among the IS‐OSCs reported to date. Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (P D s, PhAm X ) featuring phenyl amide ( N 1 , N 3 ‐bis((5‐bromothiophen‐2‐yl)methyl)isophthalamide, PhAm)‐based flexible spacer (FS) inducing hydrogen‐bonding (H‐bonding) interactions is developed. These P D s enable IS‐OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS‐OSCs to date. The incorporation of PhAm‐based FS enhances the molecular ordering of P D s as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm‐FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated. |
Author | Lee, Jin‐Woo Seo, Soodeok Lee, Jung‐Yong Kim, Bumjoon J. Lee, Seungjin Li, Sheng Kim, Taek‐Soo Kim, Geon‐U Lee, Sun‐Woo Phan, Tan Ngoc‐Lan Han, Seungseok |
Author_xml | – sequence: 1 givenname: Jin‐Woo surname: Lee fullname: Lee, Jin‐Woo organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 2 givenname: Soodeok surname: Seo fullname: Seo, Soodeok organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 3 givenname: Sun‐Woo surname: Lee fullname: Lee, Sun‐Woo organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 4 givenname: Geon‐U surname: Kim fullname: Kim, Geon‐U organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 5 givenname: Seungseok surname: Han fullname: Han, Seungseok organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 6 givenname: Tan Ngoc‐Lan surname: Phan fullname: Phan, Tan Ngoc‐Lan organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 7 givenname: Seungjin surname: Lee fullname: Lee, Seungjin organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 8 givenname: Sheng surname: Li fullname: Li, Sheng organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 9 givenname: Taek‐Soo surname: Kim fullname: Kim, Taek‐Soo organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 10 givenname: Jung‐Yong orcidid: 0000-0002-5347-8230 surname: Lee fullname: Lee, Jung‐Yong email: jungyong.lee@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 11 givenname: Bumjoon J. orcidid: 0000-0001-7783-9689 surname: Kim fullname: Kim, Bumjoon J. email: bumjoonkim@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology (KAIST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36153847$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rFDEUx4NU7LZ69SgBLx6cNT9nJsd1u3ULlQrbnodsJtmmZJI1maHMpfgn-Df6l5hha4WCeHrw-Hzee8n3BBz54DUAbzGaY4TIJ9l2ck4QIajijL0AM8wJLhgS_AjMkKC8ECWrj8FJSncIIVGi8hU4piXmtGbVDDxc-D5an6ySzo1w00fdq1u5dfojXNvdbe6tjLHKat_Dq7iT3iq4CU5GuNTOJbjyE9zC7Qi_BTd2OsKz4ENM8FzLfsizd3A9tjHstP_14-fn4NuptdlLpWN6DV4a6ZJ-81hPwc356nq5Li6vvlwsF5eFYlSwgnKmKtNi1BKGiKzKuuWiZqI2rKaGGk6JrOvSqAxgg9qKYrNlvNRCEakQoafgw2HuPobvg05909mk8gOk12FIDalwVQoq6IS-f4behSH6fF2meN5XC8Iz9e6RGradbpt9tJ2MY_PnZzMwPwAqhpSiNk8IRs0UXTNF1zxFlwX2TFC2l70NOSBp3b81cdDurdPjf5Y0i7Ovi7_ub-nfrlU |
CitedBy_id | crossref_primary_10_1002_rpm_20230022 crossref_primary_10_1002_marc_202400637 crossref_primary_10_1002_adfm_202406501 crossref_primary_10_1002_anie_202420121 crossref_primary_10_1002_anie_202310034 crossref_primary_10_1039_D2TA09874A crossref_primary_10_1039_D3CS00492A crossref_primary_10_1002_ange_202403139 crossref_primary_10_1002_adma_202307278 crossref_primary_10_1002_adma_202406879 crossref_primary_10_1039_D4CP00814F crossref_primary_10_1021_acsaelm_2c01791 crossref_primary_10_1063_5_0202910 crossref_primary_10_1002_aenm_202405451 crossref_primary_10_1021_acs_chemmater_3c01970 crossref_primary_10_1021_acs_macromol_3c02277 crossref_primary_10_1038_s41578_022_00499_w crossref_primary_10_1021_acsami_2c16908 crossref_primary_10_1002_smll_202401966 crossref_primary_10_1002_adma_202311170 crossref_primary_10_1039_D3EE00272A crossref_primary_10_1039_D4EE04208E crossref_primary_10_1002_smll_202403267 crossref_primary_10_1002_ange_202421430 crossref_primary_10_1039_D3BM02070C crossref_primary_10_1039_D3TC01579C crossref_primary_10_1016_j_cej_2024_156116 crossref_primary_10_1039_D5EE00002E crossref_primary_10_1002_smll_202412767 crossref_primary_10_1038_s41560_024_01651_2 crossref_primary_10_1002_adma_202307280 crossref_primary_10_1002_anie_202403139 crossref_primary_10_3389_fchem_2023_1200644 crossref_primary_10_1002_adfm_202312289 crossref_primary_10_1016_j_nanoen_2023_109023 crossref_primary_10_1016_j_nanoen_2024_109541 crossref_primary_10_1002_adma_202300820 crossref_primary_10_1021_jacs_3c02764 crossref_primary_10_1039_D4TA00117F crossref_primary_10_26599_NRE_2022_9120088 crossref_primary_10_1002_ange_202407040 crossref_primary_10_1002_anie_202421430 crossref_primary_10_1021_jacs_2c13247 crossref_primary_10_1038_s41467_024_51359_w crossref_primary_10_1002_adma_202411449 crossref_primary_10_1002_adfm_202400702 crossref_primary_10_1002_aenm_202404233 crossref_primary_10_1126_science_adp9709 crossref_primary_10_1002_advs_202305356 crossref_primary_10_1039_D4TA02429J crossref_primary_10_1002_aenm_202301283 crossref_primary_10_1021_acsami_4c03679 crossref_primary_10_1021_acs_chemmater_4c01516 crossref_primary_10_1021_acsami_2c17418 crossref_primary_10_1002_ange_202310034 crossref_primary_10_1002_advs_202206580 crossref_primary_10_1002_anie_202407040 crossref_primary_10_1038_s41467_024_49352_4 crossref_primary_10_1002_aenm_202401191 crossref_primary_10_1021_acsaem_3c01204 crossref_primary_10_1039_D3CS00895A crossref_primary_10_1039_D4EE02724H crossref_primary_10_1002_ange_202420121 crossref_primary_10_35848_1347_4065_adba69 crossref_primary_10_1002_cjoc_202300636 crossref_primary_10_1002_adfm_202301573 crossref_primary_10_1002_adfm_202305851 crossref_primary_10_1021_acsami_3c11753 crossref_primary_10_1038_s41467_024_55375_8 crossref_primary_10_1002_adma_202305562 crossref_primary_10_1039_D2NR03992C crossref_primary_10_1002_aenm_202304286 crossref_primary_10_1002_adfm_202403770 crossref_primary_10_1021_acsami_3c01519 crossref_primary_10_1002_adma_202308159 crossref_primary_10_1016_j_nanoen_2024_109338 crossref_primary_10_1039_D3TA03935H crossref_primary_10_1002_adma_202300230 crossref_primary_10_1002_aenm_202303872 crossref_primary_10_26599_NRE_2023_9120088 |
Cites_doi | 10.1002/adma.202105803 10.1002/adma.202102635 10.1021/ja00057a015 10.1021/acsomega.2c01451 10.1002/aenm.202003367 10.1038/s41467-020-16509-w 10.1021/acsami.8b10608 10.1039/D1EE01062J 10.1021/cr3001109 10.1002/adma.202205844 10.1002/aenm.202002709 10.1021/j100165a007 10.1016/j.matt.2021.12.002 10.1016/j.joule.2019.10.007 10.1002/aenm.202200887 10.1351/PAC-REP-10-01-01 10.1021/jacsau.1c00064 10.1021/acs.macromol.0c02496 10.1021/acs.chemmater.9b04464 10.1002/anie.201807513 10.1021/acs.chemmater.0c01437 10.1038/s41560-021-00923-5 10.1039/CS9932200397 10.1039/C8TC06206D 10.1002/adma.202107361 10.1002/adfm.202003654 10.1002/adfm.202008494 10.1021/acsenergylett.1c00829 10.1007/BF03218918 10.1002/adma.202106732 10.1002/aenm.202103239 10.1021/acs.macromol.1c00534 10.1002/advs.201900813 10.1016/j.joule.2021.06.017 10.1021/acs.chemmater.9b04574 10.1038/nnano.2012.192 10.1016/j.joule.2019.01.004 10.1002/anie.200904215 10.1039/D0EE04012F 10.1021/jacs.2c00072 10.1038/ncomms3520 10.1002/adma.202201623 10.1103/PhysRevB.70.235207 10.1021/acs.chemmater.0c04721 10.1021/jacs.5b09737 10.1021/ja0011966 10.1016/j.joule.2020.01.014 10.1039/D1EE02320A 10.1021/acs.macromol.0c00889 10.1002/adma.202204718 10.1038/nature20102 10.1002/adfm.201804222 10.1021/acs.macromol.8b02337 10.1002/aenm.201701791 10.1021/acs.chemmater.0c00055 10.1002/adfm.202108508 10.1021/acs.accounts.7b00293 10.1039/D1EE01220G 10.1002/adfm.202100870 10.1002/inf2.12270 10.1002/adma.201908205 10.1021/acs.chemmater.1c04055 10.1039/b605478a 10.1038/ncomms6293 10.1039/D0TA11320D 10.1021/acsnano.1c07471 10.1002/adma.200601093 10.1038/natrevmats.2018.3 10.1002/adfm.202103534 10.1038/s41467-020-18378-9 10.1002/adma.201004311 10.1039/c1sm06174g 10.1021/acs.macromol.1c02111 10.1038/s41560-021-00820-x 10.1002/adma.202102420 10.1103/PhysRevB.82.245207 10.1016/j.cplett.2008.06.060 10.1016/j.joule.2019.12.004 10.1016/j.joule.2022.02.006 10.1002/adma.202110639 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202207544 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 36153847 10_1002_adma_202207544 ADMA202207544 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: NRF‐2020R1A4A1018516; 2021M3H4A1A01004332; 2022R1A2B5B03001761 – fundername: National Research Foundation of Korea grantid: 2021M3H4A1A01004332 – fundername: National Research Foundation of Korea grantid: NRF-2020R1A4A1018516 – fundername: National Research Foundation of Korea grantid: 2022R1A2B5B03001761 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4394-354c7fd10d2402a768d598498f483f3f532a886fc0d21f0d731fb456e9c2ac023 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:36:51 EDT 2025 Fri Jul 25 09:29:30 EDT 2025 Wed Feb 19 02:26:02 EST 2025 Thu Apr 24 23:01:29 EDT 2025 Wed Oct 01 03:14:20 EDT 2025 Wed Jan 22 16:25:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | hydrogen bonding intrinsically stretchable organic solar cells flexible spacers mechanical robustness stretchability |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4394-354c7fd10d2402a768d598498f483f3f532a886fc0d21f0d731fb456e9c2ac023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7783-9689 0000-0002-5347-8230 |
PMID | 36153847 |
PQID | 2754838925 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2717693932 proquest_journals_2754838925 pubmed_primary_36153847 crossref_primary_10_1002_adma_202207544 crossref_citationtrail_10_1002_adma_202207544 wiley_primary_10_1002_adma_202207544_ADMA202207544 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2012 2021; 112 33 2011 1993 2008 1991; 83 22 463 95 2007; 19 2018 2022 2020; 57 55 30 2018 2018 2012; 28 10 7 2020 2021 2021 2021; 4 33 1 14 2018 2021 2020 2020; 8 5 4 4 2021 2022; 54 12 2006 1993; 35 115 2021 2021 2020 2022; 15 14 53 144 2020; 11 2022 2022; 5 4 2021 2013 2022; 33 4 7 2014 2017; 5 50 2004 2022; 70 32 2021 2022 2022; 31 34 12 2021; 54 2021; 31 2021; 11 2021 2019 2020 2022 2022 2018 2021 2020 2021 2021 2022 2022; 6 3 11 6 34 3 6 32 33 31 34 34 2021 2020; 11 32 2010 2020 2016 2022 2020; 49 32 539 34 32 2022; 34 2011 2021 2009 2019; 7 6 17 6 2016 2019 2019; 138 7 52 2010 2011; 82 23 2000; 122 2021 2021 2020; 14 14 32 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_22_3 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_26_2 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_9_5 e_1_2_8_9_4 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_30_3 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_30_4 e_1_2_8_2_11 e_1_2_8_2_10 e_1_2_8_30_1 e_1_2_8_2_12 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_27_1 e_1_2_8_8_4 e_1_2_8_2_9 e_1_2_8_8_3 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_2_6 e_1_2_8_4_4 e_1_2_8_6_2 e_1_2_8_2_5 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_2_8 e_1_2_8_6_4 e_1_2_8_8_2 e_1_2_8_2_7 e_1_2_8_6_3 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_18_1 e_1_2_8_12_2 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_12_1 |
References_xml | – volume: 112 33 start-page: 5488 year: 2012 2021 publication-title: Chem. Rev. Adv. Mater. – volume: 82 23 start-page: 1670 year: 2010 2011 publication-title: Phys. Rev. B Adv. Mater. – volume: 138 7 52 start-page: 173 1681 738 year: 2016 2019 2019 publication-title: J. Am. Chem. Soc. J. Mater. Chem. C Macromolecules – volume: 4 33 1 14 start-page: 658 612 5968 year: 2020 2021 2021 2021 publication-title: Joule Adv. Mater. JACS Au Energy Environ. Sci. – volume: 7 6 17 6 start-page: 2512 616 year: 2011 2021 2009 2019 publication-title: Soft Matter ACS Energy Lett. Macromol. Res. Adv. Sci. – volume: 31 34 12 year: 2021 2022 2022 publication-title: Adv. Funct. Mater. Adv. Mater. Adv. Energy Mater. – volume: 83 22 463 95 start-page: 1619 397 1 4601 year: 2011 1993 2008 1991 publication-title: Pure Appl. Chem. Chem. Soc. Rev. Chem. Phys. Lett. J. Phys. Chem. – volume: 57 55 30 start-page: 322 year: 2018 2022 2020 publication-title: Angew. Chem., Int. Ed. Macromolecules Adv. Funct. Mater. – volume: 5 4 start-page: 725 year: 2022 2022 publication-title: Matter InfoMat – volume: 11 32 start-page: 582 year: 2021 2020 publication-title: Adv. Energy Mater. Chem. Mater. – volume: 11 start-page: 4612 year: 2020 publication-title: Nat. Commun. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 8 5 4 4 start-page: 2395 128 407 year: 2018 2021 2020 2020 publication-title: Adv. Energy Mater. Joule Joule Joule – volume: 54 start-page: 7388 year: 2021 publication-title: Macromolecules – volume: 70 32 year: 2004 2022 publication-title: Phys. Rev. B Adv. Funct. Mater. – volume: 9 start-page: 2775 year: 2021 publication-title: J. Mater. Chem. A – volume: 28 10 7 start-page: 825 year: 2018 2018 2012 publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces Nat. Nanotechnol. – volume: 6 3 11 6 34 3 6 32 33 31 34 34 start-page: 605 1140 2726 647 1045 year: 2021 2019 2020 2022 2022 2018 2021 2020 2021 2021 2022 2022 publication-title: Nat. Energy Joule Nat. Commun. Joule Adv. Mater. Nat. Rev. Mater. Nat. Energy Adv. Mater. Adv. Mater. Adv. Funct. Mater. Adv. Mater. Adv. Mater. – volume: 14 14 32 start-page: 4341 3044 2572 year: 2021 2021 2020 publication-title: Energy Environ. Sci. Energy Environ. Sci. Chem. Mater. – volume: 33 4 7 start-page: 1070 2520 year: 2021 2013 2022 publication-title: Chem. Mater. Nat. Commun. ACS Omega – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 15 14 53 144 start-page: 4067 6032 4699 year: 2021 2021 2020 2022 publication-title: ACS Nano Energy Environ. Sci. Macromolecules J. Am. Chem. Soc. – volume: 35 115 start-page: 1305 1321 year: 2006 1993 publication-title: Chem. Soc. Rev. J. Am. Chem. Soc. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 34 start-page: 2259 year: 2022 publication-title: Chem. Mater. – volume: 122 start-page: 5895 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 49 32 539 34 32 start-page: 740 5700 411 1914 year: 2010 2020 2016 2022 2020 publication-title: Angew. Chem., Int. Ed. Chem. Mater. Nature Adv. Mater. Chem. Mater. – volume: 5 50 start-page: 5293 2519 year: 2014 2017 publication-title: Nat. Commun. Acc. Chem. Res. – volume: 54 12 start-page: 53 year: 2021 2022 publication-title: Macromolecules Adv. Energy Mater. – volume: 19 start-page: 1551 year: 2007 publication-title: Adv. Mater. – ident: e_1_2_8_2_5 doi: 10.1002/adma.202105803 – ident: e_1_2_8_21_2 doi: 10.1002/adma.202102635 – ident: e_1_2_8_12_2 doi: 10.1021/ja00057a015 – ident: e_1_2_8_28_3 doi: 10.1021/acsomega.2c01451 – ident: e_1_2_8_5_1 doi: 10.1002/aenm.202003367 – ident: e_1_2_8_2_3 doi: 10.1038/s41467-020-16509-w – ident: e_1_2_8_16_2 doi: 10.1021/acsami.8b10608 – ident: e_1_2_8_6_2 doi: 10.1039/D1EE01062J – ident: e_1_2_8_21_1 doi: 10.1021/cr3001109 – ident: e_1_2_8_2_12 doi: 10.1002/adma.202205844 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.202002709 – ident: e_1_2_8_8_4 doi: 10.1021/j100165a007 – ident: e_1_2_8_13_1 doi: 10.1016/j.matt.2021.12.002 – ident: e_1_2_8_1_3 doi: 10.1016/j.joule.2019.10.007 – ident: e_1_2_8_3_3 doi: 10.1002/aenm.202200887 – ident: e_1_2_8_8_1 doi: 10.1351/PAC-REP-10-01-01 – ident: e_1_2_8_4_3 doi: 10.1021/jacsau.1c00064 – ident: e_1_2_8_23_1 doi: 10.1021/acs.macromol.0c02496 – ident: e_1_2_8_19_2 doi: 10.1021/acs.chemmater.9b04464 – ident: e_1_2_8_7_1 doi: 10.1002/anie.201807513 – ident: e_1_2_8_9_2 doi: 10.1021/acs.chemmater.0c01437 – ident: e_1_2_8_2_7 doi: 10.1038/s41560-021-00923-5 – ident: e_1_2_8_8_2 doi: 10.1039/CS9932200397 – ident: e_1_2_8_22_2 doi: 10.1039/C8TC06206D – ident: e_1_2_8_14_1 doi: 10.1002/adma.202107361 – ident: e_1_2_8_7_3 doi: 10.1002/adfm.202003654 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.202008494 – ident: e_1_2_8_30_2 doi: 10.1021/acsenergylett.1c00829 – ident: e_1_2_8_30_3 doi: 10.1007/BF03218918 – ident: e_1_2_8_4_2 doi: 10.1002/adma.202106732 – ident: e_1_2_8_23_2 doi: 10.1002/aenm.202103239 – ident: e_1_2_8_17_1 doi: 10.1021/acs.macromol.1c00534 – ident: e_1_2_8_30_4 doi: 10.1002/advs.201900813 – ident: e_1_2_8_1_2 doi: 10.1016/j.joule.2021.06.017 – ident: e_1_2_8_9_5 doi: 10.1021/acs.chemmater.9b04574 – ident: e_1_2_8_16_3 doi: 10.1038/nnano.2012.192 – ident: e_1_2_8_2_2 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_8_9_1 doi: 10.1002/anie.200904215 – ident: e_1_2_8_11_2 doi: 10.1039/D0EE04012F – ident: e_1_2_8_6_4 doi: 10.1021/jacs.2c00072 – ident: e_1_2_8_28_2 doi: 10.1038/ncomms3520 – ident: e_1_2_8_3_2 doi: 10.1002/adma.202201623 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevB.70.235207 – ident: e_1_2_8_28_1 doi: 10.1021/acs.chemmater.0c04721 – ident: e_1_2_8_22_1 doi: 10.1021/jacs.5b09737 – ident: e_1_2_8_18_1 doi: 10.1021/ja0011966 – ident: e_1_2_8_4_1 doi: 10.1016/j.joule.2020.01.014 – ident: e_1_2_8_4_4 doi: 10.1039/D1EE02320A – ident: e_1_2_8_6_3 doi: 10.1021/acs.macromol.0c00889 – ident: e_1_2_8_2_11 doi: 10.1002/adma.202204718 – ident: e_1_2_8_9_3 doi: 10.1038/nature20102 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201804222 – ident: e_1_2_8_22_3 doi: 10.1021/acs.macromol.8b02337 – ident: e_1_2_8_1_1 doi: 10.1002/aenm.201701791 – ident: e_1_2_8_11_3 doi: 10.1021/acs.chemmater.0c00055 – ident: e_1_2_8_25_2 doi: 10.1002/adfm.202108508 – ident: e_1_2_8_20_2 doi: 10.1021/acs.accounts.7b00293 – ident: e_1_2_8_11_1 doi: 10.1039/D1EE01220G – ident: e_1_2_8_2_10 doi: 10.1002/adfm.202100870 – ident: e_1_2_8_13_2 doi: 10.1002/inf2.12270 – ident: e_1_2_8_2_8 doi: 10.1002/adma.201908205 – ident: e_1_2_8_10_1 doi: 10.1021/acs.chemmater.1c04055 – ident: e_1_2_8_12_1 doi: 10.1039/b605478a – ident: e_1_2_8_20_1 doi: 10.1038/ncomms6293 – ident: e_1_2_8_15_1 doi: 10.1039/D0TA11320D – ident: e_1_2_8_6_1 doi: 10.1021/acsnano.1c07471 – ident: e_1_2_8_24_1 doi: 10.1002/adma.200601093 – ident: e_1_2_8_2_6 doi: 10.1038/natrevmats.2018.3 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.202103534 – ident: e_1_2_8_29_1 doi: 10.1038/s41467-020-18378-9 – ident: e_1_2_8_26_2 doi: 10.1002/adma.201004311 – ident: e_1_2_8_30_1 doi: 10.1039/c1sm06174g – ident: e_1_2_8_7_2 doi: 10.1021/acs.macromol.1c02111 – ident: e_1_2_8_2_1 doi: 10.1038/s41560-021-00820-x – ident: e_1_2_8_2_9 doi: 10.1002/adma.202102420 – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevB.82.245207 – ident: e_1_2_8_8_3 doi: 10.1016/j.cplett.2008.06.060 – ident: e_1_2_8_1_4 doi: 10.1016/j.joule.2019.12.004 – ident: e_1_2_8_2_4 doi: 10.1016/j.joule.2022.02.006 – ident: e_1_2_8_9_4 doi: 10.1002/adma.202110639 |
SSID | ssj0009606 |
Score | 2.624364 |
Snippet | Intrinsically stretchable organic solar cells (IS‐OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source... Intrinsically stretchable organic solar cells (IS-OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2207544 |
SubjectTerms | Electrical properties Energy conversion efficiency flexible spacers Hydrogen bonding Hydrogen embrittlement intrinsically stretchable organic solar cells Materials science mechanical robustness Molecular structure Optical properties Photovoltaic cells Polymers Power sources Solar cells Stretchability |
Title | Intrinsically Stretchable, Highly Efficient Organic Solar Cells Enabled by Polymer Donors Featuring Hydrogen‐Bonding Spacers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202207544 https://www.ncbi.nlm.nih.gov/pubmed/36153847 https://www.proquest.com/docview/2754838925 https://www.proquest.com/docview/2717693932 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-4095 dateEnd: 20241003 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: ADMLS dateStart: 20120605 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0935-9648 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPbWHUqCFlBYZqVIvpE3sJHWOq3arBakVolTqLfLzQkjQPg7bQ8VP4DfyS5hxdtMuCCHBzfFDcTwz9ufY8w3AofbCF6lBCRTSxZmRJlZeu9jpxBmfuqJU5O98eVWMbrL3t_ntIy_-jh-i_-FGlhHmazJwpScnD6ShygbeIM4T4nDDSTgVeTin_fjAH0XwPJDtiTwui0wuWRsTfrLafHVV-g1qriLXsPRcPAG17HR34-Tz8Wyqj83dL3yO__NV27C1wKVs0CnSU1hzzTPYfMRW-Bzu3zVTTAWx1nNG59kocnK9esvougjmDQMhBa5jrPPxNOyats7szNX1hA2Dn5Zles4-tPX8ixuz87ZpxxNGQDT4S7LR3I5bVOof375TxGPKusZtPYLUHbi5GH46G8WL8A2xIXfbWOSZOfU2TSyd4Cjc19i8lFkpfSYFqkguuJKy8AYrpD6xpyL1GvGcKw1XBrHELqw3beNeArNKao3QJXMyySxPtDAyKbmxqc4dzlERxEvxVWbBbU4hNuqqY2XmFY1r1Y9rBEd9_a8dq8cfa-4vtaFaWPek4lgiEenxPII3fTHaJR22qMa1M6qTUphJhMcRvOi0qH-VIJSNsCACHnThL32oBueXg_5p718avYINSnf3cPZhfTqeuQNEU1P9OljMTxl7F9Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619NByoPQFKdC6UqVeGkicB85xxS5aWhZVBaTeovh1aUjQPg7LAfET-I39Jcw4m9BtVVVqb4k9VhzPjP35MZ8B3ksb2TRUqIFUGD9WQvmFlcY3MjDKhibNCop3Hp2kw_P407ekPU1IsTANP0S34Eae4fprcnBakN67Zw0ttCMO4jwgEreH8Ig26cg3-1_vGaQIoDu6vSjxszQWLW9jwPeWyy-PS7-BzWXs6gafw6cg22o3Z06-786mcldd_cLo-F__tQ5rC2jKeo0tPYMHpnoOqz8RFr6A66Nqik9Os-Wc0ZY2ap2irz4yOjGCaQPHSYFDGWvCPBU7pdkzOzBlOWEDF6qlmZyzL3U5vzBj1q-rejxhhEVdyCQbzvW4Rrv-cXNLlx5T0inO7BGnvoTzw8HZwdBf3ODgK4q49aMkVvtWh4GmTZwCpzY6yUScCRuLCK0kiXghRGoVCoQ20PtRaCVCOpMpXiiEE69gpaorswlMF0JKRC-xEUGseSAjJYKMKx3KxGA35YHf6i9XC3pzumWjzBtiZp5Tu-Zdu3rwoZO_bIg9_ii53ZpDvnDwSc4xRyDY44kH77psdE3abykqU89IJqSbJhEhe7DRmFH3qYiANiIDD7gzhr_UIe_1R73u7fW_FHoLj4dno-P8-Ojk8xY8ofTmWM42rEzHM7OD4Goq3zj3uQORDhvw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyExIW0ieOkznHV3dUWaFVRKvUW-XkhJNU-DssB8RP4jfwSZpzdtAtCSHBL7LHieGbiz7HnG4BX2me-SA1qoJAuFkaaWHntYqcTZ3zqilJRvPPhUTE5FW_P8rNLUfwdP0T_w408I3yvycHPrd-9IA1VNvAGcZ4Qh9tVuCYKXGIRLPpwQSBF-Dyw7WV5XBZCrmkbE7672X5zWvoNa25C1zD3jG-DWve6O3LyaWcx1zvmyy-Ejv_zWnfg1gqYskFnSXfhimvuwc1LdIX34etBM8eroNd6yWhDG3VOsVdvGJ0XwbJRYKTAiYx1QZ6GndDame27up6xUQjUskwv2XFbLz-7KRu2TTudMUKiIWCSTZZ22qJV__j2nVIeU9EJrusRpT6A0_Ho4_4kXuVviA3F28ZZLsyet2liaQtH4cLG5qUUpfRCZmgjecaVlIU3KJD6xO5lqdcI6FxpuDIIJh7CVtM27jEwq6TWiF2Ek4mwPNGZkUnJjU117vAjFUG8Vl9lVuTmlGOjrjpaZl7RuFb9uEbwupc_72g9_ii5vbaGauXes4pjjUSox_MIXvbV6Ji026Ia1y5IJqU8k4iPI3jUWVH_qIxgNuKCCHiwhb_0oRoMDwf93ZN_afQCrh8Px9X7g6N3T-EGFXdncrZhaz5duGeIrOb6eXCenyHTGp8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsically+Stretchable%2C+Highly+Efficient+Organic+Solar+Cells+Enabled+by+Polymer+Donors+Featuring+Hydrogen-Bonding+Spacers&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lee%2C+Jin-Woo&rft.au=Seo%2C+Soodeok&rft.au=Lee%2C+Sun-Woo&rft.au=Kim%2C+Geon-U&rft.date=2022-12-01&rft.eissn=1521-4095&rft.volume=34&rft.issue=50&rft.spage=e2207544&rft_id=info:doi/10.1002%2Fadma.202207544&rft_id=info%3Apmid%2F36153847&rft.externalDocID=36153847 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |