Application of the finite point method to high-Reynolds number compressible flow problems

SUMMARYIn this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construct...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 74; no. 10; pp. 732 - 748
Main Authors Ortega, Enrique, Oñate, Eugenio, Idelsohn, Sergio, Flores, Roberto
Format Journal Article Publication
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 10.04.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0271-2091
1097-0363
DOI10.1002/fld.3871

Cover

Abstract SUMMARYIn this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind‐biased scheme to solve the averaged Navier–Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd. The Finite Point Method (FPM) is applied to solve compressible high‐Reynolds flows focusing on the automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the resultant stretched clouds of points. An upwind‐biased scheme is used to solve the averaged Navier‐Stokes equations with an algebraic turbulence model. The numerical applications involve attached boundary layer flows. The results obtained are satisfactory and indicative of the possibilities of the proposed FPM technique.
AbstractList In this work, the finite point method is applied to the solution of high-Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind-biased scheme to solve the averaged Navier-Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright (c) 2014 John Wiley & Sons, Ltd. Peer Reviewed
In this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind‐biased scheme to solve the averaged Navier–Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd.
In this work, the finite point method is applied to the solution of high-Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind-biased scheme to solve the averaged Navier-Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. The Finite Point Method (FPM) is applied to solve compressible high-Reynolds flows focusing on the automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the resultant stretched clouds of points. An upwind-biased scheme is used to solve the averaged Navier-Stokes equations with an algebraic turbulence model. The numerical applications involve attached boundary layer flows. The results obtained are satisfactory and indicative of the possibilities of the proposed FPM technique.
SUMMARYIn this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind‐biased scheme to solve the averaged Navier–Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd. The Finite Point Method (FPM) is applied to solve compressible high‐Reynolds flows focusing on the automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the resultant stretched clouds of points. An upwind‐biased scheme is used to solve the averaged Navier‐Stokes equations with an algebraic turbulence model. The numerical applications involve attached boundary layer flows. The results obtained are satisfactory and indicative of the possibilities of the proposed FPM technique.
SUMMARY In this work, the finite point method is applied to the solution of high-Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind-biased scheme to solve the averaged Navier-Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
Author Flores, Roberto
Ortega, Enrique
Idelsohn, Sergio
Oñate, Eugenio
Author_xml – sequence: 1
  givenname: Enrique
  surname: Ortega
  fullname: Ortega, Enrique
  email: Correspondence to: Enrique Ortega, Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Technical University of Catalonia (UPC), 08034 Barcelona, Spain., eortega@cimne.upc.edu
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Technical University of Catalonia (UPC), 08034 Barcelona, Spain
– sequence: 2
  givenname: Eugenio
  surname: Oñate
  fullname: Oñate, Eugenio
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Technical University of Catalonia (UPC), 08034 Barcelona, Spain
– sequence: 3
  givenname: Sergio
  surname: Idelsohn
  fullname: Idelsohn, Sergio
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Technical University of Catalonia (UPC), 08034 Barcelona, Spain
– sequence: 4
  givenname: Roberto
  surname: Flores
  fullname: Flores, Roberto
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Technical University of Catalonia (UPC), 08034 Barcelona, Spain
BookMark eNqNkV2LEzEUhoOsYLcK_oSAN95MzcdMMrlctm4VioL4gd6ETHrGZs1MxiTDbv-9qRUXFwUhh-TA8745h_ccnY1hBISeUrKihLAXvd-teCvpA7SgRMmKcMHP0IIwSStGFH2EzlO6JoQo1vIF-nwxTd5Zk10Ycehx3gPu3egy4Cm4MeMB8j7scA54777uq3dwGIPfJTzOQwcR2zBMEVJynS9CH27wFEN5D-kxetgbn-DJr3uJPly9fH_5qtq-3by-vNhWtuaKVk1NbCssEQJIVxvSK8uUMh1pOtPuVGNUzZih1gorZCeNNApqoUhnQDRNJ_gS0ZOvTbPVESzEso4Oxt01x2JEMs04o7IpmucnTRn2-wwp68ElC96bEcKcNBXlU0lF-x9oQ4upPJ4lenYPvQ5zHMvyhSo5lKlle2doY0gpQq-n6AYTD5oSfYxQlwj1McKCru6h1uWfUeVonP-boDoJbpyHwz-N9dV2_SfvUobb37yJ37SQXDb605uNZmq9_rL5qLTkPwB9kbxf
CODEN IJNFDW
CitedBy_id crossref_primary_10_1016_j_cma_2019_05_048
crossref_primary_10_1007_s10915_019_01105_y
Cites_doi 10.1002/nme.1278
10.1002/1097-0207(20000910/20)49:1/2<193::AID-NME929>3.0.CO;2-R
10.1016/j.compfluid.2010.08.017
10.2514/6.1978-257
10.1002/nme.334
10.1016/S0045-7825(96)01132-2
10.1002/fld.1892
10.2514/6.1989-120
10.1007/s00466-006-0154-6
10.1016/S0045-7825(03)00298-6
10.1063/1.3051661
10.2514/6.1990-1653
10.2514/6.1993-3359
10.2514/6.2011-651
10.2514/6.1989-1189
10.1016/S0045-7825(96)01088-2
10.1016/0021-9991(81)90128-5
10.2514/6.1987-452
10.1016/S0045-7825(96)01086-9
10.2514/3.12167
10.1002/fld.3698
10.1002/fld.3747
10.1002/fld.1650090907
10.2514/3.9834
10.1016/S0045-7825(01)00214-6
10.1016/j.compfluid.2011.08.010
10.1016/j.jcp.2009.04.023
10.2514/6.1992-439
10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
10.1002/nme.3171
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa
Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
Universitat Politècnica de Catalunya. L'AIRE - Laboratori Aeronàutic i Industrial de Recerca i Estudis
Contributor_xml – sequence: 1
  fullname: Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
– sequence: 3
  fullname: Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
– sequence: 4
  fullname: Universitat Politècnica de Catalunya. L'AIRE - Laboratori Aeronàutic i Industrial de Recerca i Estudis
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: info:eu-repo/semantics/openAccess
DBID BSCLL
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
XX2
DOI 10.1002/fld.3871
DatabaseName Istex
CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Recercat
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Civil Engineering Abstracts
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 748
ExternalDocumentID oai_recercat_cat_2072_232175
3234800891
10_1002_fld_3871
FLD3871
ark_67375_WNG_29DDZGV9_7
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
XX2
ID FETCH-LOGICAL-c4391-540c86c066e0b4a0f9c299ab05ba8d95a9422a1cc6c67b7a7a9e4690bae655b63
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Sat Oct 18 15:07:02 EDT 2025
Thu Oct 02 11:46:44 EDT 2025
Tue Oct 07 09:48:23 EDT 2025
Fri Jul 25 12:18:39 EDT 2025
Wed Oct 01 02:49:39 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Jan 22 16:38:58 EST 2025
Tue Sep 09 05:31:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4391-540c86c066e0b4a0f9c299ab05ba8d95a9422a1cc6c67b7a7a9e4690bae655b63
Notes ark:/67375/WNG-29DDZGV9-7
istex:5E2C1CD3523548EA7957DE9F29D1FBAE7D07E0A4
ArticleID:FLD3871
Institució Catalana de Recerca i Estudis Avancats (ICREA)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/232175
PQID 1503669078
PQPubID 996375
PageCount 17
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_232175
proquest_miscellaneous_1642271685
proquest_miscellaneous_1512327327
proquest_journals_1503669078
crossref_primary_10_1002_fld_3871
crossref_citationtrail_10_1002_fld_3871
wiley_primary_10_1002_fld_3871_FLD3871
istex_primary_ark_67375_WNG_29DDZGV9_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 April 2014
PublicationDateYYYYMMDD 2014-04-10
PublicationDate_xml – month: 04
  year: 2014
  text: 10 April 2014
  day: 10
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Idelsohn S, Calvo N, Oñate E. Polyhedrization of an arbitrary 3D point set. Computer Methods in Applied Mechanics and Engineering 2003; 192(22):2649-2667.
Granville PS. Baldwin-Lomax factors for turbulent boundary layers in pressure gradients. AIAA Journal 1987; 25(12):1624-1627.
Han W, Meng X. Error analysis of the reproducing kernel particle method. Computer Methods in Applied Mechanics and Engineering 2001; 190(46):6157-6181.
Löhner R, Sacco C, Oñate E, Idelsohn S. A finite point method for compressible flow. International Journal for Numerical Methods in Engineering 2002; 53(8):1765-1779.
Liu WK, Li S, Belytschko T. Moving least square reproducing kernel methods. (I) Methodology and convergence. Computer Methods in Applied Mechanics and Engineering 1997; 143(1):113-154.
Munikrishna N, Balakrishnan N. Turbulent flow computations on a hybrid cartesian point distribution using meshless solver LSFD-U. Computer and Fluids 2011; 40(1):118-138.
Liszka TJ, Duarte CAM, Tworzydlo WW. Hp-Meshless cloud method. Computer Methods in Applied Mechanics and Engineering 1996; 139(1):263-288.
Hoffmann KA, Chiang ST. Computational Fluid Dynamics. Volume I. Engineering Education System: Wichita, USA, 2000.
Kennet DJ, Timme S, Angulo J, Badcock KJ. An implicit meshless method for application in computational fluid dynamics. International Journal for Numerical Methods in Fluids 2013; 71(8):1007-1028.
Jahangirian A, Hashemi MY. Adaptive cartesian grid with mesh-less zones for compressible flow calculations. Computer and Fluids 2012; 54: 10-17.
Boroomand B, Tabatabaei AA, Oñate E. Simple modifications for stabilization of the finite point method. International Journal for Numerical Methods in Engineering 2005; 63(3):351-379.
Ortega E, Oñate E, Idelsohn S. A finite point method for adaptive three-dimensional compressible flow calculations. International Journal for Numerical Methods in Fluids 2009; 60(9):937-971.
Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 1981; 43(2):357-372.
Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C. A finite point method for analysis of fluid mechanics problems. Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering 1996; 39(22):3839-3866.
Su X, Yamamoto S, Nakahashi K. Analysis of a meshless solver for high Reynolds number flow. International Journal for Numerical Methods in Fluids 2013; 72: 505-527. DOI: 10.1002/fld.3747.
Ortega E, Oñate E, Idelsohn S. An improved finite point method for three-dimensional potential flows. Computational Mechanics 2007; 40(6):949-963.
Pirzadeh S. Unstructured viscous grid generation by the advancing-layers method. AIAA Journal 1994; 32(8):1735-1737.
Wilcox DC. Turbulence Modeling for CFD. DCW Industries Inc.: La Cañada, California, 1994.
Katz A, Jameson A. Multicloud: multigrid convergence with a meshless operator. Journal of Computational Physics 2009; 228(14):5237-5250.
Spalart PR, Allmaras SR. A One-Equation Turbulence Model for Aerodynamic Flows. AIAA-92-0439 30th Aerospace Sciences Meeting: Orlando, Florida, 1992.
Xiaozhong J, Gang L, Aluru NR. Positivity conditions in meshless collocation methods. Computer Methods in Applied Mechanics and Engineering 2004; 193(12):1171-1202.
Stewartson K. The Theory of Laminar Boundary Layers in Compressible Fluids ( Temple G, James I, eds). Oxford. Mathematical Monographs. Oxford University Press: Oxford, 1964.
White FM. Viscous Fluid Flow. McGraw-Hill Inc: New York, 1991.
Löhner R. Applied Computational Fluid Dynamics Techniques. An Introduction Based on Finite Element Methods. John Wiley & Sons Ltd: Chichester, 2001.
Oñate E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Computational Mechanics 1998; 24(4-5):283-292.
Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C. A stabilized finite point method for analysis of fluid mechanics problems. Computer Methods in Applied Mechanics and Engineering 1996; 139(1):315-346.
Garimella RV, Shepard MS. Boundary layer mesh generation for viscous flow simulations. International Journal for Numerical Methods in Engineering 2000; 49(1):193-218.
Ortega E, Oñate E, Idelsohn S, Buachart C. An adaptive finite point method for the shallow water equations. International Journal for Numerical Methods in Engineering 2011; 88(2):180-204.
Rostand P. Algebraic turbulence models for the computation of two-dimensional high-speed flows using unstructured grids. International Journal for Numerical Methods in Fluids 1989; 9(9):1121-1143.
1996; 39
2000; 49
2002; 53
2011
2009; 60
2011; 40
1989; 9
2009
2005; 63
2013; 71
1996
2003; 192
2005
1994
1992
2002
1991
2012; 54
1981; 43
1978
1998; 24
1987; 25
2001
1990
2001; 190
2000
2013; 72
1997; 143
2004; 193
1987
1964
2011; 88
2007; 40
2009; 228
1969
1996; 139
1994; 32
1989
1988
e_1_2_8_28_1
e_1_2_8_29_1
Oñate E (e_1_2_8_7_1) 1998; 24
e_1_2_8_24_1
White FM (e_1_2_8_41_1) 1991
e_1_2_8_47_1
Wilcox DC (e_1_2_8_36_1) 1994
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
Xiaozhong J (e_1_2_8_21_1) 2004; 193
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
Löhner R (e_1_2_8_3_1) 2001
e_1_2_8_16_1
e_1_2_8_37_1
Hoffmann KA (e_1_2_8_25_1) 2000
e_1_2_8_32_1
Coles DE (e_1_2_8_43_1) 1969
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – reference: Boroomand B, Tabatabaei AA, Oñate E. Simple modifications for stabilization of the finite point method. International Journal for Numerical Methods in Engineering 2005; 63(3):351-379.
– reference: Oñate E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Computational Mechanics 1998; 24(4-5):283-292.
– reference: Katz A, Jameson A. Multicloud: multigrid convergence with a meshless operator. Journal of Computational Physics 2009; 228(14):5237-5250.
– reference: Löhner R, Sacco C, Oñate E, Idelsohn S. A finite point method for compressible flow. International Journal for Numerical Methods in Engineering 2002; 53(8):1765-1779.
– reference: Spalart PR, Allmaras SR. A One-Equation Turbulence Model for Aerodynamic Flows. AIAA-92-0439 30th Aerospace Sciences Meeting: Orlando, Florida, 1992.
– reference: Löhner R. Applied Computational Fluid Dynamics Techniques. An Introduction Based on Finite Element Methods. John Wiley & Sons Ltd: Chichester, 2001.
– reference: Garimella RV, Shepard MS. Boundary layer mesh generation for viscous flow simulations. International Journal for Numerical Methods in Engineering 2000; 49(1):193-218.
– reference: Pirzadeh S. Unstructured viscous grid generation by the advancing-layers method. AIAA Journal 1994; 32(8):1735-1737.
– reference: Liu WK, Li S, Belytschko T. Moving least square reproducing kernel methods. (I) Methodology and convergence. Computer Methods in Applied Mechanics and Engineering 1997; 143(1):113-154.
– reference: Ortega E, Oñate E, Idelsohn S. A finite point method for adaptive three-dimensional compressible flow calculations. International Journal for Numerical Methods in Fluids 2009; 60(9):937-971.
– reference: Idelsohn S, Calvo N, Oñate E. Polyhedrization of an arbitrary 3D point set. Computer Methods in Applied Mechanics and Engineering 2003; 192(22):2649-2667.
– reference: Han W, Meng X. Error analysis of the reproducing kernel particle method. Computer Methods in Applied Mechanics and Engineering 2001; 190(46):6157-6181.
– reference: Wilcox DC. Turbulence Modeling for CFD. DCW Industries Inc.: La Cañada, California, 1994.
– reference: Munikrishna N, Balakrishnan N. Turbulent flow computations on a hybrid cartesian point distribution using meshless solver LSFD-U. Computer and Fluids 2011; 40(1):118-138.
– reference: Xiaozhong J, Gang L, Aluru NR. Positivity conditions in meshless collocation methods. Computer Methods in Applied Mechanics and Engineering 2004; 193(12):1171-1202.
– reference: Kennet DJ, Timme S, Angulo J, Badcock KJ. An implicit meshless method for application in computational fluid dynamics. International Journal for Numerical Methods in Fluids 2013; 71(8):1007-1028.
– reference: Jahangirian A, Hashemi MY. Adaptive cartesian grid with mesh-less zones for compressible flow calculations. Computer and Fluids 2012; 54: 10-17.
– reference: Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C. A stabilized finite point method for analysis of fluid mechanics problems. Computer Methods in Applied Mechanics and Engineering 1996; 139(1):315-346.
– reference: Ortega E, Oñate E, Idelsohn S. An improved finite point method for three-dimensional potential flows. Computational Mechanics 2007; 40(6):949-963.
– reference: Su X, Yamamoto S, Nakahashi K. Analysis of a meshless solver for high Reynolds number flow. International Journal for Numerical Methods in Fluids 2013; 72: 505-527. DOI: 10.1002/fld.3747.
– reference: Stewartson K. The Theory of Laminar Boundary Layers in Compressible Fluids ( Temple G, James I, eds). Oxford. Mathematical Monographs. Oxford University Press: Oxford, 1964.
– reference: Liszka TJ, Duarte CAM, Tworzydlo WW. Hp-Meshless cloud method. Computer Methods in Applied Mechanics and Engineering 1996; 139(1):263-288.
– reference: Granville PS. Baldwin-Lomax factors for turbulent boundary layers in pressure gradients. AIAA Journal 1987; 25(12):1624-1627.
– reference: White FM. Viscous Fluid Flow. McGraw-Hill Inc: New York, 1991.
– reference: Hoffmann KA, Chiang ST. Computational Fluid Dynamics. Volume I. Engineering Education System: Wichita, USA, 2000.
– reference: Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 1981; 43(2):357-372.
– reference: Ortega E, Oñate E, Idelsohn S, Buachart C. An adaptive finite point method for the shallow water equations. International Journal for Numerical Methods in Engineering 2011; 88(2):180-204.
– reference: Rostand P. Algebraic turbulence models for the computation of two-dimensional high-speed flows using unstructured grids. International Journal for Numerical Methods in Fluids 1989; 9(9):1121-1143.
– reference: Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C. A finite point method for analysis of fluid mechanics problems. Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering 1996; 39(22):3839-3866.
– year: 2011
– volume: 60
  start-page: 937
  issue: 9
  year: 2009
  end-page: 971
  article-title: A finite point method for adaptive three‐dimensional compressible flow calculations
  publication-title: International Journal for Numerical Methods in Fluids
– year: 2009
– volume: 9
  start-page: 1121
  issue: 9
  year: 1989
  end-page: 1143
  article-title: Algebraic turbulence models for the computation of two‐dimensional high‐speed flows using unstructured grids
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 53
  start-page: 1765
  issue: 8
  year: 2002
  end-page: 1779
  article-title: A finite point method for compressible flow
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1964
– volume: 228
  start-page: 5237
  issue: 14
  year: 2009
  end-page: 5250
  article-title: Multicloud: multigrid convergence with a meshless operator
  publication-title: Journal of Computational Physics
– volume: 54
  start-page: 10
  year: 2012
  end-page: 17
  article-title: Adaptive cartesian grid with mesh‐less zones for compressible flow calculations
  publication-title: Computer and Fluids
– year: 2005
– volume: 139
  start-page: 263
  issue: 1
  year: 1996
  end-page: 288
  article-title: Hp‐Meshless cloud method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2001
– year: 1987
– year: 1989
– volume: 88
  start-page: 180
  issue: 2
  year: 2011
  end-page: 204
  article-title: An adaptive finite point method for the shallow water equations
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1996
– year: 2000
– volume: 71
  start-page: 1007
  issue: 8
  year: 2013
  end-page: 1028
  article-title: An implicit meshless method for application in computational fluid dynamics
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 72
  start-page: 505
  year: 2013
  end-page: 527
  article-title: Analysis of a meshless solver for high Reynolds number flow
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 40
  start-page: 949
  issue: 6
  year: 2007
  end-page: 963
  article-title: An improved finite point method for three‐dimensional potential flows
  publication-title: Computational Mechanics
– volume: 32
  start-page: 1735
  issue: 8
  year: 1994
  end-page: 1737
  article-title: Unstructured viscous grid generation by the advancing‐layers method
  publication-title: AIAA Journal
– volume: 143
  start-page: 113
  issue: 1
  year: 1997
  end-page: 154
  article-title: Moving least square reproducing kernel methods. (I) Methodology and convergence
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 1990
– year: 1992
– year: 1994
– volume: 40
  start-page: 118
  issue: 1
  year: 2011
  end-page: 138
  article-title: Turbulent flow computations on a hybrid cartesian point distribution using meshless solver LSFD‐U
  publication-title: Computer and Fluids
– volume: 63
  start-page: 351
  issue: 3
  year: 2005
  end-page: 379
  article-title: Simple modifications for stabilization of the finite point method
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 24
  start-page: 283
  issue: 4‐5
  year: 1998
  end-page: 292
  article-title: A mesh‐free finite point method for advective‐diffusive transport and fluid flow problems
  publication-title: Computational Mechanics
– start-page: 367
  year: 2002
  end-page: 377
– year: 1969
– year: 1988
– volume: 192
  start-page: 2649
  issue: 22
  year: 2003
  end-page: 2667
  article-title: Polyhedrization of an arbitrary 3D point set
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 43
  start-page: 357
  issue: 2
  year: 1981
  end-page: 372
  article-title: Approximate Riemann solvers, parameter vectors and difference schemes
  publication-title: Journal of Computational Physics
– volume: 25
  start-page: 1624
  issue: 12
  year: 1987
  end-page: 1627
  article-title: Baldwin‐Lomax factors for turbulent boundary layers in pressure gradients
  publication-title: AIAA Journal
– volume: 49
  start-page: 193
  issue: 1
  year: 2000
  end-page: 218
  article-title: Boundary layer mesh generation for viscous flow simulations
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 139
  start-page: 315
  issue: 1
  year: 1996
  end-page: 346
  article-title: A stabilized finite point method for analysis of fluid mechanics problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 190
  start-page: 6157
  issue: 46
  year: 2001
  end-page: 6181
  article-title: Error analysis of the reproducing kernel particle method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 193
  start-page: 1171
  issue: 12
  year: 2004
  end-page: 1202
  article-title: Positivity conditions in meshless collocation methods
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 1978
– year: 1991
– volume: 39
  start-page: 3839
  issue: 22
  year: 1996
  end-page: 3866
  article-title: A finite point method for analysis of fluid mechanics problems. Applications to convective transport and fluid flow
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_8_17_1
  doi: 10.1002/nme.1278
– ident: e_1_2_8_2_1
  doi: 10.1002/1097-0207(20000910/20)49:1/2<193::AID-NME929>3.0.CO;2-R
– volume-title: Computational Fluid Dynamics. Volume I
  year: 2000
  ident: e_1_2_8_25_1
– ident: e_1_2_8_45_1
– ident: e_1_2_8_6_1
  doi: 10.1016/j.compfluid.2010.08.017
– ident: e_1_2_8_10_1
  doi: 10.2514/6.1978-257
– ident: e_1_2_8_15_1
  doi: 10.1002/nme.334
– ident: e_1_2_8_20_1
  doi: 10.1016/S0045-7825(96)01132-2
– ident: e_1_2_8_26_1
  doi: 10.1002/fld.1892
– volume-title: Viscous Fluid Flow
  year: 1991
  ident: e_1_2_8_41_1
– ident: e_1_2_8_38_1
  doi: 10.2514/6.1989-120
– ident: e_1_2_8_11_1
  doi: 10.1007/s00466-006-0154-6
– volume: 24
  start-page: 283
  issue: 4
  year: 1998
  ident: e_1_2_8_7_1
  article-title: A mesh‐free finite point method for advective‐diffusive transport and fluid flow problems
  publication-title: Computational Mechanics
– ident: e_1_2_8_14_1
  doi: 10.1016/S0045-7825(03)00298-6
– ident: e_1_2_8_39_1
  doi: 10.1063/1.3051661
– volume-title: Applied Computational Fluid Dynamics Techniques. An Introduction Based on Finite Element Methods
  year: 2001
  ident: e_1_2_8_3_1
– ident: e_1_2_8_28_1
– ident: e_1_2_8_40_1
– ident: e_1_2_8_44_1
– volume-title: Proceedings of the 1968 AFOSR‐IFP‐Stanford Conference
  year: 1969
  ident: e_1_2_8_43_1
– ident: e_1_2_8_34_1
  doi: 10.2514/6.1990-1653
– ident: e_1_2_8_13_1
– ident: e_1_2_8_32_1
  doi: 10.2514/6.1993-3359
– ident: e_1_2_8_31_1
  doi: 10.2514/6.2011-651
– ident: e_1_2_8_23_1
  doi: 10.2514/6.1989-1189
– ident: e_1_2_8_9_1
  doi: 10.1016/S0045-7825(96)01088-2
– ident: e_1_2_8_27_1
  doi: 10.1016/0021-9991(81)90128-5
– ident: e_1_2_8_33_1
  doi: 10.2514/6.1987-452
– ident: e_1_2_8_24_1
– ident: e_1_2_8_19_1
  doi: 10.1016/S0045-7825(96)01086-9
– ident: e_1_2_8_22_1
  doi: 10.2514/3.12167
– volume-title: Turbulence Modeling for CFD
  year: 1994
  ident: e_1_2_8_36_1
– ident: e_1_2_8_4_1
  doi: 10.1002/fld.3698
– ident: e_1_2_8_16_1
  doi: 10.1002/fld.3747
– ident: e_1_2_8_37_1
  doi: 10.1002/fld.1650090907
– ident: e_1_2_8_35_1
  doi: 10.2514/3.9834
– volume: 193
  start-page: 1171
  issue: 12
  year: 2004
  ident: e_1_2_8_21_1
  article-title: Positivity conditions in meshless collocation methods
  publication-title: Computer Methods in Applied Mechanics and Engineering
– ident: e_1_2_8_18_1
  doi: 10.1016/S0045-7825(01)00214-6
– ident: e_1_2_8_30_1
– ident: e_1_2_8_5_1
  doi: 10.1016/j.compfluid.2011.08.010
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jcp.2009.04.023
– ident: e_1_2_8_46_1
  doi: 10.2514/6.1992-439
– ident: e_1_2_8_12_1
– ident: e_1_2_8_42_1
– ident: e_1_2_8_8_1
  doi: 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
– ident: e_1_2_8_29_1
  doi: 10.1002/nme.3171
SSID ssj0009283
Score 2.0776653
Snippet SUMMARYIn this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field...
In this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of...
SUMMARY In this work, the finite point method is applied to the solution of high-Reynolds compressible viscous flows. The aim is to explore this important...
In this work, the finite point method is applied to the solution of high-Reynolds compressible viscous flows. The aim is to explore this important field of...
SourceID csuc
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 732
SubjectTerms aerodynamics
Algebra
Anàlisi numèrica
Boundary layers
Clouds
collocation
compressible flow
Discretization
Elements finits, Mètode dels
Equacions de Navier-Stokes
Finite element method
Matemàtiques i estadística
Mathematical analysis
Mathematical models
meshfree
Meshless methods
Mètodes en elements finits
Navier-Stokes equations
particle method
RANS: Reynolds Averaged Navier-Stokes
Reynolds number
Àrees temàtiques de la UPC
Title Application of the finite point method to high-Reynolds number compressible flow problems
URI https://api.istex.fr/ark:/67375/WNG-29DDZGV9-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.3871
https://www.proquest.com/docview/1503669078
https://www.proquest.com/docview/1512327327
https://www.proquest.com/docview/1642271685
https://recercat.cat/handle/2072/232175
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: AMVHM
  dateStart: 20120710
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0271-2091
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEF_kfNEHa6viaS0riIJw12ST7GYfj16vh3h9KLYW-7DsbjZQGpJyydHqkx_Bz-gn6Uz-XSsqIiSEkNmwuzOz-9tk9jeEvAmSNHWeSUdpAmoInZ-OJNcwGAaxk1qIKPFwg_PikM-Pww-n0WkbVYl7YRp-iP6DG3pGPV6jg2tT7q5JQ9MsGQdxvX3cD3i9mjpaM0dJ1jBwMuGDIUi_45312G5X8M5MNLDlygJAxb69voM2b2PWetKZbZCzrrpNrMnFeFWZsf32C5Pj_7XnMXnUYlE6aYxnk9xz-RbZaHEpbb2-3CIPb5EWPiFnk_U_b1qkFBAkTc8RutLL4jyvaJOUmlYFRS7kn99_HLmveZElJW3Sj1AMY6_Db00GRbPiirZpbcqn5Hi2_2lvPmpTNIwsbtnFsAobcwu4BRQeai-VFuY3bbzI6DiRkZYhY9q3llsujNBCS4cLcqMdjyLDg2dkkBe5e05olHBrvITpWEahY8Jopq3xtR8IUK_2h-Rdpy5lW_5yTKORqYZ5mSnoQYU9OCSve8nLhrPjNzLvUeMKphW3hC5TSLPd3-DJPMEU4E3AV0PytraL_m16eYEBcSJSnw8PFJPT6ZeDE6nEkGx3hqPasaBUALkDjh8hYqhY_xi8GH_N6NwVK5RBaCvg-IsMLBXBnHmM9akt6Y-tU7OPU7y--FfBl-QBIME6JMn3tsmgWq7cK0Bbldkh9yeLk_lip_avGwhsKUM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7L-KA-uLoqjq4aQRSEmW3TNmnwaXGcHXV2HpZdXVQISZrCsqVdph28PPkT_I3-Es_pbXZFRYSWUnpScjkn-ZKcfIeQx0GSps4z6ShNoBlC56cjyTV0hkHspBYiSjw84Ly_4LOj8PVxdLxBnndnYRp-iH7BDS2j7q_RwHFBemfNGppmyTiI8fz4pZDDNAUR0cGaO0qyhoOTCR9UQfod86zHdrqUF8aigS1XFiAq1u7nC3jzPGqth53pJvnYZbjxNjkdryoztl9_4XL8zxJdJ9daOEp3G_25QTZcvkU2W2hKW8Mvt8jVc7yFN8mH3fW2Ny1SCiCSpieIXulZcZJXtIlLTauCIh3yj2_fD9yXvMiSkjYRSCh6stceuCaDpFnxibaRbcpb5Gj68vDFbNRGaRhZPLWLnhU25hagC7R5qL1UWhjitPEio-NERlqGjGnfWm65MEILLR3OyY12PIoMD26TQV7k7g6hUcKt8RKmYxmFjgmjmbbG134gAh5of0iedu2lbEthjpE0MtWQLzMFNaiwBofkUS951tB2_EbmGTa5gpHFLaHKFDJt9y94M08wBZATINaQPKkVo_-bXp6iT5yI1LvFnmJyMnm_91YqMSTbneaotjsoFaDugOM6RAwZ6z-DIePujM5dsUIZRLcCrr_IwGwR9JnHmJ9alf5YOjWdT_B5918FH5LLs8P9uZq_Wry5R64AMKw9lHxvmwyq5crdB_BVmQe1kf0EL6EryA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9UwFA7jCqIfnE7Fu02NIArCvWvTNmnw07DeTZ0XGU7HFEKSpjBW2svtvfjyyZ_gb_SXeE7f7iYqIrSU0pOSl3OSJ8nJcwh5GKRZ5jyTjbIUmiF0fjaSXENnGMROaiGi1MMDzq-nfP8ofHkcHa-Rp91ZmIYfol9wQ8uo-2s0cDdLs50Va2iWp-MgxvPjl8JIxujPlxyuuKMkazg4mfBBFaTfMc96bKdLeWEsGthqaQGiYu1-voA3z6PWetiZrJOPXYYbb5Oz8XJhxvbrL1yO_1mi6-RaC0fpbqM_N8iaKzbIegtNaWv41Qa5eo638Cb5sLva9qZlRgFE0uwU0SudlafFgjZxqemipEiH_OPb90P3pSjztKJNBBKKnuy1B67JIWlefqJtZJvqFjmaPH_7bH_URmkYWTy1i54VNuYWoAu0eai9TFoY4rTxIqPjVEZahoxp31puuTBCCy0dzsmNdjyKDA9uk0FRFu4OoVHKrfFSpmMZhY4Jo5m2xtd-IAIeaH9IHnftpWxLYY6RNHLVkC8zBTWosAaH5EEvOWtoO34j8wSbXMHI4uZQZQqZtvsXvJknmALICRBrSB7VitH_Tc_P0CdOROr9dE8xmSQne--kEkOy3WmOaruDSgHqDjiuQ8SQsf4zGDLuzujClUuUQXQr4PqLDMwWQZ95jPmpVemPpVOTgwSfm_8qeJ9cfpNM1MGL6astcgVwYe2g5HvbZLCYL91dwF4Lc6-2sZ-c7CtM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+finite+point+method+to+high-Reynolds+number+compressible+flow+problems&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Ortega%2C+Enrique&rft.au=Onate%2C+Eugenio&rft.au=Idelsohn%2C+Sergio&rft.au=Flores%2C+Roberto&rft.date=2014-04-10&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=74&rft.issue=10&rft.spage=732&rft.epage=748&rft_id=info:doi/10.1002%2Ffld.3871&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon