Towards the genome-scale discovery of bivariate monotonic classifiers
Background Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scal...
Saved in:
| Published in | BMC bioinformatics Vol. 26; no. 1; pp. 228 - 32 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
02.09.2025
Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-025-06253-7 |
Cover
| Abstract | Background
Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate.
Results
We introduce the
fastBMC
algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation.
Conclusion
fastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context.
Availability
We provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at
https://github.com/oceanefrqt/fastBMC
. |
|---|---|
| AbstractList | Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate.
We introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation.
fastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context.
We provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC . Background Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate. Results We introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation. Conclusion fastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context. Availability We provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC . BackgroundBivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate.ResultsWe introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation.ConclusionfastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context.AvailabilityWe provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC. Abstract Background Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate. Results We introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation. Conclusion fastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context. Availability We provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC . Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate.BACKGROUNDBivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate.We introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation.RESULTSWe introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation.fastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context.CONCLUSIONfastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context.We provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC .AVAILABILITYWe provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC . |
| ArticleNumber | 228 |
| Author | Schwikowski, Benno Krejca, Martin S. Doerr, Carola Fourquet, Océane |
| Author_xml | – sequence: 1 givenname: Océane surname: Fourquet fullname: Fourquet, Océane organization: Computational Systems Biomedicine Lab, Institut Pasteur, Université Paris Cité, LIP6, CNRS, Sorbonne Université – sequence: 2 givenname: Martin S. surname: Krejca fullname: Krejca, Martin S. organization: LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris – sequence: 3 givenname: Carola surname: Doerr fullname: Doerr, Carola organization: LIP6, CNRS, Sorbonne Université – sequence: 4 givenname: Benno surname: Schwikowski fullname: Schwikowski, Benno email: benno@pasteur.fr organization: Computational Systems Biomedicine Lab, Institut Pasteur, Université Paris Cité |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40898061$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vFSEYhYmpsZ9_wIWZxE03o8AAA0vT1NqkiZu6Jny8XOdmBq4w0-b-e2nnWo0L4wpCnnM473lP0VFMERB6S_AHQqT4WAiVXLWY8hYLyru2f4VOCOtJSwnmR3_cj9FpKVuMSS8xf4OOGZZKYkFO0PV9ejTZl2b-Ds0GYpqgLc6M0PihuPQAed-k0NjhweTBzNBMKaY5xcE1bjSlDGGAXM7R62DGAheH8wx9-3x9f_Wlvft6c3v16a51rJNzG4IlPcWdZaRT1DMurbHCE6OUYsAo8R56CIYFaUVPnQJuXe-dI6pTmInuDN2uvj6Zrd7lYTJ5r5MZ9PNDyhtt8jy4EXSnhLNSMuGZZ5IxFRyApBwLQyAIX7261WuJO7N_NOP4YkiwfipYrwXrWrB-Llj3VXW5qnY5_VigzHqqPcE4mghpKbqjNaaSFPOKvv8L3aYlx9rPE9XjugFOK_XuQC12Av-S4deKKkBXwOVUSobwfzEPw5UKxw3k33__Q_UTYAmxzw |
| Cites_doi | 10.1038/nrc3726 10.1186/s12864-016-2749-4 10.1007/s12016-015-8498-3 10.1002/ijc.28836 10.4137/CIN.S17275 10.1038/s41467-023-42236-z 10.1017/s0140525x01003922 10.1038/s41598-019-51766-w 10.1007/s10555-007-9055-1 10.1126/scisignal.aan0949 10.1016/j.ejor.2019.09.040 10.1007/s00521-022-07050-6 10.1186/1471-2407-10-529 10.1093/bioinformatics/bti631 10.1093/infdis/jiy086 10.7150/thno.45207 10.1139/bcb-2018-0039 10.1016/j.molcel.2008.09.010 10.18653/v1/2023.acl-industry.62 10.1093/bib/bbab259 10.1002/1873-3468.13236 10.1038/s41388-018-0377-y 10.1007/s43032-021-00509-2 10.1038/nature10983 10.1242/jcs.010389 10.1038/nbt.3192 10.1038/s41467-019-10044-z 10.1186/s12863-017-0495-5 10.1007/s00453-012-9628-4 10.1038/s41419-021-03646-3 10.1038/s42256-019-0048-x 10.1038/sj.bjc.6605122 10.1037/h0043158 10.1002/0470013192.bsa384 10.2202/1544-6115.1071 10.1155/2019/6140951 10.1371/journal.pone.0182507 10.1016/j.cell.2018.02.052 10.1016/S1470-2045(14)70379-1 10.1186/1477-7827-2-3 10.1016/j.cmet.2011.10.008 10.1158/0008-5472.CAN-11-3711 10.1101/2025.04.10.643941 10.3389/fimmu.2019.02125 10.1126/science.286.5439.531 10.1080/09658210344000530 10.1016/j.ejphar.2015.02.023 10.1038/s41563-019-0567-1 10.2174/0109298673320179240803071001 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-025-06253-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 32 |
| ExternalDocumentID | oai_doaj_org_article_396cb8846d4d48449fcee82506a1ef6d 10.1186/s12859-025-06253-7 40898061 10_1186_s12859_025_06253_7 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Région Ile-de-France DIM RFSI grantid: Opt4SysBio – fundername: Horizon 2020 Framework Programme grantid: 965193 (DECIDER) funderid: https://doi.org/10.13039/100010661 – fundername: Horizon 2020 Framework Programme grantid: 965193 (DECIDER) |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N M48 P64 PKEHL PQEST PQUKI Q9U 7X8 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c438t-ffb17203b41392d458bab6d1a9994e421dde7efa4f8b672c9e5bc7dcc19390463 |
| IEDL.DBID | C6C |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:46:12 EDT 2025 Sun Oct 26 01:55:54 EDT 2025 Thu Sep 04 12:41:06 EDT 2025 Mon Oct 06 18:17:49 EDT 2025 Tue Sep 16 01:44:41 EDT 2025 Wed Oct 01 05:20:30 EDT 2025 Sat Sep 06 07:27:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Bivariate functions Algorithms Systems biology Interpretability Monotonic functions Classification |
| Language | English |
| License | 2025. The Author(s). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-ffb17203b41392d458bab6d1a9994e421dde7efa4f8b672c9e5bc7dcc19390463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doi.org/10.1186/s12859-025-06253-7 |
| PMID | 40898061 |
| PQID | 3247098052 |
| PQPubID | 44065 |
| PageCount | 32 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_396cb8846d4d48449fcee82506a1ef6d unpaywall_primary_10_1186_s12859_025_06253_7 proquest_miscellaneous_3246398205 proquest_journals_3247098052 pubmed_primary_40898061 crossref_primary_10_1186_s12859_025_06253_7 springer_journals_10_1186_s12859_025_06253_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-02 |
| PublicationDateYYYYMMDD | 2025-09-02 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2025 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | G Manthoulis (6253_CR52) 2020; 282 GA Miller (6253_CR4) 1956; 63 XY Liu (6253_CR40) 2020; 10 QF Stout (6253_CR11) 2013; 66 T Geiger (6253_CR38) 2012; 72 C Curtis (6253_CR34) 2012; 486 J Platt (6253_CR50) 2000; 06 J Li (6253_CR33) 2010; 10 K Hodgkinson (6253_CR45) 2018; 37 AC Tan (6253_CR9) 2005; 21 AS Thind (6253_CR1) 2021; 22 K Ferber (6253_CR20) 2015 H Donninger (6253_CR29) 2007; 120 D Loussouarn (6253_CR47) 2009; 101 6253_CR35 6253_CR7 6253_CR36 K Li (6253_CR41) 2019; 1 R Rosati (6253_CR53) 2022 S Dabral (6253_CR30) 2019; 10 D Wang (6253_CR39) 2019; 97 J Ren (6253_CR16) 2017; 18 DM Beauvais (6253_CR21) 2004; 2 S Zheng (6253_CR44) 2019; 11 G Zararsız (6253_CR2) 2017; 12 C Partovian (6253_CR23) 2008; 32 GU Hong (6253_CR12) 2015; 754 F Gobet (6253_CR6) 2004; 12 I Nikolayeva (6253_CR10) 2018; 217 I Renda (6253_CR46) 2019; 9 F Pedregosa (6253_CR15) 2011; 12 GJ Webb (6253_CR13) 2016; 50 SN Hansen (6253_CR43) 2016; 17 R Jia (6253_CR42) 2021; 28 Y Tian (6253_CR14) 2019; 10 M Chu (6253_CR48) 2025; 32 TR Golub (6253_CR18) 1999; 286 R Stupp (6253_CR32) 2014; 15 J Ochieng (6253_CR22) 2018; 592 L Roth (6253_CR37) 2018; 11 C Rudin (6253_CR3) 2019; 1 R Satija (6253_CR17) 2015; 33 P Vaupel (6253_CR27) 2007; 26 D Sammon (6253_CR28) 2023; 14 J Liu (6253_CR31) 2018; 173 6253_CR51 D Geman (6253_CR8) 2004; 3 D Tello (6253_CR25) 2011; 14 A Chronopoulos (6253_CR24) 2020; 19 N Cowan (6253_CR5) 2001; 24 DM Gilkes (6253_CR49) 2014; 14 Z Chen (6253_CR26) 2021; 12 G Reifenberger (6253_CR19) 2014; 135 |
| References_xml | – volume: 14 start-page: 430 issue: 6 year: 2014 ident: 6253_CR49 publication-title: Nat Rev Cancer doi: 10.1038/nrc3726 – volume: 17 start-page: 442 issue: 1 year: 2016 ident: 6253_CR43 publication-title: BMC Genom doi: 10.1186/s12864-016-2749-4 – volume: 50 start-page: 312 issue: 3 year: 2016 ident: 6253_CR13 publication-title: Clin Rev Allergy Immunol doi: 10.1007/s12016-015-8498-3 – volume: 135 start-page: 1822 issue: 8 year: 2014 ident: 6253_CR19 publication-title: Int J Cancer doi: 10.1002/ijc.28836 – year: 2015 ident: 6253_CR20 publication-title: Cancer Inform doi: 10.4137/CIN.S17275 – volume: 14 start-page: 6425 issue: 1 year: 2023 ident: 6253_CR28 publication-title: Nat Commun doi: 10.1038/s41467-023-42236-z – volume: 24 start-page: 87 issue: 1 year: 2001 ident: 6253_CR5 publication-title: Behav Brain Sci doi: 10.1017/s0140525x01003922 – volume: 9 start-page: 15204 year: 2019 ident: 6253_CR46 publication-title: Sci Rep doi: 10.1038/s41598-019-51766-w – volume: 26 start-page: 225 issue: 2 year: 2007 ident: 6253_CR27 publication-title: Cancer Metastasis Rev doi: 10.1007/s10555-007-9055-1 – volume: 12 start-page: 2825 year: 2011 ident: 6253_CR15 publication-title: J Mach Learn Res – volume: 11 start-page: eaan0949 issue: 515 year: 2018 ident: 6253_CR37 publication-title: Sci Signal doi: 10.1126/scisignal.aan0949 – volume: 282 start-page: 786 issue: 2 year: 2020 ident: 6253_CR52 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2019.09.040 – year: 2022 ident: 6253_CR53 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07050-6 – volume: 10 start-page: 529 issue: 1 year: 2010 ident: 6253_CR33 publication-title: BMC Cancer doi: 10.1186/1471-2407-10-529 – volume: 21 start-page: 3896 issue: 20 year: 2005 ident: 6253_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti631 – volume: 217 start-page: 1690 issue: 11 year: 2018 ident: 6253_CR10 publication-title: J Infect Dis doi: 10.1093/infdis/jiy086 – volume: 10 start-page: 10940 issue: 24 year: 2020 ident: 6253_CR40 publication-title: Theranostics doi: 10.7150/thno.45207 – volume: 97 start-page: 158 issue: 2 year: 2019 ident: 6253_CR39 publication-title: Biochem Cell Biol doi: 10.1139/bcb-2018-0039 – volume: 32 start-page: 140 issue: 1 year: 2008 ident: 6253_CR23 publication-title: Mol Cell doi: 10.1016/j.molcel.2008.09.010 – ident: 6253_CR51 doi: 10.18653/v1/2023.acl-industry.62 – volume: 22 start-page: bbab259 issue: 6 year: 2021 ident: 6253_CR1 publication-title: Brief Bioinform doi: 10.1093/bib/bbab259 – volume: 592 start-page: 3274 issue: 19 year: 2018 ident: 6253_CR22 publication-title: FEBS Lett doi: 10.1002/1873-3468.13236 – volume: 37 start-page: 5873 issue: 44 year: 2018 ident: 6253_CR45 publication-title: Oncogene doi: 10.1038/s41388-018-0377-y – volume: 28 start-page: 2331 issue: 8 year: 2021 ident: 6253_CR42 publication-title: Reprod Sci doi: 10.1007/s43032-021-00509-2 – volume: 486 start-page: 346 issue: 7403 year: 2012 ident: 6253_CR34 publication-title: Nature doi: 10.1038/nature10983 – volume: 120 start-page: 3163 issue: Pt 18 year: 2007 ident: 6253_CR29 publication-title: J Cell Sci doi: 10.1242/jcs.010389 – volume: 33 start-page: 495 issue: 5 year: 2015 ident: 6253_CR17 publication-title: Nat Biotechnol doi: 10.1038/nbt.3192 – volume: 10 start-page: 2130 issue: 1 year: 2019 ident: 6253_CR30 publication-title: Nat Commun doi: 10.1038/s41467-019-10044-z – ident: 6253_CR7 – volume: 18 start-page: 44 issue: 1 year: 2017 ident: 6253_CR16 publication-title: BMC Genet doi: 10.1186/s12863-017-0495-5 – volume: 66 start-page: 93 issue: 1 year: 2013 ident: 6253_CR11 publication-title: Algorithmica doi: 10.1007/s00453-012-9628-4 – volume: 11 start-page: 1668 issue: 3 year: 2019 ident: 6253_CR44 publication-title: Am J Transl Res – volume: 12 start-page: 1 issue: 4 year: 2021 ident: 6253_CR26 publication-title: Cell Death Dis doi: 10.1038/s41419-021-03646-3 – volume: 1 start-page: 206 year: 2019 ident: 6253_CR3 publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0048-x – volume: 101 start-page: 166 year: 2009 ident: 6253_CR47 publication-title: Br J Cancer doi: 10.1038/sj.bjc.6605122 – volume: 63 start-page: 81 issue: 2 year: 1956 ident: 6253_CR4 publication-title: Psychol Rev doi: 10.1037/h0043158 – ident: 6253_CR35 doi: 10.1002/0470013192.bsa384 – volume: 3 start-page: 19 year: 2004 ident: 6253_CR8 publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1071 – volume: 06 start-page: 10 year: 2000 ident: 6253_CR50 publication-title: Adv Large Margin Classif – volume: 1 start-page: 6140951 year: 2019 ident: 6253_CR41 publication-title: Biomed Res Int doi: 10.1155/2019/6140951 – volume: 12 issue: 8 year: 2017 ident: 6253_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0182507 – volume: 173 start-page: 400 issue: 2 year: 2018 ident: 6253_CR31 publication-title: Cell doi: 10.1016/j.cell.2018.02.052 – volume: 15 start-page: 1100 issue: 10 year: 2014 ident: 6253_CR32 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(14)70379-1 – volume: 2 start-page: 3 issue: 1 year: 2004 ident: 6253_CR21 publication-title: Reprod Biol Endocrinol doi: 10.1186/1477-7827-2-3 – volume: 14 start-page: 768 issue: 6 year: 2011 ident: 6253_CR25 publication-title: Cell Metab doi: 10.1016/j.cmet.2011.10.008 – volume: 72 start-page: 2428 issue: 9 year: 2012 ident: 6253_CR38 publication-title: Can Res doi: 10.1158/0008-5472.CAN-11-3711 – ident: 6253_CR36 doi: 10.1101/2025.04.10.643941 – volume: 10 start-page: 2125 year: 2019 ident: 6253_CR14 publication-title: Front Immunol doi: 10.3389/fimmu.2019.02125 – volume: 286 start-page: 531 issue: 5439 year: 1999 ident: 6253_CR18 publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 12 start-page: 732 issue: 6 year: 2004 ident: 6253_CR6 publication-title: Memory doi: 10.1080/09658210344000530 – volume: 754 start-page: 199 year: 2015 ident: 6253_CR12 publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2015.02.023 – volume: 19 start-page: 669 issue: 6 year: 2020 ident: 6253_CR24 publication-title: Nat Mater doi: 10.1038/s41563-019-0567-1 – volume: 32 start-page: 608 issue: 3 year: 2025 ident: 6253_CR48 publication-title: Curr Med Chem doi: 10.2174/0109298673320179240803071001 |
| SSID | ssj0017805 |
| Score | 2.482016 |
| Snippet | Background
Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture... Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear... BackgroundBivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture... Abstract Background Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can... |
| SourceID | doaj unpaywall proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 228 |
| SubjectTerms | Algorithms Bioinformatics Biomarkers Biomedical and Life Sciences Bivariate analysis Bivariate functions Classification Computational Biology/Bioinformatics Computer Appl. in Life Sciences Datasets Datasets as Topic Dengue - diagnosis Dengue - genetics Dengue fever Gene Expression Profiling - classification Gene Expression Profiling - statistics & numerical data Genes Genomes Glioblastoma Glioblastoma - genetics Humans Hypotheses Interpretability Leukemia - genetics Life Sciences Machine Learning Mathematical models Microarrays Monotonic functions Phenotypes Python Systems biology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC5EEOMh5GF0jAkteNPGefT0dB81KBKIJwVvTT9BMLPi7hr231s1j3UDkuSQ60wzdFdVV3011f0VwGGVGpmqJnJ0fYGLWluu6jrypGulrNeVd_Rr4MeVvLwR32_r25VWX3QmrKcH7gV3UmnpncIoGUQQSgid0K1jWpNLW8QkA3nfXOkxmRrqB8TUP16RUfJkWhBPG6fWrTkC_oo3v4Whjq3_NYi5Uh7dgs15-2AXv-z9_UoEungHbwfoyE77Kb-Htdh-gI2-meTiI5xfdydgpwwhHSPq1Z-RT1EDkdHNWzqpuWCTxNzdE6bHiDAZGuBkRsy4zBOEvkvUFXsbbi7Or79d8qFJAveiUjOekiuolOowGukyiFo562QoLCI_EUVZoP9qYrIiKSeb0utYO98E7xG5aaIL-wTr7aSNu8Askd8jfET_F4TPS1emIoYqep2HoL3I4GiUmXnouTBMl0MoaXoJG5Sw6SRsmgzOSKzLkcRj3T1A7ZpBu-Zv2s1gf1SKGTbX1CAGbHJNvRgyOFi-xm1BtQ7bxsm8G4PYC-FNncFOr8zlTATai0Ick8HxqN2Xj_9pQcdLC_iH9e_9j_V_hjdlZ7VkvPuwPnucxy-Igmbua2fwz5ueAAw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFVEfxG9Xq6zgmw3dj2w2eRCxcqUIHiIt9C3kUwp19-zdKfffO7NfrSDF193sksxMZn7JJL8BeFvGWsSyDgxdn2e8UobJqgosqkpK41TpLG0NfFmI41P--aw624HFeBeGjlWOPrFz1L51tEd-gIG_zhQR8H9Y_mRUNYqyq2MJDTOUVvDvO4qxW7BbEDPWDHYP54uv36a8AjH4j1dnpDhY5cTfxqika4YLgZLVf4WnjsX_X9DzWtr0HtzZNEuz_W0uLq5FpqMHcH-AlOnH3gYewk5oHsHtvsjk9jHMT7qTsasUoV5KlKw_AluhZkJKN3LpBOc2bWNqz3_hshmRZ4ojbdfEmJs6gtbnkaplP4HTo_nJp2M2FE9gjpdyzWK0OaVYLUYpVXheSWus8LlBRMgDL3L0a3WIhkdpRV04FSrrau8cIjpFNGJPYda0TXgOqSFSfISV6Bc9d1lhi5gHXwanMu-V4wm8G2Wmlz1Hhu7WFlLoXsIaJaw7Ces6gUMS69SS-K27B-3ldz1MF10q4axEbOS555JzFTGY42I2EyYPUfgE9kal6GHSrfSViSTwZnqN04VyIKYJ7aZrg5gMYU-VwLNemVNPeCbxa5EnsD9q9-rnNw1of7KA_xj_i5u7_hLuFp09klnuwWx9uQmvEPes7evBmP8AYuT9tA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRDlwJsSKChI3Ki3ediOfSyoVYVEhVBXKicrfqEV22S12QUtv55xHsuCKgQS18SOMs439jex5xuAV7kvuM8LR3Dqs4QyWRLBmCNeMiFKI3Ojw6-B9-f8bELfXbLLHfg45MLoK6OndS8aGoSKx9tp6LMuyyFUUXCLo7n1ndMLftSkQYmNhOKsCVL6nBQ3YJcz5Ocj2J2cfzj-1KYZFSnBGIcN2TPXdvxlhWqF_K9jn1s7p7fh1qqal-tv5Wy2tTid3oVmMKs7k_JlvFrqsfn-m-Lj_7X7HtzpuWx83IHvPuy46gHc7Kpbrh_CyUV7JLeJkWPGQQv2ypEGIeHikAocjo6u49rHevoV43WkvDF6RL0MUr2xCZx-6kOZ7kcwOT25eHtG-qoNxNBcLIn3Og17uxqXR5lZyoQuNbdpiVSUOpqlOKEWzpfUC82LzEjHtCmsMUglZdAvewyjqq7cE4jLoMaPfBYnZEtNkunMp87mzsjEWmloBK-HL6XmnTiHaoMawVU3MAoHRrUDo4oI3oSPuWkZhLXbC_Xis-r9VOWSGy2QlFlqqaBUemQRGEUnvEyd5zaCgwEKqvf2RiEpLRIZikNE8HJzG_00bL6UlatXbRskg8i3WAT7HYQ2b0ITgb15GsHhgKmfD_-TQYcb3P2F_U__rfkz2MtaWAV0HcBouVi550jAlvpF71E_AHaiKLE priority: 102 providerName: Unpaywall |
| Title | Towards the genome-scale discovery of bivariate monotonic classifiers |
| URI | https://link.springer.com/article/10.1186/s12859-025-06253-7 https://www.ncbi.nlm.nih.gov/pubmed/40898061 https://www.proquest.com/docview/3247098052 https://www.proquest.com/docview/3246398205 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-025-06253-7 https://doaj.org/article/396cb8846d4d48449fcee82506a1ef6d |
| UnpaywallVersion | publishedVersion |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate - TFS customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB-8O0R9EL9dPcsKvnnB_cjm47F3tB4Fy6FXqE8hn3Bwbg_bKv3vnWTbtcIh-rILu8mymZlkfskkvwF4VwfOQs09waHPEdpITUTTeBJkI4S2srYmLg18mrLzGZ3Mm_mWJieehdmP35eCfViWkWGNxKSrBUL1mvADOEInxVJglp31EYPIzb87FHNrvT8cT-Lnvw1U7gVEH8C9dXujNz_19fWezxk_godbsJgPO-0-hju-fQJ3u_SRm6cwukx7Xpc5grg8kq1-82SJMvd5PGsb92Zu8kXIzdUPnBAjpszR5BaryIWb2wiar0LMg_0MZuPR5dk52aZFIJbWYkVCMGUMnhr0P7JytBFGG-ZKjViPelqVOGJxHzQNwjBeWekbY7mzFrGajARhz-GwXbT-JeQ60t0jYMQRz1FbVKYKpXe1t7JwTlqawfudzNRNx36h0qxBMNVJWKGEVZKw4hmcRrH2JSNzdXqAClXbjqBqyawRiHocdVRQKgO6aZymFkyXPjCXwfFOKWrbnZYKUR8vZMy-kMHb_jV2hBjd0K1frFMZRFsIaJoMXnTK7P-EFgJrszKDk512f3_8bw066S3gH9r_6v--_hruV8k-o5kew-Hq-9q_QYSzMgM44HOOVzH-OICj4XDyZYL309H04vMgmf0grR3gs9n0Yvj1F01l97Q |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqhwQLwJFAgSnKjVPJzEPlSIwlZb2q4Q2kq9uX6iSmWzdHep9s_x25jJJtsioYpLr3lYyXg8_sZjfx_A2zxUZcgrzzD0OcYLqZkoCs-CLITQVubW0NLA4aDsH_Evx8XxCvzuzsLQtsouJjaB2tWW1si3cOKvEkkE_B_GPxmpRlF1tZPQ0K20gttuKMbagx37fn6BKdxke-8z9ve7LNvtDT_1WasywCzPxZSFYFKqRRoM5zJzvBBGm9KlGqET9zxLMQBUPmgehCmrzEpfGFs5axH6SOLbwnZvwRrPucTkb22nN_j6bVnHIMWA7qiOKLcmKfHFMZKQTTDxyFn113TYqAb8C-peKdPehfXZaKznF_rs7MpMuHsf7rUQNv648LkHsOJHD-H2QtRy_gh6w2Yn7iRGaBkTBewPzyboCT6mE8C0Y3Qe1yE2p78wTUekG6Nl6ykx9MaWoPxpIHXux3B0I2Z8AqujeuSfQayJhB9hLMZhx22SmSyk3uXeysQ5aXkE7zubqfGCk0M1uYwo1cLCCi2sGgurKoIdMuvySeLTbi7U599VOzxVLktrBGIxxx0XnMuA4AGT56TUqQ-li2Cj6xTVDvKJunTJCN4sb-PwpJqLHvl61jyDGBBhVhHB00VnLr-EJwLfLtMINrvevWz8uh_aXHrAf_z_8-s__TWs94eHB-pgb7D_Au5kjW-Si27A6vR85l8i5pqaV61jx3By02PpD-BAO10 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BEdcD4iZQIEi8Uas5HMd-hKWrclU8tFLfLJ-oUklW3Sxo_z0zySYsUoXgNbGteA7P54z9DcDrMtYilnVguPR5xitlmKyqwKKqpDROlc7Sr4EvR-LwhH88rU63bvH3p93HlORwp4FYmppuf-Hj4OJS7C9z4l1jVIo1QwBfsvoqXOMY3aiGwUzMpjwCMfaPV2Uu7fdHOOpZ-y-Dmltp0ttwc9UszPqnOT_fikTzu3BnAyHTt4PO78GV0NyH60NRyfUDODjuT8IuU4R2KVGwfg9siZoIKd3ApROb67SNqT37gdtkRJopGmLbEUNu6ghKn0Wqjv0QTuYHx7NDtimWwBwvZcditDmlVC1GJVV4XklrrPC5QQTIAy9yXMfqEA2P0oq6cCpU1tXeOURwimjDHsFO0zbhCaSGSPARRuI66LnLClvEPPgyOJV5rxxP4M0oM70YODF0v5eQQg8S1ihh3UtY1wm8I7FOLYnPun_QXnzTG_fQpRLOSsRCnnsuOVcRgzduXjNh8hCFT2B3VIreONlSIxasM0U1GRJ4Nb1G96Cch2lCu-rbIAZDmFMl8HhQ5vQlaDDYW-QJ7I3a_T343ya0N1nAP8z_6f-N_hJufH0_158_HH16BreK3lTJYndhp7tYhecIgTr7orfyXyp9-1I |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRDlwJsSKChI3Ki3ediOfSyoVYVEhVBXKicrfqEV22S12QUtv55xHsuCKgQS18SOMs439jex5xuAV7kvuM8LR3Dqs4QyWRLBmCNeMiFKI3Ojw6-B9-f8bELfXbLLHfg45MLoK6OndS8aGoSKx9tp6LMuyyFUUXCLo7n1ndMLftSkQYmNhOKsCVL6nBQ3YJcz5Ocj2J2cfzj-1KYZFSnBGIcN2TPXdvxlhWqF_K9jn1s7p7fh1qqal-tv5Wy2tTid3oVmMKs7k_JlvFrqsfn-m-Lj_7X7HtzpuWx83IHvPuy46gHc7Kpbrh_CyUV7JLeJkWPGQQv2ypEGIeHikAocjo6u49rHevoV43WkvDF6RL0MUr2xCZx-6kOZ7kcwOT25eHtG-qoNxNBcLIn3Og17uxqXR5lZyoQuNbdpiVSUOpqlOKEWzpfUC82LzEjHtCmsMUglZdAvewyjqq7cE4jLoMaPfBYnZEtNkunMp87mzsjEWmloBK-HL6XmnTiHaoMawVU3MAoHRrUDo4oI3oSPuWkZhLXbC_Xis-r9VOWSGy2QlFlqqaBUemQRGEUnvEyd5zaCgwEKqvf2RiEpLRIZikNE8HJzG_00bL6UlatXbRskg8i3WAT7HYQ2b0ITgb15GsHhgKmfD_-TQYcb3P2F_U__rfkz2MtaWAV0HcBouVi550jAlvpF71E_AHaiKLE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+the+genome-scale+discovery+of+bivariate+monotonic+classifiers&rft.jtitle=BMC+bioinformatics&rft.au=Fourquet%2C+Oc%C3%A9ane&rft.au=Krejca%2C+Martin+S&rft.au=Doerr%2C+Carola&rft.au=Schwikowski%2C+Benno&rft.date=2025-09-02&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=26&rft.issue=1&rft.spage=228&rft_id=info:doi/10.1186%2Fs12859-025-06253-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |