Towards the genome-scale discovery of bivariate monotonic classifiers

Background Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scal...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 26; no. 1; pp. 228 - 32
Main Authors Fourquet, Océane, Krejca, Martin S., Doerr, Carola, Schwikowski, Benno
Format Journal Article
LanguageEnglish
Published London BioMed Central 02.09.2025
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-025-06253-7

Cover

Abstract Background Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate. Results We introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation. Conclusion fastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context. Availability We provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC .
AbstractList Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate. We introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation. fastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context. We provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC .
Background Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate. Results We introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation. Conclusion fastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context. Availability We provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC .
BackgroundBivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate.ResultsWe introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation.ConclusionfastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context.AvailabilityWe provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC.
Abstract Background Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate. Results We introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation. Conclusion fastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context. Availability We provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC .
Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate.BACKGROUNDBivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear patterns in high-dimensional data. At the same time, they are simple and easy to interpret. Until now, the use of BMCs on a genome scale was hampered by the high computational complexity of the search for pairs of features with a high leave-one-out performance estimate.We introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation.RESULTSWe introduce the fastBMC algorithm, which drastically speeds up the identification of BMCs. The algorithm is based on a mathematical bound for the BMC performance estimate while maintaining optimality. We show empirically that fastBMC speeds up the computation by a factor of at least 15 already for a small number of features, compared to the traditional approach. For two of the three smaller biomedical datasets that we consider here, the resulting possibility of considering much larger sets of features translates into significantly improved classification performance. As an example of the high degree of interpretability of BMCs, we discuss a straightforward interpretation of a BMC glioblastoma survival predictor, an immediate novel biomedical hypothesis, options for biomedical validation, and treatment implications. In addition, we study the performance of fastBMC on a larger and well-known breast cancer dataset, validating the benefits of the BMCs for biomarker identification and biomedical hypothesis generation.fastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context.CONCLUSIONfastBMC enables the rapid construction of robust and interpretable ensemble models using BMC, facilitating the discovery of gene pairs predictive of relevant phenotypes and their interaction in that context.We provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC .AVAILABILITYWe provide the first open-source implementation for learning BMCs, a Python implementation of fastBMC in particular, and Python code to reproduce the fastBMC results on real and simulated data in this paper, at https://github.com/oceanefrqt/fastBMC .
ArticleNumber 228
Author Schwikowski, Benno
Krejca, Martin S.
Doerr, Carola
Fourquet, Océane
Author_xml – sequence: 1
  givenname: Océane
  surname: Fourquet
  fullname: Fourquet, Océane
  organization: Computational Systems Biomedicine Lab, Institut Pasteur, Université Paris Cité, LIP6, CNRS, Sorbonne Université
– sequence: 2
  givenname: Martin S.
  surname: Krejca
  fullname: Krejca, Martin S.
  organization: LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris
– sequence: 3
  givenname: Carola
  surname: Doerr
  fullname: Doerr, Carola
  organization: LIP6, CNRS, Sorbonne Université
– sequence: 4
  givenname: Benno
  surname: Schwikowski
  fullname: Schwikowski, Benno
  email: benno@pasteur.fr
  organization: Computational Systems Biomedicine Lab, Institut Pasteur, Université Paris Cité
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40898061$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vFSEYhYmpsZ9_wIWZxE03o8AAA0vT1NqkiZu6Jny8XOdmBq4w0-b-e2nnWo0L4wpCnnM473lP0VFMERB6S_AHQqT4WAiVXLWY8hYLyru2f4VOCOtJSwnmR3_cj9FpKVuMSS8xf4OOGZZKYkFO0PV9ejTZl2b-Ds0GYpqgLc6M0PihuPQAed-k0NjhweTBzNBMKaY5xcE1bjSlDGGAXM7R62DGAheH8wx9-3x9f_Wlvft6c3v16a51rJNzG4IlPcWdZaRT1DMurbHCE6OUYsAo8R56CIYFaUVPnQJuXe-dI6pTmInuDN2uvj6Zrd7lYTJ5r5MZ9PNDyhtt8jy4EXSnhLNSMuGZZ5IxFRyApBwLQyAIX7261WuJO7N_NOP4YkiwfipYrwXrWrB-Llj3VXW5qnY5_VigzHqqPcE4mghpKbqjNaaSFPOKvv8L3aYlx9rPE9XjugFOK_XuQC12Av-S4deKKkBXwOVUSobwfzEPw5UKxw3k33__Q_UTYAmxzw
Cites_doi 10.1038/nrc3726
10.1186/s12864-016-2749-4
10.1007/s12016-015-8498-3
10.1002/ijc.28836
10.4137/CIN.S17275
10.1038/s41467-023-42236-z
10.1017/s0140525x01003922
10.1038/s41598-019-51766-w
10.1007/s10555-007-9055-1
10.1126/scisignal.aan0949
10.1016/j.ejor.2019.09.040
10.1007/s00521-022-07050-6
10.1186/1471-2407-10-529
10.1093/bioinformatics/bti631
10.1093/infdis/jiy086
10.7150/thno.45207
10.1139/bcb-2018-0039
10.1016/j.molcel.2008.09.010
10.18653/v1/2023.acl-industry.62
10.1093/bib/bbab259
10.1002/1873-3468.13236
10.1038/s41388-018-0377-y
10.1007/s43032-021-00509-2
10.1038/nature10983
10.1242/jcs.010389
10.1038/nbt.3192
10.1038/s41467-019-10044-z
10.1186/s12863-017-0495-5
10.1007/s00453-012-9628-4
10.1038/s41419-021-03646-3
10.1038/s42256-019-0048-x
10.1038/sj.bjc.6605122
10.1037/h0043158
10.1002/0470013192.bsa384
10.2202/1544-6115.1071
10.1155/2019/6140951
10.1371/journal.pone.0182507
10.1016/j.cell.2018.02.052
10.1016/S1470-2045(14)70379-1
10.1186/1477-7827-2-3
10.1016/j.cmet.2011.10.008
10.1158/0008-5472.CAN-11-3711
10.1101/2025.04.10.643941
10.3389/fimmu.2019.02125
10.1126/science.286.5439.531
10.1080/09658210344000530
10.1016/j.ejphar.2015.02.023
10.1038/s41563-019-0567-1
10.2174/0109298673320179240803071001
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-025-06253-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 32
ExternalDocumentID oai_doaj_org_article_396cb8846d4d48449fcee82506a1ef6d
10.1186/s12859-025-06253-7
40898061
10_1186_s12859_025_06253_7
Genre Journal Article
GrantInformation_xml – fundername: Région Ile-de-France DIM RFSI
  grantid: Opt4SysBio
– fundername: Horizon 2020 Framework Programme
  grantid: 965193 (DECIDER)
  funderid: https://doi.org/10.13039/100010661
– fundername: Horizon 2020 Framework Programme
  grantid: 965193 (DECIDER)
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
M48
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c438t-ffb17203b41392d458bab6d1a9994e421dde7efa4f8b672c9e5bc7dcc19390463
IEDL.DBID C6C
ISSN 1471-2105
IngestDate Fri Oct 03 12:46:12 EDT 2025
Sun Oct 26 01:55:54 EDT 2025
Thu Sep 04 12:41:06 EDT 2025
Mon Oct 06 18:17:49 EDT 2025
Tue Sep 16 01:44:41 EDT 2025
Wed Oct 01 05:20:30 EDT 2025
Sat Sep 06 07:27:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bivariate functions
Algorithms
Systems biology
Interpretability
Monotonic functions
Classification
Language English
License 2025. The Author(s).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-ffb17203b41392d458bab6d1a9994e421dde7efa4f8b672c9e5bc7dcc19390463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/s12859-025-06253-7
PMID 40898061
PQID 3247098052
PQPubID 44065
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_396cb8846d4d48449fcee82506a1ef6d
unpaywall_primary_10_1186_s12859_025_06253_7
proquest_miscellaneous_3246398205
proquest_journals_3247098052
pubmed_primary_40898061
crossref_primary_10_1186_s12859_025_06253_7
springer_journals_10_1186_s12859_025_06253_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-02
PublicationDateYYYYMMDD 2025-09-02
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2025
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References G Manthoulis (6253_CR52) 2020; 282
GA Miller (6253_CR4) 1956; 63
XY Liu (6253_CR40) 2020; 10
QF Stout (6253_CR11) 2013; 66
T Geiger (6253_CR38) 2012; 72
C Curtis (6253_CR34) 2012; 486
J Platt (6253_CR50) 2000; 06
J Li (6253_CR33) 2010; 10
K Hodgkinson (6253_CR45) 2018; 37
AC Tan (6253_CR9) 2005; 21
AS Thind (6253_CR1) 2021; 22
K Ferber (6253_CR20) 2015
H Donninger (6253_CR29) 2007; 120
D Loussouarn (6253_CR47) 2009; 101
6253_CR35
6253_CR7
6253_CR36
K Li (6253_CR41) 2019; 1
R Rosati (6253_CR53) 2022
S Dabral (6253_CR30) 2019; 10
D Wang (6253_CR39) 2019; 97
J Ren (6253_CR16) 2017; 18
DM Beauvais (6253_CR21) 2004; 2
S Zheng (6253_CR44) 2019; 11
G Zararsız (6253_CR2) 2017; 12
C Partovian (6253_CR23) 2008; 32
GU Hong (6253_CR12) 2015; 754
F Gobet (6253_CR6) 2004; 12
I Nikolayeva (6253_CR10) 2018; 217
I Renda (6253_CR46) 2019; 9
F Pedregosa (6253_CR15) 2011; 12
GJ Webb (6253_CR13) 2016; 50
SN Hansen (6253_CR43) 2016; 17
R Jia (6253_CR42) 2021; 28
Y Tian (6253_CR14) 2019; 10
M Chu (6253_CR48) 2025; 32
TR Golub (6253_CR18) 1999; 286
R Stupp (6253_CR32) 2014; 15
J Ochieng (6253_CR22) 2018; 592
L Roth (6253_CR37) 2018; 11
C Rudin (6253_CR3) 2019; 1
R Satija (6253_CR17) 2015; 33
P Vaupel (6253_CR27) 2007; 26
D Sammon (6253_CR28) 2023; 14
J Liu (6253_CR31) 2018; 173
6253_CR51
D Geman (6253_CR8) 2004; 3
D Tello (6253_CR25) 2011; 14
A Chronopoulos (6253_CR24) 2020; 19
N Cowan (6253_CR5) 2001; 24
DM Gilkes (6253_CR49) 2014; 14
Z Chen (6253_CR26) 2021; 12
G Reifenberger (6253_CR19) 2014; 135
References_xml – volume: 14
  start-page: 430
  issue: 6
  year: 2014
  ident: 6253_CR49
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3726
– volume: 17
  start-page: 442
  issue: 1
  year: 2016
  ident: 6253_CR43
  publication-title: BMC Genom
  doi: 10.1186/s12864-016-2749-4
– volume: 50
  start-page: 312
  issue: 3
  year: 2016
  ident: 6253_CR13
  publication-title: Clin Rev Allergy Immunol
  doi: 10.1007/s12016-015-8498-3
– volume: 135
  start-page: 1822
  issue: 8
  year: 2014
  ident: 6253_CR19
  publication-title: Int J Cancer
  doi: 10.1002/ijc.28836
– year: 2015
  ident: 6253_CR20
  publication-title: Cancer Inform
  doi: 10.4137/CIN.S17275
– volume: 14
  start-page: 6425
  issue: 1
  year: 2023
  ident: 6253_CR28
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-42236-z
– volume: 24
  start-page: 87
  issue: 1
  year: 2001
  ident: 6253_CR5
  publication-title: Behav Brain Sci
  doi: 10.1017/s0140525x01003922
– volume: 9
  start-page: 15204
  year: 2019
  ident: 6253_CR46
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-51766-w
– volume: 26
  start-page: 225
  issue: 2
  year: 2007
  ident: 6253_CR27
  publication-title: Cancer Metastasis Rev
  doi: 10.1007/s10555-007-9055-1
– volume: 12
  start-page: 2825
  year: 2011
  ident: 6253_CR15
  publication-title: J Mach Learn Res
– volume: 11
  start-page: eaan0949
  issue: 515
  year: 2018
  ident: 6253_CR37
  publication-title: Sci Signal
  doi: 10.1126/scisignal.aan0949
– volume: 282
  start-page: 786
  issue: 2
  year: 2020
  ident: 6253_CR52
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2019.09.040
– year: 2022
  ident: 6253_CR53
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07050-6
– volume: 10
  start-page: 529
  issue: 1
  year: 2010
  ident: 6253_CR33
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-10-529
– volume: 21
  start-page: 3896
  issue: 20
  year: 2005
  ident: 6253_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti631
– volume: 217
  start-page: 1690
  issue: 11
  year: 2018
  ident: 6253_CR10
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiy086
– volume: 10
  start-page: 10940
  issue: 24
  year: 2020
  ident: 6253_CR40
  publication-title: Theranostics
  doi: 10.7150/thno.45207
– volume: 97
  start-page: 158
  issue: 2
  year: 2019
  ident: 6253_CR39
  publication-title: Biochem Cell Biol
  doi: 10.1139/bcb-2018-0039
– volume: 32
  start-page: 140
  issue: 1
  year: 2008
  ident: 6253_CR23
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.09.010
– ident: 6253_CR51
  doi: 10.18653/v1/2023.acl-industry.62
– volume: 22
  start-page: bbab259
  issue: 6
  year: 2021
  ident: 6253_CR1
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab259
– volume: 592
  start-page: 3274
  issue: 19
  year: 2018
  ident: 6253_CR22
  publication-title: FEBS Lett
  doi: 10.1002/1873-3468.13236
– volume: 37
  start-page: 5873
  issue: 44
  year: 2018
  ident: 6253_CR45
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0377-y
– volume: 28
  start-page: 2331
  issue: 8
  year: 2021
  ident: 6253_CR42
  publication-title: Reprod Sci
  doi: 10.1007/s43032-021-00509-2
– volume: 486
  start-page: 346
  issue: 7403
  year: 2012
  ident: 6253_CR34
  publication-title: Nature
  doi: 10.1038/nature10983
– volume: 120
  start-page: 3163
  issue: Pt 18
  year: 2007
  ident: 6253_CR29
  publication-title: J Cell Sci
  doi: 10.1242/jcs.010389
– volume: 33
  start-page: 495
  issue: 5
  year: 2015
  ident: 6253_CR17
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3192
– volume: 10
  start-page: 2130
  issue: 1
  year: 2019
  ident: 6253_CR30
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10044-z
– ident: 6253_CR7
– volume: 18
  start-page: 44
  issue: 1
  year: 2017
  ident: 6253_CR16
  publication-title: BMC Genet
  doi: 10.1186/s12863-017-0495-5
– volume: 66
  start-page: 93
  issue: 1
  year: 2013
  ident: 6253_CR11
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9628-4
– volume: 11
  start-page: 1668
  issue: 3
  year: 2019
  ident: 6253_CR44
  publication-title: Am J Transl Res
– volume: 12
  start-page: 1
  issue: 4
  year: 2021
  ident: 6253_CR26
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-021-03646-3
– volume: 1
  start-page: 206
  year: 2019
  ident: 6253_CR3
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0048-x
– volume: 101
  start-page: 166
  year: 2009
  ident: 6253_CR47
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6605122
– volume: 63
  start-page: 81
  issue: 2
  year: 1956
  ident: 6253_CR4
  publication-title: Psychol Rev
  doi: 10.1037/h0043158
– ident: 6253_CR35
  doi: 10.1002/0470013192.bsa384
– volume: 3
  start-page: 19
  year: 2004
  ident: 6253_CR8
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1071
– volume: 06
  start-page: 10
  year: 2000
  ident: 6253_CR50
  publication-title: Adv Large Margin Classif
– volume: 1
  start-page: 6140951
  year: 2019
  ident: 6253_CR41
  publication-title: Biomed Res Int
  doi: 10.1155/2019/6140951
– volume: 12
  issue: 8
  year: 2017
  ident: 6253_CR2
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0182507
– volume: 173
  start-page: 400
  issue: 2
  year: 2018
  ident: 6253_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.052
– volume: 15
  start-page: 1100
  issue: 10
  year: 2014
  ident: 6253_CR32
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(14)70379-1
– volume: 2
  start-page: 3
  issue: 1
  year: 2004
  ident: 6253_CR21
  publication-title: Reprod Biol Endocrinol
  doi: 10.1186/1477-7827-2-3
– volume: 14
  start-page: 768
  issue: 6
  year: 2011
  ident: 6253_CR25
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.10.008
– volume: 72
  start-page: 2428
  issue: 9
  year: 2012
  ident: 6253_CR38
  publication-title: Can Res
  doi: 10.1158/0008-5472.CAN-11-3711
– ident: 6253_CR36
  doi: 10.1101/2025.04.10.643941
– volume: 10
  start-page: 2125
  year: 2019
  ident: 6253_CR14
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.02125
– volume: 286
  start-page: 531
  issue: 5439
  year: 1999
  ident: 6253_CR18
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 12
  start-page: 732
  issue: 6
  year: 2004
  ident: 6253_CR6
  publication-title: Memory
  doi: 10.1080/09658210344000530
– volume: 754
  start-page: 199
  year: 2015
  ident: 6253_CR12
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2015.02.023
– volume: 19
  start-page: 669
  issue: 6
  year: 2020
  ident: 6253_CR24
  publication-title: Nat Mater
  doi: 10.1038/s41563-019-0567-1
– volume: 32
  start-page: 608
  issue: 3
  year: 2025
  ident: 6253_CR48
  publication-title: Curr Med Chem
  doi: 10.2174/0109298673320179240803071001
SSID ssj0017805
Score 2.482016
Snippet Background Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture...
Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture nonlinear...
BackgroundBivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can capture...
Abstract Background Bivariate monotonic classifiers (BMCs) are based on pairs of input features. Like many other models used for machine learning, they can...
SourceID doaj
unpaywall
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 228
SubjectTerms Algorithms
Bioinformatics
Biomarkers
Biomedical and Life Sciences
Bivariate analysis
Bivariate functions
Classification
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Datasets
Datasets as Topic
Dengue - diagnosis
Dengue - genetics
Dengue fever
Gene Expression Profiling - classification
Gene Expression Profiling - statistics & numerical data
Genes
Genomes
Glioblastoma
Glioblastoma - genetics
Humans
Hypotheses
Interpretability
Leukemia - genetics
Life Sciences
Machine Learning
Mathematical models
Microarrays
Monotonic functions
Phenotypes
Python
Systems biology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC5EEOMh5GF0jAkteNPGefT0dB81KBKIJwVvTT9BMLPi7hr231s1j3UDkuSQ60wzdFdVV3011f0VwGGVGpmqJnJ0fYGLWluu6jrypGulrNeVd_Rr4MeVvLwR32_r25VWX3QmrKcH7gV3UmnpncIoGUQQSgid0K1jWpNLW8QkA3nfXOkxmRrqB8TUP16RUfJkWhBPG6fWrTkC_oo3v4Whjq3_NYi5Uh7dgs15-2AXv-z9_UoEungHbwfoyE77Kb-Htdh-gI2-meTiI5xfdydgpwwhHSPq1Z-RT1EDkdHNWzqpuWCTxNzdE6bHiDAZGuBkRsy4zBOEvkvUFXsbbi7Or79d8qFJAveiUjOekiuolOowGukyiFo562QoLCI_EUVZoP9qYrIiKSeb0utYO98E7xG5aaIL-wTr7aSNu8Askd8jfET_F4TPS1emIoYqep2HoL3I4GiUmXnouTBMl0MoaXoJG5Sw6SRsmgzOSKzLkcRj3T1A7ZpBu-Zv2s1gf1SKGTbX1CAGbHJNvRgyOFi-xm1BtQ7bxsm8G4PYC-FNncFOr8zlTATai0Ick8HxqN2Xj_9pQcdLC_iH9e_9j_V_hjdlZ7VkvPuwPnucxy-Igmbua2fwz5ueAAw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFVEfxG9Xq6zgmw3dj2w2eRCxcqUIHiIt9C3kUwp19-zdKfffO7NfrSDF193sksxMZn7JJL8BeFvGWsSyDgxdn2e8UobJqgosqkpK41TpLG0NfFmI41P--aw624HFeBeGjlWOPrFz1L51tEd-gIG_zhQR8H9Y_mRUNYqyq2MJDTOUVvDvO4qxW7BbEDPWDHYP54uv36a8AjH4j1dnpDhY5cTfxqika4YLgZLVf4WnjsX_X9DzWtr0HtzZNEuz_W0uLq5FpqMHcH-AlOnH3gYewk5oHsHtvsjk9jHMT7qTsasUoV5KlKw_AluhZkJKN3LpBOc2bWNqz3_hshmRZ4ojbdfEmJs6gtbnkaplP4HTo_nJp2M2FE9gjpdyzWK0OaVYLUYpVXheSWus8LlBRMgDL3L0a3WIhkdpRV04FSrrau8cIjpFNGJPYda0TXgOqSFSfISV6Bc9d1lhi5gHXwanMu-V4wm8G2Wmlz1Hhu7WFlLoXsIaJaw7Ces6gUMS69SS-K27B-3ldz1MF10q4axEbOS555JzFTGY42I2EyYPUfgE9kal6GHSrfSViSTwZnqN04VyIKYJ7aZrg5gMYU-VwLNemVNPeCbxa5EnsD9q9-rnNw1of7KA_xj_i5u7_hLuFp09klnuwWx9uQmvEPes7evBmP8AYuT9tA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRDlwJsSKChI3Ki3ediOfSyoVYVEhVBXKicrfqEV22S12QUtv55xHsuCKgQS18SOMs439jex5xuAV7kvuM8LR3Dqs4QyWRLBmCNeMiFKI3Ojw6-B9-f8bELfXbLLHfg45MLoK6OndS8aGoSKx9tp6LMuyyFUUXCLo7n1ndMLftSkQYmNhOKsCVL6nBQ3YJcz5Ocj2J2cfzj-1KYZFSnBGIcN2TPXdvxlhWqF_K9jn1s7p7fh1qqal-tv5Wy2tTid3oVmMKs7k_JlvFrqsfn-m-Lj_7X7HtzpuWx83IHvPuy46gHc7Kpbrh_CyUV7JLeJkWPGQQv2ypEGIeHikAocjo6u49rHevoV43WkvDF6RL0MUr2xCZx-6kOZ7kcwOT25eHtG-qoNxNBcLIn3Og17uxqXR5lZyoQuNbdpiVSUOpqlOKEWzpfUC82LzEjHtCmsMUglZdAvewyjqq7cE4jLoMaPfBYnZEtNkunMp87mzsjEWmloBK-HL6XmnTiHaoMawVU3MAoHRrUDo4oI3oSPuWkZhLXbC_Xis-r9VOWSGy2QlFlqqaBUemQRGEUnvEyd5zaCgwEKqvf2RiEpLRIZikNE8HJzG_00bL6UlatXbRskg8i3WAT7HYQ2b0ITgb15GsHhgKmfD_-TQYcb3P2F_U__rfkz2MtaWAV0HcBouVi550jAlvpF71E_AHaiKLE
  priority: 102
  providerName: Unpaywall
Title Towards the genome-scale discovery of bivariate monotonic classifiers
URI https://link.springer.com/article/10.1186/s12859-025-06253-7
https://www.ncbi.nlm.nih.gov/pubmed/40898061
https://www.proquest.com/docview/3247098052
https://www.proquest.com/docview/3246398205
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-025-06253-7
https://doaj.org/article/396cb8846d4d48449fcee82506a1ef6d
UnpaywallVersion publishedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate - TFS
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB-8O0R9EL9dPcsKvnnB_cjm47F3tB4Fy6FXqE8hn3Bwbg_bKv3vnWTbtcIh-rILu8mymZlkfskkvwF4VwfOQs09waHPEdpITUTTeBJkI4S2srYmLg18mrLzGZ3Mm_mWJieehdmP35eCfViWkWGNxKSrBUL1mvADOEInxVJglp31EYPIzb87FHNrvT8cT-Lnvw1U7gVEH8C9dXujNz_19fWezxk_godbsJgPO-0-hju-fQJ3u_SRm6cwukx7Xpc5grg8kq1-82SJMvd5PGsb92Zu8kXIzdUPnBAjpszR5BaryIWb2wiar0LMg_0MZuPR5dk52aZFIJbWYkVCMGUMnhr0P7JytBFGG-ZKjViPelqVOGJxHzQNwjBeWekbY7mzFrGajARhz-GwXbT-JeQ60t0jYMQRz1FbVKYKpXe1t7JwTlqawfudzNRNx36h0qxBMNVJWKGEVZKw4hmcRrH2JSNzdXqAClXbjqBqyawRiHocdVRQKgO6aZymFkyXPjCXwfFOKWrbnZYKUR8vZMy-kMHb_jV2hBjd0K1frFMZRFsIaJoMXnTK7P-EFgJrszKDk512f3_8bw066S3gH9r_6v--_hruV8k-o5kew-Hq-9q_QYSzMgM44HOOVzH-OICj4XDyZYL309H04vMgmf0grR3gs9n0Yvj1F01l97Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqhwQLwJFAgSnKjVPJzEPlSIwlZb2q4Q2kq9uX6iSmWzdHep9s_x25jJJtsioYpLr3lYyXg8_sZjfx_A2zxUZcgrzzD0OcYLqZkoCs-CLITQVubW0NLA4aDsH_Evx8XxCvzuzsLQtsouJjaB2tWW1si3cOKvEkkE_B_GPxmpRlF1tZPQ0K20gttuKMbagx37fn6BKdxke-8z9ve7LNvtDT_1WasywCzPxZSFYFKqRRoM5zJzvBBGm9KlGqET9zxLMQBUPmgehCmrzEpfGFs5axH6SOLbwnZvwRrPucTkb22nN_j6bVnHIMWA7qiOKLcmKfHFMZKQTTDxyFn113TYqAb8C-peKdPehfXZaKznF_rs7MpMuHsf7rUQNv648LkHsOJHD-H2QtRy_gh6w2Yn7iRGaBkTBewPzyboCT6mE8C0Y3Qe1yE2p78wTUekG6Nl6ykx9MaWoPxpIHXux3B0I2Z8AqujeuSfQayJhB9hLMZhx22SmSyk3uXeysQ5aXkE7zubqfGCk0M1uYwo1cLCCi2sGgurKoIdMuvySeLTbi7U599VOzxVLktrBGIxxx0XnMuA4AGT56TUqQ-li2Cj6xTVDvKJunTJCN4sb-PwpJqLHvl61jyDGBBhVhHB00VnLr-EJwLfLtMINrvevWz8uh_aXHrAf_z_8-s__TWs94eHB-pgb7D_Au5kjW-Si27A6vR85l8i5pqaV61jx3By02PpD-BAO10
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BEdcD4iZQIEi8Uas5HMd-hKWrclU8tFLfLJ-oUklW3Sxo_z0zySYsUoXgNbGteA7P54z9DcDrMtYilnVguPR5xitlmKyqwKKqpDROlc7Sr4EvR-LwhH88rU63bvH3p93HlORwp4FYmppuf-Hj4OJS7C9z4l1jVIo1QwBfsvoqXOMY3aiGwUzMpjwCMfaPV2Uu7fdHOOpZ-y-Dmltp0ttwc9UszPqnOT_fikTzu3BnAyHTt4PO78GV0NyH60NRyfUDODjuT8IuU4R2KVGwfg9siZoIKd3ApROb67SNqT37gdtkRJopGmLbEUNu6ghKn0Wqjv0QTuYHx7NDtimWwBwvZcditDmlVC1GJVV4XklrrPC5QQTIAy9yXMfqEA2P0oq6cCpU1tXeOURwimjDHsFO0zbhCaSGSPARRuI66LnLClvEPPgyOJV5rxxP4M0oM70YODF0v5eQQg8S1ihh3UtY1wm8I7FOLYnPun_QXnzTG_fQpRLOSsRCnnsuOVcRgzduXjNh8hCFT2B3VIreONlSIxasM0U1GRJ4Nb1G96Cch2lCu-rbIAZDmFMl8HhQ5vQlaDDYW-QJ7I3a_T343ya0N1nAP8z_6f-N_hJufH0_158_HH16BreK3lTJYndhp7tYhecIgTr7orfyXyp9-1I
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRDlwJsSKChI3Ki3ediOfSyoVYVEhVBXKicrfqEV22S12QUtv55xHsuCKgQS18SOMs439jex5xuAV7kvuM8LR3Dqs4QyWRLBmCNeMiFKI3Ojw6-B9-f8bELfXbLLHfg45MLoK6OndS8aGoSKx9tp6LMuyyFUUXCLo7n1ndMLftSkQYmNhOKsCVL6nBQ3YJcz5Ocj2J2cfzj-1KYZFSnBGIcN2TPXdvxlhWqF_K9jn1s7p7fh1qqal-tv5Wy2tTid3oVmMKs7k_JlvFrqsfn-m-Lj_7X7HtzpuWx83IHvPuy46gHc7Kpbrh_CyUV7JLeJkWPGQQv2ypEGIeHikAocjo6u49rHevoV43WkvDF6RL0MUr2xCZx-6kOZ7kcwOT25eHtG-qoNxNBcLIn3Og17uxqXR5lZyoQuNbdpiVSUOpqlOKEWzpfUC82LzEjHtCmsMUglZdAvewyjqq7cE4jLoMaPfBYnZEtNkunMp87mzsjEWmloBK-HL6XmnTiHaoMawVU3MAoHRrUDo4oI3oSPuWkZhLXbC_Xis-r9VOWSGy2QlFlqqaBUemQRGEUnvEyd5zaCgwEKqvf2RiEpLRIZikNE8HJzG_00bL6UlatXbRskg8i3WAT7HYQ2b0ITgb15GsHhgKmfD_-TQYcb3P2F_U__rfkz2MtaWAV0HcBouVi550jAlvpF71E_AHaiKLE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+the+genome-scale+discovery+of+bivariate+monotonic+classifiers&rft.jtitle=BMC+bioinformatics&rft.au=Fourquet%2C+Oc%C3%A9ane&rft.au=Krejca%2C+Martin+S&rft.au=Doerr%2C+Carola&rft.au=Schwikowski%2C+Benno&rft.date=2025-09-02&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=26&rft.issue=1&rft.spage=228&rft_id=info:doi/10.1186%2Fs12859-025-06253-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon