Artificial intelligence based classification and prediction of medical imaging using a novel framework of inverted and self-attention deep neural network architecture
Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by t...
Saved in:
| Published in | Scientific reports Vol. 15; no. 1; pp. 8724 - 26 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
13.03.2025
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-025-93718-7 |
Cover
| Abstract | Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset’s testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub (
https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git
). |
|---|---|
| AbstractList | Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset's testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub ( https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git ).Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset's testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub ( https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git ). Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset’s testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub ( https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git ). Abstract Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset’s testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub ( https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git ). Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset’s testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub (https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git). |
| ArticleNumber | 8724 |
| Author | Khan, Muhammad Attique Arshad, Sobia Nam, Yunyoung Aftab, Junaid Rehman, Shams ur AlHammadi, Dina Abdulaziz |
| Author_xml | – sequence: 1 givenname: Junaid surname: Aftab fullname: Aftab, Junaid organization: Department of Computer Engineering, HITEC University – sequence: 2 givenname: Muhammad Attique surname: Khan fullname: Khan, Muhammad Attique email: attique.khan@ieee.org organization: Department of Artificial Intelligence, College of Computer Engineering and Science, Prince Mohammad bin Fahd University – sequence: 3 givenname: Sobia surname: Arshad fullname: Arshad, Sobia organization: Department of Computer Engineering, HITEC University – sequence: 4 givenname: Shams ur surname: Rehman fullname: Rehman, Shams ur organization: Department of Computer Engineering, HITEC University – sequence: 5 givenname: Dina Abdulaziz surname: AlHammadi fullname: AlHammadi, Dina Abdulaziz organization: Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University – sequence: 6 givenname: Yunyoung surname: Nam fullname: Nam, Yunyoung email: ynam@sch.ac.kr organization: Department of ICT Convergence, Soonchunhyang University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40082642$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1DAYhSNUREvpC7BAkdiwCfiWcbKsqgKVKrGBtfXb_j14yNiDnbTqC_GcOMlQEAuEF75-5_hy_Lw6CTFgVb2k5C0lvHuXBW37riGsbXouadfIJ9UZI6JtGGfs5I_-aXWR846U0rJe0P5ZdSoI6dhGsLPqx2UavfPGw1D7MOIw-C0Gg7WGjLY2A-Q8r8PoY6gh2PqQ0HqzDKOr9_Ng1u5h68O2nvJcQx3iHQ61S7DH-5i-zagPd5jGYjq7ZBxcA-OIYXGyiIc64JSKVcBxkUAyX_2IZpwSvqieOhgyXhzb8-rL--vPVx-b208fbq4ubxsjeDc22BGwnFqtKRFcEEmkNRujHdXIO7fRaITuN2D7XphWCspb6CwDbo0DgY6fVzerr42wU4dUrpUeVASvlomYtgrKg5kBlWu1lNRIYFYLlARa5jrN-lZ36KiE4sVXrykc4OEehuHRkBI1h6jWEFUJUS0hKllUb1bVIcXvE-ZR7X02JRcIGKesOC27tlzKGX39F7qLUwrlfRaKFFvSF-rVkZp0SevxDL_-QAHYCpgUc07o_u-Yx8vlAoctpt97_0P1E6DN2CM |
| Cites_doi | 10.1016/j.sasc.2023.200068 10.1007/s12559-022-10096-2 10.1118/1.4957255 10.3390/cancers14225569 10.1016/j.neucom.2018.10.100 10.1016/j.cmpb.2017.09.005 10.1007/s11042-022-13046-0 10.3390/jpm11020061 10.1186/s12903-024-03993-5 10.3390/app112412122 10.1109/ISBI.2017.7950707 10.1007/978-3-030-87444-5_2 10.1007/s13755-024-00290-x 10.1007/s11042-020-09520-2 10.3390/cancers12061604 10.1007/s11042-020-09388-2 10.36548/jitdw.2021.2.006 10.1007/s41060-024-00507-y 10.3390/s22103833 10.1007/s11042-024-19040-y 10.1038/s41591-018-0177-5 10.1007/s11042-024-19837-x 10.3390/ijerph18105479 10.1155/2022/9809932 10.1007/s00432-018-02834-7 10.1109/ICPR.2016.7900002 10.1016/j.eswa.2020.113274 10.1016/j.mex.2020.100864 10.1016/j.measurement.2020.107703 10.1109/AIIoT54504.2022.9817326 10.3390/s18124379 10.1007/978-3-030-32606-7_3 10.3390/s18092799 10.1109/ACCESS.2020.2981337 10.1016/j.asoc.2024.111624 10.1038/s41598-021-83503-7 10.1109/TNNLS.2023.3238397 10.1016/j.bspc.2021.102825 10.3390/diagnostics12010043 10.3390/biom10081123 10.1016/j.cmpb.2022.107318 10.1109/ACCESS.2020.3029881 10.1016/j.imavis.2019.10.005 10.1016/j.dsp.2023.104063 10.1002/mp.15765 10.1038/s41598-024-53396-3 10.1109/TGRS.2016.2543748 10.1016/j.compbiomed.2022.105939 10.4018/979-8-3693-2359-5.ch013 10.1007/s42979-021-00532-9 10.3390/s22134963 10.1109/TMI.2021.3136682 10.1007/978-3-030-20212-5_9 10.1007/s11042-023-16046-w 10.1038/s41598-021-84630-x 10.21037/atm.2020.02.44 10.1016/j.artmed.2023.102492 10.3390/cancers13153811 10.1155/2022/2163458 10.3390/diagnostics12081899 10.1609/aaai.v37i6.25874 10.1093/comjnl/bxad046 10.1016/j.eswa.2023.123056 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-025-93718-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 26 |
| ExternalDocumentID | oai_doaj_org_article_f5b771c7a2db4e70a52f8b295b8ef17a 10.1038/s41598-025-93718-7 40082642 10_1038_s41598_025_93718_7 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM UKHRP AASML AAYXX AFPKN CITATION PHGZM PJZUB PPXIY PQGLB PUEGO SNYQT CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c438t-e80ad31dbb104340707dc6cbf1be38f6bec4b96ad994c574135a8d2a3dcfa4ef3 |
| IEDL.DBID | AAJSJ |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:41:36 EDT 2025 Sun Oct 26 03:26:47 EDT 2025 Fri Sep 05 06:12:41 EDT 2025 Tue Oct 07 08:08:49 EDT 2025 Thu May 15 23:18:07 EDT 2025 Wed Oct 01 06:42:05 EDT 2025 Fri Mar 14 02:01:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Medical imaging Explainable AI Prediction Healthcare Self attention Fusion |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-e80ad31dbb104340707dc6cbf1be38f6bec4b96ad994c574135a8d2a3dcfa4ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doi.org/10.1038%2Fs41598-025-93718-7 |
| PMID | 40082642 |
| PQID | 3177002509 |
| PQPubID | 2041939 |
| PageCount | 26 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f5b771c7a2db4e70a52f8b295b8ef17a unpaywall_primary_10_1038_s41598_025_93718_7 proquest_miscellaneous_3177153777 proquest_journals_3177002509 pubmed_primary_40082642 crossref_primary_10_1038_s41598_025_93718_7 springer_journals_10_1038_s41598_025_93718_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-13 |
| PublicationDateYYYYMMDD | 2025-03-13 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | R Sulthana (93718_CR33) 2024; 246 M Dildar (93718_CR36) 2021; 18 Y Qiu (93718_CR14) 2017; 25 B Huynh (93718_CR30) 2016; 43 DA Zebari (93718_CR28) 2021; 11 MS Ayyaz (93718_CR39) 2021; 12 93718_CR46 93718_CR47 K Warin (93718_CR45) 2024; 24 93718_CR49 RJS Raj (93718_CR1) 2020; 8 AI Poernama (93718_CR21) 2019; 2019 SH Hosseini (93718_CR43) 2024; 83 M Toğaçar (93718_CR24) 2020; 149 Y Li (93718_CR50) 2019; 92 F Shahidi (93718_CR8) 2020; 8 93718_CR17 C Xin (93718_CR62) 2022; 149 93718_CR18 J Wu (93718_CR29) 2021; 11 Z Tariq (93718_CR3) 2019; 2019 TL Chaunzwa (93718_CR10) 2021; 11 S Karthik (93718_CR7) 2018; 1 M Khashei (93718_CR26) 2023; 139 SS Chaturvedi (93718_CR6) 2020; 79 Y Xiao (93718_CR11) 2018; 153 D Thakur (93718_CR54) 2021; 13 93718_CR55 S Ibrahim (93718_CR61) 2023; 10 93718_CR12 93718_CR13 N Coudray (93718_CR9) 2018; 24 93718_CR15 93718_CR59 AA Demirbaş (93718_CR66) 2024; 12 G Xie (93718_CR52) 2023; 139 M Sharafudeen (93718_CR72) 2023; 82 SJ Mambou (93718_CR31) 2018; 18 93718_CR51 SM Fati (93718_CR42) 2022; 12 L Wang (93718_CR41) 2022; 14 X Liu (93718_CR67) 2020; 392 M Alzaqebah (93718_CR58) 2021; 11 H-J Jang (93718_CR38) 2021; 13 93718_CR64 A Aggarwal (93718_CR16) 2021; 80 M Islam (93718_CR20) 2018; 18 93718_CR22 A Jiménez-Sánchez (93718_CR25) 2023; 229 P Yao (93718_CR63) 2021; 41 D Muduli (93718_CR68) 2022; 71 N Gessert (93718_CR65) 2020; 7 W Zhao (93718_CR19) 2016; 54 93718_CR27 M Kriegsmann (93718_CR40) 2020; 12 S Jinnai (93718_CR35) 2020; 10 T Alyas (93718_CR4) 2022; 2022 93718_CR60 A-U Rahman (93718_CR75) 2022; 22 AK Nugroho (93718_CR32) 2024; 13 HE Ghadbane (93718_CR57) 2024; 14 S Sangeetha (93718_CR44) 2024; 6 J Jiang (93718_CR53) 2022; 49 G Elavarasi (93718_CR56) 2021; 2 M Toğaçar (93718_CR23) 2020; 158 L Taylor (93718_CR48) 2018; 2018 G An (93718_CR5) 2021; 11 93718_CR76 93718_CR77 93718_CR70 KM Hosny (93718_CR34) 2024; 159 93718_CR71 VM Tiryaki (93718_CR69) 2024; 67 W Wang (93718_CR2) 2020 M Fraiwan (93718_CR37) 2022; 22 93718_CR73 93718_CR74 |
| References_xml | – volume: 13 start-page: 1615 year: 2021 ident: 93718_CR54 publication-title: Int. J. Inf. Technol. – volume: 6 year: 2024 ident: 93718_CR44 publication-title: Syst. Soft Comput. doi: 10.1016/j.sasc.2023.200068 – ident: 93718_CR55 doi: 10.1007/s12559-022-10096-2 – volume: 13 start-page: 1042 year: 2024 ident: 93718_CR32 publication-title: Bull. Electr. Eng. Inf. – volume: 43 start-page: 3705 year: 2016 ident: 93718_CR30 publication-title: Med. Phys. doi: 10.1118/1.4957255 – volume: 14 start-page: 5569 year: 2022 ident: 93718_CR41 publication-title: Cancers doi: 10.3390/cancers14225569 – volume: 392 start-page: 253 year: 2020 ident: 93718_CR67 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.100 – volume: 153 start-page: 1 year: 2018 ident: 93718_CR11 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.005 – volume: 82 start-page: 3155 year: 2023 ident: 93718_CR72 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-022-13046-0 – volume: 11 start-page: 61 year: 2021 ident: 93718_CR29 publication-title: J. Person. Med. doi: 10.3390/jpm11020061 – volume: 24 start-page: 212 year: 2024 ident: 93718_CR45 publication-title: BMC Oral Health doi: 10.1186/s12903-024-03993-5 – volume: 11 start-page: 12122 year: 2021 ident: 93718_CR28 publication-title: Appl. Sci. doi: 10.3390/app112412122 – ident: 93718_CR22 doi: 10.1109/ISBI.2017.7950707 – ident: 93718_CR60 – ident: 93718_CR64 doi: 10.1007/978-3-030-87444-5_2 – volume: 12 start-page: 32 year: 2024 ident: 93718_CR66 publication-title: Health Inf. Sci. Syst. doi: 10.1007/s13755-024-00290-x – volume: 80 start-page: 1289 year: 2021 ident: 93718_CR16 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-09520-2 – volume: 12 start-page: 1604 year: 2020 ident: 93718_CR40 publication-title: Cancers doi: 10.3390/cancers12061604 – volume: 79 start-page: 28477 year: 2020 ident: 93718_CR6 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09388-2 – ident: 93718_CR17 doi: 10.36548/jitdw.2021.2.006 – ident: 93718_CR46 doi: 10.1007/s41060-024-00507-y – volume: 22 start-page: 3833 year: 2022 ident: 93718_CR75 publication-title: Sensors doi: 10.3390/s22103833 – ident: 93718_CR70 – ident: 93718_CR76 doi: 10.1007/s11042-024-19040-y – volume: 24 start-page: 1559 year: 2018 ident: 93718_CR9 publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 – ident: 93718_CR71 doi: 10.1007/s11042-024-19837-x – volume: 18 start-page: 5479 year: 2021 ident: 93718_CR36 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph18105479 – volume: 2022 start-page: 9809932 year: 2022 ident: 93718_CR4 publication-title: BioMed Res. Int. doi: 10.1155/2022/9809932 – ident: 93718_CR13 doi: 10.1007/s00432-018-02834-7 – ident: 93718_CR27 doi: 10.1109/ICPR.2016.7900002 – volume: 149 year: 2020 ident: 93718_CR24 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113274 – volume: 7 year: 2020 ident: 93718_CR65 publication-title: MethodsX doi: 10.1016/j.mex.2020.100864 – volume: 158 year: 2020 ident: 93718_CR23 publication-title: Measurement doi: 10.1016/j.measurement.2020.107703 – ident: 93718_CR74 doi: 10.1109/AIIoT54504.2022.9817326 – volume: 18 start-page: 4379 year: 2018 ident: 93718_CR20 publication-title: Sensors doi: 10.3390/s18124379 – year: 2020 ident: 93718_CR2 publication-title: Deep Learn. Healthc. Paradigms Appl. doi: 10.1007/978-3-030-32606-7_3 – volume: 18 start-page: 2799 year: 2018 ident: 93718_CR31 publication-title: Sensors doi: 10.3390/s18092799 – volume: 8 start-page: 58006 year: 2020 ident: 93718_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981337 – volume: 159 year: 2024 ident: 93718_CR34 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111624 – volume: 11 start-page: 4250 year: 2021 ident: 93718_CR5 publication-title: Sci. Rep. doi: 10.1038/s41598-021-83503-7 – ident: 93718_CR49 doi: 10.1109/TNNLS.2023.3238397 – volume: 71 year: 2022 ident: 93718_CR68 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102825 – volume: 2018 start-page: 1542 year: 2018 ident: 93718_CR48 publication-title: IEEE Symp. Ser. Comput. Intell. (SSCI) – volume: 11 start-page: 2414 year: 2021 ident: 93718_CR58 publication-title: Int. J. Electr. Comput. Eng. – ident: 93718_CR47 – volume: 12 start-page: 43 year: 2021 ident: 93718_CR39 publication-title: Diagnostics doi: 10.3390/diagnostics12010043 – volume: 10 start-page: 1123 year: 2020 ident: 93718_CR35 publication-title: Biomolecules doi: 10.3390/biom10081123 – volume: 229 year: 2023 ident: 93718_CR25 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2022.107318 – volume: 8 start-page: 187531 year: 2020 ident: 93718_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029881 – volume: 92 year: 2019 ident: 93718_CR50 publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2019.10.005 – volume: 139 year: 2023 ident: 93718_CR52 publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2023.104063 – volume: 49 start-page: 5244 year: 2022 ident: 93718_CR53 publication-title: Med. Phys. doi: 10.1002/mp.15765 – volume: 14 start-page: 3629 year: 2024 ident: 93718_CR57 publication-title: Sci. Rep. doi: 10.1038/s41598-024-53396-3 – volume: 54 start-page: 4544 year: 2016 ident: 93718_CR19 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2543748 – volume: 25 start-page: 751 year: 2017 ident: 93718_CR14 publication-title: J. Xray Sci. Technol. – volume: 149 year: 2022 ident: 93718_CR62 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105939 – ident: 93718_CR77 doi: 10.4018/979-8-3693-2359-5.ch013 – ident: 93718_CR18 doi: 10.1007/s42979-021-00532-9 – volume: 22 start-page: 4963 year: 2022 ident: 93718_CR37 publication-title: Sensors doi: 10.3390/s22134963 – volume: 2019 start-page: 732 year: 2019 ident: 93718_CR3 publication-title: IEEE Int. Conf. Bioinf Biomed. (BIBM) – volume: 41 start-page: 1242 year: 2021 ident: 93718_CR63 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3136682 – ident: 93718_CR15 doi: 10.1007/978-3-030-20212-5_9 – volume: 83 start-page: 14305 year: 2024 ident: 93718_CR43 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-023-16046-w – volume: 10 start-page: 126 year: 2023 ident: 93718_CR61 publication-title: Int. J. Comput. Inf. – volume: 2 start-page: 831 issue: 2022 year: 2021 ident: 93718_CR56 publication-title: Proc. Data Anal. Manag. ICDAM – volume: 11 start-page: 1 year: 2021 ident: 93718_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-021-84630-x – ident: 93718_CR73 – volume: 1 start-page: 227 year: 2018 ident: 93718_CR7 publication-title: Knowl. Comput. Appl. Knowl. Manip. Process. Tech. – ident: 93718_CR12 doi: 10.21037/atm.2020.02.44 – volume: 139 year: 2023 ident: 93718_CR26 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102492 – volume: 13 start-page: 3811 year: 2021 ident: 93718_CR38 publication-title: Cancers doi: 10.3390/cancers13153811 – ident: 93718_CR59 doi: 10.1155/2022/2163458 – volume: 2019 start-page: 58 year: 2019 ident: 93718_CR21 publication-title: Int. Biomed. Instrum. Technol.gy Conf. (IBITeC) – volume: 12 start-page: 1899 year: 2022 ident: 93718_CR42 publication-title: Diagnostics doi: 10.3390/diagnostics12081899 – ident: 93718_CR51 doi: 10.1609/aaai.v37i6.25874 – volume: 67 start-page: 1111 year: 2024 ident: 93718_CR69 publication-title: Comput. J. doi: 10.1093/comjnl/bxad046 – volume: 246 year: 2024 ident: 93718_CR33 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.123056 |
| SSID | ssj0000529419 |
| Score | 2.4630914 |
| Snippet | Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven... Abstract Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks... |
| SourceID | doaj unpaywall proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 8724 |
| SubjectTerms | Algorithms Artificial Intelligence Cancer Classification Datasets Deep Learning Diagnosis, Computer-Assisted - methods Diagnostic Imaging - methods Endoscopy Fusion Healthcare Humanities and Social Sciences Humans Image Processing, Computer-Assisted - methods Lung cancer Mammography Medical imaging multidisciplinary Neural networks Neural Networks, Computer Prediction Science Science (multidisciplinary) Self attention |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NixQxEA2yIOpB_LZ1lQje3LCTzmcfVVwWD55c2FtIOokMzPYMOzPK_qH9nVuV9IwtiHrw2J1MkcyrUC9U9StC3gaZhFVaMm1NZFKlnnWx1YxnL7X3qvWxFMh-0adn8vO5Op-0-sKasCoPXP-446yCMbw3vo1g18zg59mGtlPBpsxNoUYz200uU1XVu-0k78avZGbCHq8hUuHXZK1iKAFnmfklEhXB_t-xzEmG9B65sx1W_uqHXywmQejkAbk_skf6vq76IbmVhkfkdu0nefWYXONAlYSg84nWJsVYFWmPTBnHCxrUD5GuLjFRUx6XmV7UrA2dX5TeRRSL4r9RT4fl97SgeVfHhVPnAzZyBqNoZZ0WmaFQZymdpDGlFUWhTDA11DJzOk1YPCFnJ5--fjxlYyMG1kthNyzZmY-CxxDg8iYkKgTFXvch8wBIZw1-IEOnAdZO9go4ilDextaL2APkKYun5GBYDuk5ocInnqVJAWiYDFEHHTMH650XYJX7hrzbgeJWVW_DlTy5sK5C6ABCVyB0piEfELf9TNTKLi_Ag9zoQe5vHtSQwx3qbjzAawe0yhR-2DXkzX4Yjh7mU_yQlts6BwKGMbCOZ9Vb9iuRyK3gbteQo537_DT-pw0d7V3sH_b_4n_s_yW52-KxwCJFcUgONpfb9AqY1ia8LofqBgGPJ3Y priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_1ilgfxK_a0yoRfLOht5tskn0QsdJSfDhELPQtJJukHFx3z_tQ-g_5dzqT_egJUnzcTZhNmF8ys5nJbwh550TgupCCSa08E0WoWOlzybJohbS2yK1PCbJTeX4hvlwWlztk2t-FwbTKfk9MG7VvKjwjPwY7p5LBLj8ufjCsGoXR1b6Ehu1KK_gPiWLsHtnNkRlrRHZPTqdfvw2nLhjXElnZ3Z6ZcH28AguGt8zygiE1nGbqLwuViPz_5X1uRU4fkgebemFvftn5fMs4nT0mjzqvkn5qYfCE7IT6Kbnf1pm8eUZ-Y0NLFUFnWxycFG2YpxV60NietERt7eliiQGc9NhEet1Gc-jsOtU0opgsf0UtrZufYU5jn9-FXWc1FngGoShlFeaRIYFnSqmkPoQFRQJNEFW36ed0O5DxnFycnX7_fM66Ag2sElyvWdAT63nmnYOfOi6QOchXsnIxc4CAKAEfwpUS1F2KqgDfhRdW-9xyXwEUQuT7ZFQ3dTgglNuQRaGCA_dMOC-d9DED6aXlIDWzY_K-V4pZtDwcJsXPuTatCg2o0CQVGjUmJ6i3oSdyaKcXzfLKdEvSxMIplVXK5h4QqyYAzKhdXhZOh5gp-ORhr3XTLeyVuYXhmLwdmmFJYpzF1qHZtH3AkCgF43jRomUYiUCfC_75xuSoh8-t8LsmdDRA7D_m__Luob8iezkCHtMS-SEZrZeb8Bp8q7V70y2YPx_CJIk priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELUgFaIc-C4ECjISN-rSXX_usSCqikPFgUjlZNlrG0Wkm6hJQOUH8TuZsTchRRUqx117Z9f2s-atZvyGkNdeRG6kEkwZHZiQsWVNqBWrkhPKOVm7kBNkT9TxSHw8lae9TA6ehbkUv-fm7RwcDB4CqyVD5TbD9E2ypSTw7gHZGp18OvyC1eOAlzCgBnV_KubqBy95nizQfxWr3IiI3iG3l93MXfxwk8mG0zm6V6oXzbNWIeaafNtfLvx--_MvJcfrjec-udtzT3pYwPKA3IjdQ3KrVKO8eER-YUMRlKDjDaVOip4u0BZ5NrbntaSuC3R2jmGefDlN9KzEfOj4LFc-ophS_5U62k2_xwlNqyww7DrusAw0GEUr8zhJDGU-c-IlDTHOKMpsgqmuJKnTzXDHYzI6-vD5_THryziwVnCzYNEcuMCr4D38-nGB-kKhVa1PlQecJAUoEr5RAIpGtBIYDpfOhNrx0AJgYuI7ZNBNu_iUUO5ilYSOHkic8EF5FVIF1hvHwWrlhuTNaontrKh12Bxl58aWmbcw8zbPvNVD8g5RsO6JStv5BiyY7TeuTdJrXbXa1QFwrQ8Avsn4upHexFRpeOXuCkO23_5zC6RMZ3bZDMmrdTNsXIzGuC5Ol6UPuBut4TueFOytv0QgM4M_wyHZW4Hxj_F_DWhvDdhrjP_Z_3V_TrZrxC0mM_JdMlicL-MLYGQL_7Lfir8B1qEu6g priority: 102 providerName: Unpaywall |
| Title | Artificial intelligence based classification and prediction of medical imaging using a novel framework of inverted and self-attention deep neural network architecture |
| URI | https://link.springer.com/article/10.1038/s41598-025-93718-7 https://www.ncbi.nlm.nih.gov/pubmed/40082642 https://www.proquest.com/docview/3177002509 https://www.proquest.com/docview/3177153777 https://doi.org/10.1038/s41598-025-93718-7 https://doaj.org/article/f5b771c7a2db4e70a52f8b295b8ef17a |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry (Open Access) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Open Access) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2Tgh4QHxTGJWReKMWS-zYzmNXbZr6UE1ApfIU2bE9VerSam1B-4f4O7lzPugEQvAUxXYutn53ukvu_DMh763wXGdSMKmVYyLzJctdKlkSjJDGZKlxsUB2Ki9mYjLP5gdk2O6FuZO_j9TdG3AxuA0szRhyt2mmDsmRBsXUPXI0Gk0-T7p_Kpi1Ekne7I2Bxz_-_vAd_xNp-v8UW-7lRR-S-7tqbW6_m-Vyz_WcPyaPmpiRjmqQn5ADXz0l9-pTJG-fkR_YURNB0MUewyZFD-VoifEx9kcMqKkcXd9geibergK9rnM1dHEdTyyiWAp_RQ2tVt_8koa2eguHLio8vhmEopSNXwaG9JyxYJI679cU6TFBVFUXl9P9NMVzMjs_-zK-YM3xC6wUXG-Z1yfG8cRZC59sXCAvkCtlaUNiAd8gAX1hcwlg5qLMIDLhmdEuNdyVALQP_AXpVavKvyKUG58EobyF4EtYJ610IQHpueEgNTF98qEFpVjXLBtFzI5zXdQQFgBhESEsVJ-cIm7dSGTIjg2gOEVjcEXIrFJJqUzqQB_VCahd0DbNM6t9SBS88rhFvWjMdlNAMKViVJj3ybuuGwwOsyim8qtdPQbchFIwj5e1tnQzERhRwRddnwxb9fkl_G8LGnYq9g_rf_1_0t-QBykaABYh8mPS297s_FuIpLZ2QA7VXA0aM4Lr6dn08hO0juV4EP9OQNtsejn6-hO46x7r |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGJjT2gPhPYYCR4IlZa2InTh4mxGBTx0aF0CbtzbNje6rUJV3_MPUL8TH4bNw5SVckNPGyx9Tuxac7351z598R8s4Ix7MkFSzNpGUicQXLbZyyyGuRap3E2oYC2X7aOxFfT5PTFfK7vQuDZZWtTQyG2lYFfiPfBj8ng8POP44uGXaNwuxq20JDN60V7E6AGGsudhy6-RUc4SY7B19A3u_jeH_v-HOPNV0GWCF4NmUu62rLI2sMnEy4QPgbW6SF8ZEBNnwKTAqTp7DmXBQJOGCe6MzGmtsC-HGeA907ZA3-msPhb213r__9x-IrD-bRRJQ3t3W6PNuegMfEW21xwhCKLmPyL48YGgf8K9pdytRukPVZOdLzKz0cLjnD_QfkfhPF0k-12j0kK658RO7WfS3nj8kvHKihKehgCfOTos-0tMCIHceDVlBdWjoaY8IoPFaeXtTZIzq4CD2UKBbnn1NNy-qnG1Lf1pPh1EGJDaWBKFKZuKFnCBgaSjipdW5EEbATSJV1uTtdTpw8ISe3IqqnZLWsSvecUK5d5IV0BsJBYWxqUusjoJ5rDlQj3SEfWqGoUY37oUK-nmeqFqECEaogQiU7ZBfltpiJmN3hh2p8rhoToHxipIwKqWMLO0R2YSP4zMR5YjLnIwmv3GylrhpDMlHXat8hbxfDYAIwr6NLV83qOeC4pIR1PKu1ZbESgTEenDE7ZKtVn2viNzG0tVCx_-D_xc1Lf0PWe8ffjtTRQf_wJbkXo_JjSSTfJKvT8cy9grhual43m4eSs9ver38AoHJjbQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4s1CASPBiVq7iZ04OSAElFVLUcWBSnszdmxXK22TsA-q_UP8CH4dM86ji4QqLj0mtiYezYxnnPk8Q8grIxzPklSwNJOWicQVLLdxyiKvRap1EmsbALJH6f6x-DxJJlvkd3cXBmGV3Z4YNmpbFfiPfAh-TgaHnQ99C4v4ujd-V_9g2EEKM61dO41GRQ7d-gyOb4u3B3sg69dxPP707eM-azsMsELwbMlcNtKWR9YYOJVwgaVvbJEWxkcGWPApMChMnsJ6c1Ek4Hx5ojMba24L4MV5DnSvkKuS8xzhhHIi-_87mEETUd7e0xnxbLgAX4n32eKEYRG6jMm_fGFoGfCvOHcjR3uL3FiVtV6f6dlsww2O75DbbfxK3zcKd5dsufIeudZ0tFzfJ79woClKQacb1T4pektLC4zVcTzoA9WlpfUcU0XhsfL0tMkb0elp6J5EEZZ_QjUtq59uRn2HJMOp0xJbSQNRpLJwM8-wVGgAb1LrXE2xVCeQKhugO91MmTwgx5ciqIdku6xK95hQrl3khXQGAkFhbGpS6yOgnmsOVCM9IG86oai6qfihQqaeZ6oRoQIRqiBCJQfkA8qtn4nVusOLan6iWuNXPjFSRoXUsQXbkCMwAZ-ZOE9M5nwk4ZM7ndRVu4Us1LnCD8jLfhiMHzM6unTVqpkDLktKWMejRlv6lQiM7uB0OSC7nfqcE7-Iod1exf6D_ycXL_0FuQ5Wqr4cHB0-JTdj1H3EQvIdsr2cr9wzCOiW5nmwHEq-X7ap_gHzz2EH |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELUgFaIc-C4ECjISN-rSXX_usSCqikPFgUjlZNlrG0Wkm6hJQOUH8TuZsTchRRUqx117Z9f2s-atZvyGkNdeRG6kEkwZHZiQsWVNqBWrkhPKOVm7kBNkT9TxSHw8lae9TA6ehbkUv-fm7RwcDB4CqyVD5TbD9E2ypSTw7gHZGp18OvyC1eOAlzCgBnV_KubqBy95nizQfxWr3IiI3iG3l93MXfxwk8mG0zm6V6oXzbNWIeaafNtfLvx--_MvJcfrjec-udtzT3pYwPKA3IjdQ3KrVKO8eER-YUMRlKDjDaVOip4u0BZ5NrbntaSuC3R2jmGefDlN9KzEfOj4LFc-ophS_5U62k2_xwlNqyww7DrusAw0GEUr8zhJDGU-c-IlDTHOKMpsgqmuJKnTzXDHYzI6-vD5_THryziwVnCzYNEcuMCr4D38-nGB-kKhVa1PlQecJAUoEr5RAIpGtBIYDpfOhNrx0AJgYuI7ZNBNu_iUUO5ilYSOHkic8EF5FVIF1hvHwWrlhuTNaontrKh12Bxl58aWmbcw8zbPvNVD8g5RsO6JStv5BiyY7TeuTdJrXbXa1QFwrQ8Avsn4upHexFRpeOXuCkO23_5zC6RMZ3bZDMmrdTNsXIzGuC5Ol6UPuBut4TueFOytv0QgM4M_wyHZW4Hxj_F_DWhvDdhrjP_Z_3V_TrZrxC0mM_JdMlicL-MLYGQL_7Lfir8B1qEu6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+based+classification+and+prediction+of+medical+imaging+using+a+novel+framework+of+inverted+and+self-attention+deep+neural+network+architecture&rft.jtitle=Scientific+reports&rft.au=Aftab%2C+Junaid&rft.au=Khan%2C+Muhammad+Attique&rft.au=Arshad%2C+Sobia&rft.au=Rehman%2C+Shams+ur&rft.date=2025-03-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-93718-7&rft.externalDocID=10_1038_s41598_025_93718_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |