Artificial intelligence based classification and prediction of medical imaging using a novel framework of inverted and self-attention deep neural network architecture

Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by t...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 8724 - 26
Main Authors Aftab, Junaid, Khan, Muhammad Attique, Arshad, Sobia, Rehman, Shams ur, AlHammadi, Dina Abdulaziz, Nam, Yunyoung
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-93718-7

Cover

Abstract Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset’s testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub ( https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git ).
AbstractList Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset's testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub ( https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git ).Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset's testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub ( https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git ).
Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset’s testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub ( https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git ).
Abstract Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset’s testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub ( https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git ).
Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset’s testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub (https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git).
ArticleNumber 8724
Author Khan, Muhammad Attique
Arshad, Sobia
Nam, Yunyoung
Aftab, Junaid
Rehman, Shams ur
AlHammadi, Dina Abdulaziz
Author_xml – sequence: 1
  givenname: Junaid
  surname: Aftab
  fullname: Aftab, Junaid
  organization: Department of Computer Engineering, HITEC University
– sequence: 2
  givenname: Muhammad Attique
  surname: Khan
  fullname: Khan, Muhammad Attique
  email: attique.khan@ieee.org
  organization: Department of Artificial Intelligence, College of Computer Engineering and Science, Prince Mohammad bin Fahd University
– sequence: 3
  givenname: Sobia
  surname: Arshad
  fullname: Arshad, Sobia
  organization: Department of Computer Engineering, HITEC University
– sequence: 4
  givenname: Shams ur
  surname: Rehman
  fullname: Rehman, Shams ur
  organization: Department of Computer Engineering, HITEC University
– sequence: 5
  givenname: Dina Abdulaziz
  surname: AlHammadi
  fullname: AlHammadi, Dina Abdulaziz
  organization: Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University
– sequence: 6
  givenname: Yunyoung
  surname: Nam
  fullname: Nam, Yunyoung
  email: ynam@sch.ac.kr
  organization: Department of ICT Convergence, Soonchunhyang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40082642$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAYhSNUREvpC7BAkdiwCfiWcbKsqgKVKrGBtfXb_j14yNiDnbTqC_GcOMlQEAuEF75-5_hy_Lw6CTFgVb2k5C0lvHuXBW37riGsbXouadfIJ9UZI6JtGGfs5I_-aXWR846U0rJe0P5ZdSoI6dhGsLPqx2UavfPGw1D7MOIw-C0Gg7WGjLY2A-Q8r8PoY6gh2PqQ0HqzDKOr9_Ng1u5h68O2nvJcQx3iHQ61S7DH-5i-zagPd5jGYjq7ZBxcA-OIYXGyiIc64JSKVcBxkUAyX_2IZpwSvqieOhgyXhzb8-rL--vPVx-b208fbq4ubxsjeDc22BGwnFqtKRFcEEmkNRujHdXIO7fRaITuN2D7XphWCspb6CwDbo0DgY6fVzerr42wU4dUrpUeVASvlomYtgrKg5kBlWu1lNRIYFYLlARa5jrN-lZ36KiE4sVXrykc4OEehuHRkBI1h6jWEFUJUS0hKllUb1bVIcXvE-ZR7X02JRcIGKesOC27tlzKGX39F7qLUwrlfRaKFFvSF-rVkZp0SevxDL_-QAHYCpgUc07o_u-Yx8vlAoctpt97_0P1E6DN2CM
Cites_doi 10.1016/j.sasc.2023.200068
10.1007/s12559-022-10096-2
10.1118/1.4957255
10.3390/cancers14225569
10.1016/j.neucom.2018.10.100
10.1016/j.cmpb.2017.09.005
10.1007/s11042-022-13046-0
10.3390/jpm11020061
10.1186/s12903-024-03993-5
10.3390/app112412122
10.1109/ISBI.2017.7950707
10.1007/978-3-030-87444-5_2
10.1007/s13755-024-00290-x
10.1007/s11042-020-09520-2
10.3390/cancers12061604
10.1007/s11042-020-09388-2
10.36548/jitdw.2021.2.006
10.1007/s41060-024-00507-y
10.3390/s22103833
10.1007/s11042-024-19040-y
10.1038/s41591-018-0177-5
10.1007/s11042-024-19837-x
10.3390/ijerph18105479
10.1155/2022/9809932
10.1007/s00432-018-02834-7
10.1109/ICPR.2016.7900002
10.1016/j.eswa.2020.113274
10.1016/j.mex.2020.100864
10.1016/j.measurement.2020.107703
10.1109/AIIoT54504.2022.9817326
10.3390/s18124379
10.1007/978-3-030-32606-7_3
10.3390/s18092799
10.1109/ACCESS.2020.2981337
10.1016/j.asoc.2024.111624
10.1038/s41598-021-83503-7
10.1109/TNNLS.2023.3238397
10.1016/j.bspc.2021.102825
10.3390/diagnostics12010043
10.3390/biom10081123
10.1016/j.cmpb.2022.107318
10.1109/ACCESS.2020.3029881
10.1016/j.imavis.2019.10.005
10.1016/j.dsp.2023.104063
10.1002/mp.15765
10.1038/s41598-024-53396-3
10.1109/TGRS.2016.2543748
10.1016/j.compbiomed.2022.105939
10.4018/979-8-3693-2359-5.ch013
10.1007/s42979-021-00532-9
10.3390/s22134963
10.1109/TMI.2021.3136682
10.1007/978-3-030-20212-5_9
10.1007/s11042-023-16046-w
10.1038/s41598-021-84630-x
10.21037/atm.2020.02.44
10.1016/j.artmed.2023.102492
10.3390/cancers13153811
10.1155/2022/2163458
10.3390/diagnostics12081899
10.1609/aaai.v37i6.25874
10.1093/comjnl/bxad046
10.1016/j.eswa.2023.123056
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-93718-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 26
ExternalDocumentID oai_doaj_org_article_f5b771c7a2db4e70a52f8b295b8ef17a
10.1038/s41598-025-93718-7
40082642
10_1038_s41598_025_93718_7
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
PUEGO
SNYQT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c438t-e80ad31dbb104340707dc6cbf1be38f6bec4b96ad994c574135a8d2a3dcfa4ef3
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Fri Oct 03 12:41:36 EDT 2025
Sun Oct 26 03:26:47 EDT 2025
Fri Sep 05 06:12:41 EDT 2025
Tue Oct 07 08:08:49 EDT 2025
Thu May 15 23:18:07 EDT 2025
Wed Oct 01 06:42:05 EDT 2025
Fri Mar 14 02:01:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Medical imaging
Explainable AI
Prediction
Healthcare
Self attention
Fusion
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-e80ad31dbb104340707dc6cbf1be38f6bec4b96ad994c574135a8d2a3dcfa4ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1038%2Fs41598-025-93718-7
PMID 40082642
PQID 3177002509
PQPubID 2041939
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_f5b771c7a2db4e70a52f8b295b8ef17a
unpaywall_primary_10_1038_s41598_025_93718_7
proquest_miscellaneous_3177153777
proquest_journals_3177002509
pubmed_primary_40082642
crossref_primary_10_1038_s41598_025_93718_7
springer_journals_10_1038_s41598_025_93718_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-13
PublicationDateYYYYMMDD 2025-03-13
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References R Sulthana (93718_CR33) 2024; 246
M Dildar (93718_CR36) 2021; 18
Y Qiu (93718_CR14) 2017; 25
B Huynh (93718_CR30) 2016; 43
DA Zebari (93718_CR28) 2021; 11
MS Ayyaz (93718_CR39) 2021; 12
93718_CR46
93718_CR47
K Warin (93718_CR45) 2024; 24
93718_CR49
RJS Raj (93718_CR1) 2020; 8
AI Poernama (93718_CR21) 2019; 2019
SH Hosseini (93718_CR43) 2024; 83
M Toğaçar (93718_CR24) 2020; 149
Y Li (93718_CR50) 2019; 92
F Shahidi (93718_CR8) 2020; 8
93718_CR17
C Xin (93718_CR62) 2022; 149
93718_CR18
J Wu (93718_CR29) 2021; 11
Z Tariq (93718_CR3) 2019; 2019
TL Chaunzwa (93718_CR10) 2021; 11
S Karthik (93718_CR7) 2018; 1
M Khashei (93718_CR26) 2023; 139
SS Chaturvedi (93718_CR6) 2020; 79
Y Xiao (93718_CR11) 2018; 153
D Thakur (93718_CR54) 2021; 13
93718_CR55
S Ibrahim (93718_CR61) 2023; 10
93718_CR12
93718_CR13
N Coudray (93718_CR9) 2018; 24
93718_CR15
93718_CR59
AA Demirbaş (93718_CR66) 2024; 12
G Xie (93718_CR52) 2023; 139
M Sharafudeen (93718_CR72) 2023; 82
SJ Mambou (93718_CR31) 2018; 18
93718_CR51
SM Fati (93718_CR42) 2022; 12
L Wang (93718_CR41) 2022; 14
X Liu (93718_CR67) 2020; 392
M Alzaqebah (93718_CR58) 2021; 11
H-J Jang (93718_CR38) 2021; 13
93718_CR64
A Aggarwal (93718_CR16) 2021; 80
M Islam (93718_CR20) 2018; 18
93718_CR22
A Jiménez-Sánchez (93718_CR25) 2023; 229
P Yao (93718_CR63) 2021; 41
D Muduli (93718_CR68) 2022; 71
N Gessert (93718_CR65) 2020; 7
W Zhao (93718_CR19) 2016; 54
93718_CR27
M Kriegsmann (93718_CR40) 2020; 12
S Jinnai (93718_CR35) 2020; 10
T Alyas (93718_CR4) 2022; 2022
93718_CR60
A-U Rahman (93718_CR75) 2022; 22
AK Nugroho (93718_CR32) 2024; 13
HE Ghadbane (93718_CR57) 2024; 14
S Sangeetha (93718_CR44) 2024; 6
J Jiang (93718_CR53) 2022; 49
G Elavarasi (93718_CR56) 2021; 2
M Toğaçar (93718_CR23) 2020; 158
L Taylor (93718_CR48) 2018; 2018
G An (93718_CR5) 2021; 11
93718_CR76
93718_CR77
93718_CR70
KM Hosny (93718_CR34) 2024; 159
93718_CR71
VM Tiryaki (93718_CR69) 2024; 67
W Wang (93718_CR2) 2020
M Fraiwan (93718_CR37) 2022; 22
93718_CR73
93718_CR74
References_xml – volume: 13
  start-page: 1615
  year: 2021
  ident: 93718_CR54
  publication-title: Int. J. Inf. Technol.
– volume: 6
  year: 2024
  ident: 93718_CR44
  publication-title: Syst. Soft Comput.
  doi: 10.1016/j.sasc.2023.200068
– ident: 93718_CR55
  doi: 10.1007/s12559-022-10096-2
– volume: 13
  start-page: 1042
  year: 2024
  ident: 93718_CR32
  publication-title: Bull. Electr. Eng. Inf.
– volume: 43
  start-page: 3705
  year: 2016
  ident: 93718_CR30
  publication-title: Med. Phys.
  doi: 10.1118/1.4957255
– volume: 14
  start-page: 5569
  year: 2022
  ident: 93718_CR41
  publication-title: Cancers
  doi: 10.3390/cancers14225569
– volume: 392
  start-page: 253
  year: 2020
  ident: 93718_CR67
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.100
– volume: 153
  start-page: 1
  year: 2018
  ident: 93718_CR11
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.005
– volume: 82
  start-page: 3155
  year: 2023
  ident: 93718_CR72
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-022-13046-0
– volume: 11
  start-page: 61
  year: 2021
  ident: 93718_CR29
  publication-title: J. Person. Med.
  doi: 10.3390/jpm11020061
– volume: 24
  start-page: 212
  year: 2024
  ident: 93718_CR45
  publication-title: BMC Oral Health
  doi: 10.1186/s12903-024-03993-5
– volume: 11
  start-page: 12122
  year: 2021
  ident: 93718_CR28
  publication-title: Appl. Sci.
  doi: 10.3390/app112412122
– ident: 93718_CR22
  doi: 10.1109/ISBI.2017.7950707
– ident: 93718_CR60
– ident: 93718_CR64
  doi: 10.1007/978-3-030-87444-5_2
– volume: 12
  start-page: 32
  year: 2024
  ident: 93718_CR66
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-024-00290-x
– volume: 80
  start-page: 1289
  year: 2021
  ident: 93718_CR16
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-09520-2
– volume: 12
  start-page: 1604
  year: 2020
  ident: 93718_CR40
  publication-title: Cancers
  doi: 10.3390/cancers12061604
– volume: 79
  start-page: 28477
  year: 2020
  ident: 93718_CR6
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09388-2
– ident: 93718_CR17
  doi: 10.36548/jitdw.2021.2.006
– ident: 93718_CR46
  doi: 10.1007/s41060-024-00507-y
– volume: 22
  start-page: 3833
  year: 2022
  ident: 93718_CR75
  publication-title: Sensors
  doi: 10.3390/s22103833
– ident: 93718_CR70
– ident: 93718_CR76
  doi: 10.1007/s11042-024-19040-y
– volume: 24
  start-page: 1559
  year: 2018
  ident: 93718_CR9
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0177-5
– ident: 93718_CR71
  doi: 10.1007/s11042-024-19837-x
– volume: 18
  start-page: 5479
  year: 2021
  ident: 93718_CR36
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18105479
– volume: 2022
  start-page: 9809932
  year: 2022
  ident: 93718_CR4
  publication-title: BioMed Res. Int.
  doi: 10.1155/2022/9809932
– ident: 93718_CR13
  doi: 10.1007/s00432-018-02834-7
– ident: 93718_CR27
  doi: 10.1109/ICPR.2016.7900002
– volume: 149
  year: 2020
  ident: 93718_CR24
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113274
– volume: 7
  year: 2020
  ident: 93718_CR65
  publication-title: MethodsX
  doi: 10.1016/j.mex.2020.100864
– volume: 158
  year: 2020
  ident: 93718_CR23
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107703
– ident: 93718_CR74
  doi: 10.1109/AIIoT54504.2022.9817326
– volume: 18
  start-page: 4379
  year: 2018
  ident: 93718_CR20
  publication-title: Sensors
  doi: 10.3390/s18124379
– year: 2020
  ident: 93718_CR2
  publication-title: Deep Learn. Healthc. Paradigms Appl.
  doi: 10.1007/978-3-030-32606-7_3
– volume: 18
  start-page: 2799
  year: 2018
  ident: 93718_CR31
  publication-title: Sensors
  doi: 10.3390/s18092799
– volume: 8
  start-page: 58006
  year: 2020
  ident: 93718_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981337
– volume: 159
  year: 2024
  ident: 93718_CR34
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111624
– volume: 11
  start-page: 4250
  year: 2021
  ident: 93718_CR5
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-83503-7
– ident: 93718_CR49
  doi: 10.1109/TNNLS.2023.3238397
– volume: 71
  year: 2022
  ident: 93718_CR68
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102825
– volume: 2018
  start-page: 1542
  year: 2018
  ident: 93718_CR48
  publication-title: IEEE Symp. Ser. Comput. Intell. (SSCI)
– volume: 11
  start-page: 2414
  year: 2021
  ident: 93718_CR58
  publication-title: Int. J. Electr. Comput. Eng.
– ident: 93718_CR47
– volume: 12
  start-page: 43
  year: 2021
  ident: 93718_CR39
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12010043
– volume: 10
  start-page: 1123
  year: 2020
  ident: 93718_CR35
  publication-title: Biomolecules
  doi: 10.3390/biom10081123
– volume: 229
  year: 2023
  ident: 93718_CR25
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2022.107318
– volume: 8
  start-page: 187531
  year: 2020
  ident: 93718_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029881
– volume: 92
  year: 2019
  ident: 93718_CR50
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2019.10.005
– volume: 139
  year: 2023
  ident: 93718_CR52
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2023.104063
– volume: 49
  start-page: 5244
  year: 2022
  ident: 93718_CR53
  publication-title: Med. Phys.
  doi: 10.1002/mp.15765
– volume: 14
  start-page: 3629
  year: 2024
  ident: 93718_CR57
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-53396-3
– volume: 54
  start-page: 4544
  year: 2016
  ident: 93718_CR19
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2543748
– volume: 25
  start-page: 751
  year: 2017
  ident: 93718_CR14
  publication-title: J. Xray Sci. Technol.
– volume: 149
  year: 2022
  ident: 93718_CR62
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105939
– ident: 93718_CR77
  doi: 10.4018/979-8-3693-2359-5.ch013
– ident: 93718_CR18
  doi: 10.1007/s42979-021-00532-9
– volume: 22
  start-page: 4963
  year: 2022
  ident: 93718_CR37
  publication-title: Sensors
  doi: 10.3390/s22134963
– volume: 2019
  start-page: 732
  year: 2019
  ident: 93718_CR3
  publication-title: IEEE Int. Conf. Bioinf Biomed. (BIBM)
– volume: 41
  start-page: 1242
  year: 2021
  ident: 93718_CR63
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3136682
– ident: 93718_CR15
  doi: 10.1007/978-3-030-20212-5_9
– volume: 83
  start-page: 14305
  year: 2024
  ident: 93718_CR43
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-16046-w
– volume: 10
  start-page: 126
  year: 2023
  ident: 93718_CR61
  publication-title: Int. J. Comput. Inf.
– volume: 2
  start-page: 831
  issue: 2022
  year: 2021
  ident: 93718_CR56
  publication-title: Proc. Data Anal. Manag. ICDAM
– volume: 11
  start-page: 1
  year: 2021
  ident: 93718_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84630-x
– ident: 93718_CR73
– volume: 1
  start-page: 227
  year: 2018
  ident: 93718_CR7
  publication-title: Knowl. Comput. Appl. Knowl. Manip. Process. Tech.
– ident: 93718_CR12
  doi: 10.21037/atm.2020.02.44
– volume: 139
  year: 2023
  ident: 93718_CR26
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2023.102492
– volume: 13
  start-page: 3811
  year: 2021
  ident: 93718_CR38
  publication-title: Cancers
  doi: 10.3390/cancers13153811
– ident: 93718_CR59
  doi: 10.1155/2022/2163458
– volume: 2019
  start-page: 58
  year: 2019
  ident: 93718_CR21
  publication-title: Int. Biomed. Instrum. Technol.gy Conf. (IBITeC)
– volume: 12
  start-page: 1899
  year: 2022
  ident: 93718_CR42
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12081899
– ident: 93718_CR51
  doi: 10.1609/aaai.v37i6.25874
– volume: 67
  start-page: 1111
  year: 2024
  ident: 93718_CR69
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxad046
– volume: 246
  year: 2024
  ident: 93718_CR33
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.123056
SSID ssj0000529419
Score 2.4630914
Snippet Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven...
Abstract Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks...
SourceID doaj
unpaywall
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 8724
SubjectTerms Algorithms
Artificial Intelligence
Cancer
Classification
Datasets
Deep Learning
Diagnosis, Computer-Assisted - methods
Diagnostic Imaging - methods
Endoscopy
Fusion
Healthcare
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Lung cancer
Mammography
Medical imaging
multidisciplinary
Neural networks
Neural Networks, Computer
Prediction
Science
Science (multidisciplinary)
Self attention
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NixQxEA2yIOpB_LZ1lQje3LCTzmcfVVwWD55c2FtIOokMzPYMOzPK_qH9nVuV9IwtiHrw2J1MkcyrUC9U9StC3gaZhFVaMm1NZFKlnnWx1YxnL7X3qvWxFMh-0adn8vO5Op-0-sKasCoPXP-446yCMbw3vo1g18zg59mGtlPBpsxNoUYz200uU1XVu-0k78avZGbCHq8hUuHXZK1iKAFnmfklEhXB_t-xzEmG9B65sx1W_uqHXywmQejkAbk_skf6vq76IbmVhkfkdu0nefWYXONAlYSg84nWJsVYFWmPTBnHCxrUD5GuLjFRUx6XmV7UrA2dX5TeRRSL4r9RT4fl97SgeVfHhVPnAzZyBqNoZZ0WmaFQZymdpDGlFUWhTDA11DJzOk1YPCFnJ5--fjxlYyMG1kthNyzZmY-CxxDg8iYkKgTFXvch8wBIZw1-IEOnAdZO9go4ilDextaL2APkKYun5GBYDuk5ocInnqVJAWiYDFEHHTMH650XYJX7hrzbgeJWVW_DlTy5sK5C6ABCVyB0piEfELf9TNTKLi_Ag9zoQe5vHtSQwx3qbjzAawe0yhR-2DXkzX4Yjh7mU_yQlts6BwKGMbCOZ9Vb9iuRyK3gbteQo537_DT-pw0d7V3sH_b_4n_s_yW52-KxwCJFcUgONpfb9AqY1ia8LofqBgGPJ3Y
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_1ilgfxK_a0yoRfLOht5tskn0QsdJSfDhELPQtJJukHFx3z_tQ-g_5dzqT_egJUnzcTZhNmF8ys5nJbwh550TgupCCSa08E0WoWOlzybJohbS2yK1PCbJTeX4hvlwWlztk2t-FwbTKfk9MG7VvKjwjPwY7p5LBLj8ufjCsGoXR1b6Ehu1KK_gPiWLsHtnNkRlrRHZPTqdfvw2nLhjXElnZ3Z6ZcH28AguGt8zygiE1nGbqLwuViPz_5X1uRU4fkgebemFvftn5fMs4nT0mjzqvkn5qYfCE7IT6Kbnf1pm8eUZ-Y0NLFUFnWxycFG2YpxV60NietERt7eliiQGc9NhEet1Gc-jsOtU0opgsf0UtrZufYU5jn9-FXWc1FngGoShlFeaRIYFnSqmkPoQFRQJNEFW36ed0O5DxnFycnX7_fM66Ag2sElyvWdAT63nmnYOfOi6QOchXsnIxc4CAKAEfwpUS1F2KqgDfhRdW-9xyXwEUQuT7ZFQ3dTgglNuQRaGCA_dMOC-d9DED6aXlIDWzY_K-V4pZtDwcJsXPuTatCg2o0CQVGjUmJ6i3oSdyaKcXzfLKdEvSxMIplVXK5h4QqyYAzKhdXhZOh5gp-ORhr3XTLeyVuYXhmLwdmmFJYpzF1qHZtH3AkCgF43jRomUYiUCfC_75xuSoh8-t8LsmdDRA7D_m__Luob8iezkCHtMS-SEZrZeb8Bp8q7V70y2YPx_CJIk
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELUgFaIc-C4ECjISN-rSXX_usSCqikPFgUjlZNlrG0Wkm6hJQOUH8TuZsTchRRUqx117Z9f2s-atZvyGkNdeRG6kEkwZHZiQsWVNqBWrkhPKOVm7kBNkT9TxSHw8lae9TA6ehbkUv-fm7RwcDB4CqyVD5TbD9E2ypSTw7gHZGp18OvyC1eOAlzCgBnV_KubqBy95nizQfxWr3IiI3iG3l93MXfxwk8mG0zm6V6oXzbNWIeaafNtfLvx--_MvJcfrjec-udtzT3pYwPKA3IjdQ3KrVKO8eER-YUMRlKDjDaVOip4u0BZ5NrbntaSuC3R2jmGefDlN9KzEfOj4LFc-ophS_5U62k2_xwlNqyww7DrusAw0GEUr8zhJDGU-c-IlDTHOKMpsgqmuJKnTzXDHYzI6-vD5_THryziwVnCzYNEcuMCr4D38-nGB-kKhVa1PlQecJAUoEr5RAIpGtBIYDpfOhNrx0AJgYuI7ZNBNu_iUUO5ilYSOHkic8EF5FVIF1hvHwWrlhuTNaontrKh12Bxl58aWmbcw8zbPvNVD8g5RsO6JStv5BiyY7TeuTdJrXbXa1QFwrQ8Avsn4upHexFRpeOXuCkO23_5zC6RMZ3bZDMmrdTNsXIzGuC5Ol6UPuBut4TueFOytv0QgM4M_wyHZW4Hxj_F_DWhvDdhrjP_Z_3V_TrZrxC0mM_JdMlicL-MLYGQL_7Lfir8B1qEu6g
  priority: 102
  providerName: Unpaywall
Title Artificial intelligence based classification and prediction of medical imaging using a novel framework of inverted and self-attention deep neural network architecture
URI https://link.springer.com/article/10.1038/s41598-025-93718-7
https://www.ncbi.nlm.nih.gov/pubmed/40082642
https://www.proquest.com/docview/3177002509
https://www.proquest.com/docview/3177153777
https://doi.org/10.1038/s41598-025-93718-7
https://doaj.org/article/f5b771c7a2db4e70a52f8b295b8ef17a
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry (Open Access)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Open Access)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2Tgh4QHxTGJWReKMWS-zYzmNXbZr6UE1ApfIU2bE9VerSam1B-4f4O7lzPugEQvAUxXYutn53ukvu_DMh763wXGdSMKmVYyLzJctdKlkSjJDGZKlxsUB2Ki9mYjLP5gdk2O6FuZO_j9TdG3AxuA0szRhyt2mmDsmRBsXUPXI0Gk0-T7p_Kpi1Ekne7I2Bxz_-_vAd_xNp-v8UW-7lRR-S-7tqbW6_m-Vyz_WcPyaPmpiRjmqQn5ADXz0l9-pTJG-fkR_YURNB0MUewyZFD-VoifEx9kcMqKkcXd9geibergK9rnM1dHEdTyyiWAp_RQ2tVt_8koa2eguHLio8vhmEopSNXwaG9JyxYJI679cU6TFBVFUXl9P9NMVzMjs_-zK-YM3xC6wUXG-Z1yfG8cRZC59sXCAvkCtlaUNiAd8gAX1hcwlg5qLMIDLhmdEuNdyVALQP_AXpVavKvyKUG58EobyF4EtYJ610IQHpueEgNTF98qEFpVjXLBtFzI5zXdQQFgBhESEsVJ-cIm7dSGTIjg2gOEVjcEXIrFJJqUzqQB_VCahd0DbNM6t9SBS88rhFvWjMdlNAMKViVJj3ybuuGwwOsyim8qtdPQbchFIwj5e1tnQzERhRwRddnwxb9fkl_G8LGnYq9g_rf_1_0t-QBykaABYh8mPS297s_FuIpLZ2QA7VXA0aM4Lr6dn08hO0juV4EP9OQNtsejn6-hO46x7r
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGJjT2gPhPYYCR4IlZa2InTh4mxGBTx0aF0CbtzbNje6rUJV3_MPUL8TH4bNw5SVckNPGyx9Tuxac7351z598R8s4Ix7MkFSzNpGUicQXLbZyyyGuRap3E2oYC2X7aOxFfT5PTFfK7vQuDZZWtTQyG2lYFfiPfBj8ng8POP44uGXaNwuxq20JDN60V7E6AGGsudhy6-RUc4SY7B19A3u_jeH_v-HOPNV0GWCF4NmUu62rLI2sMnEy4QPgbW6SF8ZEBNnwKTAqTp7DmXBQJOGCe6MzGmtsC-HGeA907ZA3-msPhb213r__9x-IrD-bRRJQ3t3W6PNuegMfEW21xwhCKLmPyL48YGgf8K9pdytRukPVZOdLzKz0cLjnD_QfkfhPF0k-12j0kK658RO7WfS3nj8kvHKihKehgCfOTos-0tMCIHceDVlBdWjoaY8IoPFaeXtTZIzq4CD2UKBbnn1NNy-qnG1Lf1pPh1EGJDaWBKFKZuKFnCBgaSjipdW5EEbATSJV1uTtdTpw8ISe3IqqnZLWsSvecUK5d5IV0BsJBYWxqUusjoJ5rDlQj3SEfWqGoUY37oUK-nmeqFqECEaogQiU7ZBfltpiJmN3hh2p8rhoToHxipIwKqWMLO0R2YSP4zMR5YjLnIwmv3GylrhpDMlHXat8hbxfDYAIwr6NLV83qOeC4pIR1PKu1ZbESgTEenDE7ZKtVn2viNzG0tVCx_-D_xc1Lf0PWe8ffjtTRQf_wJbkXo_JjSSTfJKvT8cy9grhual43m4eSs9ver38AoHJjbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4s1CASPBiVq7iZ04OSAElFVLUcWBSnszdmxXK22TsA-q_UP8CH4dM86ji4QqLj0mtiYezYxnnPk8Q8grIxzPklSwNJOWicQVLLdxyiKvRap1EmsbALJH6f6x-DxJJlvkd3cXBmGV3Z4YNmpbFfiPfAh-TgaHnQ99C4v4ujd-V_9g2EEKM61dO41GRQ7d-gyOb4u3B3sg69dxPP707eM-azsMsELwbMlcNtKWR9YYOJVwgaVvbJEWxkcGWPApMChMnsJ6c1Ek4Hx5ojMba24L4MV5DnSvkKuS8xzhhHIi-_87mEETUd7e0xnxbLgAX4n32eKEYRG6jMm_fGFoGfCvOHcjR3uL3FiVtV6f6dlsww2O75DbbfxK3zcKd5dsufIeudZ0tFzfJ79woClKQacb1T4pektLC4zVcTzoA9WlpfUcU0XhsfL0tMkb0elp6J5EEZZ_QjUtq59uRn2HJMOp0xJbSQNRpLJwM8-wVGgAb1LrXE2xVCeQKhugO91MmTwgx5ciqIdku6xK95hQrl3khXQGAkFhbGpS6yOgnmsOVCM9IG86oai6qfihQqaeZ6oRoQIRqiBCJQfkA8qtn4nVusOLan6iWuNXPjFSRoXUsQXbkCMwAZ-ZOE9M5nwk4ZM7ndRVu4Us1LnCD8jLfhiMHzM6unTVqpkDLktKWMejRlv6lQiM7uB0OSC7nfqcE7-Iod1exf6D_ycXL_0FuQ5Wqr4cHB0-JTdj1H3EQvIdsr2cr9wzCOiW5nmwHEq-X7ap_gHzz2EH
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELUgFaIc-C4ECjISN-rSXX_usSCqikPFgUjlZNlrG0Wkm6hJQOUH8TuZsTchRRUqx117Z9f2s-atZvyGkNdeRG6kEkwZHZiQsWVNqBWrkhPKOVm7kBNkT9TxSHw8lae9TA6ehbkUv-fm7RwcDB4CqyVD5TbD9E2ypSTw7gHZGp18OvyC1eOAlzCgBnV_KubqBy95nizQfxWr3IiI3iG3l93MXfxwk8mG0zm6V6oXzbNWIeaafNtfLvx--_MvJcfrjec-udtzT3pYwPKA3IjdQ3KrVKO8eER-YUMRlKDjDaVOip4u0BZ5NrbntaSuC3R2jmGefDlN9KzEfOj4LFc-ophS_5U62k2_xwlNqyww7DrusAw0GEUr8zhJDGU-c-IlDTHOKMpsgqmuJKnTzXDHYzI6-vD5_THryziwVnCzYNEcuMCr4D38-nGB-kKhVa1PlQecJAUoEr5RAIpGtBIYDpfOhNrx0AJgYuI7ZNBNu_iUUO5ilYSOHkic8EF5FVIF1hvHwWrlhuTNaontrKh12Bxl58aWmbcw8zbPvNVD8g5RsO6JStv5BiyY7TeuTdJrXbXa1QFwrQ8Avsn4upHexFRpeOXuCkO23_5zC6RMZ3bZDMmrdTNsXIzGuC5Ol6UPuBut4TueFOytv0QgM4M_wyHZW4Hxj_F_DWhvDdhrjP_Z_3V_TrZrxC0mM_JdMlicL-MLYGQL_7Lfir8B1qEu6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+based+classification+and+prediction+of+medical+imaging+using+a+novel+framework+of+inverted+and+self-attention+deep+neural+network+architecture&rft.jtitle=Scientific+reports&rft.au=Aftab%2C+Junaid&rft.au=Khan%2C+Muhammad+Attique&rft.au=Arshad%2C+Sobia&rft.au=Rehman%2C+Shams+ur&rft.date=2025-03-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-93718-7&rft.externalDocID=10_1038_s41598_025_93718_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon