Evaluation of MRI-based machine learning approaches for computer-aided diagnosis of dementia in a clinical data warehouse

A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to st...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 89; p. 102903
Main Authors Bottani, Simona, Burgos, Ninon, Maire, Aurélien, Saracino, Dario, Ströer, Sebastian, Dormont, Didier, Colliot, Olivier
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2023
Elsevier
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2023.102903

Cover

Abstract A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer’s Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine. [Display omitted] •We studied ML-based detection of dementia using brain MRI clinical routine data.•We studied patients from a clinical data warehouse identified with ICD-10 codes.•We uncovered shortcut learning (performance driven by irrelevant characteristics).•Performance was considerably lower on real-life data compared with research data.•Our work demonstrates the difficulty of translating algorithms to clinical routine.
AbstractList A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer’s Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine. [Display omitted] •We studied ML-based detection of dementia using brain MRI clinical routine data.•We studied patients from a clinical data warehouse identified with ICD-10 codes.•We uncovered shortcut learning (performance driven by irrelevant characteristics).•Performance was considerably lower on real-life data compared with research data.•Our work demonstrates the difficulty of translating algorithms to clinical routine.
A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer's Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine.
A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer's Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine.A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer's Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine.
ArticleNumber 102903
Author Maire, Aurélien
Colliot, Olivier
Bottani, Simona
Saracino, Dario
Ströer, Sebastian
Burgos, Ninon
Dormont, Didier
Author_xml – sequence: 1
  givenname: Simona
  orcidid: 0000-0001-6801-0748
  surname: Bottani
  fullname: Bottani, Simona
  organization: Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
– sequence: 2
  givenname: Ninon
  orcidid: 0000-0002-4668-2006
  surname: Burgos
  fullname: Burgos, Ninon
  organization: Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
– sequence: 3
  givenname: Aurélien
  surname: Maire
  fullname: Maire, Aurélien
  organization: AP-HP, WIND department, Paris, 75012, France
– sequence: 4
  givenname: Dario
  orcidid: 0000-0002-4299-9743
  surname: Saracino
  fullname: Saracino, Dario
  organization: Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
– sequence: 5
  givenname: Sebastian
  surname: Ströer
  fullname: Ströer, Sebastian
  organization: AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France
– sequence: 6
  givenname: Didier
  surname: Dormont
  fullname: Dormont, Didier
  organization: AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France
– sequence: 7
  givenname: Olivier
  orcidid: 0000-0002-9836-654X
  surname: Colliot
  fullname: Colliot, Olivier
  email: olivier.colliot@cnrs.fr
  organization: Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37523918$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03656136$$DView record in HAL
BookMark eNp9kUtv1DAUhS1URB_wC5CQl7DI4Nh52AsWVVVopUFICNbWjX3T8SixBzsZ1H-P07RdsOjK1tV3ju4955yc-OCRkPcl25SsbD7vNyNaBxvOuMgTrph4Rc5K0ZSFrLg4ef6X9Sk5T2nPGGurir0hp6KtuVClPCP310cYZphc8DT09PvP26KDhJaOYHbOIx0Qonf-jsLhEEMeYqJ9iNSE8TBPGAtwNuN5kTsfkkuLi8UR_eSAOk-BmsF5Z2CgFiagfyHiLswJ35LXPQwJ3z2-F-T31-tfVzfF9se326vLbWEqIafC2M52raoMKKiahgnTGV7LtlSmVaj6ynRWGVaDkIyzyhomVcekrEHWjbVcXJBPq-8OBn2IboR4rwM4fXO51cuMiaZuclTHhf24svnUPzOmSY8uGRwG8Jh31lxWVSM5EyqjHx7Rucs9PDs_RZsBtQImhpQi9tq46SHoKYIbdMn0UqPe64ca9VKjXmvMWvGf9sn-ZdWXVYU5zqPDqJNx6E0GI5pJ2-Be1P8DWQ-2-w
CitedBy_id crossref_primary_10_1371_journal_pone_0315434
crossref_primary_10_1016_j_eswa_2023_122934
crossref_primary_10_1002_aisy_202400595
crossref_primary_10_1007_s44248_024_00012_4
crossref_primary_10_1007_s10278_024_01335_z
Cites_doi 10.1016/j.neuroimage.2007.10.031
10.1016/j.compmedimag.2018.08.002
10.1016/j.media.2017.01.008
10.1016/j.neuroimage.2008.10.031
10.3233/JAD-131928
10.1016/j.neuroimage.2017.03.057
10.1016/j.media.2014.04.006
10.1016/j.media.2020.101879
10.1038/sdata.2016.44
10.1002/hipo.20626
10.1016/j.neuroimage.2012.01.055
10.1016/j.neuroimage.2019.01.031
10.1016/j.neuroimage.2005.02.018
10.1016/j.neuroimage.2009.05.036
10.1038/s41467-019-08987-4
10.1016/j.media.2021.102219
10.1038/s41467-019-13163-9
10.1145/3368555.3384468
10.1371/journal.pone.0225759
10.3233/JAD-190594
10.1016/j.neuroimage.2009.05.056
10.3233/JAD-150334
10.1016/j.neuroimage.2018.08.042
10.1016/j.cmpb.2022.106818
10.1161/JAHA.117.006121
10.1093/bib/bbaa310
10.1016/j.neurad.2020.04.004
10.1016/j.neuroimage.2022.118871
10.1016/j.compmedimag.2018.09.009
10.1109/TPAMI.2018.2889096
10.1016/j.neuroimage.2010.06.013
10.3389/fnagi.2019.00194
10.1016/j.media.2020.101848
10.1038/s41746-022-00592-y
10.1001/jamadermatol.2019.1735
10.1016/j.cmpb.2019.105242
10.3389/fpsyt.2020.593336
10.1093/jamia/ocx030
10.1016/j.media.2020.101850
10.1016/S2589-7500(20)30186-2
10.1016/j.media.2020.101694
10.3389/fninf.2019.00001
10.1016/j.neuroimage.2007.09.073
10.1016/j.media.2022.102368
10.1016/j.nicl.2012.10.002
10.3389/fninf.2014.00044
10.1136/jnnp-2020-324106
10.1038/s42256-020-00257-z
10.1109/CVPR.2016.308
10.1371/journal.pmed.1002683
10.1016/j.media.2007.06.004
10.1016/j.jneumeth.2016.03.001
10.1371/journal.pdig.0000023
10.1109/TMI.2010.2046908
10.3389/fnins.2020.00853
10.1016/j.nicl.2016.02.019
10.1093/brain/awm319
10.3346/jkms.2015.30.6.779
10.1002/hbm.24478
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier B.V.
Attribution
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier B.V.
– notice: Attribution
CorporateAuthor APPRIMAGE Study Group
Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: APPRIMAGE Study Group
– name: Alzheimer’s Disease Neuroimaging Initiative
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
DOI 10.1016/j.media.2023.102903
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1361-8423
ExternalDocumentID oai_HAL_hal_03656136v2
37523918
10_1016_j_media_2023_102903
S1361841523001639
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7X8
ACLOT
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c438t-cdbdb794ca9a46603cbc258719c79e9f4cbd9c05a380204dc089b0885a856dd23
IEDL.DBID AIKHN
ISSN 1361-8415
1361-8423
IngestDate Fri Sep 12 12:48:21 EDT 2025
Sat Sep 27 22:01:59 EDT 2025
Wed Feb 19 02:24:11 EST 2025
Thu Apr 24 22:56:16 EDT 2025
Tue Jul 01 02:49:34 EDT 2025
Fri Feb 23 02:36:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neuroimaging
Deep learning
Clinical data warehouse
MRI
Shortcut learning
Dementia
Language English
License Copyright © 2023. Published by Elsevier B.V.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-cdbdb794ca9a46603cbc258719c79e9f4cbd9c05a380204dc089b0885a856dd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6801-0748
0000-0002-9836-654X
0000-0002-4668-2006
0000-0002-4299-9743
0000-0002-6080-1286
OpenAccessLink https://hal.science/hal-03656136
PMID 37523918
PQID 2844682039
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_03656136v2
proquest_miscellaneous_2844682039
pubmed_primary_37523918
crossref_citationtrail_10_1016_j_media_2023_102903
crossref_primary_10_1016_j_media_2023_102903
elsevier_sciencedirect_doi_10_1016_j_media_2023_102903
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (b33) 2008; 131
Ma, Lu, Popuri, Wang, Beg, Alzheimer’s Disease Neuroimaging Initiative (b40) 2020; 14
Punjabi, Martersteck, Wang, Parrish, Katsaggelos (b47) 2019; 14
Burgos, Bottani, Faouzi, Thibeau-Sutre, Colliot (b11) 2021; 22
Misra, Fan, Davatzikos (b42) 2009; 44
Ebrahimighahnavieh, Luo, Chiong (b19) 2020; 187
Hinrichs, Singh, Mukherjee, Xu, Chung, Johnson, Alzheimer’s Disease Neuroimaging Initiative (b29) 2009; 48
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (b45) 2011; 12
Rathore, Habes, Iftikhar, Shacklett, Davatzikos (b48) 2017; 155
Hett, Ta, Manjón, Coupé, Alzheimer’s Disease Neuroimaging Initiative (b27) 2018; 70
Li, Liu, Alzheimer’s Disease Neuroimaging Initiative (b36) 2018; 70
Hett, Ta, Oguz, Manjón, Coupé, Alzheimer’s Disease Neuroimaging Initiative (b28) 2021; 67
Gerardin, Chételat, Chupin, Cuingnet, Desgranges, Kim, Niethammer, Dubois, Lehéricy, Garnero (b25) 2009; 47
Samper-González, Burgos, Bottani, Fontanella, Lu, Marcoux, Routier, Guillon, Bacci, Wen, Bertrand, Bertin, Habert, Durrleman, Evgeniou, Colliot (b50) 2018; 183
Falahati, Westman, Simmons (b20) 2014; 41
Wee, Liu, Lee, Poh, Ji, Qiu, Initiative (b64) 2019; 23
Ashburner, Friston (b2) 2005; 26
Avants, Epstein, Grossman, Gee (b3) 2008; 12
Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (b16) 2011; 56
Ansart, Epelbaum, Bassignana, Bône, Bottani, Cattai, Couronné, Faouzi, Koval, Louis (b1) 2021; 67
World Health Organization (b70) 2007
Daniel, Salamanca (b17) 2020
Bottani, S., Thibeau-Sutre, E., Maire, A., Ströer, S., Dormont, D., Colliot, O., Burgos, N., 2022b. Homogenization of brain MRI from a clinical data warehouse using contrast-enhanced to non-contrast-enhanced image translation with U-Net derived models. In: SPIE Medical Imaging 2022.
Bron, Klein, Papma, Jiskoot, Venkatraghavan, Linders, Aalten, De Deyn, Biessels, Claassen (b10) 2021; 31
Futoma, Simons, Panch, Doshi-Velez, Celi (b23) 2020; 2
Manera, Dadar, Van Swieten, Borroni, Sanchez-Valle, Moreno, Laforce, Graff, Synofzik, Galimberti (b41) 2021; 92
Routier, Burgos, Díaz, Bacci, Bottani, El-Rifai, Fontanella, Gori, Guillon, Guyot, Hassanaly, Jacquemont, Lu, Marcoux, Moreau, Samper-González, Teichmann, Thibeau–Sutre, Vaillant, Wen, Wild, Habert, Durrleman, Colliot (b49) 2021
Li, Morgan, Ashburner, Smith, Rorden (b37) 2016; 264
Tong, Wolz, Gao, Guerrero, Hajnal, Rueckert, Initiative (b58) 2014; 18
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (b59) 2010; 29
Fan, Batmanghelich, Clark, Davatzikos, Initiative (b21) 2008; 39
Gorgolewski, Auer, Calhoun, Craddock, Das, Duff, Flandin, Ghosh, Glatard, Halchenko, Handwerker, Hanke, Keator, Li, Michael, Maumet, Nichols, Nichols, Pellman, Poline, Rokem, Schaefer, Sochat, Triplett, Turner, Varoquaux, Poldrack (b26) 2016; 3
Farooq, Anwar, Awais, Rehman (b22) 2017
Davis, Lasko, Chen, Siew, Matheny (b18) 2017; 24
Morin, Samper-Gonzalez, Bertrand, Ströer, Dormont, Mendes, Coupé, Ahdidan, Lévy, Samri, Hampel, Dubois, Teichmann, Epelbaum, Colliot (b43) 2020; 74
Böhle, Eitel, Weygandt, Ritter (b7) 2019; 11
Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (b61) 2008; 39
Lian, Liu, Zhang, Shen (b38) 2018; 42
Bidani, Gouider, Travieso-González (b6) 2019
Wood, Kafiabadi, Al Busaidi, Guilhem, Montvila, Lynch, Townend, Agarwal, Mazumder, Barker (b69) 2022
Zech, Badgeley, Liu, Costa, Titano, Oermann (b71) 2018; 15
Chagué, Marro, Fadili, Houot, Morin, Samper-González, Beunon, Arrivé, Dormont, Dubois (b12) 2021; 48
Varoquaux, Cheplygina (b60) 2022; 5
Avants, Tustison, Stauffer, Song, Wu, Gee (b4) 2014; 8
Coupé, Eskildsen, Manjón, Fonov, Pruessner, Allard, Collins, Alzheimer’s Disease Neuroimaging Initiative (b14) 2012; 1
Couvy-Duchesne, Faouzi, Martin, Thibeau-Sutre, Wild, Ansart, Durrleman, Dormont, Burgos, Colliot (b15) 2020; 11
Suk, Lee, Shen, Alzheimer’s Disease Neuroimaging Initiative (b54) 2017; 37
Wessler, Ruthazer, Udelson, Gheorghiade, Zannad, Maggioni, Konstam, Kent (b67) 2017; 6
Spasov, Passamonti, Duggento, Lio, Toschi, Initiative (b53) 2019; 189
Thibeau-Sutre, Couvy-Duchesne, Dormont, Colliot, Burgos (b56) 2022
Platero, López, Carmen Tobar, Yus, Maestu (b46) 2019; 40
Singh, Mhasawade, Chunara (b51) 2022; 1
Wegmayr, Aitharaju, Buhmann (b65) 2018
Bottani, Burgos, Maire, Wild, Ströer, Dormont, Colliot (b8) 2022; 75
Kennedy, Abraham, Bates, Crowley, Ghosh, Gillespie, Goncalves, Grethe, Halchenko, Hanke (b31) 2019
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2818–2826.
Jónsson, Bjornsdottir, Thorgeirsson, Ellingsen, Walters, Gudbjartsson, Stefansson, Stefansson, Ulfarsson (b30) 2019; 10
Oakden-Rayner, L., Dunnmon, J., Carneiro, G., Ré, C., 2020. Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. In: Proceedings of the ACM Conference on Health, Inference, and Learning. pp. 151–159.
Wallis, Buvat (b63) 2022
Lapuschkin, Wäldchen, Binder, Montavon, Samek, Müller (b35) 2019; 10
Liu, Zhang, Shen, Alzheimer’s Disease Neuroimaging Initiative (b39) 2012; 60
Wachinger, Rieckmann, Pölsterl, Initiative (b62) 2021; 67
Koikkalainen, Rhodius-Meester, Tolonen, Barkhof, Tijms, Lemstra, Tong, Guerrero, Schuh, Ledig, Rueckert, Soininen, Remes, Waldemar, Hasselbalch, Mecocci, van der Flier, Lötjönen (b34) 2016; 11
Klöppel, Peter, Ludl, Pilatus, Maier, Mader, Heimbach, Frings, Egger, Dukart (b32) 2015; 47
Thibeau-Sutre, Diaz, Hassanaly, Routier, Dormont, Colliot, Burgos (b57) 2022; 220
Wen, Thibeau-Sutre, Diaz-Melo, Samper-González, Routier, Bottani, Dormont, Durrleman, Burgos, Colliot (b66) 2020
Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz (b68) 2019; 155
Basaia, Agosta, Wagner, Canu, Magnani, Santangelo, Filippi, Initiative (b5) 2019; 21
Sohn, Yi, Seo, Choe, Kim, Kim, Choi, Byun, Jhoo, Woo (b52) 2015; 30
Chupin, Gérardin, Cuingnet, Boutet, Lemieux, Lehéricy, Benali, Garnero, Colliot (b13) 2009; 19
Geirhos, Jacobsen, Michaelis, Zemel, Brendel, Bethge, Wichmann (b24) 2020; 2
Thibeau-Sutre (10.1016/j.media.2023.102903_b56) 2022
Ebrahimighahnavieh (10.1016/j.media.2023.102903_b19) 2020; 187
Bottani (10.1016/j.media.2023.102903_b8) 2022; 75
Lapuschkin (10.1016/j.media.2023.102903_b35) 2019; 10
Punjabi (10.1016/j.media.2023.102903_b47) 2019; 14
Tong (10.1016/j.media.2023.102903_b58) 2014; 18
Thibeau-Sutre (10.1016/j.media.2023.102903_b57) 2022; 220
Wachinger (10.1016/j.media.2023.102903_b62) 2021; 67
10.1016/j.media.2023.102903_b55
Couvy-Duchesne (10.1016/j.media.2023.102903_b15) 2020; 11
Daniel (10.1016/j.media.2023.102903_b17) 2020
Basaia (10.1016/j.media.2023.102903_b5) 2019; 21
Lian (10.1016/j.media.2023.102903_b38) 2018; 42
Liu (10.1016/j.media.2023.102903_b39) 2012; 60
Koikkalainen (10.1016/j.media.2023.102903_b34) 2016; 11
Zech (10.1016/j.media.2023.102903_b71) 2018; 15
Avants (10.1016/j.media.2023.102903_b4) 2014; 8
Ma (10.1016/j.media.2023.102903_b40) 2020; 14
Wee (10.1016/j.media.2023.102903_b64) 2019; 23
Hett (10.1016/j.media.2023.102903_b28) 2021; 67
10.1016/j.media.2023.102903_b9
Pedregosa (10.1016/j.media.2023.102903_b45) 2011; 12
Klöppel (10.1016/j.media.2023.102903_b32) 2015; 47
Klöppel (10.1016/j.media.2023.102903_b33) 2008; 131
Spasov (10.1016/j.media.2023.102903_b53) 2019; 189
Wallis (10.1016/j.media.2023.102903_b63) 2022
Burgos (10.1016/j.media.2023.102903_b11) 2021; 22
Platero (10.1016/j.media.2023.102903_b46) 2019; 40
Geirhos (10.1016/j.media.2023.102903_b24) 2020; 2
Singh (10.1016/j.media.2023.102903_b51) 2022; 1
Vemuri (10.1016/j.media.2023.102903_b61) 2008; 39
Wessler (10.1016/j.media.2023.102903_b67) 2017; 6
Ansart (10.1016/j.media.2023.102903_b1) 2021; 67
Chagué (10.1016/j.media.2023.102903_b12) 2021; 48
Wen (10.1016/j.media.2023.102903_b66) 2020
Avants (10.1016/j.media.2023.102903_b3) 2008; 12
Suk (10.1016/j.media.2023.102903_b54) 2017; 37
Davis (10.1016/j.media.2023.102903_b18) 2017; 24
Li (10.1016/j.media.2023.102903_b37) 2016; 264
Cuingnet (10.1016/j.media.2023.102903_b16) 2011; 56
Hett (10.1016/j.media.2023.102903_b27) 2018; 70
Misra (10.1016/j.media.2023.102903_b42) 2009; 44
Fan (10.1016/j.media.2023.102903_b21) 2008; 39
Bron (10.1016/j.media.2023.102903_b10) 2021; 31
Hinrichs (10.1016/j.media.2023.102903_b29) 2009; 48
Jónsson (10.1016/j.media.2023.102903_b30) 2019; 10
Winkler (10.1016/j.media.2023.102903_b68) 2019; 155
Farooq (10.1016/j.media.2023.102903_b22) 2017
Rathore (10.1016/j.media.2023.102903_b48) 2017; 155
Li (10.1016/j.media.2023.102903_b36) 2018; 70
Morin (10.1016/j.media.2023.102903_b43) 2020; 74
Wood (10.1016/j.media.2023.102903_b69) 2022
Sohn (10.1016/j.media.2023.102903_b52) 2015; 30
Coupé (10.1016/j.media.2023.102903_b14) 2012; 1
World Health Organization (10.1016/j.media.2023.102903_b70) 2007
Wegmayr (10.1016/j.media.2023.102903_b65) 2018
Samper-González (10.1016/j.media.2023.102903_b50) 2018; 183
Routier (10.1016/j.media.2023.102903_b49) 2021
Bidani (10.1016/j.media.2023.102903_b6) 2019
Futoma (10.1016/j.media.2023.102903_b23) 2020; 2
10.1016/j.media.2023.102903_b44
Ashburner (10.1016/j.media.2023.102903_b2) 2005; 26
Tustison (10.1016/j.media.2023.102903_b59) 2010; 29
Varoquaux (10.1016/j.media.2023.102903_b60) 2022; 5
Manera (10.1016/j.media.2023.102903_b41) 2021; 92
Chupin (10.1016/j.media.2023.102903_b13) 2009; 19
Gerardin (10.1016/j.media.2023.102903_b25) 2009; 47
Böhle (10.1016/j.media.2023.102903_b7) 2019; 11
Kennedy (10.1016/j.media.2023.102903_b31) 2019
Falahati (10.1016/j.media.2023.102903_b20) 2014; 41
Gorgolewski (10.1016/j.media.2023.102903_b26) 2016; 3
References_xml – volume: 47
  start-page: 939
  year: 2015
  end-page: 954
  ident: b32
  article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study
  publication-title: J. Alzheimer’s Dis.
– volume: 18
  start-page: 808
  year: 2014
  end-page: 818
  ident: b58
  article-title: Multiple instance learning for classification of dementia in brain MRI
  publication-title: Med. Image Anal.
– volume: 67
  year: 2021
  ident: b28
  article-title: Multi-scale graph-based grading for Alzheimer’s disease prediction
  publication-title: Med. Image Anal.
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: b3
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
– volume: 42
  start-page: 880
  year: 2018
  end-page: 893
  ident: b38
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2019
  ident: b31
  article-title: Everything matters: the ReproNim perspective on reproducible neuroimaging
  publication-title: Front. Neuroinf.
– volume: 67
  year: 2021
  ident: b1
  article-title: Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review
  publication-title: Med. Image Anal.
– volume: 1
  start-page: 141
  year: 2012
  end-page: 152
  ident: b14
  article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease
  publication-title: NeuroImage: Clin.
– volume: 5
  start-page: 48
  year: 2022
  ident: b60
  article-title: Machine learning for medical imaging: methodological failures and recommendations for the future
  publication-title: NPJ Digit. Med.
– volume: 39
  start-page: 1186
  year: 2008
  end-page: 1197
  ident: b61
  article-title: Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: Neuroimage
– year: 2007
  ident: b70
  article-title: International classification of diseases and related health problems, 10
– volume: 8
  start-page: 44
  year: 2014
  ident: b4
  article-title: The insight ToolKit image registration framework
  publication-title: Front. Neuroinf.
– volume: 31
  year: 2021
  ident: b10
  article-title: Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
  publication-title: NeuroImage: Clin.
– volume: 41
  start-page: 685
  year: 2014
  end-page: 708
  ident: b20
  article-title: Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging
  publication-title: J. Alzheimer’s Dis.
– volume: 37
  start-page: 101
  year: 2017
  end-page: 113
  ident: b54
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Med. Image Anal.
– year: 2022
  ident: b69
  article-title: Accurate brain-age models for routine clinical MRI examinations
  publication-title: NeuroImage
– year: 2020
  ident: b66
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
– volume: 48
  start-page: 412
  year: 2021
  end-page: 418
  ident: b12
  article-title: Radiological classification of dementia from anatomical MRI assisted by machine learning-derived maps
  publication-title: J. Neuroradiol.
– volume: 24
  start-page: 1052
  year: 2017
  end-page: 1061
  ident: b18
  article-title: Calibration drift in regression and machine learning models for acute kidney injury
  publication-title: J. Am. Med. Inform. Assoc.
– volume: 2
  start-page: 665
  year: 2020
  end-page: 673
  ident: b24
  article-title: Shortcut learning in deep neural networks
  publication-title: Nat. Mach. Intell.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b45
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 70
  start-page: 101
  year: 2018
  end-page: 110
  ident: b36
  article-title: Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks
  publication-title: Comput. Med. Imaging Graph.
– volume: 74
  start-page: 1157
  year: 2020
  end-page: 1166
  ident: b43
  article-title: Accuracy of MRI classification algorithms in a tertiary memory center clinical routine cohort
  publication-title: J. Alzheimer’s Dis.
– volume: 48
  start-page: 138
  year: 2009
  end-page: 149
  ident: b29
  article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
  publication-title: Neuroimage
– volume: 220
  year: 2022
  ident: b57
  article-title: ClinicaDL: An open-source deep learning software for reproducible neuroimaging processing
  publication-title: Comput. Methods Programs Biomed.
– volume: 14
  year: 2019
  ident: b47
  article-title: Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks
  publication-title: PLoS One
– volume: 30
  start-page: 779
  year: 2015
  end-page: 787
  ident: b52
  article-title: Comparison of regional gray matter atrophy, white matter alteration, and glucose metabolism as a predictor of the conversion to Alzheimer’s disease in mild cognitive impairment
  publication-title: J. Korean Med. Sci.
– volume: 75
  year: 2022
  ident: b8
  article-title: Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse
  publication-title: Med. Image Anal.
– volume: 39
  start-page: 1731
  year: 2008
  end-page: 1743
  ident: b21
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: Neuroimage
– start-page: 1
  year: 2017
  end-page: 6
  ident: b22
  article-title: A deep CNN based multi-class classification of Alzheimer’s disease using MRI
  publication-title: 2017 IEEE International Conference on Imaging Systems and Techniques
– volume: 44
  start-page: 1415
  year: 2009
  end-page: 1422
  ident: b42
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
  publication-title: Neuroimage
– volume: 60
  start-page: 1106
  year: 2012
  end-page: 1116
  ident: b39
  article-title: Ensemble sparse classification of Alzheimer’s disease
  publication-title: NeuroImage
– volume: 155
  start-page: 530
  year: 2017
  end-page: 548
  ident: b48
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages
  publication-title: NeuroImage
– start-page: 57
  year: 2020
  end-page: 67
  ident: b17
  article-title: Hospital databases
  publication-title: Healthcare and Artificial Intelligence
– volume: 40
  start-page: 1666
  year: 2019
  end-page: 1676
  ident: b46
  article-title: Discriminating Alzheimer’s disease progression using a new hippocampal marker from T1-weighted MRI: The local surface roughness
  publication-title: Human Brain Mapp.
– volume: 21
  year: 2019
  ident: b5
  article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks
  publication-title: NeuroImage: Clin.
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: b59
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: b33
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
– volume: 47
  start-page: 1476
  year: 2009
  end-page: 1486
  ident: b25
  article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging
  publication-title: Neuroimage
– volume: 11
  year: 2020
  ident: b15
  article-title: Ensemble learning of convolutional neural network, support vector machine, and best linear unbiased predictor for brain age prediction: ARAMIS contribution to the predictive analytics competition 2019 challenge
  publication-title: Front. Psychiatry
– volume: 70
  start-page: 8
  year: 2018
  end-page: 16
  ident: b27
  article-title: Adaptive fusion of texture-based grading for Alzheimer’s disease classification
  publication-title: Comput. Med. Imaging Graph.
– volume: 183
  start-page: 504
  year: 2018
  end-page: 521
  ident: b50
  article-title: Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data
  publication-title: NeuroImage
– volume: 92
  start-page: 608
  year: 2021
  end-page: 616
  ident: b41
  article-title: MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 6
  year: 2017
  ident: b67
  article-title: Regional validation and recalibration of clinical predictive models for patients with acute heart failure
  publication-title: J. Am. Heart Assoc.
– reference: Oakden-Rayner, L., Dunnmon, J., Carneiro, G., Ré, C., 2020. Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. In: Proceedings of the ACM Conference on Health, Inference, and Learning. pp. 151–159.
– year: 2022
  ident: b63
  article-title: Clever hans effect found in a widely used brain tumour MRI dataset
  publication-title: Med. Image Anal.
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: b2
  article-title: Unified segmentation
  publication-title: NeuroImage
– volume: 187
  year: 2020
  ident: b19
  article-title: Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review
  publication-title: Comput. Methods Programs Biomed.
– volume: 11
  start-page: 435
  year: 2016
  end-page: 449
  ident: b34
  article-title: Differential diagnosis of neurodegenerative diseases using structural MRI data
  publication-title: NeuroImage: Clin.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: b35
  article-title: Unmasking Clever Hans predictors and assessing what machines really learn
  publication-title: Nat. Commun.
– volume: 56
  start-page: 766
  year: 2011
  end-page: 781
  ident: b16
  article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage
– volume: 19
  start-page: 579
  year: 2009
  end-page: 587
  ident: b13
  article-title: Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI
  publication-title: Hippocampus
– volume: 2
  start-page: e489
  year: 2020
  end-page: e492
  ident: b23
  article-title: The myth of generalisability in clinical research and machine learning in health care
  publication-title: Lancet Digit. Health
– volume: 15
  year: 2018
  ident: b71
  article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study
  publication-title: PLoS Med.
– volume: 264
  start-page: 47
  year: 2016
  end-page: 56
  ident: b37
  article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion
  publication-title: J. Neurosci. Methods
– volume: 11
  start-page: 194
  year: 2019
  ident: b7
  article-title: Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification
  publication-title: Front. Aging Neurosci.
– volume: 3
  start-page: 1
  year: 2016
  end-page: 9
  ident: b26
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Sci. Data
– volume: 67
  year: 2021
  ident: b62
  article-title: Detect and correct bias in multi-site neuroimaging datasets
  publication-title: Med. Image Anal.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  ident: b30
  article-title: Brain age prediction using deep learning uncovers associated sequence variants
  publication-title: Nat. Commun.
– year: 2021
  ident: b49
  article-title: Clinica: An open source software platform for reproducible clinical neuroscience studies
– start-page: 1
  year: 2022
  end-page: 4
  ident: b56
  article-title: MRI field strength predicts Alzheimer’s disease: a case example of bias in the ADNI data set
  publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging
– volume: 22
  start-page: 1560
  year: 2021
  end-page: 1576
  ident: b11
  article-title: Deep learning for brain disorders: from data processing to disease treatment
  publication-title: Brief. Bioinform.
– volume: 155
  start-page: 1135
  year: 2019
  end-page: 1141
  ident: b68
  article-title: Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition
  publication-title: JAMA Dermatol.
– volume: 23
  year: 2019
  ident: b64
  article-title: Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations
  publication-title: NeuroImage: Clin.
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2818–2826.
– start-page: 925
  year: 2019
  end-page: 933
  ident: b6
  article-title: Dementia detection and classification from MRI images using deep neural networks and transfer learning
  publication-title: International Work-Conference on Artificial Neural Networks
– volume: 14
  start-page: 853
  year: 2020
  ident: b40
  article-title: Differential diagnosis of frontotemporal dementia, Alzheimer’s disease, and normal aging using a multi-scale multi-type feature generative adversarial deep neural network on structural magnetic resonance images
  publication-title: Front. Neurosci.
– reference: Bottani, S., Thibeau-Sutre, E., Maire, A., Ströer, S., Dormont, D., Colliot, O., Burgos, N., 2022b. Homogenization of brain MRI from a clinical data warehouse using contrast-enhanced to non-contrast-enhanced image translation with U-Net derived models. In: SPIE Medical Imaging 2022.
– volume: 1
  year: 2022
  ident: b51
  article-title: Generalizability challenges of mortality risk prediction models: A retrospective analysis on a multi-center database
  publication-title: PLOS Digit. Health
– volume: 189
  start-page: 276
  year: 2019
  end-page: 287
  ident: b53
  article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease
  publication-title: Neuroimage
– start-page: 105751S
  year: 2018
  ident: b65
  article-title: Classification of brain MRI with big data and deep 3D convolutional neural networks
  publication-title: Medical Imaging 2018: Computer-Aided Diagnosis, Vol. 10575
– volume: 39
  start-page: 1731
  issue: 4
  year: 2008
  ident: 10.1016/j.media.2023.102903_b21
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.031
– volume: 70
  start-page: 8
  year: 2018
  ident: 10.1016/j.media.2023.102903_b27
  article-title: Adaptive fusion of texture-based grading for Alzheimer’s disease classification
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2018.08.002
– volume: 37
  start-page: 101
  year: 2017
  ident: 10.1016/j.media.2023.102903_b54
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.01.008
– volume: 44
  start-page: 1415
  issue: 4
  year: 2009
  ident: 10.1016/j.media.2023.102903_b42
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.031
– volume: 31
  year: 2021
  ident: 10.1016/j.media.2023.102903_b10
  article-title: Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
  publication-title: NeuroImage: Clin.
– volume: 41
  start-page: 685
  issue: 3
  year: 2014
  ident: 10.1016/j.media.2023.102903_b20
  article-title: Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-131928
– volume: 21
  year: 2019
  ident: 10.1016/j.media.2023.102903_b5
  article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks
  publication-title: NeuroImage: Clin.
– volume: 155
  start-page: 530
  year: 2017
  ident: 10.1016/j.media.2023.102903_b48
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 18
  start-page: 808
  issue: 5
  year: 2014
  ident: 10.1016/j.media.2023.102903_b58
  article-title: Multiple instance learning for classification of dementia in brain MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.04.006
– volume: 67
  year: 2021
  ident: 10.1016/j.media.2023.102903_b62
  article-title: Detect and correct bias in multi-site neuroimaging datasets
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101879
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.media.2023.102903_b26
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.44
– volume: 19
  start-page: 579
  issue: 6
  year: 2009
  ident: 10.1016/j.media.2023.102903_b13
  article-title: Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI
  publication-title: Hippocampus
  doi: 10.1002/hipo.20626
– volume: 60
  start-page: 1106
  issue: 2
  year: 2012
  ident: 10.1016/j.media.2023.102903_b39
  article-title: Ensemble sparse classification of Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.055
– volume: 189
  start-page: 276
  year: 2019
  ident: 10.1016/j.media.2023.102903_b53
  article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.031
– volume: 26
  start-page: 839
  issue: 3
  year: 2005
  ident: 10.1016/j.media.2023.102903_b2
  article-title: Unified segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.02.018
– year: 2007
  ident: 10.1016/j.media.2023.102903_b70
– volume: 47
  start-page: 1476
  issue: 4
  year: 2009
  ident: 10.1016/j.media.2023.102903_b25
  article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.036
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.media.2023.102903_b35
  article-title: Unmasking Clever Hans predictors and assessing what machines really learn
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08987-4
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.media.2023.102903_b45
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 75
  year: 2022
  ident: 10.1016/j.media.2023.102903_b8
  article-title: Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102219
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.media.2023.102903_b30
  article-title: Brain age prediction using deep learning uncovers associated sequence variants
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13163-9
– ident: 10.1016/j.media.2023.102903_b44
  doi: 10.1145/3368555.3384468
– volume: 14
  issue: 12
  year: 2019
  ident: 10.1016/j.media.2023.102903_b47
  article-title: Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0225759
– volume: 74
  start-page: 1157
  issue: 4
  year: 2020
  ident: 10.1016/j.media.2023.102903_b43
  article-title: Accuracy of MRI classification algorithms in a tertiary memory center clinical routine cohort
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-190594
– volume: 23
  year: 2019
  ident: 10.1016/j.media.2023.102903_b64
  article-title: Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations
  publication-title: NeuroImage: Clin.
– volume: 48
  start-page: 138
  issue: 1
  year: 2009
  ident: 10.1016/j.media.2023.102903_b29
  article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.056
– volume: 47
  start-page: 939
  issue: 4
  year: 2015
  ident: 10.1016/j.media.2023.102903_b32
  article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-150334
– year: 2021
  ident: 10.1016/j.media.2023.102903_b49
– volume: 183
  start-page: 504
  year: 2018
  ident: 10.1016/j.media.2023.102903_b50
  article-title: Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.08.042
– volume: 220
  year: 2022
  ident: 10.1016/j.media.2023.102903_b57
  article-title: ClinicaDL: An open-source deep learning software for reproducible neuroimaging processing
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.106818
– volume: 6
  issue: 11
  year: 2017
  ident: 10.1016/j.media.2023.102903_b67
  article-title: Regional validation and recalibration of clinical predictive models for patients with acute heart failure
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.117.006121
– volume: 22
  start-page: 1560
  issue: 2
  year: 2021
  ident: 10.1016/j.media.2023.102903_b11
  article-title: Deep learning for brain disorders: from data processing to disease treatment
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa310
– volume: 48
  start-page: 412
  issue: 6
  year: 2021
  ident: 10.1016/j.media.2023.102903_b12
  article-title: Radiological classification of dementia from anatomical MRI assisted by machine learning-derived maps
  publication-title: J. Neuroradiol.
  doi: 10.1016/j.neurad.2020.04.004
– year: 2022
  ident: 10.1016/j.media.2023.102903_b69
  article-title: Accurate brain-age models for routine clinical MRI examinations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.118871
– ident: 10.1016/j.media.2023.102903_b9
– volume: 70
  start-page: 101
  year: 2018
  ident: 10.1016/j.media.2023.102903_b36
  article-title: Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2018.09.009
– volume: 42
  start-page: 880
  issue: 4
  year: 2018
  ident: 10.1016/j.media.2023.102903_b38
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2889096
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2023.102903_b16
  article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.013
– start-page: 105751S
  year: 2018
  ident: 10.1016/j.media.2023.102903_b65
  article-title: Classification of brain MRI with big data and deep 3D convolutional neural networks
– volume: 11
  start-page: 194
  year: 2019
  ident: 10.1016/j.media.2023.102903_b7
  article-title: Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2019.00194
– volume: 67
  year: 2021
  ident: 10.1016/j.media.2023.102903_b1
  article-title: Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101848
– volume: 5
  start-page: 48
  issue: 1
  year: 2022
  ident: 10.1016/j.media.2023.102903_b60
  article-title: Machine learning for medical imaging: methodological failures and recommendations for the future
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-022-00592-y
– volume: 155
  start-page: 1135
  issue: 10
  year: 2019
  ident: 10.1016/j.media.2023.102903_b68
  article-title: Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2019.1735
– volume: 187
  year: 2020
  ident: 10.1016/j.media.2023.102903_b19
  article-title: Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105242
– volume: 11
  year: 2020
  ident: 10.1016/j.media.2023.102903_b15
  article-title: Ensemble learning of convolutional neural network, support vector machine, and best linear unbiased predictor for brain age prediction: ARAMIS contribution to the predictive analytics competition 2019 challenge
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2020.593336
– volume: 24
  start-page: 1052
  issue: 6
  year: 2017
  ident: 10.1016/j.media.2023.102903_b18
  article-title: Calibration drift in regression and machine learning models for acute kidney injury
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocx030
– volume: 67
  year: 2021
  ident: 10.1016/j.media.2023.102903_b28
  article-title: Multi-scale graph-based grading for Alzheimer’s disease prediction
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101850
– volume: 2
  start-page: e489
  issue: 9
  year: 2020
  ident: 10.1016/j.media.2023.102903_b23
  article-title: The myth of generalisability in clinical research and machine learning in health care
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30186-2
– year: 2020
  ident: 10.1016/j.media.2023.102903_b66
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101694
– start-page: 1
  year: 2019
  ident: 10.1016/j.media.2023.102903_b31
  article-title: Everything matters: the ReproNim perspective on reproducible neuroimaging
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2019.00001
– volume: 39
  start-page: 1186
  issue: 3
  year: 2008
  ident: 10.1016/j.media.2023.102903_b61
  article-title: Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.073
– year: 2022
  ident: 10.1016/j.media.2023.102903_b63
  article-title: Clever hans effect found in a widely used brain tumour MRI dataset
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102368
– volume: 1
  start-page: 141
  issue: 1
  year: 2012
  ident: 10.1016/j.media.2023.102903_b14
  article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2012.10.002
– start-page: 1
  year: 2022
  ident: 10.1016/j.media.2023.102903_b56
  article-title: MRI field strength predicts Alzheimer’s disease: a case example of bias in the ADNI data set
– start-page: 925
  year: 2019
  ident: 10.1016/j.media.2023.102903_b6
  article-title: Dementia detection and classification from MRI images using deep neural networks and transfer learning
– start-page: 1
  year: 2017
  ident: 10.1016/j.media.2023.102903_b22
  article-title: A deep CNN based multi-class classification of Alzheimer’s disease using MRI
– volume: 8
  start-page: 44
  year: 2014
  ident: 10.1016/j.media.2023.102903_b4
  article-title: The insight ToolKit image registration framework
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2014.00044
– volume: 92
  start-page: 608
  issue: 6
  year: 2021
  ident: 10.1016/j.media.2023.102903_b41
  article-title: MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2020-324106
– volume: 2
  start-page: 665
  issue: 11
  year: 2020
  ident: 10.1016/j.media.2023.102903_b24
  article-title: Shortcut learning in deep neural networks
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00257-z
– ident: 10.1016/j.media.2023.102903_b55
  doi: 10.1109/CVPR.2016.308
– volume: 15
  issue: 11
  year: 2018
  ident: 10.1016/j.media.2023.102903_b71
  article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002683
– volume: 12
  start-page: 26
  issue: 1
  year: 2008
  ident: 10.1016/j.media.2023.102903_b3
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– start-page: 57
  year: 2020
  ident: 10.1016/j.media.2023.102903_b17
  article-title: Hospital databases
– volume: 264
  start-page: 47
  year: 2016
  ident: 10.1016/j.media.2023.102903_b37
  article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.03.001
– volume: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.media.2023.102903_b51
  article-title: Generalizability challenges of mortality risk prediction models: A retrospective analysis on a multi-center database
  publication-title: PLOS Digit. Health
  doi: 10.1371/journal.pdig.0000023
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.media.2023.102903_b59
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 14
  start-page: 853
  year: 2020
  ident: 10.1016/j.media.2023.102903_b40
  article-title: Differential diagnosis of frontotemporal dementia, Alzheimer’s disease, and normal aging using a multi-scale multi-type feature generative adversarial deep neural network on structural magnetic resonance images
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00853
– volume: 11
  start-page: 435
  year: 2016
  ident: 10.1016/j.media.2023.102903_b34
  article-title: Differential diagnosis of neurodegenerative diseases using structural MRI data
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2016.02.019
– volume: 131
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.media.2023.102903_b33
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 30
  start-page: 779
  issue: 6
  year: 2015
  ident: 10.1016/j.media.2023.102903_b52
  article-title: Comparison of regional gray matter atrophy, white matter alteration, and glucose metabolism as a predictor of the conversion to Alzheimer’s disease in mild cognitive impairment
  publication-title: J. Korean Med. Sci.
  doi: 10.3346/jkms.2015.30.6.779
– volume: 40
  start-page: 1666
  issue: 5
  year: 2019
  ident: 10.1016/j.media.2023.102903_b46
  article-title: Discriminating Alzheimer’s disease progression using a new hippocampal marker from T1-weighted MRI: The local surface roughness
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.24478
SSID ssj0007440
Score 2.4493656
Snippet A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102903
SubjectTerms Artificial Intelligence
Clinical data warehouse
Computer Science
Deep learning
Dementia
MRI
Neuroimaging
Shortcut learning
Title Evaluation of MRI-based machine learning approaches for computer-aided diagnosis of dementia in a clinical data warehouse
URI https://dx.doi.org/10.1016/j.media.2023.102903
https://www.ncbi.nlm.nih.gov/pubmed/37523918
https://www.proquest.com/docview/2844682039
https://hal.science/hal-03656136
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51txKCA4ICZXlUBnHE3U2cOPZxqVq20O0BKOrNcmwvDWqzVXcL4sJvZyZxIhCiB05RothxPON52DPfALzS0hbKScUDshPP1EJyhZqE50J6qQpk6ZIcxfmxnJ1k707z0w3Y63JhKKwyyv5WpjfSOj4Zx9kcX1bV-GMiqFhJQtuaaLcIPYDNFLW9GsLm9PD97LgXyISB16ZfJZwadOBDTZhXk6CxS0XECcVAd8Wz_lZQgzOKlPyXGdqoo4N7cDfakWzaDvU-bIR6C-78hi64Bbfm8dz8AfzY70G92XLB5h8OOakvzy6aWMrAYvGIL6zDGA8rhuYsc7HoAyckSc98G5hXragX3-wsVpZVNbOsS7FkFHPKvturcLa8XoWHcHKw_2lvxmPRBe4yodbc-dKXuEid1TaTciJc6dIc3SrtCh30InOl126SW6Eor9a7idIliqrcqlx6n4pHMKyXdXgMjNDjsM88oEuVBY-mkBdZOgmFFyqkMh1B2s20cRGRnApjnJsu9OyrachjiDymJc8IXveNLltAjptflx0JzR98ZVBl3NzwJRK8_wShcM-mR4aeodInt0t-wz940fGDwWVJZy22Dji7BrV-JtG6EnoE2y2j9H2JAnlWJ-rJ_47tKdymuzam8BkM11fX4TnaRutyBwa7P5OduALw-vbN0efpLxUDC3Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tncTHA4LxVT4N4hGvbew49mM1bUpZ2wfYpL1Zie2yIEintQPx33OXOBEIsQdendhxfOf7sO9-B_DOqCLTTmkekJ241CvFNWoSngrllc6QpUtyFBdLlZ_JD-fp-Q4cdrkwFFYZZX8r0xtpHVtGcTVHl1U1-jQRVKxkQseaaLcIswt7kopaD2BvOjvJl71AJgy8Nv1qwqlDBz7UhHk1CRoHVEScUAxMVzzrbwW1e0GRkv8yQxt1dHwf7kU7kk3bqT6AnVDvw93f0AX34dYi3ps_hJ9HPag3W6_Y4uOMk_ry7FsTSxlYLB7xmXUY42HD0JxlLhZ94IQk6ZlvA_OqDY3im5PFqmBVzQrWpVgyijllP4qrcLG-3oRHcHZ8dHqY81h0gTsp9JY7X_oSN6krTCGVGgtXuiRFt8q4zASzkq70xo3TQmjKq_VurE2JoiotdKq8T8RjGNTrOjwFRuhxOGYa0KWSwaMp5IVMxiHzQodEJUNIupW2LiKSU2GMr7YLPftiG_JYIo9tyTOE932nyxaQ4-bXVUdC-wdfWVQZN3d8iwTvP0Eo3Pl0bqkNlT65Xeo7_sGbjh8sbku6aynqgKtrUetLhdaVMEN40jJKP5bIkGfNRD_737m9htv56WJu57PlyXO4Q0_a-MIXMNheXYeXaCdty1dxH_wCArMLyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+MRI-based+machine+learning+approaches+for+computer-aided+diagnosis+of+dementia+in+a+clinical+data+warehouse&rft.jtitle=Medical+image+analysis&rft.au=Bottani%2C+Simona&rft.au=Burgos%2C+Ninon&rft.au=Maire%2C+Aur%C3%A9lien&rft.au=Saracino%2C+Dario&rft.date=2023-10-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=89&rft_id=info:doi/10.1016%2Fj.media.2023.102903&rft.externalDocID=S1361841523001639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon