Evaluation of MRI-based machine learning approaches for computer-aided diagnosis of dementia in a clinical data warehouse
A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to st...
Saved in:
Published in | Medical image analysis Vol. 89; p. 102903 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2023.102903 |
Cover
Abstract | A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer’s Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine.
[Display omitted]
•We studied ML-based detection of dementia using brain MRI clinical routine data.•We studied patients from a clinical data warehouse identified with ICD-10 codes.•We uncovered shortcut learning (performance driven by irrelevant characteristics).•Performance was considerably lower on real-life data compared with research data.•Our work demonstrates the difficulty of translating algorithms to clinical routine. |
---|---|
AbstractList | A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer’s Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine.
[Display omitted]
•We studied ML-based detection of dementia using brain MRI clinical routine data.•We studied patients from a clinical data warehouse identified with ICD-10 codes.•We uncovered shortcut learning (performance driven by irrelevant characteristics).•Performance was considerably lower on real-life data compared with research data.•Our work demonstrates the difficulty of translating algorithms to clinical routine. A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer's Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine. A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer's Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine.A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer's Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine. |
ArticleNumber | 102903 |
Author | Maire, Aurélien Colliot, Olivier Bottani, Simona Saracino, Dario Ströer, Sebastian Burgos, Ninon Dormont, Didier |
Author_xml | – sequence: 1 givenname: Simona orcidid: 0000-0001-6801-0748 surname: Bottani fullname: Bottani, Simona organization: Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France – sequence: 2 givenname: Ninon orcidid: 0000-0002-4668-2006 surname: Burgos fullname: Burgos, Ninon organization: Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France – sequence: 3 givenname: Aurélien surname: Maire fullname: Maire, Aurélien organization: AP-HP, WIND department, Paris, 75012, France – sequence: 4 givenname: Dario orcidid: 0000-0002-4299-9743 surname: Saracino fullname: Saracino, Dario organization: Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France – sequence: 5 givenname: Sebastian surname: Ströer fullname: Ströer, Sebastian organization: AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France – sequence: 6 givenname: Didier surname: Dormont fullname: Dormont, Didier organization: AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France – sequence: 7 givenname: Olivier orcidid: 0000-0002-9836-654X surname: Colliot fullname: Colliot, Olivier email: olivier.colliot@cnrs.fr organization: Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37523918$$D View this record in MEDLINE/PubMed https://hal.science/hal-03656136$$DView record in HAL |
BookMark | eNp9kUtv1DAUhS1URB_wC5CQl7DI4Nh52AsWVVVopUFICNbWjX3T8SixBzsZ1H-P07RdsOjK1tV3ju4955yc-OCRkPcl25SsbD7vNyNaBxvOuMgTrph4Rc5K0ZSFrLg4ef6X9Sk5T2nPGGurir0hp6KtuVClPCP310cYZphc8DT09PvP26KDhJaOYHbOIx0Qonf-jsLhEEMeYqJ9iNSE8TBPGAtwNuN5kTsfkkuLi8UR_eSAOk-BmsF5Z2CgFiagfyHiLswJ35LXPQwJ3z2-F-T31-tfVzfF9se326vLbWEqIafC2M52raoMKKiahgnTGV7LtlSmVaj6ynRWGVaDkIyzyhomVcekrEHWjbVcXJBPq-8OBn2IboR4rwM4fXO51cuMiaZuclTHhf24svnUPzOmSY8uGRwG8Jh31lxWVSM5EyqjHx7Rucs9PDs_RZsBtQImhpQi9tq46SHoKYIbdMn0UqPe64ca9VKjXmvMWvGf9sn-ZdWXVYU5zqPDqJNx6E0GI5pJ2-Be1P8DWQ-2-w |
CitedBy_id | crossref_primary_10_1371_journal_pone_0315434 crossref_primary_10_1016_j_eswa_2023_122934 crossref_primary_10_1002_aisy_202400595 crossref_primary_10_1007_s44248_024_00012_4 crossref_primary_10_1007_s10278_024_01335_z |
Cites_doi | 10.1016/j.neuroimage.2007.10.031 10.1016/j.compmedimag.2018.08.002 10.1016/j.media.2017.01.008 10.1016/j.neuroimage.2008.10.031 10.3233/JAD-131928 10.1016/j.neuroimage.2017.03.057 10.1016/j.media.2014.04.006 10.1016/j.media.2020.101879 10.1038/sdata.2016.44 10.1002/hipo.20626 10.1016/j.neuroimage.2012.01.055 10.1016/j.neuroimage.2019.01.031 10.1016/j.neuroimage.2005.02.018 10.1016/j.neuroimage.2009.05.036 10.1038/s41467-019-08987-4 10.1016/j.media.2021.102219 10.1038/s41467-019-13163-9 10.1145/3368555.3384468 10.1371/journal.pone.0225759 10.3233/JAD-190594 10.1016/j.neuroimage.2009.05.056 10.3233/JAD-150334 10.1016/j.neuroimage.2018.08.042 10.1016/j.cmpb.2022.106818 10.1161/JAHA.117.006121 10.1093/bib/bbaa310 10.1016/j.neurad.2020.04.004 10.1016/j.neuroimage.2022.118871 10.1016/j.compmedimag.2018.09.009 10.1109/TPAMI.2018.2889096 10.1016/j.neuroimage.2010.06.013 10.3389/fnagi.2019.00194 10.1016/j.media.2020.101848 10.1038/s41746-022-00592-y 10.1001/jamadermatol.2019.1735 10.1016/j.cmpb.2019.105242 10.3389/fpsyt.2020.593336 10.1093/jamia/ocx030 10.1016/j.media.2020.101850 10.1016/S2589-7500(20)30186-2 10.1016/j.media.2020.101694 10.3389/fninf.2019.00001 10.1016/j.neuroimage.2007.09.073 10.1016/j.media.2022.102368 10.1016/j.nicl.2012.10.002 10.3389/fninf.2014.00044 10.1136/jnnp-2020-324106 10.1038/s42256-020-00257-z 10.1109/CVPR.2016.308 10.1371/journal.pmed.1002683 10.1016/j.media.2007.06.004 10.1016/j.jneumeth.2016.03.001 10.1371/journal.pdig.0000023 10.1109/TMI.2010.2046908 10.3389/fnins.2020.00853 10.1016/j.nicl.2016.02.019 10.1093/brain/awm319 10.3346/jkms.2015.30.6.779 10.1002/hbm.24478 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier B.V. Attribution |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier B.V. – notice: Attribution |
CorporateAuthor | APPRIMAGE Study Group Alzheimer’s Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: APPRIMAGE Study Group – name: Alzheimer’s Disease Neuroimaging Initiative |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES |
DOI | 10.1016/j.media.2023.102903 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Computer Science |
EISSN | 1361-8423 |
ExternalDocumentID | oai_HAL_hal_03656136v2 37523918 10_1016_j_media_2023_102903 S1361841523001639 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION NPM 7X8 ACLOT EFKBS ~HD 1XC VOOES |
ID | FETCH-LOGICAL-c438t-cdbdb794ca9a46603cbc258719c79e9f4cbd9c05a380204dc089b0885a856dd23 |
IEDL.DBID | AIKHN |
ISSN | 1361-8415 1361-8423 |
IngestDate | Fri Sep 12 12:48:21 EDT 2025 Sat Sep 27 22:01:59 EDT 2025 Wed Feb 19 02:24:11 EST 2025 Thu Apr 24 22:56:16 EDT 2025 Tue Jul 01 02:49:34 EDT 2025 Fri Feb 23 02:36:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neuroimaging Deep learning Clinical data warehouse MRI Shortcut learning Dementia |
Language | English |
License | Copyright © 2023. Published by Elsevier B.V. Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-cdbdb794ca9a46603cbc258719c79e9f4cbd9c05a380204dc089b0885a856dd23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6801-0748 0000-0002-9836-654X 0000-0002-4668-2006 0000-0002-4299-9743 0000-0002-6080-1286 |
OpenAccessLink | https://hal.science/hal-03656136 |
PMID | 37523918 |
PQID | 2844682039 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_03656136v2 proquest_miscellaneous_2844682039 pubmed_primary_37523918 crossref_citationtrail_10_1016_j_media_2023_102903 crossref_primary_10_1016_j_media_2023_102903 elsevier_sciencedirect_doi_10_1016_j_media_2023_102903 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (b33) 2008; 131 Ma, Lu, Popuri, Wang, Beg, Alzheimer’s Disease Neuroimaging Initiative (b40) 2020; 14 Punjabi, Martersteck, Wang, Parrish, Katsaggelos (b47) 2019; 14 Burgos, Bottani, Faouzi, Thibeau-Sutre, Colliot (b11) 2021; 22 Misra, Fan, Davatzikos (b42) 2009; 44 Ebrahimighahnavieh, Luo, Chiong (b19) 2020; 187 Hinrichs, Singh, Mukherjee, Xu, Chung, Johnson, Alzheimer’s Disease Neuroimaging Initiative (b29) 2009; 48 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (b45) 2011; 12 Rathore, Habes, Iftikhar, Shacklett, Davatzikos (b48) 2017; 155 Hett, Ta, Manjón, Coupé, Alzheimer’s Disease Neuroimaging Initiative (b27) 2018; 70 Li, Liu, Alzheimer’s Disease Neuroimaging Initiative (b36) 2018; 70 Hett, Ta, Oguz, Manjón, Coupé, Alzheimer’s Disease Neuroimaging Initiative (b28) 2021; 67 Gerardin, Chételat, Chupin, Cuingnet, Desgranges, Kim, Niethammer, Dubois, Lehéricy, Garnero (b25) 2009; 47 Samper-González, Burgos, Bottani, Fontanella, Lu, Marcoux, Routier, Guillon, Bacci, Wen, Bertrand, Bertin, Habert, Durrleman, Evgeniou, Colliot (b50) 2018; 183 Falahati, Westman, Simmons (b20) 2014; 41 Wee, Liu, Lee, Poh, Ji, Qiu, Initiative (b64) 2019; 23 Ashburner, Friston (b2) 2005; 26 Avants, Epstein, Grossman, Gee (b3) 2008; 12 Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (b16) 2011; 56 Ansart, Epelbaum, Bassignana, Bône, Bottani, Cattai, Couronné, Faouzi, Koval, Louis (b1) 2021; 67 World Health Organization (b70) 2007 Daniel, Salamanca (b17) 2020 Bottani, S., Thibeau-Sutre, E., Maire, A., Ströer, S., Dormont, D., Colliot, O., Burgos, N., 2022b. Homogenization of brain MRI from a clinical data warehouse using contrast-enhanced to non-contrast-enhanced image translation with U-Net derived models. In: SPIE Medical Imaging 2022. Bron, Klein, Papma, Jiskoot, Venkatraghavan, Linders, Aalten, De Deyn, Biessels, Claassen (b10) 2021; 31 Futoma, Simons, Panch, Doshi-Velez, Celi (b23) 2020; 2 Manera, Dadar, Van Swieten, Borroni, Sanchez-Valle, Moreno, Laforce, Graff, Synofzik, Galimberti (b41) 2021; 92 Routier, Burgos, Díaz, Bacci, Bottani, El-Rifai, Fontanella, Gori, Guillon, Guyot, Hassanaly, Jacquemont, Lu, Marcoux, Moreau, Samper-González, Teichmann, Thibeau–Sutre, Vaillant, Wen, Wild, Habert, Durrleman, Colliot (b49) 2021 Li, Morgan, Ashburner, Smith, Rorden (b37) 2016; 264 Tong, Wolz, Gao, Guerrero, Hajnal, Rueckert, Initiative (b58) 2014; 18 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (b59) 2010; 29 Fan, Batmanghelich, Clark, Davatzikos, Initiative (b21) 2008; 39 Gorgolewski, Auer, Calhoun, Craddock, Das, Duff, Flandin, Ghosh, Glatard, Halchenko, Handwerker, Hanke, Keator, Li, Michael, Maumet, Nichols, Nichols, Pellman, Poline, Rokem, Schaefer, Sochat, Triplett, Turner, Varoquaux, Poldrack (b26) 2016; 3 Farooq, Anwar, Awais, Rehman (b22) 2017 Davis, Lasko, Chen, Siew, Matheny (b18) 2017; 24 Morin, Samper-Gonzalez, Bertrand, Ströer, Dormont, Mendes, Coupé, Ahdidan, Lévy, Samri, Hampel, Dubois, Teichmann, Epelbaum, Colliot (b43) 2020; 74 Böhle, Eitel, Weygandt, Ritter (b7) 2019; 11 Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (b61) 2008; 39 Lian, Liu, Zhang, Shen (b38) 2018; 42 Bidani, Gouider, Travieso-González (b6) 2019 Wood, Kafiabadi, Al Busaidi, Guilhem, Montvila, Lynch, Townend, Agarwal, Mazumder, Barker (b69) 2022 Zech, Badgeley, Liu, Costa, Titano, Oermann (b71) 2018; 15 Chagué, Marro, Fadili, Houot, Morin, Samper-González, Beunon, Arrivé, Dormont, Dubois (b12) 2021; 48 Varoquaux, Cheplygina (b60) 2022; 5 Avants, Tustison, Stauffer, Song, Wu, Gee (b4) 2014; 8 Coupé, Eskildsen, Manjón, Fonov, Pruessner, Allard, Collins, Alzheimer’s Disease Neuroimaging Initiative (b14) 2012; 1 Couvy-Duchesne, Faouzi, Martin, Thibeau-Sutre, Wild, Ansart, Durrleman, Dormont, Burgos, Colliot (b15) 2020; 11 Suk, Lee, Shen, Alzheimer’s Disease Neuroimaging Initiative (b54) 2017; 37 Wessler, Ruthazer, Udelson, Gheorghiade, Zannad, Maggioni, Konstam, Kent (b67) 2017; 6 Spasov, Passamonti, Duggento, Lio, Toschi, Initiative (b53) 2019; 189 Thibeau-Sutre, Couvy-Duchesne, Dormont, Colliot, Burgos (b56) 2022 Platero, López, Carmen Tobar, Yus, Maestu (b46) 2019; 40 Singh, Mhasawade, Chunara (b51) 2022; 1 Wegmayr, Aitharaju, Buhmann (b65) 2018 Bottani, Burgos, Maire, Wild, Ströer, Dormont, Colliot (b8) 2022; 75 Kennedy, Abraham, Bates, Crowley, Ghosh, Gillespie, Goncalves, Grethe, Halchenko, Hanke (b31) 2019 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2818–2826. Jónsson, Bjornsdottir, Thorgeirsson, Ellingsen, Walters, Gudbjartsson, Stefansson, Stefansson, Ulfarsson (b30) 2019; 10 Oakden-Rayner, L., Dunnmon, J., Carneiro, G., Ré, C., 2020. Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. In: Proceedings of the ACM Conference on Health, Inference, and Learning. pp. 151–159. Wallis, Buvat (b63) 2022 Lapuschkin, Wäldchen, Binder, Montavon, Samek, Müller (b35) 2019; 10 Liu, Zhang, Shen, Alzheimer’s Disease Neuroimaging Initiative (b39) 2012; 60 Wachinger, Rieckmann, Pölsterl, Initiative (b62) 2021; 67 Koikkalainen, Rhodius-Meester, Tolonen, Barkhof, Tijms, Lemstra, Tong, Guerrero, Schuh, Ledig, Rueckert, Soininen, Remes, Waldemar, Hasselbalch, Mecocci, van der Flier, Lötjönen (b34) 2016; 11 Klöppel, Peter, Ludl, Pilatus, Maier, Mader, Heimbach, Frings, Egger, Dukart (b32) 2015; 47 Thibeau-Sutre, Diaz, Hassanaly, Routier, Dormont, Colliot, Burgos (b57) 2022; 220 Wen, Thibeau-Sutre, Diaz-Melo, Samper-González, Routier, Bottani, Dormont, Durrleman, Burgos, Colliot (b66) 2020 Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz (b68) 2019; 155 Basaia, Agosta, Wagner, Canu, Magnani, Santangelo, Filippi, Initiative (b5) 2019; 21 Sohn, Yi, Seo, Choe, Kim, Kim, Choi, Byun, Jhoo, Woo (b52) 2015; 30 Chupin, Gérardin, Cuingnet, Boutet, Lemieux, Lehéricy, Benali, Garnero, Colliot (b13) 2009; 19 Geirhos, Jacobsen, Michaelis, Zemel, Brendel, Bethge, Wichmann (b24) 2020; 2 Thibeau-Sutre (10.1016/j.media.2023.102903_b56) 2022 Ebrahimighahnavieh (10.1016/j.media.2023.102903_b19) 2020; 187 Bottani (10.1016/j.media.2023.102903_b8) 2022; 75 Lapuschkin (10.1016/j.media.2023.102903_b35) 2019; 10 Punjabi (10.1016/j.media.2023.102903_b47) 2019; 14 Tong (10.1016/j.media.2023.102903_b58) 2014; 18 Thibeau-Sutre (10.1016/j.media.2023.102903_b57) 2022; 220 Wachinger (10.1016/j.media.2023.102903_b62) 2021; 67 10.1016/j.media.2023.102903_b55 Couvy-Duchesne (10.1016/j.media.2023.102903_b15) 2020; 11 Daniel (10.1016/j.media.2023.102903_b17) 2020 Basaia (10.1016/j.media.2023.102903_b5) 2019; 21 Lian (10.1016/j.media.2023.102903_b38) 2018; 42 Liu (10.1016/j.media.2023.102903_b39) 2012; 60 Koikkalainen (10.1016/j.media.2023.102903_b34) 2016; 11 Zech (10.1016/j.media.2023.102903_b71) 2018; 15 Avants (10.1016/j.media.2023.102903_b4) 2014; 8 Ma (10.1016/j.media.2023.102903_b40) 2020; 14 Wee (10.1016/j.media.2023.102903_b64) 2019; 23 Hett (10.1016/j.media.2023.102903_b28) 2021; 67 10.1016/j.media.2023.102903_b9 Pedregosa (10.1016/j.media.2023.102903_b45) 2011; 12 Klöppel (10.1016/j.media.2023.102903_b32) 2015; 47 Klöppel (10.1016/j.media.2023.102903_b33) 2008; 131 Spasov (10.1016/j.media.2023.102903_b53) 2019; 189 Wallis (10.1016/j.media.2023.102903_b63) 2022 Burgos (10.1016/j.media.2023.102903_b11) 2021; 22 Platero (10.1016/j.media.2023.102903_b46) 2019; 40 Geirhos (10.1016/j.media.2023.102903_b24) 2020; 2 Singh (10.1016/j.media.2023.102903_b51) 2022; 1 Vemuri (10.1016/j.media.2023.102903_b61) 2008; 39 Wessler (10.1016/j.media.2023.102903_b67) 2017; 6 Ansart (10.1016/j.media.2023.102903_b1) 2021; 67 Chagué (10.1016/j.media.2023.102903_b12) 2021; 48 Wen (10.1016/j.media.2023.102903_b66) 2020 Avants (10.1016/j.media.2023.102903_b3) 2008; 12 Suk (10.1016/j.media.2023.102903_b54) 2017; 37 Davis (10.1016/j.media.2023.102903_b18) 2017; 24 Li (10.1016/j.media.2023.102903_b37) 2016; 264 Cuingnet (10.1016/j.media.2023.102903_b16) 2011; 56 Hett (10.1016/j.media.2023.102903_b27) 2018; 70 Misra (10.1016/j.media.2023.102903_b42) 2009; 44 Fan (10.1016/j.media.2023.102903_b21) 2008; 39 Bron (10.1016/j.media.2023.102903_b10) 2021; 31 Hinrichs (10.1016/j.media.2023.102903_b29) 2009; 48 Jónsson (10.1016/j.media.2023.102903_b30) 2019; 10 Winkler (10.1016/j.media.2023.102903_b68) 2019; 155 Farooq (10.1016/j.media.2023.102903_b22) 2017 Rathore (10.1016/j.media.2023.102903_b48) 2017; 155 Li (10.1016/j.media.2023.102903_b36) 2018; 70 Morin (10.1016/j.media.2023.102903_b43) 2020; 74 Wood (10.1016/j.media.2023.102903_b69) 2022 Sohn (10.1016/j.media.2023.102903_b52) 2015; 30 Coupé (10.1016/j.media.2023.102903_b14) 2012; 1 World Health Organization (10.1016/j.media.2023.102903_b70) 2007 Wegmayr (10.1016/j.media.2023.102903_b65) 2018 Samper-González (10.1016/j.media.2023.102903_b50) 2018; 183 Routier (10.1016/j.media.2023.102903_b49) 2021 Bidani (10.1016/j.media.2023.102903_b6) 2019 Futoma (10.1016/j.media.2023.102903_b23) 2020; 2 10.1016/j.media.2023.102903_b44 Ashburner (10.1016/j.media.2023.102903_b2) 2005; 26 Tustison (10.1016/j.media.2023.102903_b59) 2010; 29 Varoquaux (10.1016/j.media.2023.102903_b60) 2022; 5 Manera (10.1016/j.media.2023.102903_b41) 2021; 92 Chupin (10.1016/j.media.2023.102903_b13) 2009; 19 Gerardin (10.1016/j.media.2023.102903_b25) 2009; 47 Böhle (10.1016/j.media.2023.102903_b7) 2019; 11 Kennedy (10.1016/j.media.2023.102903_b31) 2019 Falahati (10.1016/j.media.2023.102903_b20) 2014; 41 Gorgolewski (10.1016/j.media.2023.102903_b26) 2016; 3 |
References_xml | – volume: 47 start-page: 939 year: 2015 end-page: 954 ident: b32 article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study publication-title: J. Alzheimer’s Dis. – volume: 18 start-page: 808 year: 2014 end-page: 818 ident: b58 article-title: Multiple instance learning for classification of dementia in brain MRI publication-title: Med. Image Anal. – volume: 67 year: 2021 ident: b28 article-title: Multi-scale graph-based grading for Alzheimer’s disease prediction publication-title: Med. Image Anal. – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: b3 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – volume: 42 start-page: 880 year: 2018 end-page: 893 ident: b38 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1 year: 2019 ident: b31 article-title: Everything matters: the ReproNim perspective on reproducible neuroimaging publication-title: Front. Neuroinf. – volume: 67 year: 2021 ident: b1 article-title: Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review publication-title: Med. Image Anal. – volume: 1 start-page: 141 year: 2012 end-page: 152 ident: b14 article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease publication-title: NeuroImage: Clin. – volume: 5 start-page: 48 year: 2022 ident: b60 article-title: Machine learning for medical imaging: methodological failures and recommendations for the future publication-title: NPJ Digit. Med. – volume: 39 start-page: 1186 year: 2008 end-page: 1197 ident: b61 article-title: Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies publication-title: Neuroimage – year: 2007 ident: b70 article-title: International classification of diseases and related health problems, 10 – volume: 8 start-page: 44 year: 2014 ident: b4 article-title: The insight ToolKit image registration framework publication-title: Front. Neuroinf. – volume: 31 year: 2021 ident: b10 article-title: Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease publication-title: NeuroImage: Clin. – volume: 41 start-page: 685 year: 2014 end-page: 708 ident: b20 article-title: Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging publication-title: J. Alzheimer’s Dis. – volume: 37 start-page: 101 year: 2017 end-page: 113 ident: b54 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Med. Image Anal. – year: 2022 ident: b69 article-title: Accurate brain-age models for routine clinical MRI examinations publication-title: NeuroImage – year: 2020 ident: b66 article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation publication-title: Med. Image Anal. – volume: 48 start-page: 412 year: 2021 end-page: 418 ident: b12 article-title: Radiological classification of dementia from anatomical MRI assisted by machine learning-derived maps publication-title: J. Neuroradiol. – volume: 24 start-page: 1052 year: 2017 end-page: 1061 ident: b18 article-title: Calibration drift in regression and machine learning models for acute kidney injury publication-title: J. Am. Med. Inform. Assoc. – volume: 2 start-page: 665 year: 2020 end-page: 673 ident: b24 article-title: Shortcut learning in deep neural networks publication-title: Nat. Mach. Intell. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b45 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 70 start-page: 101 year: 2018 end-page: 110 ident: b36 article-title: Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks publication-title: Comput. Med. Imaging Graph. – volume: 74 start-page: 1157 year: 2020 end-page: 1166 ident: b43 article-title: Accuracy of MRI classification algorithms in a tertiary memory center clinical routine cohort publication-title: J. Alzheimer’s Dis. – volume: 48 start-page: 138 year: 2009 end-page: 149 ident: b29 article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset publication-title: Neuroimage – volume: 220 year: 2022 ident: b57 article-title: ClinicaDL: An open-source deep learning software for reproducible neuroimaging processing publication-title: Comput. Methods Programs Biomed. – volume: 14 year: 2019 ident: b47 article-title: Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks publication-title: PLoS One – volume: 30 start-page: 779 year: 2015 end-page: 787 ident: b52 article-title: Comparison of regional gray matter atrophy, white matter alteration, and glucose metabolism as a predictor of the conversion to Alzheimer’s disease in mild cognitive impairment publication-title: J. Korean Med. Sci. – volume: 75 year: 2022 ident: b8 article-title: Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse publication-title: Med. Image Anal. – volume: 39 start-page: 1731 year: 2008 end-page: 1743 ident: b21 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: Neuroimage – start-page: 1 year: 2017 end-page: 6 ident: b22 article-title: A deep CNN based multi-class classification of Alzheimer’s disease using MRI publication-title: 2017 IEEE International Conference on Imaging Systems and Techniques – volume: 44 start-page: 1415 year: 2009 end-page: 1422 ident: b42 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI publication-title: Neuroimage – volume: 60 start-page: 1106 year: 2012 end-page: 1116 ident: b39 article-title: Ensemble sparse classification of Alzheimer’s disease publication-title: NeuroImage – volume: 155 start-page: 530 year: 2017 end-page: 548 ident: b48 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages publication-title: NeuroImage – start-page: 57 year: 2020 end-page: 67 ident: b17 article-title: Hospital databases publication-title: Healthcare and Artificial Intelligence – volume: 40 start-page: 1666 year: 2019 end-page: 1676 ident: b46 article-title: Discriminating Alzheimer’s disease progression using a new hippocampal marker from T1-weighted MRI: The local surface roughness publication-title: Human Brain Mapp. – volume: 21 year: 2019 ident: b5 article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks publication-title: NeuroImage: Clin. – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: b59 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: b33 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain – volume: 47 start-page: 1476 year: 2009 end-page: 1486 ident: b25 article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging publication-title: Neuroimage – volume: 11 year: 2020 ident: b15 article-title: Ensemble learning of convolutional neural network, support vector machine, and best linear unbiased predictor for brain age prediction: ARAMIS contribution to the predictive analytics competition 2019 challenge publication-title: Front. Psychiatry – volume: 70 start-page: 8 year: 2018 end-page: 16 ident: b27 article-title: Adaptive fusion of texture-based grading for Alzheimer’s disease classification publication-title: Comput. Med. Imaging Graph. – volume: 183 start-page: 504 year: 2018 end-page: 521 ident: b50 article-title: Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data publication-title: NeuroImage – volume: 92 start-page: 608 year: 2021 end-page: 616 ident: b41 article-title: MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 6 year: 2017 ident: b67 article-title: Regional validation and recalibration of clinical predictive models for patients with acute heart failure publication-title: J. Am. Heart Assoc. – reference: Oakden-Rayner, L., Dunnmon, J., Carneiro, G., Ré, C., 2020. Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. In: Proceedings of the ACM Conference on Health, Inference, and Learning. pp. 151–159. – year: 2022 ident: b63 article-title: Clever hans effect found in a widely used brain tumour MRI dataset publication-title: Med. Image Anal. – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: b2 article-title: Unified segmentation publication-title: NeuroImage – volume: 187 year: 2020 ident: b19 article-title: Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review publication-title: Comput. Methods Programs Biomed. – volume: 11 start-page: 435 year: 2016 end-page: 449 ident: b34 article-title: Differential diagnosis of neurodegenerative diseases using structural MRI data publication-title: NeuroImage: Clin. – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: b35 article-title: Unmasking Clever Hans predictors and assessing what machines really learn publication-title: Nat. Commun. – volume: 56 start-page: 766 year: 2011 end-page: 781 ident: b16 article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage – volume: 19 start-page: 579 year: 2009 end-page: 587 ident: b13 article-title: Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI publication-title: Hippocampus – volume: 2 start-page: e489 year: 2020 end-page: e492 ident: b23 article-title: The myth of generalisability in clinical research and machine learning in health care publication-title: Lancet Digit. Health – volume: 15 year: 2018 ident: b71 article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study publication-title: PLoS Med. – volume: 264 start-page: 47 year: 2016 end-page: 56 ident: b37 article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion publication-title: J. Neurosci. Methods – volume: 11 start-page: 194 year: 2019 ident: b7 article-title: Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification publication-title: Front. Aging Neurosci. – volume: 3 start-page: 1 year: 2016 end-page: 9 ident: b26 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Sci. Data – volume: 67 year: 2021 ident: b62 article-title: Detect and correct bias in multi-site neuroimaging datasets publication-title: Med. Image Anal. – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: b30 article-title: Brain age prediction using deep learning uncovers associated sequence variants publication-title: Nat. Commun. – year: 2021 ident: b49 article-title: Clinica: An open source software platform for reproducible clinical neuroscience studies – start-page: 1 year: 2022 end-page: 4 ident: b56 article-title: MRI field strength predicts Alzheimer’s disease: a case example of bias in the ADNI data set publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging – volume: 22 start-page: 1560 year: 2021 end-page: 1576 ident: b11 article-title: Deep learning for brain disorders: from data processing to disease treatment publication-title: Brief. Bioinform. – volume: 155 start-page: 1135 year: 2019 end-page: 1141 ident: b68 article-title: Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition publication-title: JAMA Dermatol. – volume: 23 year: 2019 ident: b64 article-title: Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations publication-title: NeuroImage: Clin. – reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2818–2826. – start-page: 925 year: 2019 end-page: 933 ident: b6 article-title: Dementia detection and classification from MRI images using deep neural networks and transfer learning publication-title: International Work-Conference on Artificial Neural Networks – volume: 14 start-page: 853 year: 2020 ident: b40 article-title: Differential diagnosis of frontotemporal dementia, Alzheimer’s disease, and normal aging using a multi-scale multi-type feature generative adversarial deep neural network on structural magnetic resonance images publication-title: Front. Neurosci. – reference: Bottani, S., Thibeau-Sutre, E., Maire, A., Ströer, S., Dormont, D., Colliot, O., Burgos, N., 2022b. Homogenization of brain MRI from a clinical data warehouse using contrast-enhanced to non-contrast-enhanced image translation with U-Net derived models. In: SPIE Medical Imaging 2022. – volume: 1 year: 2022 ident: b51 article-title: Generalizability challenges of mortality risk prediction models: A retrospective analysis on a multi-center database publication-title: PLOS Digit. Health – volume: 189 start-page: 276 year: 2019 end-page: 287 ident: b53 article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease publication-title: Neuroimage – start-page: 105751S year: 2018 ident: b65 article-title: Classification of brain MRI with big data and deep 3D convolutional neural networks publication-title: Medical Imaging 2018: Computer-Aided Diagnosis, Vol. 10575 – volume: 39 start-page: 1731 issue: 4 year: 2008 ident: 10.1016/j.media.2023.102903_b21 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.031 – volume: 70 start-page: 8 year: 2018 ident: 10.1016/j.media.2023.102903_b27 article-title: Adaptive fusion of texture-based grading for Alzheimer’s disease classification publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2018.08.002 – volume: 37 start-page: 101 year: 2017 ident: 10.1016/j.media.2023.102903_b54 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.01.008 – volume: 44 start-page: 1415 issue: 4 year: 2009 ident: 10.1016/j.media.2023.102903_b42 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.031 – volume: 31 year: 2021 ident: 10.1016/j.media.2023.102903_b10 article-title: Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease publication-title: NeuroImage: Clin. – volume: 41 start-page: 685 issue: 3 year: 2014 ident: 10.1016/j.media.2023.102903_b20 article-title: Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-131928 – volume: 21 year: 2019 ident: 10.1016/j.media.2023.102903_b5 article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks publication-title: NeuroImage: Clin. – volume: 155 start-page: 530 year: 2017 ident: 10.1016/j.media.2023.102903_b48 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.057 – volume: 18 start-page: 808 issue: 5 year: 2014 ident: 10.1016/j.media.2023.102903_b58 article-title: Multiple instance learning for classification of dementia in brain MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.04.006 – volume: 67 year: 2021 ident: 10.1016/j.media.2023.102903_b62 article-title: Detect and correct bias in multi-site neuroimaging datasets publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101879 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.media.2023.102903_b26 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Sci. Data doi: 10.1038/sdata.2016.44 – volume: 19 start-page: 579 issue: 6 year: 2009 ident: 10.1016/j.media.2023.102903_b13 article-title: Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI publication-title: Hippocampus doi: 10.1002/hipo.20626 – volume: 60 start-page: 1106 issue: 2 year: 2012 ident: 10.1016/j.media.2023.102903_b39 article-title: Ensemble sparse classification of Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.055 – volume: 189 start-page: 276 year: 2019 ident: 10.1016/j.media.2023.102903_b53 article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.031 – volume: 26 start-page: 839 issue: 3 year: 2005 ident: 10.1016/j.media.2023.102903_b2 article-title: Unified segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.02.018 – year: 2007 ident: 10.1016/j.media.2023.102903_b70 – volume: 47 start-page: 1476 issue: 4 year: 2009 ident: 10.1016/j.media.2023.102903_b25 article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.036 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.media.2023.102903_b35 article-title: Unmasking Clever Hans predictors and assessing what machines really learn publication-title: Nat. Commun. doi: 10.1038/s41467-019-08987-4 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.media.2023.102903_b45 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 75 year: 2022 ident: 10.1016/j.media.2023.102903_b8 article-title: Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102219 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.media.2023.102903_b30 article-title: Brain age prediction using deep learning uncovers associated sequence variants publication-title: Nat. Commun. doi: 10.1038/s41467-019-13163-9 – ident: 10.1016/j.media.2023.102903_b44 doi: 10.1145/3368555.3384468 – volume: 14 issue: 12 year: 2019 ident: 10.1016/j.media.2023.102903_b47 article-title: Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks publication-title: PLoS One doi: 10.1371/journal.pone.0225759 – volume: 74 start-page: 1157 issue: 4 year: 2020 ident: 10.1016/j.media.2023.102903_b43 article-title: Accuracy of MRI classification algorithms in a tertiary memory center clinical routine cohort publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-190594 – volume: 23 year: 2019 ident: 10.1016/j.media.2023.102903_b64 article-title: Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations publication-title: NeuroImage: Clin. – volume: 48 start-page: 138 issue: 1 year: 2009 ident: 10.1016/j.media.2023.102903_b29 article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.056 – volume: 47 start-page: 939 issue: 4 year: 2015 ident: 10.1016/j.media.2023.102903_b32 article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-150334 – year: 2021 ident: 10.1016/j.media.2023.102903_b49 – volume: 183 start-page: 504 year: 2018 ident: 10.1016/j.media.2023.102903_b50 article-title: Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.08.042 – volume: 220 year: 2022 ident: 10.1016/j.media.2023.102903_b57 article-title: ClinicaDL: An open-source deep learning software for reproducible neuroimaging processing publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2022.106818 – volume: 6 issue: 11 year: 2017 ident: 10.1016/j.media.2023.102903_b67 article-title: Regional validation and recalibration of clinical predictive models for patients with acute heart failure publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.117.006121 – volume: 22 start-page: 1560 issue: 2 year: 2021 ident: 10.1016/j.media.2023.102903_b11 article-title: Deep learning for brain disorders: from data processing to disease treatment publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa310 – volume: 48 start-page: 412 issue: 6 year: 2021 ident: 10.1016/j.media.2023.102903_b12 article-title: Radiological classification of dementia from anatomical MRI assisted by machine learning-derived maps publication-title: J. Neuroradiol. doi: 10.1016/j.neurad.2020.04.004 – year: 2022 ident: 10.1016/j.media.2023.102903_b69 article-title: Accurate brain-age models for routine clinical MRI examinations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.118871 – ident: 10.1016/j.media.2023.102903_b9 – volume: 70 start-page: 101 year: 2018 ident: 10.1016/j.media.2023.102903_b36 article-title: Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2018.09.009 – volume: 42 start-page: 880 issue: 4 year: 2018 ident: 10.1016/j.media.2023.102903_b38 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2889096 – volume: 56 start-page: 766 issue: 2 year: 2011 ident: 10.1016/j.media.2023.102903_b16 article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.013 – start-page: 105751S year: 2018 ident: 10.1016/j.media.2023.102903_b65 article-title: Classification of brain MRI with big data and deep 3D convolutional neural networks – volume: 11 start-page: 194 year: 2019 ident: 10.1016/j.media.2023.102903_b7 article-title: Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00194 – volume: 67 year: 2021 ident: 10.1016/j.media.2023.102903_b1 article-title: Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101848 – volume: 5 start-page: 48 issue: 1 year: 2022 ident: 10.1016/j.media.2023.102903_b60 article-title: Machine learning for medical imaging: methodological failures and recommendations for the future publication-title: NPJ Digit. Med. doi: 10.1038/s41746-022-00592-y – volume: 155 start-page: 1135 issue: 10 year: 2019 ident: 10.1016/j.media.2023.102903_b68 article-title: Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition publication-title: JAMA Dermatol. doi: 10.1001/jamadermatol.2019.1735 – volume: 187 year: 2020 ident: 10.1016/j.media.2023.102903_b19 article-title: Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105242 – volume: 11 year: 2020 ident: 10.1016/j.media.2023.102903_b15 article-title: Ensemble learning of convolutional neural network, support vector machine, and best linear unbiased predictor for brain age prediction: ARAMIS contribution to the predictive analytics competition 2019 challenge publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2020.593336 – volume: 24 start-page: 1052 issue: 6 year: 2017 ident: 10.1016/j.media.2023.102903_b18 article-title: Calibration drift in regression and machine learning models for acute kidney injury publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocx030 – volume: 67 year: 2021 ident: 10.1016/j.media.2023.102903_b28 article-title: Multi-scale graph-based grading for Alzheimer’s disease prediction publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101850 – volume: 2 start-page: e489 issue: 9 year: 2020 ident: 10.1016/j.media.2023.102903_b23 article-title: The myth of generalisability in clinical research and machine learning in health care publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30186-2 – year: 2020 ident: 10.1016/j.media.2023.102903_b66 article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101694 – start-page: 1 year: 2019 ident: 10.1016/j.media.2023.102903_b31 article-title: Everything matters: the ReproNim perspective on reproducible neuroimaging publication-title: Front. Neuroinf. doi: 10.3389/fninf.2019.00001 – volume: 39 start-page: 1186 issue: 3 year: 2008 ident: 10.1016/j.media.2023.102903_b61 article-title: Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.073 – year: 2022 ident: 10.1016/j.media.2023.102903_b63 article-title: Clever hans effect found in a widely used brain tumour MRI dataset publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102368 – volume: 1 start-page: 141 issue: 1 year: 2012 ident: 10.1016/j.media.2023.102903_b14 article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2012.10.002 – start-page: 1 year: 2022 ident: 10.1016/j.media.2023.102903_b56 article-title: MRI field strength predicts Alzheimer’s disease: a case example of bias in the ADNI data set – start-page: 925 year: 2019 ident: 10.1016/j.media.2023.102903_b6 article-title: Dementia detection and classification from MRI images using deep neural networks and transfer learning – start-page: 1 year: 2017 ident: 10.1016/j.media.2023.102903_b22 article-title: A deep CNN based multi-class classification of Alzheimer’s disease using MRI – volume: 8 start-page: 44 year: 2014 ident: 10.1016/j.media.2023.102903_b4 article-title: The insight ToolKit image registration framework publication-title: Front. Neuroinf. doi: 10.3389/fninf.2014.00044 – volume: 92 start-page: 608 issue: 6 year: 2021 ident: 10.1016/j.media.2023.102903_b41 article-title: MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2020-324106 – volume: 2 start-page: 665 issue: 11 year: 2020 ident: 10.1016/j.media.2023.102903_b24 article-title: Shortcut learning in deep neural networks publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00257-z – ident: 10.1016/j.media.2023.102903_b55 doi: 10.1109/CVPR.2016.308 – volume: 15 issue: 11 year: 2018 ident: 10.1016/j.media.2023.102903_b71 article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002683 – volume: 12 start-page: 26 issue: 1 year: 2008 ident: 10.1016/j.media.2023.102903_b3 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – start-page: 57 year: 2020 ident: 10.1016/j.media.2023.102903_b17 article-title: Hospital databases – volume: 264 start-page: 47 year: 2016 ident: 10.1016/j.media.2023.102903_b37 article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.03.001 – volume: 1 issue: 4 year: 2022 ident: 10.1016/j.media.2023.102903_b51 article-title: Generalizability challenges of mortality risk prediction models: A retrospective analysis on a multi-center database publication-title: PLOS Digit. Health doi: 10.1371/journal.pdig.0000023 – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 10.1016/j.media.2023.102903_b59 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 14 start-page: 853 year: 2020 ident: 10.1016/j.media.2023.102903_b40 article-title: Differential diagnosis of frontotemporal dementia, Alzheimer’s disease, and normal aging using a multi-scale multi-type feature generative adversarial deep neural network on structural magnetic resonance images publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00853 – volume: 11 start-page: 435 year: 2016 ident: 10.1016/j.media.2023.102903_b34 article-title: Differential diagnosis of neurodegenerative diseases using structural MRI data publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2016.02.019 – volume: 131 start-page: 681 issue: 3 year: 2008 ident: 10.1016/j.media.2023.102903_b33 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 30 start-page: 779 issue: 6 year: 2015 ident: 10.1016/j.media.2023.102903_b52 article-title: Comparison of regional gray matter atrophy, white matter alteration, and glucose metabolism as a predictor of the conversion to Alzheimer’s disease in mild cognitive impairment publication-title: J. Korean Med. Sci. doi: 10.3346/jkms.2015.30.6.779 – volume: 40 start-page: 1666 issue: 5 year: 2019 ident: 10.1016/j.media.2023.102903_b46 article-title: Discriminating Alzheimer’s disease progression using a new hippocampal marker from T1-weighted MRI: The local surface roughness publication-title: Human Brain Mapp. doi: 10.1002/hbm.24478 |
SSID | ssj0007440 |
Score | 2.4493656 |
Snippet | A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102903 |
SubjectTerms | Artificial Intelligence Clinical data warehouse Computer Science Deep learning Dementia MRI Neuroimaging Shortcut learning |
Title | Evaluation of MRI-based machine learning approaches for computer-aided diagnosis of dementia in a clinical data warehouse |
URI | https://dx.doi.org/10.1016/j.media.2023.102903 https://www.ncbi.nlm.nih.gov/pubmed/37523918 https://www.proquest.com/docview/2844682039 https://hal.science/hal-03656136 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51txKCA4ICZXlUBnHE3U2cOPZxqVq20O0BKOrNcmwvDWqzVXcL4sJvZyZxIhCiB05RothxPON52DPfALzS0hbKScUDshPP1EJyhZqE50J6qQpk6ZIcxfmxnJ1k707z0w3Y63JhKKwyyv5WpjfSOj4Zx9kcX1bV-GMiqFhJQtuaaLcIPYDNFLW9GsLm9PD97LgXyISB16ZfJZwadOBDTZhXk6CxS0XECcVAd8Wz_lZQgzOKlPyXGdqoo4N7cDfakWzaDvU-bIR6C-78hi64Bbfm8dz8AfzY70G92XLB5h8OOakvzy6aWMrAYvGIL6zDGA8rhuYsc7HoAyckSc98G5hXragX3-wsVpZVNbOsS7FkFHPKvturcLa8XoWHcHKw_2lvxmPRBe4yodbc-dKXuEid1TaTciJc6dIc3SrtCh30InOl126SW6Eor9a7idIliqrcqlx6n4pHMKyXdXgMjNDjsM88oEuVBY-mkBdZOgmFFyqkMh1B2s20cRGRnApjnJsu9OyrachjiDymJc8IXveNLltAjptflx0JzR98ZVBl3NzwJRK8_wShcM-mR4aeodInt0t-wz940fGDwWVJZy22Dji7BrV-JtG6EnoE2y2j9H2JAnlWJ-rJ_47tKdymuzam8BkM11fX4TnaRutyBwa7P5OduALw-vbN0efpLxUDC3Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tncTHA4LxVT4N4hGvbew49mM1bUpZ2wfYpL1Zie2yIEintQPx33OXOBEIsQdendhxfOf7sO9-B_DOqCLTTmkekJ241CvFNWoSngrllc6QpUtyFBdLlZ_JD-fp-Q4cdrkwFFYZZX8r0xtpHVtGcTVHl1U1-jQRVKxkQseaaLcIswt7kopaD2BvOjvJl71AJgy8Nv1qwqlDBz7UhHk1CRoHVEScUAxMVzzrbwW1e0GRkv8yQxt1dHwf7kU7kk3bqT6AnVDvw93f0AX34dYi3ps_hJ9HPag3W6_Y4uOMk_ry7FsTSxlYLB7xmXUY42HD0JxlLhZ94IQk6ZlvA_OqDY3im5PFqmBVzQrWpVgyijllP4qrcLG-3oRHcHZ8dHqY81h0gTsp9JY7X_oSN6krTCGVGgtXuiRFt8q4zASzkq70xo3TQmjKq_VurE2JoiotdKq8T8RjGNTrOjwFRuhxOGYa0KWSwaMp5IVMxiHzQodEJUNIupW2LiKSU2GMr7YLPftiG_JYIo9tyTOE932nyxaQ4-bXVUdC-wdfWVQZN3d8iwTvP0Eo3Pl0bqkNlT65Xeo7_sGbjh8sbku6aynqgKtrUetLhdaVMEN40jJKP5bIkGfNRD_737m9htv56WJu57PlyXO4Q0_a-MIXMNheXYeXaCdty1dxH_wCArMLyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+MRI-based+machine+learning+approaches+for+computer-aided+diagnosis+of+dementia+in+a+clinical+data+warehouse&rft.jtitle=Medical+image+analysis&rft.au=Bottani%2C+Simona&rft.au=Burgos%2C+Ninon&rft.au=Maire%2C+Aur%C3%A9lien&rft.au=Saracino%2C+Dario&rft.date=2023-10-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=89&rft_id=info:doi/10.1016%2Fj.media.2023.102903&rft.externalDocID=S1361841523001639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |