Numerical simulation of a variable speed refrigeration system
This work presents two numerical models to simulate the transient and steady state behavior of a vapor compression refrigeration system. The condenser and the evaporator were divided into a number of control volumes. Time dependent partial differential equations system was obtained from the mass, en...
Saved in:
Published in | International journal of refrigeration Vol. 24; no. 2; pp. 192 - 200 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.03.2001
Elsevier Science |
Subjects | |
Online Access | Get full text |
ISSN | 0140-7007 1879-2081 |
DOI | 10.1016/S0140-7007(00)00014-1 |
Cover
Abstract | This work presents two numerical models to simulate the transient and steady state behavior of a vapor compression refrigeration system. The condenser and the evaporator were divided into a number of control volumes. Time dependent partial differential equations system was obtained from the mass, energy and momentum balances for each control volume. As the expansion valve and the compressor both have very small thermal inertia, the steady state models were applied for these components. Transient and steady state models numerical predictions were compared and good agreement was found. Further simulations were performed with the objective of verifying the possibility of controlling the refrigeration system and the superheating of the refrigerant in the evaporator outlet by varying the compressor speed and the throttling valve sectional area. The results indicate that the proposed models can be used to formulate an algorithm for controlling a refrigeration system.
Le principal objectif de ce travail est de présenter deux modèles élaborés afin de simuler le fonctionnement en régime transitoire et permanent d'un système frigorifique à compression de vapeur. Le condenseur et l'évaporateur ont été divisés en plusieurs sous-volumes. Un système d'équations différentielles a été obtenu à partir de l'application, pour chaque sous-volume, des équations de bilans énergétique, massique et de quantité de mouvement. Puisque le détendeur et le compresseur ont une faible inertie thermique, ces composants ont été modelés en régime permanent. Les prévisions des modèles en régime transitoire et permanent ont été comparés et on a pu montrer une bonne concordance entre ces résultats. Des simulations supplémentaires ont été réalisées afin de vérifier la possibilité d'effectuer la régulation de la puissance frigorifique et de la surchauffe du frigorigène à la sortie de l'évaporateur à partir de la vitesse du compresseur et de la section de l'obturateur. Les résultats obtenus indiquent que les modèles peuvent être utiles dans le développement d'un algorithme de régulation d'un système frigorifique. |
---|---|
AbstractList | This work presents two numerical models to simulate the transient and steady state behavior of a vapor compression refrigeration system. The condenser and the evaporator were divided into a number of control volumes. Time dependent partial differential equations system was obtained from the mass, energy and momentum balances for each control volume. As the expansion valve and the compressor both have very small thermal inertia, the steady state models were applied for these components. Transient and steady state models numerical predictions were compared and good agreement was found. Further simulations were performed with the objective of verifying the possibility of controlling the refrigeration system and the superheating of the refrigerant in the evaporator outlet by varying the compressor speed and the throttling valve sectional area. The results indicate that the proposed models can be used to formulate an algorithm for controlling a refrigeration system.
Le principal objectif de ce travail est de présenter deux modèles élaborés afin de simuler le fonctionnement en régime transitoire et permanent d'un système frigorifique à compression de vapeur. Le condenseur et l'évaporateur ont été divisés en plusieurs sous-volumes. Un système d'équations différentielles a été obtenu à partir de l'application, pour chaque sous-volume, des équations de bilans énergétique, massique et de quantité de mouvement. Puisque le détendeur et le compresseur ont une faible inertie thermique, ces composants ont été modelés en régime permanent. Les prévisions des modèles en régime transitoire et permanent ont été comparés et on a pu montrer une bonne concordance entre ces résultats. Des simulations supplémentaires ont été réalisées afin de vérifier la possibilité d'effectuer la régulation de la puissance frigorifique et de la surchauffe du frigorigène à la sortie de l'évaporateur à partir de la vitesse du compresseur et de la section de l'obturateur. Les résultats obtenus indiquent que les modèles peuvent être utiles dans le développement d'un algorithme de régulation d'un système frigorifique. |
Author | Ismail, K.A.R. Koury, R.N.N. Machado, L. |
Author_xml | – sequence: 1 givenname: R.N.N. surname: Koury fullname: Koury, R.N.N. organization: Mechanical Engineering Department, UFMG, Av. Antônio Carlos, 6627, CEP 31270-910, Belo Horizonte, Minas Gerais, Brazil – sequence: 2 givenname: L. surname: Machado fullname: Machado, L. organization: Mechanical Engineering Department, UFMG, Av. Antônio Carlos, 6627, CEP 31270-910, Belo Horizonte, Minas Gerais, Brazil – sequence: 3 givenname: K.A.R. surname: Ismail fullname: Ismail, K.A.R. email: kamal@fem.unicamp.br organization: Thermal and Fluid Engineering Department, FEM, UNICAMP, Barão Geraldo, CEP 13081-970, Campinas, São Paulo, Brazil |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=881961$$DView record in Pascal Francis |
BookMark | eNqFkE1LxDAQhoOs4O7qTxAKXvRQnbRNkyIisvgFix7Uc0jTiUT6sSTdhf33plvZg5c9hck87zDzzMik7Vok5JzCNQWa33wAzSDmAPwS4AoglDE9IlMqeBEnIOiETPfICZl5_xMYDkxMyd3bukFntaojb5t1rXrbtVFnIhVtlLOqrDHyK8Qqcmic_UY3En7re2xOybFRtcezv3dOvp4ePxcv8fL9-XXxsIx1loo-1mWaGZPoKmFlwQVHzVQushQSVeSao1EMQjPnLEXKiqTESoUvkYosT6CEdE4uxrkr5cOqxqlWWy9XzjbKbaUQtMhpoNhIadd5H_bdAxTkYEruTMlBgwSQO1NyyN3-y2nb787snbL1wfT9mMYgYGPRSa8tthor61D3sursgQm_mraEBw |
CODEN | IJRFDI |
CitedBy_id | crossref_primary_10_1016_j_ijrefrig_2009_03_012 crossref_primary_10_1007_s40095_014_0088_2 crossref_primary_10_1080_00986445_2016_1230850 crossref_primary_10_1016_j_ijrefrig_2024_04_015 crossref_primary_10_1016_j_energy_2015_07_018 crossref_primary_10_1002_eej_21138 crossref_primary_10_1016_j_enbuild_2012_03_036 crossref_primary_10_1177_0143624411406016 crossref_primary_10_1016_j_ijrefrig_2006_11_007 crossref_primary_10_1080_23744731_2015_1070647 crossref_primary_10_1016_j_ijrefrig_2012_08_013 crossref_primary_10_1016_j_energy_2018_12_169 crossref_primary_10_1016_j_applthermaleng_2017_05_163 crossref_primary_10_1115_1_4034852 crossref_primary_10_1016_j_applthermaleng_2010_05_023 crossref_primary_10_1016_j_ijrefrig_2016_06_007 crossref_primary_10_1016_j_applthermaleng_2005_01_002 crossref_primary_10_1088_1757_899X_90_1_012030 crossref_primary_10_1016_j_applthermaleng_2023_120725 crossref_primary_10_1016_j_ijrefrig_2022_06_032 crossref_primary_10_1016_j_apenergy_2014_07_011 crossref_primary_10_18186_thermal_712617 crossref_primary_10_1080_10789669_2009_10390854 crossref_primary_10_1016_j_ijrefrig_2006_03_002 crossref_primary_10_1007_s40095_020_00346_0 crossref_primary_10_1016_j_apenergy_2015_10_097 crossref_primary_10_1016_j_enbuild_2016_05_035 crossref_primary_10_1021_ie5017915 crossref_primary_10_1016_j_est_2018_04_013 crossref_primary_10_1016_j_ijrefrig_2014_06_019 crossref_primary_10_1016_j_ijrefrig_2011_04_009 crossref_primary_10_1016_j_ijrefrig_2007_08_008 crossref_primary_10_1016_j_ijrefrig_2017_11_034 crossref_primary_10_1007_s40430_022_03439_5 crossref_primary_10_1016_j_enbuild_2009_04_002 crossref_primary_10_1016_j_energ_2024_100007 crossref_primary_10_1016_j_ijrefrig_2011_04_005 crossref_primary_10_1016_j_applthermaleng_2010_12_006 crossref_primary_10_3390_app122311973 crossref_primary_10_1142_S2010132512500204 crossref_primary_10_1016_j_ijrefrig_2005_08_013 crossref_primary_10_1016_j_enconman_2005_10_030 crossref_primary_10_1007_s11708_010_0113_y crossref_primary_10_1016_j_enconman_2007_01_033 crossref_primary_10_1541_ieejpes_129_272 crossref_primary_10_1016_j_ijrefrig_2016_01_001 crossref_primary_10_1016_j_ijrefrig_2019_10_001 crossref_primary_10_1016_j_ijthermalsci_2007_07_018 crossref_primary_10_1080_10789669_2012_670685 crossref_primary_10_1016_j_ijrefrig_2004_08_013 crossref_primary_10_1016_j_applthermaleng_2010_05_008 crossref_primary_10_1016_j_ijrefrig_2017_11_007 crossref_primary_10_1016_j_ijrefrig_2012_11_006 crossref_primary_10_4028_www_scientific_net_AMR_650_431 crossref_primary_10_3795_KSME_B_2016_40_11_705 crossref_primary_10_1016_j_compchemeng_2012_08_003 crossref_primary_10_1016_j_ijrefrig_2009_12_028 crossref_primary_10_1016_j_egypro_2014_06_060 crossref_primary_10_1016_j_enbuild_2017_08_072 crossref_primary_10_1016_j_enbuild_2014_02_029 crossref_primary_10_1016_j_jprocont_2012_06_011 crossref_primary_10_1016_j_enconman_2006_07_005 crossref_primary_10_1016_j_energy_2015_07_042 crossref_primary_10_1007_s10098_006_0040_0 crossref_primary_10_1016_j_ijrefrig_2009_03_006 crossref_primary_10_1016_j_eswa_2011_03_052 crossref_primary_10_1016_j_enconman_2013_03_015 crossref_primary_10_1016_j_ijrefrig_2011_12_007 crossref_primary_10_1016_j_ijrefrig_2018_07_031 crossref_primary_10_1142_S2010132519500391 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121434 crossref_primary_10_1016_j_ijrefrig_2010_04_008 crossref_primary_10_1142_S2010132514500138 crossref_primary_10_1016_j_enconman_2004_06_003 crossref_primary_10_1016_j_enbuild_2014_09_022 crossref_primary_10_1016_j_ijrefrig_2004_02_008 crossref_primary_10_1016_S0140_7007_01_00073_1 crossref_primary_10_1016_j_ijrefrig_2012_09_015 crossref_primary_10_1115_1_1760526 crossref_primary_10_1007_s10068_014_0158_5 crossref_primary_10_1016_j_applthermaleng_2012_08_041 crossref_primary_10_1016_j_applthermaleng_2007_12_008 crossref_primary_10_3390_pr12081600 crossref_primary_10_1016_j_ijrefrig_2022_09_032 crossref_primary_10_1080_10789669_2004_10391095 crossref_primary_10_1016_j_ijrefrig_2012_07_005 crossref_primary_10_1016_j_applthermaleng_2005_06_019 crossref_primary_10_1016_j_applthermaleng_2012_02_022 crossref_primary_10_1016_j_applthermaleng_2005_10_003 crossref_primary_10_1016_j_csite_2023_103301 crossref_primary_10_1016_j_applthermaleng_2008_10_002 crossref_primary_10_1016_j_enconman_2007_06_033 crossref_primary_10_1016_j_ijrefrig_2010_07_016 crossref_primary_10_1016_j_ijrefrig_2012_10_015 crossref_primary_10_1177_1687814016671248 crossref_primary_10_1016_j_proeng_2015_09_132 crossref_primary_10_1016_j_proeng_2012_01_1106 crossref_primary_10_1016_j_applthermaleng_2005_04_014 crossref_primary_10_1016_j_ijrefrig_2014_09_009 crossref_primary_10_1016_j_applthermaleng_2021_117351 crossref_primary_10_1016_j_enconman_2022_115867 crossref_primary_10_1016_j_ijrefrig_2016_09_008 crossref_primary_10_1016_j_apenergy_2018_03_036 crossref_primary_10_1016_j_ijrefrig_2021_08_006 crossref_primary_10_1016_S0306_2619_02_00053_3 crossref_primary_10_1080_23744731_2015_1057084 crossref_primary_10_1016_j_ijrefrig_2018_04_026 crossref_primary_10_1016_j_buildenv_2005_02_002 crossref_primary_10_1016_j_enbuild_2004_06_019 crossref_primary_10_1016_j_enconman_2024_118078 crossref_primary_10_1016_j_applthermaleng_2010_01_038 crossref_primary_10_31875_2410_2199_2023_10_2 crossref_primary_10_1016_j_applthermaleng_2023_121664 crossref_primary_10_1016_j_applthermaleng_2017_02_003 crossref_primary_10_1016_j_buildenv_2006_09_004 crossref_primary_10_1016_j_ijrefrig_2015_03_017 crossref_primary_10_1016_j_ijrefrig_2019_05_024 crossref_primary_10_1016_j_ijrefrig_2007_07_001 crossref_primary_10_1016_j_enbuild_2023_113253 crossref_primary_10_1016_S1359_4311_03_00002_4 crossref_primary_10_1016_j_ijrefrig_2020_06_008 crossref_primary_10_1016_j_ijrefrig_2016_07_020 crossref_primary_10_1016_j_applthermaleng_2014_03_052 crossref_primary_10_1049_iet_stg_2020_0154 crossref_primary_10_1016_j_ijrefrig_2018_01_016 crossref_primary_10_1007_s11771_011_0733_3 crossref_primary_10_1016_j_apenergy_2005_05_007 crossref_primary_10_1016_j_applthermaleng_2011_02_022 crossref_primary_10_1007_s40430_016_0538_2 crossref_primary_10_1016_j_applthermaleng_2004_10_012 crossref_primary_10_1016_j_jobe_2021_102153 crossref_primary_10_1016_j_applthermaleng_2010_09_013 crossref_primary_10_1016_j_applthermaleng_2012_12_023 crossref_primary_10_1080_10789669_2011_582916 crossref_primary_10_1016_j_applthermaleng_2013_01_031 |
Cites_doi | 10.1016/0140-7007(89)90009-1 10.1002/er.4440150206 10.1016/0140-7007(94)90050-7 10.1016/0140-7007(91)90082-R 10.1016/0140-7007(92)90031-O 10.1016/0140-7007(92)90032-P 10.1016/0306-2619(88)90002-5 10.1016/0140-7007(95)00015-4 |
ContentType | Journal Article |
Copyright | 2001 Elsevier Science Ltd and IIR 2001 INIST-CNRS |
Copyright_xml | – notice: 2001 Elsevier Science Ltd and IIR – notice: 2001 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/S0140-7007(00)00014-1 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
DocumentTitleAlternate | Simulation numérique d'un système frigorifique à vitesse variable |
EISSN | 1879-2081 |
EndPage | 200 |
ExternalDocumentID | 881961 10_1016_S0140_7007_00_00014_1 S0140700700000141 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSA SST SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c438t-cb34ff2cd25b9787ec5a684302a96c7efa50cd26753e1592bedaa508384620b03 |
IEDL.DBID | .~1 |
ISSN | 0140-7007 |
IngestDate | Mon Jul 21 09:16:56 EDT 2025 Tue Jul 01 01:46:58 EDT 2025 Thu Apr 24 23:00:23 EDT 2025 Fri Feb 23 02:33:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Refrigerating system Transient behavior Système frigorifique Régime permanent Compression system Modelling Système à compression Fonctionnement Operating Steady state Régime transitoire Modélisation Refrigeration equipment Variable speed drive Unsteady state Numerical simulation Mathematical model Modeling Varying speed Compression refrigeration |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-cb34ff2cd25b9787ec5a684302a96c7efa50cd26753e1592bedaa508384620b03 |
PageCount | 9 |
ParticipantIDs | pascalfrancis_primary_881961 crossref_primary_10_1016_S0140_7007_00_00014_1 crossref_citationtrail_10_1016_S0140_7007_00_00014_1 elsevier_sciencedirect_doi_10_1016_S0140_7007_00_00014_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-03-01 |
PublicationDateYYYYMMDD | 2001-03-01 |
PublicationDate_xml | – month: 03 year: 2001 text: 2001-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of refrigeration |
PublicationYear | 2001 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Wang H. Modelling of a refrigerating system coupled with a refrigerated room. Thèse de doctorat, Delf University of Technology, Netherlands, 1991. p. 230. Salim, Sadasivam, Balakrishnan (BIB16) 1991; 15 Yasuda, Touber, Machielsen (BIB5) 1983; 98 Parise JAR. Theoretical and experimental analysis of a diesel driven heat pump. PhD thesis, University of Manchester, UK, 1983. p. 325. Welsby, Devotta, Diggory (BIB15) 1988; 31 Mongey B, Mcmullan JT, Mcnerlin MG. An examination of hydrocarbon mixtures for use in high temperature heat pump applications. In: Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 11.11–15. Murphy, Goldschmidt (BIB14) 1986; 92 Darrow JB, Lovatt SJ, Cleland AC. Assessment of a simple mathematical model for predicting the transient behavior of a refrigeration system. In: XVIIIth Int. Cong. Refrigeration, Montreal, 1991, p. 1189–92. Machado L. Modele de simulation et etude experimentale d'un evaporateur de machine frigorifique en regime transitoire. These de Docteur, INSA/LYON, 1996. p. 160. Votsis, Tassou, Wilson, Marquand (BIB10) 1992; 15 Macarthur, Grald (BIB17) 1989; 12 Conde MR. A steady state mathematical simulation model for air-to-water heat pumps (Report NEFF). Zurich: Swiss Federal Institute of Technology, 1985, p. 236. Domanski, Mclinden (BIB1) 1992; 15 Dengler, Addoms (BIB23) 1956; 52 Lemos MJS, Zaparoli EL. Steady-state numerical solution of vapor compression refrigeration units. In: Int. Refrigeration Conference at Purdue, Purdue University, 1996. 235–40. Rogstam HJ. Theoretical and experimental investigation of cyclopropane as refrigerant. Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 10.15–19. Shah (BIB24) 1982; 88 Tamainot-Telto Z. Détendeurs thermostatiques de machines frigorifiques. Comportement dynamique et modélisation. Thèse de doctorat, INSA, Lyon, 1993. p. 150. Wang, Touber (BIB18) 1991; 1 Nyers, Stoyan (BIB19) 1994; 17 Wenxue H, Kraft H. A mathematical model of an evaporator based on the step exciting method. In: XVIIIth Int. Cong. Refrigeration, Montreal, 1991. p. 1217–31. Ferreira CI, Kalkman H. Transient behavior of economizers for multi-stage refrigeration plant. In: Int. Refrigeration Conference at Purdue, Purdue University, 1996. p. 241–46. Jia, Tso, Chia, Jolly (BIB20) 1995; 18 Pelletier O, Björn P. Performance of plate heat exchangers and compressor in a domestic heat pump using propane. In: Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 11.16–20. Outtagarts A, Haberschill P, Lallemand M. Comportement dynamique d'un évaporateur de machine frigorifique soumis à des variations de débit. In: 19th Int. Cong. Refrigeration, vol. IIIa, La Haye, Netherlands, August 1995, p. 413–20. Murphy (10.1016/S0140-7007(00)00014-1_BIB14) 1986; 92 Domanski (10.1016/S0140-7007(00)00014-1_BIB1) 1992; 15 10.1016/S0140-7007(00)00014-1_BIB6 10.1016/S0140-7007(00)00014-1_BIB7 10.1016/S0140-7007(00)00014-1_BIB8 10.1016/S0140-7007(00)00014-1_BIB12 10.1016/S0140-7007(00)00014-1_BIB2 10.1016/S0140-7007(00)00014-1_BIB13 Welsby (10.1016/S0140-7007(00)00014-1_BIB15) 1988; 31 10.1016/S0140-7007(00)00014-1_BIB3 Dengler (10.1016/S0140-7007(00)00014-1_BIB23) 1956; 52 10.1016/S0140-7007(00)00014-1_BIB4 10.1016/S0140-7007(00)00014-1_BIB11 Jia (10.1016/S0140-7007(00)00014-1_BIB20) 1995; 18 Salim (10.1016/S0140-7007(00)00014-1_BIB16) 1991; 15 Yasuda (10.1016/S0140-7007(00)00014-1_BIB5) 1983; 98 Macarthur (10.1016/S0140-7007(00)00014-1_BIB17) 1989; 12 Shah (10.1016/S0140-7007(00)00014-1_BIB24) 1982; 88 Nyers (10.1016/S0140-7007(00)00014-1_BIB19) 1994; 17 10.1016/S0140-7007(00)00014-1_BIB9 Wang (10.1016/S0140-7007(00)00014-1_BIB18) 1991; 1 Votsis (10.1016/S0140-7007(00)00014-1_BIB10) 1992; 15 10.1016/S0140-7007(00)00014-1_BIB25 10.1016/S0140-7007(00)00014-1_BIB21 10.1016/S0140-7007(00)00014-1_BIB22 |
References_xml | – reference: Wang H. Modelling of a refrigerating system coupled with a refrigerated room. Thèse de doctorat, Delf University of Technology, Netherlands, 1991. p. 230. – volume: 31 start-page: 189 year: 1988 end-page: 203 ident: BIB15 article-title: Steady- and dynamic-state simulations of heat-pumps. Part I: literature review publication-title: Applied Energy – reference: Lemos MJS, Zaparoli EL. Steady-state numerical solution of vapor compression refrigeration units. In: Int. Refrigeration Conference at Purdue, Purdue University, 1996. 235–40. – reference: Machado L. Modele de simulation et etude experimentale d'un evaporateur de machine frigorifique en regime transitoire. These de Docteur, INSA/LYON, 1996. p. 160. – reference: Wenxue H, Kraft H. A mathematical model of an evaporator based on the step exciting method. In: XVIIIth Int. Cong. Refrigeration, Montreal, 1991. p. 1217–31. – volume: 88 start-page: 185 year: 1982 end-page: 196 ident: BIB24 article-title: Chart correlation for saturated boiling heat tranfer publication-title: ASHRAE Trans – volume: 15 start-page: 81 year: 1992 end-page: 88 ident: BIB1 article-title: A simplified cycle simulation model for the performance rating of refrigerants and refrigerant mixtures publication-title: Rev. Int. Froid – reference: Mongey B, Mcmullan JT, Mcnerlin MG. An examination of hydrocarbon mixtures for use in high temperature heat pump applications. In: Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 11.11–15. – volume: 15 start-page: 123 year: 1991 end-page: 135 ident: BIB16 article-title: Transient analysis of heat pump assisted ditillation systems I. The heat pump publication-title: Int. J. Energy Research – reference: Darrow JB, Lovatt SJ, Cleland AC. Assessment of a simple mathematical model for predicting the transient behavior of a refrigeration system. In: XVIIIth Int. Cong. Refrigeration, Montreal, 1991, p. 1189–92. – volume: 92 start-page: 186 year: 1986 end-page: 201 ident: BIB14 article-title: Cycling characteristics of a residential air conditioner. Modeling of shutdown transients publication-title: ASHRAE Trans – reference: Rogstam HJ. Theoretical and experimental investigation of cyclopropane as refrigerant. Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 10.15–19. – volume: 18 start-page: 336 year: 1995 end-page: 342 ident: BIB20 article-title: A distributed model for prediction of the transient response of an evaporator publication-title: Int. J. Refrig – volume: 98 start-page: 408 year: 1983 end-page: 425 ident: BIB5 article-title: Simulation model of a vapor compression refrigeration system publication-title: ASHRAE Trans – reference: Parise JAR. Theoretical and experimental analysis of a diesel driven heat pump. PhD thesis, University of Manchester, UK, 1983. p. 325. – reference: Outtagarts A, Haberschill P, Lallemand M. Comportement dynamique d'un évaporateur de machine frigorifique soumis à des variations de débit. In: 19th Int. Cong. Refrigeration, vol. IIIa, La Haye, Netherlands, August 1995, p. 413–20. – volume: 17 start-page: 101 year: 1994 end-page: 108 ident: BIB19 article-title: A dynamical model adequate for controlling the evaporator of a heat pump publication-title: Int. J. Refrig – volume: 52 start-page: 95 year: 1956 end-page: 103 ident: BIB23 article-title: Heat transfer mechanism for vaporization of water in a vertical tube publication-title: Chem. Eng. Prog. Symp. Series – volume: 15 start-page: 89 year: 1992 end-page: 94 ident: BIB10 article-title: Dynamic characteristics of an air-to-water heat-pump system publication-title: Int. J. Refrig – reference: Pelletier O, Björn P. Performance of plate heat exchangers and compressor in a domestic heat pump using propane. In: Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 11.16–20. – volume: 12 start-page: 29 year: 1989 end-page: 41 ident: BIB17 article-title: Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data publication-title: Int. J. Refrig – reference: Tamainot-Telto Z. Détendeurs thermostatiques de machines frigorifiques. Comportement dynamique et modélisation. Thèse de doctorat, INSA, Lyon, 1993. p. 150. – reference: Conde MR. A steady state mathematical simulation model for air-to-water heat pumps (Report NEFF). Zurich: Swiss Federal Institute of Technology, 1985, p. 236. – volume: 1 start-page: 98 year: 1991 end-page: 110 ident: BIB18 article-title: Distributed and non-steady-state modelling of air cooler publication-title: International Journal of Refrigeration – reference: Ferreira CI, Kalkman H. Transient behavior of economizers for multi-stage refrigeration plant. In: Int. Refrigeration Conference at Purdue, Purdue University, 1996. p. 241–46. – volume: 88 start-page: 185 year: 1982 ident: 10.1016/S0140-7007(00)00014-1_BIB24 article-title: Chart correlation for saturated boiling heat tranfer publication-title: ASHRAE Trans – volume: 12 start-page: 29 year: 1989 ident: 10.1016/S0140-7007(00)00014-1_BIB17 article-title: Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data publication-title: Int. J. Refrig doi: 10.1016/0140-7007(89)90009-1 – ident: 10.1016/S0140-7007(00)00014-1_BIB2 – ident: 10.1016/S0140-7007(00)00014-1_BIB11 – ident: 10.1016/S0140-7007(00)00014-1_BIB6 – ident: 10.1016/S0140-7007(00)00014-1_BIB4 – volume: 92 start-page: 186 issue: 1a year: 1986 ident: 10.1016/S0140-7007(00)00014-1_BIB14 article-title: Cycling characteristics of a residential air conditioner. Modeling of shutdown transients publication-title: ASHRAE Trans – volume: 15 start-page: 123 year: 1991 ident: 10.1016/S0140-7007(00)00014-1_BIB16 article-title: Transient analysis of heat pump assisted ditillation systems I. The heat pump publication-title: Int. J. Energy Research doi: 10.1002/er.4440150206 – ident: 10.1016/S0140-7007(00)00014-1_BIB22 – volume: 98 start-page: 408 issue: 2a year: 1983 ident: 10.1016/S0140-7007(00)00014-1_BIB5 article-title: Simulation model of a vapor compression refrigeration system publication-title: ASHRAE Trans – ident: 10.1016/S0140-7007(00)00014-1_BIB8 – volume: 17 start-page: 101 issue: 2 year: 1994 ident: 10.1016/S0140-7007(00)00014-1_BIB19 article-title: A dynamical model adequate for controlling the evaporator of a heat pump publication-title: Int. J. Refrig doi: 10.1016/0140-7007(94)90050-7 – ident: 10.1016/S0140-7007(00)00014-1_BIB12 – volume: 1 start-page: 98 year: 1991 ident: 10.1016/S0140-7007(00)00014-1_BIB18 article-title: Distributed and non-steady-state modelling of air cooler publication-title: International Journal of Refrigeration doi: 10.1016/0140-7007(91)90082-R – volume: 52 start-page: 95 issue: 18 year: 1956 ident: 10.1016/S0140-7007(00)00014-1_BIB23 article-title: Heat transfer mechanism for vaporization of water in a vertical tube publication-title: Chem. Eng. Prog. Symp. Series – ident: 10.1016/S0140-7007(00)00014-1_BIB3 – ident: 10.1016/S0140-7007(00)00014-1_BIB21 – volume: 15 start-page: 81 year: 1992 ident: 10.1016/S0140-7007(00)00014-1_BIB1 article-title: A simplified cycle simulation model for the performance rating of refrigerants and refrigerant mixtures publication-title: Rev. Int. Froid doi: 10.1016/0140-7007(92)90031-O – volume: 15 start-page: 89 issue: 2 year: 1992 ident: 10.1016/S0140-7007(00)00014-1_BIB10 article-title: Dynamic characteristics of an air-to-water heat-pump system publication-title: Int. J. Refrig doi: 10.1016/0140-7007(92)90032-P – ident: 10.1016/S0140-7007(00)00014-1_BIB7 – volume: 31 start-page: 189 year: 1988 ident: 10.1016/S0140-7007(00)00014-1_BIB15 article-title: Steady- and dynamic-state simulations of heat-pumps. Part I: literature review publication-title: Applied Energy doi: 10.1016/0306-2619(88)90002-5 – ident: 10.1016/S0140-7007(00)00014-1_BIB9 – ident: 10.1016/S0140-7007(00)00014-1_BIB25 – ident: 10.1016/S0140-7007(00)00014-1_BIB13 – volume: 18 start-page: 336 issue: 5 year: 1995 ident: 10.1016/S0140-7007(00)00014-1_BIB20 article-title: A distributed model for prediction of the transient response of an evaporator publication-title: Int. J. Refrig doi: 10.1016/0140-7007(95)00015-4 |
SSID | ssj0017058 |
Score | 2.0538638 |
Snippet | This work presents two numerical models to simulate the transient and steady state behavior of a vapor compression refrigeration system. The condenser and the... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 192 |
SubjectTerms | Applied sciences Compression system Energy Energy. Thermal use of fuels Exact sciences and technology Fonctionnement Modelling Modélisation Operating Refrigerating engineering Refrigerating engineering. Cryogenics. Food conservation Refrigerating system Régime permanent Régime transitoire Steady state Système frigorifique Système à compression Techniques. Materials Transient behavior |
Title | Numerical simulation of a variable speed refrigeration system |
URI | https://dx.doi.org/10.1016/S0140-7007(00)00014-1 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: AKRWK dateStart: 19780501 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXjTG-Iwokh486KFQdtvdcvBAiAQ1cpKE26bbbRMShI2AR3-703aXx8GQeG237WY6mX7TznyD0H0GfmwQsphwqTMC-FYSSQNFYpbyjqJx2tb2HvJ9GA1G7HXMxxXUK3NhbFhlYfu9TXfWumhpFdJs5ZNJy4UlxZauxt1Qu-R1y_4FOt38WYd5WLYYUYYx2q83WTx-Btf4QOmjm4S0_zqfjnO5AKkZX-5i6wzqn6KTAjzirv-_M1TRs3N0tEUpeIGehiv_BjPFi8lnUZsLzw2W-BvcYpsohRc5HFkYlgbPXHsNwJ7R-RKN-s8fvQEpSiQQxUKxJCoNmTGBygKegj8Ya8VlJFhIA9mJVKyN5BQ6wSsINQCXINWZlJYBHmBHQFMaXqHqbD7T1wjLAKAJM4plJgM3SAsTcyME5wb2rcN1DbFSMIkq-MNtGYtpshsoZuWZUOpetVnSrqHmeljuCTT2DRCl1JMdTUjAyO8bWt_ZpfWCAnBP1L75_8y36HATfFZH1eXXSt8BGlmmDaduDXTQfXkbDH8B99HXUQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHNQY42dEUXvwoIdJ17XbOHggRDIEdoKE29J1bUKCQAT8-31dx9fBkHjt8l6X15f3fq99Hwg9ZxDHUo8FDhcqcwDfCkcQKp2ApbwhSZC6ytxD9mM_GrLPER-VUGtdC2PSKgvbb216bq2LlXohzfp8PK7naUmBaVeT31Cb4vUK42CTy6jS7HSjePOYEJB8TGeeyWgItoU8lkm--ELIa87Hcf9yUadzsQDBaTvxYscNtc_RWYEfcdP-4gUqqeklOtnpKniF3uOVfYaZ4MX4qxjPhWcaC_wDkbGplcKLOXgtDFtDcK6sEmDb1PkaDdsfg1bkFFMSHMm8cOnI1GNaU5lRnkJIGCjJhR8yj1DR8GWgtOAEPkJg4CnALjRVmRCmCTwgD0pS4t2g8nQ2VbcICwrohGnJMp1BJKRCHXAdhpxrOLoGV1XE1oJJZNFC3EyymCT7uWJGngkh-cM2S9wqetuQzW0PjUME4VrqyZ4yJGDnD5HW9k5ps2EI0Md37_7P-QkdRYN-L-l14u49Ot7motVQefm9Ug8ATpbpY6F8v2fq2fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+a+variable+speed+refrigeration+system&rft.jtitle=International+journal+of+refrigeration&rft.au=KOURY%2C+R.+N.+N&rft.au=MACHADO%2C+L&rft.au=ISMAIL%2C+K.+A.+R&rft.date=2001-03-01&rft.pub=Elsevier+Science&rft.issn=0140-7007&rft.volume=24&rft.issue=2&rft.spage=192&rft.epage=200&rft_id=info:doi/10.1016%2Fs0140-7007%2800%2900014-1&rft.externalDBID=n%2Fa&rft.externalDocID=881961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7007&client=summon |