Numerical simulation of a variable speed refrigeration system

This work presents two numerical models to simulate the transient and steady state behavior of a vapor compression refrigeration system. The condenser and the evaporator were divided into a number of control volumes. Time dependent partial differential equations system was obtained from the mass, en...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of refrigeration Vol. 24; no. 2; pp. 192 - 200
Main Authors Koury, R.N.N., Machado, L., Ismail, K.A.R.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2001
Elsevier Science
Subjects
Online AccessGet full text
ISSN0140-7007
1879-2081
DOI10.1016/S0140-7007(00)00014-1

Cover

Abstract This work presents two numerical models to simulate the transient and steady state behavior of a vapor compression refrigeration system. The condenser and the evaporator were divided into a number of control volumes. Time dependent partial differential equations system was obtained from the mass, energy and momentum balances for each control volume. As the expansion valve and the compressor both have very small thermal inertia, the steady state models were applied for these components. Transient and steady state models numerical predictions were compared and good agreement was found. Further simulations were performed with the objective of verifying the possibility of controlling the refrigeration system and the superheating of the refrigerant in the evaporator outlet by varying the compressor speed and the throttling valve sectional area. The results indicate that the proposed models can be used to formulate an algorithm for controlling a refrigeration system. Le principal objectif de ce travail est de présenter deux modèles élaborés afin de simuler le fonctionnement en régime transitoire et permanent d'un système frigorifique à compression de vapeur. Le condenseur et l'évaporateur ont été divisés en plusieurs sous-volumes. Un système d'équations différentielles a été obtenu à partir de l'application, pour chaque sous-volume, des équations de bilans énergétique, massique et de quantité de mouvement. Puisque le détendeur et le compresseur ont une faible inertie thermique, ces composants ont été modelés en régime permanent. Les prévisions des modèles en régime transitoire et permanent ont été comparés et on a pu montrer une bonne concordance entre ces résultats. Des simulations supplémentaires ont été réalisées afin de vérifier la possibilité d'effectuer la régulation de la puissance frigorifique et de la surchauffe du frigorigène à la sortie de l'évaporateur à partir de la vitesse du compresseur et de la section de l'obturateur. Les résultats obtenus indiquent que les modèles peuvent être utiles dans le développement d'un algorithme de régulation d'un système frigorifique.
AbstractList This work presents two numerical models to simulate the transient and steady state behavior of a vapor compression refrigeration system. The condenser and the evaporator were divided into a number of control volumes. Time dependent partial differential equations system was obtained from the mass, energy and momentum balances for each control volume. As the expansion valve and the compressor both have very small thermal inertia, the steady state models were applied for these components. Transient and steady state models numerical predictions were compared and good agreement was found. Further simulations were performed with the objective of verifying the possibility of controlling the refrigeration system and the superheating of the refrigerant in the evaporator outlet by varying the compressor speed and the throttling valve sectional area. The results indicate that the proposed models can be used to formulate an algorithm for controlling a refrigeration system. Le principal objectif de ce travail est de présenter deux modèles élaborés afin de simuler le fonctionnement en régime transitoire et permanent d'un système frigorifique à compression de vapeur. Le condenseur et l'évaporateur ont été divisés en plusieurs sous-volumes. Un système d'équations différentielles a été obtenu à partir de l'application, pour chaque sous-volume, des équations de bilans énergétique, massique et de quantité de mouvement. Puisque le détendeur et le compresseur ont une faible inertie thermique, ces composants ont été modelés en régime permanent. Les prévisions des modèles en régime transitoire et permanent ont été comparés et on a pu montrer une bonne concordance entre ces résultats. Des simulations supplémentaires ont été réalisées afin de vérifier la possibilité d'effectuer la régulation de la puissance frigorifique et de la surchauffe du frigorigène à la sortie de l'évaporateur à partir de la vitesse du compresseur et de la section de l'obturateur. Les résultats obtenus indiquent que les modèles peuvent être utiles dans le développement d'un algorithme de régulation d'un système frigorifique.
Author Ismail, K.A.R.
Koury, R.N.N.
Machado, L.
Author_xml – sequence: 1
  givenname: R.N.N.
  surname: Koury
  fullname: Koury, R.N.N.
  organization: Mechanical Engineering Department, UFMG, Av. Antônio Carlos, 6627, CEP 31270-910, Belo Horizonte, Minas Gerais, Brazil
– sequence: 2
  givenname: L.
  surname: Machado
  fullname: Machado, L.
  organization: Mechanical Engineering Department, UFMG, Av. Antônio Carlos, 6627, CEP 31270-910, Belo Horizonte, Minas Gerais, Brazil
– sequence: 3
  givenname: K.A.R.
  surname: Ismail
  fullname: Ismail, K.A.R.
  email: kamal@fem.unicamp.br
  organization: Thermal and Fluid Engineering Department, FEM, UNICAMP, Barão Geraldo, CEP 13081-970, Campinas, São Paulo, Brazil
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=881961$$DView record in Pascal Francis
BookMark eNqFkE1LxDAQhoOs4O7qTxAKXvRQnbRNkyIisvgFix7Uc0jTiUT6sSTdhf33plvZg5c9hck87zDzzMik7Vok5JzCNQWa33wAzSDmAPwS4AoglDE9IlMqeBEnIOiETPfICZl5_xMYDkxMyd3bukFntaojb5t1rXrbtVFnIhVtlLOqrDHyK8Qqcmic_UY3En7re2xOybFRtcezv3dOvp4ePxcv8fL9-XXxsIx1loo-1mWaGZPoKmFlwQVHzVQushQSVeSao1EMQjPnLEXKiqTESoUvkYosT6CEdE4uxrkr5cOqxqlWWy9XzjbKbaUQtMhpoNhIadd5H_bdAxTkYEruTMlBgwSQO1NyyN3-y2nb787snbL1wfT9mMYgYGPRSa8tthor61D3sursgQm_mraEBw
CODEN IJRFDI
CitedBy_id crossref_primary_10_1016_j_ijrefrig_2009_03_012
crossref_primary_10_1007_s40095_014_0088_2
crossref_primary_10_1080_00986445_2016_1230850
crossref_primary_10_1016_j_ijrefrig_2024_04_015
crossref_primary_10_1016_j_energy_2015_07_018
crossref_primary_10_1002_eej_21138
crossref_primary_10_1016_j_enbuild_2012_03_036
crossref_primary_10_1177_0143624411406016
crossref_primary_10_1016_j_ijrefrig_2006_11_007
crossref_primary_10_1080_23744731_2015_1070647
crossref_primary_10_1016_j_ijrefrig_2012_08_013
crossref_primary_10_1016_j_energy_2018_12_169
crossref_primary_10_1016_j_applthermaleng_2017_05_163
crossref_primary_10_1115_1_4034852
crossref_primary_10_1016_j_applthermaleng_2010_05_023
crossref_primary_10_1016_j_ijrefrig_2016_06_007
crossref_primary_10_1016_j_applthermaleng_2005_01_002
crossref_primary_10_1088_1757_899X_90_1_012030
crossref_primary_10_1016_j_applthermaleng_2023_120725
crossref_primary_10_1016_j_ijrefrig_2022_06_032
crossref_primary_10_1016_j_apenergy_2014_07_011
crossref_primary_10_18186_thermal_712617
crossref_primary_10_1080_10789669_2009_10390854
crossref_primary_10_1016_j_ijrefrig_2006_03_002
crossref_primary_10_1007_s40095_020_00346_0
crossref_primary_10_1016_j_apenergy_2015_10_097
crossref_primary_10_1016_j_enbuild_2016_05_035
crossref_primary_10_1021_ie5017915
crossref_primary_10_1016_j_est_2018_04_013
crossref_primary_10_1016_j_ijrefrig_2014_06_019
crossref_primary_10_1016_j_ijrefrig_2011_04_009
crossref_primary_10_1016_j_ijrefrig_2007_08_008
crossref_primary_10_1016_j_ijrefrig_2017_11_034
crossref_primary_10_1007_s40430_022_03439_5
crossref_primary_10_1016_j_enbuild_2009_04_002
crossref_primary_10_1016_j_energ_2024_100007
crossref_primary_10_1016_j_ijrefrig_2011_04_005
crossref_primary_10_1016_j_applthermaleng_2010_12_006
crossref_primary_10_3390_app122311973
crossref_primary_10_1142_S2010132512500204
crossref_primary_10_1016_j_ijrefrig_2005_08_013
crossref_primary_10_1016_j_enconman_2005_10_030
crossref_primary_10_1007_s11708_010_0113_y
crossref_primary_10_1016_j_enconman_2007_01_033
crossref_primary_10_1541_ieejpes_129_272
crossref_primary_10_1016_j_ijrefrig_2016_01_001
crossref_primary_10_1016_j_ijrefrig_2019_10_001
crossref_primary_10_1016_j_ijthermalsci_2007_07_018
crossref_primary_10_1080_10789669_2012_670685
crossref_primary_10_1016_j_ijrefrig_2004_08_013
crossref_primary_10_1016_j_applthermaleng_2010_05_008
crossref_primary_10_1016_j_ijrefrig_2017_11_007
crossref_primary_10_1016_j_ijrefrig_2012_11_006
crossref_primary_10_4028_www_scientific_net_AMR_650_431
crossref_primary_10_3795_KSME_B_2016_40_11_705
crossref_primary_10_1016_j_compchemeng_2012_08_003
crossref_primary_10_1016_j_ijrefrig_2009_12_028
crossref_primary_10_1016_j_egypro_2014_06_060
crossref_primary_10_1016_j_enbuild_2017_08_072
crossref_primary_10_1016_j_enbuild_2014_02_029
crossref_primary_10_1016_j_jprocont_2012_06_011
crossref_primary_10_1016_j_enconman_2006_07_005
crossref_primary_10_1016_j_energy_2015_07_042
crossref_primary_10_1007_s10098_006_0040_0
crossref_primary_10_1016_j_ijrefrig_2009_03_006
crossref_primary_10_1016_j_eswa_2011_03_052
crossref_primary_10_1016_j_enconman_2013_03_015
crossref_primary_10_1016_j_ijrefrig_2011_12_007
crossref_primary_10_1016_j_ijrefrig_2018_07_031
crossref_primary_10_1142_S2010132519500391
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121434
crossref_primary_10_1016_j_ijrefrig_2010_04_008
crossref_primary_10_1142_S2010132514500138
crossref_primary_10_1016_j_enconman_2004_06_003
crossref_primary_10_1016_j_enbuild_2014_09_022
crossref_primary_10_1016_j_ijrefrig_2004_02_008
crossref_primary_10_1016_S0140_7007_01_00073_1
crossref_primary_10_1016_j_ijrefrig_2012_09_015
crossref_primary_10_1115_1_1760526
crossref_primary_10_1007_s10068_014_0158_5
crossref_primary_10_1016_j_applthermaleng_2012_08_041
crossref_primary_10_1016_j_applthermaleng_2007_12_008
crossref_primary_10_3390_pr12081600
crossref_primary_10_1016_j_ijrefrig_2022_09_032
crossref_primary_10_1080_10789669_2004_10391095
crossref_primary_10_1016_j_ijrefrig_2012_07_005
crossref_primary_10_1016_j_applthermaleng_2005_06_019
crossref_primary_10_1016_j_applthermaleng_2012_02_022
crossref_primary_10_1016_j_applthermaleng_2005_10_003
crossref_primary_10_1016_j_csite_2023_103301
crossref_primary_10_1016_j_applthermaleng_2008_10_002
crossref_primary_10_1016_j_enconman_2007_06_033
crossref_primary_10_1016_j_ijrefrig_2010_07_016
crossref_primary_10_1016_j_ijrefrig_2012_10_015
crossref_primary_10_1177_1687814016671248
crossref_primary_10_1016_j_proeng_2015_09_132
crossref_primary_10_1016_j_proeng_2012_01_1106
crossref_primary_10_1016_j_applthermaleng_2005_04_014
crossref_primary_10_1016_j_ijrefrig_2014_09_009
crossref_primary_10_1016_j_applthermaleng_2021_117351
crossref_primary_10_1016_j_enconman_2022_115867
crossref_primary_10_1016_j_ijrefrig_2016_09_008
crossref_primary_10_1016_j_apenergy_2018_03_036
crossref_primary_10_1016_j_ijrefrig_2021_08_006
crossref_primary_10_1016_S0306_2619_02_00053_3
crossref_primary_10_1080_23744731_2015_1057084
crossref_primary_10_1016_j_ijrefrig_2018_04_026
crossref_primary_10_1016_j_buildenv_2005_02_002
crossref_primary_10_1016_j_enbuild_2004_06_019
crossref_primary_10_1016_j_enconman_2024_118078
crossref_primary_10_1016_j_applthermaleng_2010_01_038
crossref_primary_10_31875_2410_2199_2023_10_2
crossref_primary_10_1016_j_applthermaleng_2023_121664
crossref_primary_10_1016_j_applthermaleng_2017_02_003
crossref_primary_10_1016_j_buildenv_2006_09_004
crossref_primary_10_1016_j_ijrefrig_2015_03_017
crossref_primary_10_1016_j_ijrefrig_2019_05_024
crossref_primary_10_1016_j_ijrefrig_2007_07_001
crossref_primary_10_1016_j_enbuild_2023_113253
crossref_primary_10_1016_S1359_4311_03_00002_4
crossref_primary_10_1016_j_ijrefrig_2020_06_008
crossref_primary_10_1016_j_ijrefrig_2016_07_020
crossref_primary_10_1016_j_applthermaleng_2014_03_052
crossref_primary_10_1049_iet_stg_2020_0154
crossref_primary_10_1016_j_ijrefrig_2018_01_016
crossref_primary_10_1007_s11771_011_0733_3
crossref_primary_10_1016_j_apenergy_2005_05_007
crossref_primary_10_1016_j_applthermaleng_2011_02_022
crossref_primary_10_1007_s40430_016_0538_2
crossref_primary_10_1016_j_applthermaleng_2004_10_012
crossref_primary_10_1016_j_jobe_2021_102153
crossref_primary_10_1016_j_applthermaleng_2010_09_013
crossref_primary_10_1016_j_applthermaleng_2012_12_023
crossref_primary_10_1080_10789669_2011_582916
crossref_primary_10_1016_j_applthermaleng_2013_01_031
Cites_doi 10.1016/0140-7007(89)90009-1
10.1002/er.4440150206
10.1016/0140-7007(94)90050-7
10.1016/0140-7007(91)90082-R
10.1016/0140-7007(92)90031-O
10.1016/0140-7007(92)90032-P
10.1016/0306-2619(88)90002-5
10.1016/0140-7007(95)00015-4
ContentType Journal Article
Copyright 2001 Elsevier Science Ltd and IIR
2001 INIST-CNRS
Copyright_xml – notice: 2001 Elsevier Science Ltd and IIR
– notice: 2001 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0140-7007(00)00014-1
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
DocumentTitleAlternate Simulation numérique d'un système frigorifique à vitesse variable
EISSN 1879-2081
EndPage 200
ExternalDocumentID 881961
10_1016_S0140_7007_00_00014_1
S0140700700000141
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSA
SST
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c438t-cb34ff2cd25b9787ec5a684302a96c7efa50cd26753e1592bedaa508384620b03
IEDL.DBID .~1
ISSN 0140-7007
IngestDate Mon Jul 21 09:16:56 EDT 2025
Tue Jul 01 01:46:58 EDT 2025
Thu Apr 24 23:00:23 EDT 2025
Fri Feb 23 02:33:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Refrigerating system
Transient behavior
Système frigorifique
Régime permanent
Compression system
Modelling
Système à compression
Fonctionnement
Operating
Steady state
Régime transitoire
Modélisation
Refrigeration equipment
Variable speed drive
Unsteady state
Numerical simulation
Mathematical model
Modeling
Varying speed
Compression refrigeration
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-cb34ff2cd25b9787ec5a684302a96c7efa50cd26753e1592bedaa508384620b03
PageCount 9
ParticipantIDs pascalfrancis_primary_881961
crossref_primary_10_1016_S0140_7007_00_00014_1
crossref_citationtrail_10_1016_S0140_7007_00_00014_1
elsevier_sciencedirect_doi_10_1016_S0140_7007_00_00014_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-03-01
PublicationDateYYYYMMDD 2001-03-01
PublicationDate_xml – month: 03
  year: 2001
  text: 2001-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of refrigeration
PublicationYear 2001
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Wang H. Modelling of a refrigerating system coupled with a refrigerated room. Thèse de doctorat, Delf University of Technology, Netherlands, 1991. p. 230.
Salim, Sadasivam, Balakrishnan (BIB16) 1991; 15
Yasuda, Touber, Machielsen (BIB5) 1983; 98
Parise JAR. Theoretical and experimental analysis of a diesel driven heat pump. PhD thesis, University of Manchester, UK, 1983. p. 325.
Welsby, Devotta, Diggory (BIB15) 1988; 31
Mongey B, Mcmullan JT, Mcnerlin MG. An examination of hydrocarbon mixtures for use in high temperature heat pump applications. In: Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 11.11–15.
Murphy, Goldschmidt (BIB14) 1986; 92
Darrow JB, Lovatt SJ, Cleland AC. Assessment of a simple mathematical model for predicting the transient behavior of a refrigeration system. In: XVIIIth Int. Cong. Refrigeration, Montreal, 1991, p. 1189–92.
Machado L. Modele de simulation et etude experimentale d'un evaporateur de machine frigorifique en regime transitoire. These de Docteur, INSA/LYON, 1996. p. 160.
Votsis, Tassou, Wilson, Marquand (BIB10) 1992; 15
Macarthur, Grald (BIB17) 1989; 12
Conde MR. A steady state mathematical simulation model for air-to-water heat pumps (Report NEFF). Zurich: Swiss Federal Institute of Technology, 1985, p. 236.
Domanski, Mclinden (BIB1) 1992; 15
Dengler, Addoms (BIB23) 1956; 52
Lemos MJS, Zaparoli EL. Steady-state numerical solution of vapor compression refrigeration units. In: Int. Refrigeration Conference at Purdue, Purdue University, 1996. 235–40.
Rogstam HJ. Theoretical and experimental investigation of cyclopropane as refrigerant. Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 10.15–19.
Shah (BIB24) 1982; 88
Tamainot-Telto Z. Détendeurs thermostatiques de machines frigorifiques. Comportement dynamique et modélisation. Thèse de doctorat, INSA, Lyon, 1993. p. 150.
Wang, Touber (BIB18) 1991; 1
Nyers, Stoyan (BIB19) 1994; 17
Wenxue H, Kraft H. A mathematical model of an evaporator based on the step exciting method. In: XVIIIth Int. Cong. Refrigeration, Montreal, 1991. p. 1217–31.
Ferreira CI, Kalkman H. Transient behavior of economizers for multi-stage refrigeration plant. In: Int. Refrigeration Conference at Purdue, Purdue University, 1996. p. 241–46.
Jia, Tso, Chia, Jolly (BIB20) 1995; 18
Pelletier O, Björn P. Performance of plate heat exchangers and compressor in a domestic heat pump using propane. In: Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 11.16–20.
Outtagarts A, Haberschill P, Lallemand M. Comportement dynamique d'un évaporateur de machine frigorifique soumis à des variations de débit. In: 19th Int. Cong. Refrigeration, vol. IIIa, La Haye, Netherlands, August 1995, p. 413–20.
Murphy (10.1016/S0140-7007(00)00014-1_BIB14) 1986; 92
Domanski (10.1016/S0140-7007(00)00014-1_BIB1) 1992; 15
10.1016/S0140-7007(00)00014-1_BIB6
10.1016/S0140-7007(00)00014-1_BIB7
10.1016/S0140-7007(00)00014-1_BIB8
10.1016/S0140-7007(00)00014-1_BIB12
10.1016/S0140-7007(00)00014-1_BIB2
10.1016/S0140-7007(00)00014-1_BIB13
Welsby (10.1016/S0140-7007(00)00014-1_BIB15) 1988; 31
10.1016/S0140-7007(00)00014-1_BIB3
Dengler (10.1016/S0140-7007(00)00014-1_BIB23) 1956; 52
10.1016/S0140-7007(00)00014-1_BIB4
10.1016/S0140-7007(00)00014-1_BIB11
Jia (10.1016/S0140-7007(00)00014-1_BIB20) 1995; 18
Salim (10.1016/S0140-7007(00)00014-1_BIB16) 1991; 15
Yasuda (10.1016/S0140-7007(00)00014-1_BIB5) 1983; 98
Macarthur (10.1016/S0140-7007(00)00014-1_BIB17) 1989; 12
Shah (10.1016/S0140-7007(00)00014-1_BIB24) 1982; 88
Nyers (10.1016/S0140-7007(00)00014-1_BIB19) 1994; 17
10.1016/S0140-7007(00)00014-1_BIB9
Wang (10.1016/S0140-7007(00)00014-1_BIB18) 1991; 1
Votsis (10.1016/S0140-7007(00)00014-1_BIB10) 1992; 15
10.1016/S0140-7007(00)00014-1_BIB25
10.1016/S0140-7007(00)00014-1_BIB21
10.1016/S0140-7007(00)00014-1_BIB22
References_xml – reference: Wang H. Modelling of a refrigerating system coupled with a refrigerated room. Thèse de doctorat, Delf University of Technology, Netherlands, 1991. p. 230.
– volume: 31
  start-page: 189
  year: 1988
  end-page: 203
  ident: BIB15
  article-title: Steady- and dynamic-state simulations of heat-pumps. Part I: literature review
  publication-title: Applied Energy
– reference: Lemos MJS, Zaparoli EL. Steady-state numerical solution of vapor compression refrigeration units. In: Int. Refrigeration Conference at Purdue, Purdue University, 1996. 235–40.
– reference: Machado L. Modele de simulation et etude experimentale d'un evaporateur de machine frigorifique en regime transitoire. These de Docteur, INSA/LYON, 1996. p. 160.
– reference: Wenxue H, Kraft H. A mathematical model of an evaporator based on the step exciting method. In: XVIIIth Int. Cong. Refrigeration, Montreal, 1991. p. 1217–31.
– volume: 88
  start-page: 185
  year: 1982
  end-page: 196
  ident: BIB24
  article-title: Chart correlation for saturated boiling heat tranfer
  publication-title: ASHRAE Trans
– volume: 15
  start-page: 81
  year: 1992
  end-page: 88
  ident: BIB1
  article-title: A simplified cycle simulation model for the performance rating of refrigerants and refrigerant mixtures
  publication-title: Rev. Int. Froid
– reference: Mongey B, Mcmullan JT, Mcnerlin MG. An examination of hydrocarbon mixtures for use in high temperature heat pump applications. In: Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 11.11–15.
– volume: 15
  start-page: 123
  year: 1991
  end-page: 135
  ident: BIB16
  article-title: Transient analysis of heat pump assisted ditillation systems I. The heat pump
  publication-title: Int. J. Energy Research
– reference: Darrow JB, Lovatt SJ, Cleland AC. Assessment of a simple mathematical model for predicting the transient behavior of a refrigeration system. In: XVIIIth Int. Cong. Refrigeration, Montreal, 1991, p. 1189–92.
– volume: 92
  start-page: 186
  year: 1986
  end-page: 201
  ident: BIB14
  article-title: Cycling characteristics of a residential air conditioner. Modeling of shutdown transients
  publication-title: ASHRAE Trans
– reference: Rogstam HJ. Theoretical and experimental investigation of cyclopropane as refrigerant. Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 10.15–19.
– volume: 18
  start-page: 336
  year: 1995
  end-page: 342
  ident: BIB20
  article-title: A distributed model for prediction of the transient response of an evaporator
  publication-title: Int. J. Refrig
– volume: 98
  start-page: 408
  year: 1983
  end-page: 425
  ident: BIB5
  article-title: Simulation model of a vapor compression refrigeration system
  publication-title: ASHRAE Trans
– reference: Parise JAR. Theoretical and experimental analysis of a diesel driven heat pump. PhD thesis, University of Manchester, UK, 1983. p. 325.
– reference: Outtagarts A, Haberschill P, Lallemand M. Comportement dynamique d'un évaporateur de machine frigorifique soumis à des variations de débit. In: 19th Int. Cong. Refrigeration, vol. IIIa, La Haye, Netherlands, August 1995, p. 413–20.
– volume: 17
  start-page: 101
  year: 1994
  end-page: 108
  ident: BIB19
  article-title: A dynamical model adequate for controlling the evaporator of a heat pump
  publication-title: Int. J. Refrig
– volume: 52
  start-page: 95
  year: 1956
  end-page: 103
  ident: BIB23
  article-title: Heat transfer mechanism for vaporization of water in a vertical tube
  publication-title: Chem. Eng. Prog. Symp. Series
– volume: 15
  start-page: 89
  year: 1992
  end-page: 94
  ident: BIB10
  article-title: Dynamic characteristics of an air-to-water heat-pump system
  publication-title: Int. J. Refrig
– reference: Pelletier O, Björn P. Performance of plate heat exchangers and compressor in a domestic heat pump using propane. In: Proceedings of Applications for Natural Refrigerants, Denmark, 1996. p. 11.16–20.
– volume: 12
  start-page: 29
  year: 1989
  end-page: 41
  ident: BIB17
  article-title: Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data
  publication-title: Int. J. Refrig
– reference: Tamainot-Telto Z. Détendeurs thermostatiques de machines frigorifiques. Comportement dynamique et modélisation. Thèse de doctorat, INSA, Lyon, 1993. p. 150.
– reference: Conde MR. A steady state mathematical simulation model for air-to-water heat pumps (Report NEFF). Zurich: Swiss Federal Institute of Technology, 1985, p. 236.
– volume: 1
  start-page: 98
  year: 1991
  end-page: 110
  ident: BIB18
  article-title: Distributed and non-steady-state modelling of air cooler
  publication-title: International Journal of Refrigeration
– reference: Ferreira CI, Kalkman H. Transient behavior of economizers for multi-stage refrigeration plant. In: Int. Refrigeration Conference at Purdue, Purdue University, 1996. p. 241–46.
– volume: 88
  start-page: 185
  year: 1982
  ident: 10.1016/S0140-7007(00)00014-1_BIB24
  article-title: Chart correlation for saturated boiling heat tranfer
  publication-title: ASHRAE Trans
– volume: 12
  start-page: 29
  year: 1989
  ident: 10.1016/S0140-7007(00)00014-1_BIB17
  article-title: Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data
  publication-title: Int. J. Refrig
  doi: 10.1016/0140-7007(89)90009-1
– ident: 10.1016/S0140-7007(00)00014-1_BIB2
– ident: 10.1016/S0140-7007(00)00014-1_BIB11
– ident: 10.1016/S0140-7007(00)00014-1_BIB6
– ident: 10.1016/S0140-7007(00)00014-1_BIB4
– volume: 92
  start-page: 186
  issue: 1a
  year: 1986
  ident: 10.1016/S0140-7007(00)00014-1_BIB14
  article-title: Cycling characteristics of a residential air conditioner. Modeling of shutdown transients
  publication-title: ASHRAE Trans
– volume: 15
  start-page: 123
  year: 1991
  ident: 10.1016/S0140-7007(00)00014-1_BIB16
  article-title: Transient analysis of heat pump assisted ditillation systems I. The heat pump
  publication-title: Int. J. Energy Research
  doi: 10.1002/er.4440150206
– ident: 10.1016/S0140-7007(00)00014-1_BIB22
– volume: 98
  start-page: 408
  issue: 2a
  year: 1983
  ident: 10.1016/S0140-7007(00)00014-1_BIB5
  article-title: Simulation model of a vapor compression refrigeration system
  publication-title: ASHRAE Trans
– ident: 10.1016/S0140-7007(00)00014-1_BIB8
– volume: 17
  start-page: 101
  issue: 2
  year: 1994
  ident: 10.1016/S0140-7007(00)00014-1_BIB19
  article-title: A dynamical model adequate for controlling the evaporator of a heat pump
  publication-title: Int. J. Refrig
  doi: 10.1016/0140-7007(94)90050-7
– ident: 10.1016/S0140-7007(00)00014-1_BIB12
– volume: 1
  start-page: 98
  year: 1991
  ident: 10.1016/S0140-7007(00)00014-1_BIB18
  article-title: Distributed and non-steady-state modelling of air cooler
  publication-title: International Journal of Refrigeration
  doi: 10.1016/0140-7007(91)90082-R
– volume: 52
  start-page: 95
  issue: 18
  year: 1956
  ident: 10.1016/S0140-7007(00)00014-1_BIB23
  article-title: Heat transfer mechanism for vaporization of water in a vertical tube
  publication-title: Chem. Eng. Prog. Symp. Series
– ident: 10.1016/S0140-7007(00)00014-1_BIB3
– ident: 10.1016/S0140-7007(00)00014-1_BIB21
– volume: 15
  start-page: 81
  year: 1992
  ident: 10.1016/S0140-7007(00)00014-1_BIB1
  article-title: A simplified cycle simulation model for the performance rating of refrigerants and refrigerant mixtures
  publication-title: Rev. Int. Froid
  doi: 10.1016/0140-7007(92)90031-O
– volume: 15
  start-page: 89
  issue: 2
  year: 1992
  ident: 10.1016/S0140-7007(00)00014-1_BIB10
  article-title: Dynamic characteristics of an air-to-water heat-pump system
  publication-title: Int. J. Refrig
  doi: 10.1016/0140-7007(92)90032-P
– ident: 10.1016/S0140-7007(00)00014-1_BIB7
– volume: 31
  start-page: 189
  year: 1988
  ident: 10.1016/S0140-7007(00)00014-1_BIB15
  article-title: Steady- and dynamic-state simulations of heat-pumps. Part I: literature review
  publication-title: Applied Energy
  doi: 10.1016/0306-2619(88)90002-5
– ident: 10.1016/S0140-7007(00)00014-1_BIB9
– ident: 10.1016/S0140-7007(00)00014-1_BIB25
– ident: 10.1016/S0140-7007(00)00014-1_BIB13
– volume: 18
  start-page: 336
  issue: 5
  year: 1995
  ident: 10.1016/S0140-7007(00)00014-1_BIB20
  article-title: A distributed model for prediction of the transient response of an evaporator
  publication-title: Int. J. Refrig
  doi: 10.1016/0140-7007(95)00015-4
SSID ssj0017058
Score 2.0538638
Snippet This work presents two numerical models to simulate the transient and steady state behavior of a vapor compression refrigeration system. The condenser and the...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 192
SubjectTerms Applied sciences
Compression system
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fonctionnement
Modelling
Modélisation
Operating
Refrigerating engineering
Refrigerating engineering. Cryogenics. Food conservation
Refrigerating system
Régime permanent
Régime transitoire
Steady state
Système frigorifique
Système à compression
Techniques. Materials
Transient behavior
Title Numerical simulation of a variable speed refrigeration system
URI https://dx.doi.org/10.1016/S0140-7007(00)00014-1
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: AKRWK
  dateStart: 19780501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXjTG-Iwokh486KFQdtvdcvBAiAQ1cpKE26bbbRMShI2AR3-703aXx8GQeG237WY6mX7TznyD0H0GfmwQsphwqTMC-FYSSQNFYpbyjqJx2tb2HvJ9GA1G7HXMxxXUK3NhbFhlYfu9TXfWumhpFdJs5ZNJy4UlxZauxt1Qu-R1y_4FOt38WYd5WLYYUYYx2q83WTx-Btf4QOmjm4S0_zqfjnO5AKkZX-5i6wzqn6KTAjzirv-_M1TRs3N0tEUpeIGehiv_BjPFi8lnUZsLzw2W-BvcYpsohRc5HFkYlgbPXHsNwJ7R-RKN-s8fvQEpSiQQxUKxJCoNmTGBygKegj8Ya8VlJFhIA9mJVKyN5BQ6wSsINQCXINWZlJYBHmBHQFMaXqHqbD7T1wjLAKAJM4plJgM3SAsTcyME5wb2rcN1DbFSMIkq-MNtGYtpshsoZuWZUOpetVnSrqHmeljuCTT2DRCl1JMdTUjAyO8bWt_ZpfWCAnBP1L75_8y36HATfFZH1eXXSt8BGlmmDaduDXTQfXkbDH8B99HXUQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHNQY42dEUXvwoIdJ17XbOHggRDIEdoKE29J1bUKCQAT8-31dx9fBkHjt8l6X15f3fq99Hwg9ZxDHUo8FDhcqcwDfCkcQKp2ApbwhSZC6ytxD9mM_GrLPER-VUGtdC2PSKgvbb216bq2LlXohzfp8PK7naUmBaVeT31Cb4vUK42CTy6jS7HSjePOYEJB8TGeeyWgItoU8lkm--ELIa87Hcf9yUadzsQDBaTvxYscNtc_RWYEfcdP-4gUqqeklOtnpKniF3uOVfYaZ4MX4qxjPhWcaC_wDkbGplcKLOXgtDFtDcK6sEmDb1PkaDdsfg1bkFFMSHMm8cOnI1GNaU5lRnkJIGCjJhR8yj1DR8GWgtOAEPkJg4CnALjRVmRCmCTwgD0pS4t2g8nQ2VbcICwrohGnJMp1BJKRCHXAdhpxrOLoGV1XE1oJJZNFC3EyymCT7uWJGngkh-cM2S9wqetuQzW0PjUME4VrqyZ4yJGDnD5HW9k5ps2EI0Md37_7P-QkdRYN-L-l14u49Ot7motVQefm9Ug8ATpbpY6F8v2fq2fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+a+variable+speed+refrigeration+system&rft.jtitle=International+journal+of+refrigeration&rft.au=KOURY%2C+R.+N.+N&rft.au=MACHADO%2C+L&rft.au=ISMAIL%2C+K.+A.+R&rft.date=2001-03-01&rft.pub=Elsevier+Science&rft.issn=0140-7007&rft.volume=24&rft.issue=2&rft.spage=192&rft.epage=200&rft_id=info:doi/10.1016%2Fs0140-7007%2800%2900014-1&rft.externalDBID=n%2Fa&rft.externalDocID=881961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7007&client=summon