ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization
ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the trai...
Saved in:
Published in | Medical image analysis Vol. 88; p. 102799 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2023.102799 |
Cover
Abstract | ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates ‘corrected’ MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images.
[Display omitted]
•We propose a modified VAE-GAN model for versatile T1-MRI domain adaptation.•ImUnity harmonizes multi-site data without the need for traveling subjects.•ImUnity removes site and scanner bias while preserving clinical information.•ImUnity reaches state of the art when harmonizing images from traveling subjects.•ImUnity improves clinical classification of Autism Spectrum Disorders. |
---|---|
AbstractList | ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates ‘corrected’ MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images. ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates 'corrected' MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images.ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates 'corrected' MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images. ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates ‘corrected’ MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images. [Display omitted] •We propose a modified VAE-GAN model for versatile T1-MRI domain adaptation.•ImUnity harmonizes multi-site data without the need for traveling subjects.•ImUnity removes site and scanner bias while preserving clinical information.•ImUnity reaches state of the art when harmonizing images from traveling subjects.•ImUnity improves clinical classification of Autism Spectrum Disorders. |
ArticleNumber | 102799 |
Author | Barbier, Emmanuel L. Cackowski, Stenzel Dojat, Michel Christen, Thomas |
Author_xml | – sequence: 1 givenname: Stenzel orcidid: 0000-0001-6647-8419 surname: Cackowski fullname: Cackowski, Stenzel email: sten.cackowski@gmail.com – sequence: 2 givenname: Emmanuel L. orcidid: 0000-0002-4952-1240 surname: Barbier fullname: Barbier, Emmanuel L. email: emmanuel.barbier@univ-grenoble-alpes.fr – sequence: 3 givenname: Michel orcidid: 0000-0003-2747-6845 surname: Dojat fullname: Dojat, Michel email: michel.dojat@inserm.fr – sequence: 4 givenname: Thomas orcidid: 0000-0002-8791-9145 surname: Christen fullname: Christen, Thomas email: thomas.christen@univ-grenoble-alpes.fr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37245434$$D View this record in MEDLINE/PubMed https://hal.univ-grenoble-alpes.fr/hal-04116278$$DView record in HAL |
BookMark | eNp9kctq3TAYhEVJaS7tExSKl-3CJ7odWy50YUJucHohJN0KWf6d6CBLqSQHkqePHCdZdJGVxPDNIM3sox3nHSD0meAVwaQ63K5G6I1aUUxZVmjdNO_QHmEVKQWnbOf1Tta7aD_GLca45hx_QLuspnzNGd9Df87HK2fS_feiLa7BQVDWPKjOQvG3PS5P219F9HZKxrti8KEYJ5uMBpcgFD8vCjOqayhuVBi9y7YZ-4jeD8pG-PR8HqCrk-PLo7Ny8_v0_KjdlJozkUrNKiE4CA2qa8ggBk6qqtedWHc9pg3vBM-yUppT4LTCRK-HQdSiG_oGekXYAfq25N4oK29Dfkm4l14ZedZu5KxhTkhFa3E3s18X9jb4fxPEJEcTNVirHPgpSiooZqwWvMrol2d06nK9r8kvjWWgWQAdfIwBBqlNevp5CspYSbCc15Fb-bSOnNeRyzrZy_7zvsS_7fqxuCDXeWcgyKgNOJ3BADrJ3ps3_Y950qf5 |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e22647 crossref_primary_10_1016_j_ynirp_2024_100195 crossref_primary_10_1186_s12880_024_01242_3 crossref_primary_10_1109_ACCESS_2024_3354724 crossref_primary_10_1016_j_media_2024_103354 crossref_primary_10_1016_j_media_2024_103388 crossref_primary_10_1109_ACCESS_2024_3370848 crossref_primary_10_1038_s41598_024_82909_3 crossref_primary_10_1016_j_asoc_2024_111714 crossref_primary_10_3390_app131810521 crossref_primary_10_1016_j_media_2025_103483 crossref_primary_10_1371_journal_pone_0316642 crossref_primary_10_1016_j_neunet_2024_107039 crossref_primary_10_1016_j_neuroimage_2024_120812 crossref_primary_10_1186_s12938_024_01280_6 crossref_primary_10_3390_app13158923 |
Cites_doi | 10.1016/j.neuroimage.2016.02.036 10.1109/ICCV.2017.167 10.1109/CVPR.2018.00916 10.1109/TMI.2010.2046908 10.1148/radiol.2019182023 10.1016/j.media.2021.102076 10.1016/S1361-8415(01)00036-6 10.1016/j.mri.2019.05.041 10.1038/mp.2013.78 10.1016/j.neuroimage.2017.08.047 10.1109/TMI.2011.2138152 10.1080/87565641.2012.688900 10.1158/0008-5472.CAN-17-0339 10.1101/2019.12.13.19014902 10.1016/j.neuroimage.2020.117129 10.1038/s41597-021-01004-8 10.1016/j.nicl.2014.08.008 10.1002/hbm.25117 10.1117/1.3386681 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES |
DOI | 10.1016/j.media.2023.102799 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Computer Science |
EISSN | 1361-8423 |
ExternalDocumentID | oai_HAL_hal_04116278v1 37245434 10_1016_j_media_2023_102799 S1361841523000609 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION NPM 7X8 ACLOT EFKBS ~HD 1XC VOOES |
ID | FETCH-LOGICAL-c438t-c36884e8ceab91f8f4166dcb85bd0294b8491faac42e42601c5ff878bfd9eda13 |
IEDL.DBID | AIKHN |
ISSN | 1361-8415 1361-8423 |
IngestDate | Sun Sep 28 07:53:36 EDT 2025 Sun Sep 28 00:41:12 EDT 2025 Wed Feb 19 02:23:10 EST 2025 Tue Jul 01 02:49:33 EDT 2025 Thu Apr 24 23:00:04 EDT 2025 Fri Feb 23 02:35:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain Deep Adversarial Network Data harmonization Radiomic features Self-supervised learning |
Language | English |
License | Copyright © 2023. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-c36884e8ceab91f8f4166dcb85bd0294b8491faac42e42601c5ff878bfd9eda13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6647-8419 0000-0002-4952-1240 0000-0002-8791-9145 0000-0003-2747-6845 |
OpenAccessLink | https://hal.univ-grenoble-alpes.fr/hal-04116278 |
PMID | 37245434 |
PQID | 2820337846 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_04116278v1 proquest_miscellaneous_2820337846 pubmed_primary_37245434 crossref_citationtrail_10_1016_j_media_2023_102799 crossref_primary_10_1016_j_media_2023_102799 elsevier_sciencedirect_doi_10_1016_j_media_2023_102799 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 2023-Aug 20230801 2023-08 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Guan, Liu, Yang, Yap, Shen, Liu (b10) 2021; 71 Liu, Dou, Yu, Heng (b15) 2020 arXiv. URL: . [cs] type: article. Dewey, Zhao, Reinhold, Carass, Fitzgerald, Sotirchos, Saidha, Oh, Pham, Calabresi, van Zijl, Prince (b4) 2019 Huang, X., Belongie, S., 2017. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. Technical Report Shinohara, Sweeney, Goldsmith, Shiee, Mateen, Calabresi, Jarso, Pham, Reich, Crainiceanu (b23) 2014; 6 Fortin, Sweeney, Muschelli, Crainiceanu, Shinohara (b8) 2016; 132 2019.12.13.19014902. URL: . Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press ISSN: 1901-4902 Label: Cold Spring Harbor Laboratory Press Type: article. Maaten, Hinton (b17) 2008; 9 Schettini, Gasparini, Corchs, Marini, Capra, Castorina (b22) 2010; 19 St-Jean, Viergever, Leemans (b24) 2020 Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., Choo, J., 2018. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. Technical Report Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b9) 2016 arXiv. . [cs] type: article. URL:. Jenkinson, Smith (b13) 2001; 5 Orlhac, Frouin, Nioche, Ayache, Buvat (b18) 2019; 291 Zuo, Dewey, Carass, Liu, He, Calabresi, Prince (b30) 2021 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (b26) 2010; 29 LaMontagne, P.J., Benzinger, T.L., Morris, J.C., Keefe, S., Hornbeck, R., Xiong, C., Grant, E., Hassenstab, J., Moulder, K., Vlassenko, A.G., Raichle, M.E., Cruchaga, C., Marcus, D., 2019. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. Technical Report Dinsdale, Jenkinson, Namburete (b6) 2020 Wang, Simoncelli, Bovik (b28) 2003 Bashyam, Doshi, Erus, Srinivasan, Abdulkadir, Singh, Habes, Fan, Masters, Maruff, Zhuo, Völzke, Johnson, Fripp, Koutsouleris, Satterthwaite, Wolf, Gur, Gur, Morris, Albert, Grabe, Resnick, Bryan, Wittfeld, Bülow, Wolk, Shou, Nasrallah, Davatzikos, The iSTAGING and PHENOM consortia (b1) 2021; n/a Tanaka, Yamashita, Yahata, Itahashi, Lisi, Yamada, Ichikawa, Takamura, Yoshihara, Kunimatsu, Okada, Hashimoto, Okada, Sakai, Morimoto, Narumoto, Shimada, Mano, Yoshida, Seymour, Shimizu, Hosomi, Saitoh, Kasai, Kato, Takahashi, Okamoto, Yamashita, Kawato, Imamizu (b25) 2021; 8 Pomponio, Erus, Habes, Doshi, Srinivasan, Mamourian, Bashyam, Nasrallah, Satterthwaite, Fan, Launer, Masters, Maruff, Zhuo, Völzke, Johnson, Fripp, Koutsouleris, Wolf, Gur, Gur, Morris, Albert, Grabe, Resnick, Bryan, Wolk, Shinohara, Shou, Davatzikos (b19) 2019 Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O’Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (b5) 2014; 19 Sanchez, Richards, Almli (b21) 2012; 37 van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (b27) 2017; 77 Zhu, Park, Isola, Efros (b29) 2018 Liu, Maiti, Thomopoulos, Zhu, Chai, Kim, Jahanshad (b16) 2021 Beer, Tustison, Cook, Davatzikos, Sheline, Shinohara, Linn (b2) 2020; 220 Fortin, Parker, Tunç, Watanabe, Elliott, Ruparel, Roalf, Satterthwaite, Gur, Gur, Schultz, Verma, Shinohara (b7) 2017; 161 Ronneberger, Fischer, Brox (b20) 2015 Iglesias, Liu, Thompson, Tu (b12) 2011; 30 Dinsdale (10.1016/j.media.2023.102799_b6) 2020 Fortin (10.1016/j.media.2023.102799_b8) 2016; 132 Shinohara (10.1016/j.media.2023.102799_b23) 2014; 6 van Griethuysen (10.1016/j.media.2023.102799_b27) 2017; 77 Liu (10.1016/j.media.2023.102799_b15) 2020 Iglesias (10.1016/j.media.2023.102799_b12) 2011; 30 Orlhac (10.1016/j.media.2023.102799_b18) 2019; 291 Schettini (10.1016/j.media.2023.102799_b22) 2010; 19 Maaten (10.1016/j.media.2023.102799_b17) 2008; 9 Sanchez (10.1016/j.media.2023.102799_b21) 2012; 37 Tanaka (10.1016/j.media.2023.102799_b25) 2021; 8 Bashyam (10.1016/j.media.2023.102799_b1) 2021; n/a Pomponio (10.1016/j.media.2023.102799_b19) 2019 Fortin (10.1016/j.media.2023.102799_b7) 2017; 161 Ronneberger (10.1016/j.media.2023.102799_b20) 2015 Di Martino (10.1016/j.media.2023.102799_b5) 2014; 19 Zuo (10.1016/j.media.2023.102799_b30) 2021 Tustison (10.1016/j.media.2023.102799_b26) 2010; 29 Beer (10.1016/j.media.2023.102799_b2) 2020; 220 10.1016/j.media.2023.102799_b11 St-Jean (10.1016/j.media.2023.102799_b24) 2020 Zhu (10.1016/j.media.2023.102799_b29) 2018 Dewey (10.1016/j.media.2023.102799_b4) 2019 10.1016/j.media.2023.102799_b14 Guan (10.1016/j.media.2023.102799_b10) 2021; 71 Liu (10.1016/j.media.2023.102799_b16) 2021 Jenkinson (10.1016/j.media.2023.102799_b13) 2001; 5 Wang (10.1016/j.media.2023.102799_b28) 2003 Ganin (10.1016/j.media.2023.102799_b9) 2016 10.1016/j.media.2023.102799_b3 |
References_xml | – year: 2020 ident: b15 article-title: MS-Net: Multi-site network for improving prostate segmentation with heterogeneous MRI data – volume: n/a year: 2021 ident: b1 article-title: Deep generative medical image harmonization for improving cross-site generalization in deep learning predictors publication-title: J. Magn. Res. Imag. – volume: 77 start-page: e104 year: 2017 end-page: e107 ident: b27 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res. – year: 2020 ident: b6 article-title: Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal – reference: LaMontagne, P.J., Benzinger, T.L., Morris, J.C., Keefe, S., Hornbeck, R., Xiong, C., Grant, E., Hassenstab, J., Moulder, K., Vlassenko, A.G., Raichle, M.E., Cruchaga, C., Marcus, D., 2019. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. Technical Report, – volume: 291 start-page: 53 year: 2019 end-page: 59 ident: b18 article-title: Validation of A method to compensate multicenter effects affecting CT radiomics publication-title: Radiology – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: b26 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging – reference: , arXiv. . [cs] type: article. URL:. – reference: Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., Choo, J., 2018. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. Technical Report, – volume: 161 start-page: 149 year: 2017 end-page: 170 ident: b7 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: NeuroImage – volume: 132 start-page: 198 year: 2016 end-page: 212 ident: b8 article-title: Removing inter-subject technical variability in magnetic resonance imaging studies publication-title: NeuroImage – volume: 71 year: 2021 ident: b10 article-title: Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification publication-title: Med. Image Anal. – start-page: 313 year: 2021 end-page: 322 ident: b16 article-title: Style transfer using generative adversarial networks for multi-site MRI harmonization publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 – year: 2016 ident: b9 article-title: Domain-adversarial training of neural networks – volume: 19 year: 2010 ident: b22 article-title: Contrast image correction method publication-title: J. Electron. Imaging – year: 2019 ident: b19 article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan publication-title: NeuroImage – reference: , 2019.12.13.19014902. URL: . Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press ISSN: 1901-4902 Label: Cold Spring Harbor Laboratory Press Type: article. – volume: 8 start-page: 227 year: 2021 ident: b25 article-title: A multi-site, multi-disorder resting-state magnetic resonance image database publication-title: Sci. Data – start-page: 346 year: 2021 end-page: 359 ident: b30 article-title: Information-based disentangled representation learning for unsupervised MR harmonization publication-title: Information Processing in Medical Imaging – year: 2018 ident: b29 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – volume: 37 start-page: 379 year: 2012 end-page: 399 ident: b21 article-title: Age-specific MRI templates for pediatric neuroimaging publication-title: Dev. Neuropsychol. – volume: 6 start-page: 9 year: 2014 end-page: 19 ident: b23 article-title: Statistical normalization techniques for magnetic resonance imaging publication-title: NeuroImage Clin. – year: 2020 ident: b24 article-title: Harmonization of diffusion MRI data sets with adaptive dictionary learning publication-title: Hum. Brain Mapp. – volume: 5 start-page: 143 year: 2001 end-page: 156 ident: b13 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b17 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – reference: Huang, X., Belongie, S., 2017. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. Technical Report, – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: b5 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry – year: 2019 ident: b4 article-title: DeepHarmony: A deep learning approach to contrast harmonization across scanner changes publication-title: Magn. Reson. Imaging – volume: 30 start-page: 1617 year: 2011 end-page: 1634 ident: b12 article-title: Robust brain extraction across datasets and comparison with publicly available methods publication-title: IEEE Trans. Med. Imaging – volume: 220 year: 2020 ident: b2 article-title: Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data publication-title: NeuroImage – year: 2015 ident: b20 article-title: U-Net: Convolutional networks for biomedical image segmentation – reference: , arXiv. URL: . [cs] type: article. – start-page: 1398 year: 2003 end-page: 1402 ident: b28 article-title: Multiscale structural similarity for image quality assessment publication-title: The Thrity-Seventh Asilomar Conference on Signals, Systems Computers, 2003. Vol. 2 – volume: 132 start-page: 198 year: 2016 ident: 10.1016/j.media.2023.102799_b8 article-title: Removing inter-subject technical variability in magnetic resonance imaging studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.02.036 – ident: 10.1016/j.media.2023.102799_b11 doi: 10.1109/ICCV.2017.167 – ident: 10.1016/j.media.2023.102799_b3 doi: 10.1109/CVPR.2018.00916 – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 10.1016/j.media.2023.102799_b17 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 10.1016/j.media.2023.102799_b26 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: n/a issue: n/a year: 2021 ident: 10.1016/j.media.2023.102799_b1 article-title: Deep generative medical image harmonization for improving cross-site generalization in deep learning predictors publication-title: J. Magn. Res. Imag. – volume: 291 start-page: 53 issue: 1 year: 2019 ident: 10.1016/j.media.2023.102799_b18 article-title: Validation of A method to compensate multicenter effects affecting CT radiomics publication-title: Radiology doi: 10.1148/radiol.2019182023 – volume: 71 year: 2021 ident: 10.1016/j.media.2023.102799_b10 article-title: Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102076 – volume: 5 start-page: 143 issue: 2 year: 2001 ident: 10.1016/j.media.2023.102799_b13 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(01)00036-6 – year: 2020 ident: 10.1016/j.media.2023.102799_b6 – year: 2016 ident: 10.1016/j.media.2023.102799_b9 – year: 2019 ident: 10.1016/j.media.2023.102799_b4 article-title: DeepHarmony: A deep learning approach to contrast harmonization across scanner changes publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.05.041 – volume: 19 start-page: 659 issue: 6 year: 2014 ident: 10.1016/j.media.2023.102799_b5 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.78 – volume: 161 start-page: 149 year: 2017 ident: 10.1016/j.media.2023.102799_b7 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.08.047 – volume: 30 start-page: 1617 issue: 9 year: 2011 ident: 10.1016/j.media.2023.102799_b12 article-title: Robust brain extraction across datasets and comparison with publicly available methods publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2138152 – year: 2015 ident: 10.1016/j.media.2023.102799_b20 – start-page: 313 year: 2021 ident: 10.1016/j.media.2023.102799_b16 article-title: Style transfer using generative adversarial networks for multi-site MRI harmonization – volume: 37 start-page: 379 issue: 5 year: 2012 ident: 10.1016/j.media.2023.102799_b21 article-title: Age-specific MRI templates for pediatric neuroimaging publication-title: Dev. Neuropsychol. doi: 10.1080/87565641.2012.688900 – volume: 77 start-page: e104 issue: 21 year: 2017 ident: 10.1016/j.media.2023.102799_b27 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0339 – ident: 10.1016/j.media.2023.102799_b14 doi: 10.1101/2019.12.13.19014902 – year: 2018 ident: 10.1016/j.media.2023.102799_b29 – year: 2019 ident: 10.1016/j.media.2023.102799_b19 article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan publication-title: NeuroImage – volume: 220 year: 2020 ident: 10.1016/j.media.2023.102799_b2 article-title: Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117129 – volume: 8 start-page: 227 issue: 1 year: 2021 ident: 10.1016/j.media.2023.102799_b25 article-title: A multi-site, multi-disorder resting-state magnetic resonance image database publication-title: Sci. Data doi: 10.1038/s41597-021-01004-8 – volume: 6 start-page: 9 year: 2014 ident: 10.1016/j.media.2023.102799_b23 article-title: Statistical normalization techniques for magnetic resonance imaging publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2014.08.008 – year: 2020 ident: 10.1016/j.media.2023.102799_b24 article-title: Harmonization of diffusion MRI data sets with adaptive dictionary learning publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25117 – volume: 19 issue: 2 year: 2010 ident: 10.1016/j.media.2023.102799_b22 article-title: Contrast image correction method publication-title: J. Electron. Imaging doi: 10.1117/1.3386681 – start-page: 346 year: 2021 ident: 10.1016/j.media.2023.102799_b30 article-title: Information-based disentangled representation learning for unsupervised MR harmonization – start-page: 1398 year: 2003 ident: 10.1016/j.media.2023.102799_b28 article-title: Multiscale structural similarity for image quality assessment – year: 2020 ident: 10.1016/j.media.2023.102799_b15 |
SSID | ssj0007440 |
Score | 2.552038 |
Snippet | ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102799 |
SubjectTerms | Artificial Intelligence Bioengineering Brain Computer Science Data harmonization Deep Adversarial Network Imaging Life Sciences Radiomic features Self-supervised learning |
Title | ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization |
URI | https://dx.doi.org/10.1016/j.media.2023.102799 https://www.ncbi.nlm.nih.gov/pubmed/37245434 https://www.proquest.com/docview/2820337846 https://hal.univ-grenoble-alpes.fr/hal-04116278 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6xi1S1hwpoS7cU5KIeCRs_Eju9BQQshV1VpSBuVvwI3Qp2EV0qcelvryePFUiFA6coVpxYM_bMOP7mG4DPweY5ZxMXCReLSCQyrDlDecRjkynLmCmrKgrDUTo4FV_Pk_MF2G1zYRBW2dj-2qZX1rpp6TfS7F-Px_0TyrFYCcXfmsgqknVgkQVvr7qwmB8eDUZzg4wceHX6FY2wQ0s-VMG8qgSNbSwijiwGsuKA_a-D6vxEpORjYWjljvaX4HUTR5K8HuoyLPjJCry6xy64Ai-Gzbn5G_h2eIXB5d0XkpOLmmga0VyXnpzle9FBPiLtFCQhiCUVyhBhm_6GDL-T8VUwOgQ5rqdt2uZbON3f-7E7iJpaCpEVXM0iy1OlhFfWFyajpSpDIJY6a1RiXMwyYZQIzUVhBfNIWk9tUpZKKlO6zLuC8nfQnUwn_j0Q65xMY264K8O-WtJMGmHThKeGGSat7wFrBahtQzSO9S4udYso-6UrqWuUuq6l3oOteafrmmfj6cfTVjP6wXTRwRM83XEz6HH-CSTXHuTHGttiQWnKpPpDe_CpVbMOqw2PUIqJn97-1mGDGnMuQ9DWg9Va__N3cckEJup-eO7Y1uAl3tXwwo_Qnd3c-vUQ8szMBnS2_9KNZmKH68HO8Vn-D4tD_e0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwnoAZUCZYGCQRwJGz8SO9yiqiVLd1eoD9SbFT9SFm13q3aLxL_Hk8eqlaAHrk6cRDP2-HP8zTcAH0LMc84mLhIuFpFIZJhzhvKIxyZTljFT1VUUxpO0OBVfz5KzNdjrcmGQVtnG_iam19G6bRm01hxcTqeDY8qxWAnF35qoKpKtw4bAotY92MiHh8VkFZBRA69Jv6IRdujEh2qaV52g8QmLiKOKgaw1YP-6QK3_QKbkv2BovRwdbMHjFkeSvPnUJ7Dm59uweUtdcBsejNtz86fwbXiB4PL3Z5KT80ZoGtlcM0--5_vRl3xCuiFIAoglNcsQaZv-ioyPyPQiBB2CGteLLm3zGZwe7J_sFVFbSyGygqtlZHmqlPDK-tJktFJVAGKps0YlxsUsE0aJ0FyWVjCPovXUJlWlpDKVy7wrKX8Ovfli7l8Asc7JNOaGuyrsqyXNpBE2TXhqmGHS-j6wzoDatkLjWO9ipjtG2U9dW12j1XVj9T58XHW6bHQ27r897Tyj7wwXHVaC-zu-D35cvQLFtYt8pLEtFpSmTKpftA_vOjfrMNvwCKWc-8XNtQ4b1JhzGUBbH3Ya_6-exSUTmKj78n-_7S08LE7GIz0aTg5fwSO80lANX0NveXXjdwP8WZo37fD-A5SF_kQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ImUnity%3A+A+generalizable+VAE-GAN+solution+for+multicenter+MR+image+harmonization&rft.jtitle=Medical+image+analysis&rft.au=Cackowski%2C+Stenzel&rft.au=Barbier%2C+Emmanuel+L&rft.au=Dojat%2C+Michel&rft.au=Christen%2C+Thomas&rft.date=2023-08-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=88&rft.spage=102799&rft_id=info:doi/10.1016%2Fj.media.2023.102799&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |