ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization

ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the trai...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 88; p. 102799
Main Authors Cackowski, Stenzel, Barbier, Emmanuel L., Dojat, Michel, Christen, Thomas
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2023
Elsevier
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2023.102799

Cover

Abstract ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates ‘corrected’ MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images. [Display omitted] •We propose a modified VAE-GAN model for versatile T1-MRI domain adaptation.•ImUnity harmonizes multi-site data without the need for traveling subjects.•ImUnity removes site and scanner bias while preserving clinical information.•ImUnity reaches state of the art when harmonizing images from traveling subjects.•ImUnity improves clinical classification of Autism Spectrum Disorders.
AbstractList ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates ‘corrected’ MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images.
ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates 'corrected' MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images.ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates 'corrected' MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images.
ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates ‘corrected’ MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images. [Display omitted] •We propose a modified VAE-GAN model for versatile T1-MRI domain adaptation.•ImUnity harmonizes multi-site data without the need for traveling subjects.•ImUnity removes site and scanner bias while preserving clinical information.•ImUnity reaches state of the art when harmonizing images from traveling subjects.•ImUnity improves clinical classification of Autism Spectrum Disorders.
ArticleNumber 102799
Author Barbier, Emmanuel L.
Cackowski, Stenzel
Dojat, Michel
Christen, Thomas
Author_xml – sequence: 1
  givenname: Stenzel
  orcidid: 0000-0001-6647-8419
  surname: Cackowski
  fullname: Cackowski, Stenzel
  email: sten.cackowski@gmail.com
– sequence: 2
  givenname: Emmanuel L.
  orcidid: 0000-0002-4952-1240
  surname: Barbier
  fullname: Barbier, Emmanuel L.
  email: emmanuel.barbier@univ-grenoble-alpes.fr
– sequence: 3
  givenname: Michel
  orcidid: 0000-0003-2747-6845
  surname: Dojat
  fullname: Dojat, Michel
  email: michel.dojat@inserm.fr
– sequence: 4
  givenname: Thomas
  orcidid: 0000-0002-8791-9145
  surname: Christen
  fullname: Christen, Thomas
  email: thomas.christen@univ-grenoble-alpes.fr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37245434$$D View this record in MEDLINE/PubMed
https://hal.univ-grenoble-alpes.fr/hal-04116278$$DView record in HAL
BookMark eNp9kctq3TAYhEVJaS7tExSKl-3CJ7odWy50YUJucHohJN0KWf6d6CBLqSQHkqePHCdZdJGVxPDNIM3sox3nHSD0meAVwaQ63K5G6I1aUUxZVmjdNO_QHmEVKQWnbOf1Tta7aD_GLca45hx_QLuspnzNGd9Df87HK2fS_feiLa7BQVDWPKjOQvG3PS5P219F9HZKxrti8KEYJ5uMBpcgFD8vCjOqayhuVBi9y7YZ-4jeD8pG-PR8HqCrk-PLo7Ny8_v0_KjdlJozkUrNKiE4CA2qa8ggBk6qqtedWHc9pg3vBM-yUppT4LTCRK-HQdSiG_oGekXYAfq25N4oK29Dfkm4l14ZedZu5KxhTkhFa3E3s18X9jb4fxPEJEcTNVirHPgpSiooZqwWvMrol2d06nK9r8kvjWWgWQAdfIwBBqlNevp5CspYSbCc15Fb-bSOnNeRyzrZy_7zvsS_7fqxuCDXeWcgyKgNOJ3BADrJ3ps3_Y950qf5
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e22647
crossref_primary_10_1016_j_ynirp_2024_100195
crossref_primary_10_1186_s12880_024_01242_3
crossref_primary_10_1109_ACCESS_2024_3354724
crossref_primary_10_1016_j_media_2024_103354
crossref_primary_10_1016_j_media_2024_103388
crossref_primary_10_1109_ACCESS_2024_3370848
crossref_primary_10_1038_s41598_024_82909_3
crossref_primary_10_1016_j_asoc_2024_111714
crossref_primary_10_3390_app131810521
crossref_primary_10_1016_j_media_2025_103483
crossref_primary_10_1371_journal_pone_0316642
crossref_primary_10_1016_j_neunet_2024_107039
crossref_primary_10_1016_j_neuroimage_2024_120812
crossref_primary_10_1186_s12938_024_01280_6
crossref_primary_10_3390_app13158923
Cites_doi 10.1016/j.neuroimage.2016.02.036
10.1109/ICCV.2017.167
10.1109/CVPR.2018.00916
10.1109/TMI.2010.2046908
10.1148/radiol.2019182023
10.1016/j.media.2021.102076
10.1016/S1361-8415(01)00036-6
10.1016/j.mri.2019.05.041
10.1038/mp.2013.78
10.1016/j.neuroimage.2017.08.047
10.1109/TMI.2011.2138152
10.1080/87565641.2012.688900
10.1158/0008-5472.CAN-17-0339
10.1101/2019.12.13.19014902
10.1016/j.neuroimage.2020.117129
10.1038/s41597-021-01004-8
10.1016/j.nicl.2014.08.008
10.1002/hbm.25117
10.1117/1.3386681
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
DOI 10.1016/j.media.2023.102799
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1361-8423
ExternalDocumentID oai_HAL_hal_04116278v1
37245434
10_1016_j_media_2023_102799
S1361841523000609
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7X8
ACLOT
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c438t-c36884e8ceab91f8f4166dcb85bd0294b8491faac42e42601c5ff878bfd9eda13
IEDL.DBID AIKHN
ISSN 1361-8415
1361-8423
IngestDate Sun Sep 28 07:53:36 EDT 2025
Sun Sep 28 00:41:12 EDT 2025
Wed Feb 19 02:23:10 EST 2025
Tue Jul 01 02:49:33 EDT 2025
Thu Apr 24 23:00:04 EDT 2025
Fri Feb 23 02:35:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Brain
Deep Adversarial Network
Data harmonization
Radiomic features
Self-supervised learning
Language English
License Copyright © 2023. Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-c36884e8ceab91f8f4166dcb85bd0294b8491faac42e42601c5ff878bfd9eda13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6647-8419
0000-0002-4952-1240
0000-0002-8791-9145
0000-0003-2747-6845
OpenAccessLink https://hal.univ-grenoble-alpes.fr/hal-04116278
PMID 37245434
PQID 2820337846
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_04116278v1
proquest_miscellaneous_2820337846
pubmed_primary_37245434
crossref_citationtrail_10_1016_j_media_2023_102799
crossref_primary_10_1016_j_media_2023_102799
elsevier_sciencedirect_doi_10_1016_j_media_2023_102799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
2023-Aug
20230801
2023-08
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Guan, Liu, Yang, Yap, Shen, Liu (b10) 2021; 71
Liu, Dou, Yu, Heng (b15) 2020
arXiv. URL: . [cs] type: article.
Dewey, Zhao, Reinhold, Carass, Fitzgerald, Sotirchos, Saidha, Oh, Pham, Calabresi, van Zijl, Prince (b4) 2019
Huang, X., Belongie, S., 2017. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. Technical Report
Shinohara, Sweeney, Goldsmith, Shiee, Mateen, Calabresi, Jarso, Pham, Reich, Crainiceanu (b23) 2014; 6
Fortin, Sweeney, Muschelli, Crainiceanu, Shinohara (b8) 2016; 132
2019.12.13.19014902. URL: . Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press ISSN: 1901-4902 Label: Cold Spring Harbor Laboratory Press Type: article.
Maaten, Hinton (b17) 2008; 9
Schettini, Gasparini, Corchs, Marini, Capra, Castorina (b22) 2010; 19
St-Jean, Viergever, Leemans (b24) 2020
Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., Choo, J., 2018. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. Technical Report
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b9) 2016
arXiv. . [cs] type: article. URL:.
Jenkinson, Smith (b13) 2001; 5
Orlhac, Frouin, Nioche, Ayache, Buvat (b18) 2019; 291
Zuo, Dewey, Carass, Liu, He, Calabresi, Prince (b30) 2021
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (b26) 2010; 29
LaMontagne, P.J., Benzinger, T.L., Morris, J.C., Keefe, S., Hornbeck, R., Xiong, C., Grant, E., Hassenstab, J., Moulder, K., Vlassenko, A.G., Raichle, M.E., Cruchaga, C., Marcus, D., 2019. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. Technical Report
Dinsdale, Jenkinson, Namburete (b6) 2020
Wang, Simoncelli, Bovik (b28) 2003
Bashyam, Doshi, Erus, Srinivasan, Abdulkadir, Singh, Habes, Fan, Masters, Maruff, Zhuo, Völzke, Johnson, Fripp, Koutsouleris, Satterthwaite, Wolf, Gur, Gur, Morris, Albert, Grabe, Resnick, Bryan, Wittfeld, Bülow, Wolk, Shou, Nasrallah, Davatzikos, The iSTAGING and PHENOM consortia (b1) 2021; n/a
Tanaka, Yamashita, Yahata, Itahashi, Lisi, Yamada, Ichikawa, Takamura, Yoshihara, Kunimatsu, Okada, Hashimoto, Okada, Sakai, Morimoto, Narumoto, Shimada, Mano, Yoshida, Seymour, Shimizu, Hosomi, Saitoh, Kasai, Kato, Takahashi, Okamoto, Yamashita, Kawato, Imamizu (b25) 2021; 8
Pomponio, Erus, Habes, Doshi, Srinivasan, Mamourian, Bashyam, Nasrallah, Satterthwaite, Fan, Launer, Masters, Maruff, Zhuo, Völzke, Johnson, Fripp, Koutsouleris, Wolf, Gur, Gur, Morris, Albert, Grabe, Resnick, Bryan, Wolk, Shinohara, Shou, Davatzikos (b19) 2019
Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O’Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (b5) 2014; 19
Sanchez, Richards, Almli (b21) 2012; 37
van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (b27) 2017; 77
Zhu, Park, Isola, Efros (b29) 2018
Liu, Maiti, Thomopoulos, Zhu, Chai, Kim, Jahanshad (b16) 2021
Beer, Tustison, Cook, Davatzikos, Sheline, Shinohara, Linn (b2) 2020; 220
Fortin, Parker, Tunç, Watanabe, Elliott, Ruparel, Roalf, Satterthwaite, Gur, Gur, Schultz, Verma, Shinohara (b7) 2017; 161
Ronneberger, Fischer, Brox (b20) 2015
Iglesias, Liu, Thompson, Tu (b12) 2011; 30
Dinsdale (10.1016/j.media.2023.102799_b6) 2020
Fortin (10.1016/j.media.2023.102799_b8) 2016; 132
Shinohara (10.1016/j.media.2023.102799_b23) 2014; 6
van Griethuysen (10.1016/j.media.2023.102799_b27) 2017; 77
Liu (10.1016/j.media.2023.102799_b15) 2020
Iglesias (10.1016/j.media.2023.102799_b12) 2011; 30
Orlhac (10.1016/j.media.2023.102799_b18) 2019; 291
Schettini (10.1016/j.media.2023.102799_b22) 2010; 19
Maaten (10.1016/j.media.2023.102799_b17) 2008; 9
Sanchez (10.1016/j.media.2023.102799_b21) 2012; 37
Tanaka (10.1016/j.media.2023.102799_b25) 2021; 8
Bashyam (10.1016/j.media.2023.102799_b1) 2021; n/a
Pomponio (10.1016/j.media.2023.102799_b19) 2019
Fortin (10.1016/j.media.2023.102799_b7) 2017; 161
Ronneberger (10.1016/j.media.2023.102799_b20) 2015
Di Martino (10.1016/j.media.2023.102799_b5) 2014; 19
Zuo (10.1016/j.media.2023.102799_b30) 2021
Tustison (10.1016/j.media.2023.102799_b26) 2010; 29
Beer (10.1016/j.media.2023.102799_b2) 2020; 220
10.1016/j.media.2023.102799_b11
St-Jean (10.1016/j.media.2023.102799_b24) 2020
Zhu (10.1016/j.media.2023.102799_b29) 2018
Dewey (10.1016/j.media.2023.102799_b4) 2019
10.1016/j.media.2023.102799_b14
Guan (10.1016/j.media.2023.102799_b10) 2021; 71
Liu (10.1016/j.media.2023.102799_b16) 2021
Jenkinson (10.1016/j.media.2023.102799_b13) 2001; 5
Wang (10.1016/j.media.2023.102799_b28) 2003
Ganin (10.1016/j.media.2023.102799_b9) 2016
10.1016/j.media.2023.102799_b3
References_xml – year: 2020
  ident: b15
  article-title: MS-Net: Multi-site network for improving prostate segmentation with heterogeneous MRI data
– volume: n/a
  year: 2021
  ident: b1
  article-title: Deep generative medical image harmonization for improving cross-site generalization in deep learning predictors
  publication-title: J. Magn. Res. Imag.
– volume: 77
  start-page: e104
  year: 2017
  end-page: e107
  ident: b27
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res.
– year: 2020
  ident: b6
  article-title: Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
– reference: LaMontagne, P.J., Benzinger, T.L., Morris, J.C., Keefe, S., Hornbeck, R., Xiong, C., Grant, E., Hassenstab, J., Moulder, K., Vlassenko, A.G., Raichle, M.E., Cruchaga, C., Marcus, D., 2019. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. Technical Report,
– volume: 291
  start-page: 53
  year: 2019
  end-page: 59
  ident: b18
  article-title: Validation of A method to compensate multicenter effects affecting CT radiomics
  publication-title: Radiology
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: b26
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
– reference: , arXiv. . [cs] type: article. URL:.
– reference: Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., Choo, J., 2018. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. Technical Report,
– volume: 161
  start-page: 149
  year: 2017
  end-page: 170
  ident: b7
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: NeuroImage
– volume: 132
  start-page: 198
  year: 2016
  end-page: 212
  ident: b8
  article-title: Removing inter-subject technical variability in magnetic resonance imaging studies
  publication-title: NeuroImage
– volume: 71
  year: 2021
  ident: b10
  article-title: Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification
  publication-title: Med. Image Anal.
– start-page: 313
  year: 2021
  end-page: 322
  ident: b16
  article-title: Style transfer using generative adversarial networks for multi-site MRI harmonization
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021
– year: 2016
  ident: b9
  article-title: Domain-adversarial training of neural networks
– volume: 19
  year: 2010
  ident: b22
  article-title: Contrast image correction method
  publication-title: J. Electron. Imaging
– year: 2019
  ident: b19
  article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan
  publication-title: NeuroImage
– reference: , 2019.12.13.19014902. URL: . Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press ISSN: 1901-4902 Label: Cold Spring Harbor Laboratory Press Type: article.
– volume: 8
  start-page: 227
  year: 2021
  ident: b25
  article-title: A multi-site, multi-disorder resting-state magnetic resonance image database
  publication-title: Sci. Data
– start-page: 346
  year: 2021
  end-page: 359
  ident: b30
  article-title: Information-based disentangled representation learning for unsupervised MR harmonization
  publication-title: Information Processing in Medical Imaging
– year: 2018
  ident: b29
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– volume: 37
  start-page: 379
  year: 2012
  end-page: 399
  ident: b21
  article-title: Age-specific MRI templates for pediatric neuroimaging
  publication-title: Dev. Neuropsychol.
– volume: 6
  start-page: 9
  year: 2014
  end-page: 19
  ident: b23
  article-title: Statistical normalization techniques for magnetic resonance imaging
  publication-title: NeuroImage Clin.
– year: 2020
  ident: b24
  article-title: Harmonization of diffusion MRI data sets with adaptive dictionary learning
  publication-title: Hum. Brain Mapp.
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  ident: b13
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b17
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– reference: Huang, X., Belongie, S., 2017. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. Technical Report,
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: b5
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
– year: 2019
  ident: b4
  article-title: DeepHarmony: A deep learning approach to contrast harmonization across scanner changes
  publication-title: Magn. Reson. Imaging
– volume: 30
  start-page: 1617
  year: 2011
  end-page: 1634
  ident: b12
  article-title: Robust brain extraction across datasets and comparison with publicly available methods
  publication-title: IEEE Trans. Med. Imaging
– volume: 220
  year: 2020
  ident: b2
  article-title: Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data
  publication-title: NeuroImage
– year: 2015
  ident: b20
  article-title: U-Net: Convolutional networks for biomedical image segmentation
– reference: , arXiv. URL: . [cs] type: article.
– start-page: 1398
  year: 2003
  end-page: 1402
  ident: b28
  article-title: Multiscale structural similarity for image quality assessment
  publication-title: The Thrity-Seventh Asilomar Conference on Signals, Systems Computers, 2003. Vol. 2
– volume: 132
  start-page: 198
  year: 2016
  ident: 10.1016/j.media.2023.102799_b8
  article-title: Removing inter-subject technical variability in magnetic resonance imaging studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.02.036
– ident: 10.1016/j.media.2023.102799_b11
  doi: 10.1109/ICCV.2017.167
– ident: 10.1016/j.media.2023.102799_b3
  doi: 10.1109/CVPR.2018.00916
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 10.1016/j.media.2023.102799_b17
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.media.2023.102799_b26
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: n/a
  issue: n/a
  year: 2021
  ident: 10.1016/j.media.2023.102799_b1
  article-title: Deep generative medical image harmonization for improving cross-site generalization in deep learning predictors
  publication-title: J. Magn. Res. Imag.
– volume: 291
  start-page: 53
  issue: 1
  year: 2019
  ident: 10.1016/j.media.2023.102799_b18
  article-title: Validation of A method to compensate multicenter effects affecting CT radiomics
  publication-title: Radiology
  doi: 10.1148/radiol.2019182023
– volume: 71
  year: 2021
  ident: 10.1016/j.media.2023.102799_b10
  article-title: Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102076
– volume: 5
  start-page: 143
  issue: 2
  year: 2001
  ident: 10.1016/j.media.2023.102799_b13
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)00036-6
– year: 2020
  ident: 10.1016/j.media.2023.102799_b6
– year: 2016
  ident: 10.1016/j.media.2023.102799_b9
– year: 2019
  ident: 10.1016/j.media.2023.102799_b4
  article-title: DeepHarmony: A deep learning approach to contrast harmonization across scanner changes
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.05.041
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  ident: 10.1016/j.media.2023.102799_b5
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 161
  start-page: 149
  year: 2017
  ident: 10.1016/j.media.2023.102799_b7
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.08.047
– volume: 30
  start-page: 1617
  issue: 9
  year: 2011
  ident: 10.1016/j.media.2023.102799_b12
  article-title: Robust brain extraction across datasets and comparison with publicly available methods
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2138152
– year: 2015
  ident: 10.1016/j.media.2023.102799_b20
– start-page: 313
  year: 2021
  ident: 10.1016/j.media.2023.102799_b16
  article-title: Style transfer using generative adversarial networks for multi-site MRI harmonization
– volume: 37
  start-page: 379
  issue: 5
  year: 2012
  ident: 10.1016/j.media.2023.102799_b21
  article-title: Age-specific MRI templates for pediatric neuroimaging
  publication-title: Dev. Neuropsychol.
  doi: 10.1080/87565641.2012.688900
– volume: 77
  start-page: e104
  issue: 21
  year: 2017
  ident: 10.1016/j.media.2023.102799_b27
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: 10.1016/j.media.2023.102799_b14
  doi: 10.1101/2019.12.13.19014902
– year: 2018
  ident: 10.1016/j.media.2023.102799_b29
– year: 2019
  ident: 10.1016/j.media.2023.102799_b19
  article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan
  publication-title: NeuroImage
– volume: 220
  year: 2020
  ident: 10.1016/j.media.2023.102799_b2
  article-title: Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117129
– volume: 8
  start-page: 227
  issue: 1
  year: 2021
  ident: 10.1016/j.media.2023.102799_b25
  article-title: A multi-site, multi-disorder resting-state magnetic resonance image database
  publication-title: Sci. Data
  doi: 10.1038/s41597-021-01004-8
– volume: 6
  start-page: 9
  year: 2014
  ident: 10.1016/j.media.2023.102799_b23
  article-title: Statistical normalization techniques for magnetic resonance imaging
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2014.08.008
– year: 2020
  ident: 10.1016/j.media.2023.102799_b24
  article-title: Harmonization of diffusion MRI data sets with adaptive dictionary learning
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25117
– volume: 19
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2023.102799_b22
  article-title: Contrast image correction method
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.3386681
– start-page: 346
  year: 2021
  ident: 10.1016/j.media.2023.102799_b30
  article-title: Information-based disentangled representation learning for unsupervised MR harmonization
– start-page: 1398
  year: 2003
  ident: 10.1016/j.media.2023.102799_b28
  article-title: Multiscale structural similarity for image quality assessment
– year: 2020
  ident: 10.1016/j.media.2023.102799_b15
SSID ssj0007440
Score 2.552038
Snippet ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102799
SubjectTerms Artificial Intelligence
Bioengineering
Brain
Computer Science
Data harmonization
Deep Adversarial Network
Imaging
Life Sciences
Radiomic features
Self-supervised learning
Title ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization
URI https://dx.doi.org/10.1016/j.media.2023.102799
https://www.ncbi.nlm.nih.gov/pubmed/37245434
https://www.proquest.com/docview/2820337846
https://hal.univ-grenoble-alpes.fr/hal-04116278
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6xi1S1hwpoS7cU5KIeCRs_Eju9BQQshV1VpSBuVvwI3Qp2EV0qcelvryePFUiFA6coVpxYM_bMOP7mG4DPweY5ZxMXCReLSCQyrDlDecRjkynLmCmrKgrDUTo4FV_Pk_MF2G1zYRBW2dj-2qZX1rpp6TfS7F-Px_0TyrFYCcXfmsgqknVgkQVvr7qwmB8eDUZzg4wceHX6FY2wQ0s-VMG8qgSNbSwijiwGsuKA_a-D6vxEpORjYWjljvaX4HUTR5K8HuoyLPjJCry6xy64Ai-Gzbn5G_h2eIXB5d0XkpOLmmga0VyXnpzle9FBPiLtFCQhiCUVyhBhm_6GDL-T8VUwOgQ5rqdt2uZbON3f-7E7iJpaCpEVXM0iy1OlhFfWFyajpSpDIJY6a1RiXMwyYZQIzUVhBfNIWk9tUpZKKlO6zLuC8nfQnUwn_j0Q65xMY264K8O-WtJMGmHThKeGGSat7wFrBahtQzSO9S4udYso-6UrqWuUuq6l3oOteafrmmfj6cfTVjP6wXTRwRM83XEz6HH-CSTXHuTHGttiQWnKpPpDe_CpVbMOqw2PUIqJn97-1mGDGnMuQ9DWg9Va__N3cckEJup-eO7Y1uAl3tXwwo_Qnd3c-vUQ8szMBnS2_9KNZmKH68HO8Vn-D4tD_e0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwnoAZUCZYGCQRwJGz8SO9yiqiVLd1eoD9SbFT9SFm13q3aLxL_Hk8eqlaAHrk6cRDP2-HP8zTcAH0LMc84mLhIuFpFIZJhzhvKIxyZTljFT1VUUxpO0OBVfz5KzNdjrcmGQVtnG_iam19G6bRm01hxcTqeDY8qxWAnF35qoKpKtw4bAotY92MiHh8VkFZBRA69Jv6IRdujEh2qaV52g8QmLiKOKgaw1YP-6QK3_QKbkv2BovRwdbMHjFkeSvPnUJ7Dm59uweUtdcBsejNtz86fwbXiB4PL3Z5KT80ZoGtlcM0--5_vRl3xCuiFIAoglNcsQaZv-ioyPyPQiBB2CGteLLm3zGZwe7J_sFVFbSyGygqtlZHmqlPDK-tJktFJVAGKps0YlxsUsE0aJ0FyWVjCPovXUJlWlpDKVy7wrKX8Ovfli7l8Asc7JNOaGuyrsqyXNpBE2TXhqmGHS-j6wzoDatkLjWO9ipjtG2U9dW12j1XVj9T58XHW6bHQ27r897Tyj7wwXHVaC-zu-D35cvQLFtYt8pLEtFpSmTKpftA_vOjfrMNvwCKWc-8XNtQ4b1JhzGUBbH3Ya_6-exSUTmKj78n-_7S08LE7GIz0aTg5fwSO80lANX0NveXXjdwP8WZo37fD-A5SF_kQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ImUnity%3A+A+generalizable+VAE-GAN+solution+for+multicenter+MR+image+harmonization&rft.jtitle=Medical+image+analysis&rft.au=Cackowski%2C+Stenzel&rft.au=Barbier%2C+Emmanuel+L&rft.au=Dojat%2C+Michel&rft.au=Christen%2C+Thomas&rft.date=2023-08-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=88&rft.spage=102799&rft_id=info:doi/10.1016%2Fj.media.2023.102799&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon