Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data
► Spatial effect of the size of both AOI and satellite pixel on SEBAL was examined. ► Analytical equations were proposed to quantify the spatial effects on SEBAL. ► Effective variables were introduced to bridge the high- and low-scale difference. ► Data used covered a wide range of vegetation cover...
Saved in:
| Published in | Agricultural and forest meteorology Vol. 174-175; pp. 28 - 42 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.06.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0168-1923 1873-2240 |
| DOI | 10.1016/j.agrformet.2013.01.008 |
Cover
| Abstract | ► Spatial effect of the size of both AOI and satellite pixel on SEBAL was examined. ► Analytical equations were proposed to quantify the spatial effects on SEBAL. ► Effective variables were introduced to bridge the high- and low-scale difference. ► Data used covered a wide range of vegetation cover and soil moisture condition.
The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at different spatial and temporal resolutions in more than 30 countries. However, the selection of dry and wet pixels over the area of interest (AOI) makes the SEBAL-estimated ET subject to the sizes of the AOI and the satellite pixels. This paper investigates the effect of the sizes of the AOI and satellite pixels on SEBAL-derived surface energy components by proposing generalized analytical equations. These equations demonstrate how the variations in the intermediate variables, the AOI, and the pixel size affect the resulting surface energy components and under which circumstances the sensible heat flux will be misestimated, without needing to run the SEBAL model. These analytical equations were verified through application to 23 clear-sky MODIS overpasses that cover different soil water contents and crop growth stages from January 2010 to late October 2011. The spatial effects of increasing the size of the AOI for SEBAL can be summarized as follows: (1) if the locations of dry and wet pixels do not vary, the pixel-by-pixel sensible heat flux (HLA) calculated using the larger AOI is equal to that of the smaller AOI (HSA, with HLA/HSA=1), (2) if only the surface temperatures of wet pixels do not vary, the relative variation in H is equal to the relative variation of the slope (a) of the linear equation between the near-surface air temperature difference and the surface temperature (HLA/HSA=1+δHSA/HSA=1+δa/a), and (3) under other circumstances, HLA/HSA decreases with surface temperatures at a slowing pace from ∼∞ at the temperature of the wet pixel (Ts,wet) to a certain value at the temperature of the dry pixel (Ts,dry) (both temperatures are for the small AOI). Analogously, a general analytical equation—a function of the coefficients of the linear equation between the near-surface air temperature difference and surface temperature at the high-resolution, the effective temperature, and the effective momentum roughness length—could be used to quantify the spatial-scale effect of the satellite pixel size. The findings from this study may help determine suitable sizes of the AOIs and the satellite pixels and aid in quantifying uncertainties in the SEBAL-derived surface energy components. |
|---|---|
| AbstractList | The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at different spatial and temporal resolutions in more than 30 countries. However, the selection of dry and wet pixels over the area of interest (AOI) makes the SEBAL-estimated ET subject to the sizes of the AOI and the satellite pixels. This paper investigates the effect of the sizes of the AOI and satellite pixels on SEBAL-derived surface energy components by proposing generalized analytical equations. These equations demonstrate how the variations in the intermediate variables, the AOI, and the pixel size affect the resulting surface energy components and under which circumstances the sensible heat flux will be misestimated, without needing to run the SEBAL model. These analytical equations were verified through application to 23 clear-sky MODIS overpasses that cover different soil water contents and crop growth stages from January 2010 to late October 2011. The spatial effects of increasing the size of the AOI for SEBAL can be summarized as follows: (1) if the locations of dry and wet pixels do not vary, the pixel-by-pixel sensible heat flux (HLA) calculated using the larger AOI is equal to that of the smaller AOI (HSA, with HLA/HSA=1), (2) if only the surface temperatures of wet pixels do not vary, the relative variation in H is equal to the relative variation of the slope (a) of the linear equation between the near-surface air temperature difference and the surface temperature (HLA/HSA=1+ delta HSA/HSA=1+ delta a/a), and (3) under other circumstances, HLA/HSA decreases with surface temperatures at a slowing pace from similar to infinity at the temperature of the wet pixel (Ts,wet) to a certain value at the temperature of the dry pixel (Ts,dry) (both temperatures are for the small AOI). Analogously, a general analytical equation-a function of the coefficients of the linear equation between the near-surface air temperature difference and surface temperature at the high-resolution, the effective temperature, and the effective momentum roughness length-could be used to quantify the spatial-scale effect of the satellite pixel size. The findings from this study may help determine suitable sizes of the AOIs and the satellite pixels and aid in quantifying uncertainties in the SEBAL-derived surface energy components. The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at different spatial and temporal resolutions in more than 30 countries. However, the selection of dry and wet pixels over the area of interest (AOI) makes the SEBAL-estimated ET subject to the sizes of the AOI and the satellite pixels. This paper investigates the effect of the sizes of the AOI and satellite pixels on SEBAL-derived surface energy components by proposing generalized analytical equations. These equations demonstrate how the variations in the intermediate variables, the AOI, and the pixel size affect the resulting surface energy components and under which circumstances the sensible heat flux will be misestimated, without needing to run the SEBAL model. These analytical equations were verified through application to 23 clear-sky MODIS overpasses that cover different soil water contents and crop growth stages from January 2010 to late October 2011. The spatial effects of increasing the size of the AOI for SEBAL can be summarized as follows: (1) if the locations of dry and wet pixels do not vary, the pixel-by-pixel sensible heat flux (HLA) calculated using the larger AOI is equal to that of the smaller AOI (HSA, with HLA/HSA=1), (2) if only the surface temperatures of wet pixels do not vary, the relative variation in H is equal to the relative variation of the slope (a) of the linear equation between the near-surface air temperature difference and the surface temperature (HLA/HSA=1+δHSA/HSA=1+δa/a), and (3) under other circumstances, HLA/HSA decreases with surface temperatures at a slowing pace from ∼∞ at the temperature of the wet pixel (Ts,wet) to a certain value at the temperature of the dry pixel (Ts,dry) (both temperatures are for the small AOI). Analogously, a general analytical equation—a function of the coefficients of the linear equation between the near-surface air temperature difference and surface temperature at the high-resolution, the effective temperature, and the effective momentum roughness length—could be used to quantify the spatial-scale effect of the satellite pixel size. The findings from this study may help determine suitable sizes of the AOIs and the satellite pixels and aid in quantifying uncertainties in the SEBAL-derived surface energy components. The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at different spatial and temporal resolutions in more than 30 countries. However, the selection of dry and wet pixels over the area of interest (AOI) makes the SEBAL-estimated ET subject to the sizes of the AOI and the satellite pixels. This paper investigates the effect of the sizes of the AOI and satellite pixels on SEBAL-derived surface energy components by proposing generalized analytical equations. These equations demonstrate how the variations in the intermediate variables, the AOI, and the pixel size affect the resulting surface energy components and under which circumstances the sensible heat flux will be misestimated, without needing to run the SEBAL model. These analytical equations were verified through application to 23 clear-sky MODIS overpasses that cover different soil water contents and crop growth stages from January 2010 to late October 2011. The spatial effects of increasing the size of the AOI for SEBAL can be summarized as follows: (1) if the locations of dry and wet pixels do not vary, the pixel-by-pixel sensible heat flux (HLA) calculated using the larger AOI is equal to that of the smaller AOI (HSA, with HLA/HSA=1), (2) if only the surface temperatures of wet pixels do not vary, the relative variation in H is equal to the relative variation of the slope (a) of the linear equation between the near-surface air temperature difference and the surface temperature (HLA/HSA=1+δHSA/HSA=1+δa/a), and (3) under other circumstances, HLA/HSA decreases with surface temperatures at a slowing pace from ∼∞ at the temperature of the wet pixel (Tₛ,wₑₜ) to a certain value at the temperature of the dry pixel (Tₛ,dᵣy) (both temperatures are for the small AOI). Analogously, a general analytical equation—a function of the coefficients of the linear equation between the near-surface air temperature difference and surface temperature at the high-resolution, the effective temperature, and the effective momentum roughness length—could be used to quantify the spatial-scale effect of the satellite pixel size. The findings from this study may help determine suitable sizes of the AOIs and the satellite pixels and aid in quantifying uncertainties in the SEBAL-derived surface energy components. ► Spatial effect of the size of both AOI and satellite pixel on SEBAL was examined. ► Analytical equations were proposed to quantify the spatial effects on SEBAL. ► Effective variables were introduced to bridge the high- and low-scale difference. ► Data used covered a wide range of vegetation cover and soil moisture condition. The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at different spatial and temporal resolutions in more than 30 countries. However, the selection of dry and wet pixels over the area of interest (AOI) makes the SEBAL-estimated ET subject to the sizes of the AOI and the satellite pixels. This paper investigates the effect of the sizes of the AOI and satellite pixels on SEBAL-derived surface energy components by proposing generalized analytical equations. These equations demonstrate how the variations in the intermediate variables, the AOI, and the pixel size affect the resulting surface energy components and under which circumstances the sensible heat flux will be misestimated, without needing to run the SEBAL model. These analytical equations were verified through application to 23 clear-sky MODIS overpasses that cover different soil water contents and crop growth stages from January 2010 to late October 2011. The spatial effects of increasing the size of the AOI for SEBAL can be summarized as follows: (1) if the locations of dry and wet pixels do not vary, the pixel-by-pixel sensible heat flux (HLA) calculated using the larger AOI is equal to that of the smaller AOI (HSA, with HLA/HSA=1), (2) if only the surface temperatures of wet pixels do not vary, the relative variation in H is equal to the relative variation of the slope (a) of the linear equation between the near-surface air temperature difference and the surface temperature (HLA/HSA=1+δHSA/HSA=1+δa/a), and (3) under other circumstances, HLA/HSA decreases with surface temperatures at a slowing pace from ∼∞ at the temperature of the wet pixel (Ts,wet) to a certain value at the temperature of the dry pixel (Ts,dry) (both temperatures are for the small AOI). Analogously, a general analytical equation—a function of the coefficients of the linear equation between the near-surface air temperature difference and surface temperature at the high-resolution, the effective temperature, and the effective momentum roughness length—could be used to quantify the spatial-scale effect of the satellite pixel size. The findings from this study may help determine suitable sizes of the AOIs and the satellite pixels and aid in quantifying uncertainties in the SEBAL-derived surface energy components. |
| Author | Jia, Yuanyuan Sun, Xiaomin Chen, Kun-Shan Tang, Ronglin Li, Zhao-Liang Li, Chuanrong |
| Author_xml | – sequence: 1 givenname: Ronglin surname: Tang fullname: Tang, Ronglin organization: State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China – sequence: 2 givenname: Zhao-Liang surname: Li fullname: Li, Zhao-Liang email: lizl@unistra.fr, lizl@igsnrr.ac.cn, lizhaoliang@caas.cn organization: Key Laboratory of Agri-informatics, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 3 givenname: Kun-Shan surname: Chen fullname: Chen, Kun-Shan organization: Center for Space and Remote Sensing Research, National Central University, Chung-Li, Taoyuan 320, Taiwan – sequence: 4 givenname: Yuanyuan surname: Jia fullname: Jia, Yuanyuan organization: Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 5 givenname: Chuanrong surname: Li fullname: Li, Chuanrong organization: Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 6 givenname: Xiaomin surname: Sun fullname: Sun, Xiaomin organization: Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China |
| BookMark | eNqNkUtv3CAUhVGVSp1M-xvCshu7vGzwootplD6kkbqYZo0wvqSMbOMCE6n_vjiuuugm2QBX-g733nOu0dUcZkDohpKaEtp-ONfmIboQJ8g1I5TXhNaEqFdoR5XkFWOCXKFdIVVFO8bfoOuUzoRQJmW3Q_a0mOzNWCVrRsDgHNiMw4zzT8Cnu0-HI57CACMuHTA8miXkaOa0-FhkBYOU_bQ9L8nPDzjCFDLgBPNTOZhs3qLXzowJ3v299-j-892P26_V8fuXb7eHY2UFV7nqJJWK94oSAaIlTSMdaQdnejlQED0QZpUalFK9JdJyoco6pjGdHQhvlev5Hr3f_l1i-HUpk-nJJwvjaGYIl6SplITJtlHsBShvOtYI2j2PitV12pVjj-SG2hhSiuD0Eos78bemRK9h6bP-F5ZeZZpQXcIqyo__Ka3PT7YWu_34Av3NpncmrIhP-v5UAFGCXhdeZztsBJQEHj1EnayH2cLgY4lcD8E_2-UP3v3Bbw |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2014_2371135 crossref_primary_10_1109_TGRS_2018_2866555 crossref_primary_10_1007_s11430_015_5087_5 crossref_primary_10_1109_LGRS_2020_2987485 crossref_primary_10_1016_j_rse_2013_07_001 crossref_primary_10_1016_j_agrformet_2014_05_007 crossref_primary_10_3390_rs14081911 crossref_primary_10_1016_j_agrformet_2014_12_005 crossref_primary_10_1016_j_resconrec_2021_105709 crossref_primary_10_1007_s13201_024_02345_6 crossref_primary_10_1007_s10980_023_01648_4 crossref_primary_10_1109_TGRS_2024_3381696 crossref_primary_10_1109_JSTARS_2025_3539822 crossref_primary_10_1080_01431161_2024_2316674 crossref_primary_10_1371_journal_pone_0265138 crossref_primary_10_1016_j_jhydrol_2021_126029 crossref_primary_10_1016_j_heliyon_2024_e28190 crossref_primary_10_1007_s00271_022_00768_0 crossref_primary_10_1016_j_rse_2022_113421 crossref_primary_10_3390_rs11020138 crossref_primary_10_1016_j_isprsjprs_2021_05_018 crossref_primary_10_1080_01431161_2018_1479798 crossref_primary_10_1016_j_rse_2024_114405 crossref_primary_10_1080_01431161_2019_1579385 crossref_primary_10_1080_01431161_2015_1084439 crossref_primary_10_1016_j_rse_2022_112901 crossref_primary_10_3390_w11050955 crossref_primary_10_3390_s17061338 crossref_primary_10_1016_j_agrformet_2021_108775 crossref_primary_10_1016_j_rse_2017_05_009 crossref_primary_10_1016_j_rse_2018_07_019 crossref_primary_10_3741_JKWRA_2016_49_3_227 crossref_primary_10_1109_TGRS_2017_2728815 crossref_primary_10_1016_j_compag_2024_109003 crossref_primary_10_1080_01431161_2015_1040136 crossref_primary_10_1080_01431161_2018_1508919 crossref_primary_10_1016_j_agwat_2023_108294 crossref_primary_10_1371_journal_pone_0245834 crossref_primary_10_1007_s11629_018_5180_2 crossref_primary_10_3390_rs8120983 crossref_primary_10_1016_j_jhydrol_2018_03_054 crossref_primary_10_3390_w10040474 crossref_primary_10_1007_s00477_020_01956_0 crossref_primary_10_3390_rs13081524 crossref_primary_10_1080_15230406_2013_819201 crossref_primary_10_18307_2015_0219 crossref_primary_10_1038_s41598_023_38563_2 crossref_primary_10_3390_rs6075909 crossref_primary_10_1016_j_agrformet_2020_108308 crossref_primary_10_1016_j_agrformet_2021_108421 crossref_primary_10_1016_j_isprsjprs_2023_12_001 crossref_primary_10_1016_j_scitotenv_2019_135111 crossref_primary_10_3390_w10121841 crossref_primary_10_3390_f15122234 crossref_primary_10_3390_rs12071108 crossref_primary_10_1007_s12665_023_11284_5 crossref_primary_10_1016_j_jhydrol_2021_126805 crossref_primary_10_3390_rs12193235 crossref_primary_10_3390_rs11111289 crossref_primary_10_1016_j_agwat_2023_108141 crossref_primary_10_1016_j_agrformet_2025_110468 crossref_primary_10_1029_2017JD027785 crossref_primary_10_1016_j_rse_2019_04_026 crossref_primary_10_3390_rs6054369 crossref_primary_10_3390_su16188025 crossref_primary_10_1007_s10546_020_00507_y crossref_primary_10_3390_rs8090735 crossref_primary_10_1016_j_ecolmodel_2013_09_004 crossref_primary_10_1002_2013WR014468 crossref_primary_10_1016_j_agrformet_2020_108056 crossref_primary_10_1080_15481603_2019_1643531 crossref_primary_10_1002_hyp_10854 crossref_primary_10_3390_rs9111178 crossref_primary_10_1002_2014WR015619 crossref_primary_10_1080_01431161_2016_1222100 crossref_primary_10_1016_j_jhydrol_2023_130538 crossref_primary_10_1029_2022RG000777 crossref_primary_10_1029_2023WR035234 crossref_primary_10_1002_eco_2126 crossref_primary_10_1007_s12517_022_10853_5 crossref_primary_10_1016_j_jag_2019_02_012 crossref_primary_10_1080_01431161_2018_1523590 crossref_primary_10_1016_j_agwat_2022_107965 crossref_primary_10_3390_rs10091452 crossref_primary_10_1016_j_agrformet_2017_11_011 crossref_primary_10_1016_j_jag_2018_09_001 crossref_primary_10_1016_j_atech_2022_100052 |
| Cites_doi | 10.5194/hess-6-85-2002 10.1061/(ASCE)0733-9437(2008)134:3(273) 10.1061/(ASCE)0733-9437(2005)131:1(85) 10.1029/1999GL006049 10.1007/BF02879653 10.3390/s90503801 10.1016/j.rse.2006.11.028 10.1016/0168-1923(95)02265-Y 10.1016/j.rse.2011.07.004 10.1016/S1464-1909(99)00128-8 10.1016/j.agrformet.2008.09.016 10.1016/j.atmosres.2009.12.003 10.1061/(ASCE)0733-9437(2007)133:4(380) 10.1029/2011JD016542 10.1016/j.rse.2009.10.012 10.1016/0034-4257(94)90020-5 10.1029/2002JD002062 10.1080/0143116031000116453 10.1126/science.1128845 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 10.1061/(ASCE)IR.1943-4774.0000216 10.1016/S0022-1694(98)00253-4 10.1016/S0034-4257(96)00215-5 10.1016/j.pce.2007.04.021 10.1016/j.rse.2012.12.008 10.1109/36.58983 10.1016/j.jhydrol.2009.03.002 10.1061/(ASCE)1084-0699(2008)13:2(51) 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. |
| Copyright_xml | – notice: 2013 Elsevier B.V. |
| DBID | FBQ AAYXX CITATION 7S9 L.6 7ST 7TG 7UA C1K KL. SOI 7SU 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.agrformet.2013.01.008 |
| DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts - Academic Environment Abstracts Environmental Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database AGRICOLA Meteorological & Geoastrophysical Abstracts |
| Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Agriculture |
| EISSN | 1873-2240 |
| EndPage | 42 |
| ExternalDocumentID | 10_1016_j_agrformet_2013_01_008 US201400165821 S0168192313000130 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABJNI ABLJU ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSE SSZ T5K WH7 Y6R ZMT ~02 ~G- ~KM AALCJ AAQXK ABEFU ABFNM ABGRD ABPIF ABPTK ADMUD ASPBG AVWKF AZFZN FBQ FEDTE FGOYB G-2 HLV HMA HVGLF HZ~ R2- SEP SEW WUQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 7ST 7TG 7UA ABUFD C1K KL. SOI 7SU 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c438t-971783b8104e460557f06dfab7d1e4be02c88d888bc07c348192a5a9cd0368fb3 |
| IEDL.DBID | .~1 |
| ISSN | 0168-1923 |
| IngestDate | Tue Oct 07 09:35:07 EDT 2025 Tue Oct 07 09:26:41 EDT 2025 Sun Sep 28 02:26:56 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Wed Oct 01 05:12:22 EDT 2025 Wed Dec 27 19:16:15 EST 2023 Fri Feb 23 02:31:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Surface energy balance Spatial-scale effect SEBAL Analytical equation Evapotranspiration |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-971783b8104e460557f06dfab7d1e4be02c88d888bc07c348192a5a9cd0368fb3 |
| Notes | http://dx.doi.org/10.1016/j.agrformet.2013.01.008 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1420131901 |
| PQPubID | 24069 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1770276582 proquest_miscellaneous_1735925419 proquest_miscellaneous_1420131901 crossref_primary_10_1016_j_agrformet_2013_01_008 crossref_citationtrail_10_1016_j_agrformet_2013_01_008 fao_agris_US201400165821 elsevier_sciencedirect_doi_10_1016_j_agrformet_2013_01_008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-06-15 |
| PublicationDateYYYYMMDD | 2013-06-15 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Agricultural and forest meteorology |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Tang, Li, Jia, Li, Sun, Kustas, Anderson (bib0140) 2011; 115 Norman, Kustas, Humes (bib0100) 1995; 77 Long, Singh, Li (bib0085) 2011; 116 Bastiaanssen, Menenti, Feddes, Holtslag (bib0025) 1998; 212–213 Tasumi, Allen, Trezza (bib0145) 2008; 13 Roerink, Su, Menenti (bib0120) 2000; 25 Bastiaanssen, Thoreson, Clark, Davids (bib0035) 2010; 136 Oki, Kanae (bib0105) 2006; 313 Timmermans, Kustas, Anderson, French (bib0155) 2007; 108 Compaoré, Hendrickx, Hong, Friesen, van de Giesen, Rodgers, Szarzynski, Vlek (bib0040) 2008; 33 Li, Zhang, Sun, Su, Tang, Zhu, Sobrino (bib0065) 2004; 25 Li, Tang, Wu, Ren, Yan, Wan, Trigo, Sobrino (bib0075) 2013; 131 Su (bib0130) 2002; 6 Allen, Tasumi, Trezza (bib0005) 2007; 133 Hong, Hendrickx, Borchers (bib0050) 2009; 370 Li, Tang, Wan, Bi, Zhou, Tang, Yan, Zhang (bib0070) 2009; 9 Moran, Clarke, Inoue, Vidal (bib0090) 1994; 49 Bastiaanssen, W.G.M., 1995. Regionalization of surface flux densities and moisture indicators in composite terrain. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands. Gebremichael, Wang, Sammis (bib0045) 2010; 96 Jiang, Islam (bib0055) 1999; 26 Nishida, Nemani, Running, Glassy (bib0095) 2003; 108 Price (bib0115) 1990; 28 Tang, Li, Tang (bib0135) 2010; 114 Liang (bib0080) 2004 Baldocchi, Falge, Gu, Olson, Hollinger, Running, Anthoni, Bernhofer, Davis, Evans, Fuentes, Goldstein, Katul, Law, Lee, Malhi, Meyers, Munger, Oechel, Paw, Pilegaard, Schmid, Valentini, Verma, Vesala, Wilson, Wofsy (bib0015) 2001; 11 Anderson, Norman, Diak, Kustas, Mecikalski (bib0010) 1997; 60 Li, Stoll, Zhang, Jia, Su (bib0060) 2001; 44 Teixeira, Bastiaanssen, Ahmad, Bos (bib0150) 2009; 149 Bastiaanssen, Noordman, Pelgrum, Davids, Thoreson, Allen (bib0030) 2005; 131 Singh, Irmak, Irmak, Martin (bib0125) 2008; 134 Paulson (bib0110) 1970; 9 Bastiaanssen (10.1016/j.agrformet.2013.01.008_bib0025) 1998; 212–213 Bastiaanssen (10.1016/j.agrformet.2013.01.008_bib0030) 2005; 131 Gebremichael (10.1016/j.agrformet.2013.01.008_bib0045) 2010; 96 Roerink (10.1016/j.agrformet.2013.01.008_bib0120) 2000; 25 Singh (10.1016/j.agrformet.2013.01.008_bib0125) 2008; 134 Anderson (10.1016/j.agrformet.2013.01.008_bib0010) 1997; 60 Tang (10.1016/j.agrformet.2013.01.008_bib0140) 2011; 115 Su (10.1016/j.agrformet.2013.01.008_bib0130) 2002; 6 Tasumi (10.1016/j.agrformet.2013.01.008_bib0145) 2008; 13 Jiang (10.1016/j.agrformet.2013.01.008_bib0055) 1999; 26 Tang (10.1016/j.agrformet.2013.01.008_bib0135) 2010; 114 Norman (10.1016/j.agrformet.2013.01.008_bib0100) 1995; 77 10.1016/j.agrformet.2013.01.008_bib0020 Moran (10.1016/j.agrformet.2013.01.008_bib0090) 1994; 49 Timmermans (10.1016/j.agrformet.2013.01.008_bib0155) 2007; 108 Compaoré (10.1016/j.agrformet.2013.01.008_bib0040) 2008; 33 Nishida (10.1016/j.agrformet.2013.01.008_bib0095) 2003; 108 Teixeira (10.1016/j.agrformet.2013.01.008_bib0150) 2009; 149 Bastiaanssen (10.1016/j.agrformet.2013.01.008_bib0035) 2010; 136 Paulson (10.1016/j.agrformet.2013.01.008_bib0110) 1970; 9 Price (10.1016/j.agrformet.2013.01.008_bib0115) 1990; 28 Oki (10.1016/j.agrformet.2013.01.008_bib0105) 2006; 313 Li (10.1016/j.agrformet.2013.01.008_bib0070) 2009; 9 Li (10.1016/j.agrformet.2013.01.008_bib0065) 2004; 25 Li (10.1016/j.agrformet.2013.01.008_bib0075) 2013; 131 Allen (10.1016/j.agrformet.2013.01.008_bib0005) 2007; 133 Hong (10.1016/j.agrformet.2013.01.008_bib0050) 2009; 370 Li (10.1016/j.agrformet.2013.01.008_bib0060) 2001; 44 Liang (10.1016/j.agrformet.2013.01.008_bib0080) 2004 Baldocchi (10.1016/j.agrformet.2013.01.008_bib0015) 2001; 11 Long (10.1016/j.agrformet.2013.01.008_bib0085) 2011; 116 |
| References_xml | – volume: 25 start-page: 147 year: 2000 end-page: 157 ident: bib0120 article-title: S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance publication-title: Phys. Chem. Earth B – volume: 49 start-page: 246 year: 1994 end-page: 363 ident: bib0090 article-title: Estimating crop water deficit using the relationship between surface-air temperature and spectral vegetation index publication-title: Remote Sens. Environ. – volume: 28 start-page: 940 year: 1990 end-page: 948 ident: bib0115 article-title: Using spatial context in satellite data to infer regional scale evapotranspiration publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 60 start-page: 195 year: 1997 end-page: 216 ident: bib0010 article-title: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing publication-title: Remote Sens. Environ. – volume: 313 start-page: 1068 year: 2006 end-page: 1072 ident: bib0105 article-title: Global hydrological cycles and world water resources publication-title: Science – volume: 114 start-page: 540 year: 2010 end-page: 551 ident: bib0135 article-title: An application of the publication-title: Remote Sens. Environ. – volume: 149 start-page: 462 year: 2009 end-page: 476 ident: bib0150 article-title: Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the low-middle São Francisco River basin, Brazil. Part A: calibration and validation publication-title: Agric. For. Meteorol. – year: 2004 ident: bib0080 article-title: Quantitative Remote Sensing of Land Surfaces – volume: 134 start-page: 273 year: 2008 end-page: 285 ident: bib0125 article-title: Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska publication-title: J. Irrig. Drain. Eng. – volume: 77 start-page: 263 year: 1995 end-page: 293 ident: bib0100 article-title: A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature publication-title: Agric. For. Meteorol. – volume: 96 start-page: 489 year: 2010 end-page: 495 ident: bib0045 article-title: Dependence of remote sensing evapotranspiration algorithm on spatial resolution publication-title: Atmos. Res. – volume: 133 start-page: 380 year: 2007 end-page: 394 ident: bib0005 article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model publication-title: J. Irrig. Drain. Eng. – volume: 9 start-page: 3801 year: 2009 end-page: 3853 ident: bib0070 article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data publication-title: Sensors – volume: 33 start-page: 127 year: 2008 end-page: 140 ident: bib0040 article-title: Evaporation mapping at two scales using optical imagery in the White Volta Basin, Upper East Ghana publication-title: Phys. Chem. Earth – volume: 108 start-page: 369 year: 2007 end-page: 384 ident: bib0155 article-title: An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes publication-title: Remote Sens. Environ. – volume: 25 start-page: 195 year: 2004 end-page: 204 ident: bib0065 article-title: Experimental system for the study of the directional thermal emission of natural surfaces publication-title: Int. J. Remote Sens. – volume: 108 start-page: D94270 year: 2003 ident: bib0095 article-title: An operational remote sensing algorithm of land surface evaporation publication-title: J. Geophys. Res. – volume: 115 start-page: 3187 year: 2011 end-page: 3202 ident: bib0140 article-title: An intercomparison of three remote sensing-based energy balance models using large aperture scintillometer measurements over a wheat–corn production region publication-title: Remote Sens. Environ. – volume: 26 start-page: 2773 year: 1999 end-page: 2776 ident: bib0055 article-title: A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations publication-title: Geophys. Res. Lett. – volume: 131 start-page: 14 year: 2013 end-page: 37 ident: bib0075 article-title: Satellite-derived land surface temperature: current status and perspectives publication-title: Remote Sens. Environ. – volume: 116 start-page: D21107 year: 2011 ident: bib0085 article-title: How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? publication-title: J. Geophys. Res. – volume: 11 start-page: 2415 year: 2001 end-page: 2434 ident: bib0015 article-title: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities publication-title: Bull. Am. Meteorol. Soc. – volume: 212–213 start-page: 198 year: 1998 end-page: 212 ident: bib0025 article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation publication-title: J. Hydrol. – volume: 131 start-page: 85 year: 2005 end-page: 93 ident: bib0030 article-title: SEBAL model with remotely sensed data to improve water-resources management under actual field conditions publication-title: J. Irrig. Drain. Eng. – volume: 13 start-page: 51 year: 2008 end-page: 63 ident: bib0145 article-title: At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance publication-title: J. Hydrol. Eng. – volume: 9 start-page: 857 year: 1970 end-page: 861 ident: bib0110 article-title: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer publication-title: J. Appl. Meteorol. – volume: 6 start-page: 85 year: 2002 end-page: 99 ident: bib0130 article-title: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes publication-title: Hydrol. Earth Syst. Sci. – volume: 44 start-page: 97 year: 2001 end-page: 111 ident: bib0060 article-title: On the separate retrieval of soil and vegetation temperatures from ATSR data publication-title: Sci. China, Ser. D – volume: 136 start-page: 282 year: 2010 end-page: 283 ident: bib0035 article-title: Discussion of “application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska” by Ramesh K. Singh, Ayse Irmak, Suat Irmak, and Derrel L. Martin publication-title: J. Irrig. Drain. Eng. – reference: Bastiaanssen, W.G.M., 1995. Regionalization of surface flux densities and moisture indicators in composite terrain. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands. – volume: 370 start-page: 122 year: 2009 end-page: 138 ident: bib0050 article-title: Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30 publication-title: J. Hydrol. – volume: 6 start-page: 85 year: 2002 ident: 10.1016/j.agrformet.2013.01.008_bib0130 article-title: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-6-85-2002 – volume: 134 start-page: 273 year: 2008 ident: 10.1016/j.agrformet.2013.01.008_bib0125 article-title: Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2008)134:3(273) – volume: 131 start-page: 85 year: 2005 ident: 10.1016/j.agrformet.2013.01.008_bib0030 article-title: SEBAL model with remotely sensed data to improve water-resources management under actual field conditions publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2005)131:1(85) – volume: 26 start-page: 2773 year: 1999 ident: 10.1016/j.agrformet.2013.01.008_bib0055 article-title: A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL006049 – volume: 44 start-page: 97 year: 2001 ident: 10.1016/j.agrformet.2013.01.008_bib0060 article-title: On the separate retrieval of soil and vegetation temperatures from ATSR data publication-title: Sci. China, Ser. D doi: 10.1007/BF02879653 – volume: 9 start-page: 3801 year: 2009 ident: 10.1016/j.agrformet.2013.01.008_bib0070 article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data publication-title: Sensors doi: 10.3390/s90503801 – volume: 108 start-page: 369 year: 2007 ident: 10.1016/j.agrformet.2013.01.008_bib0155 article-title: An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.11.028 – volume: 77 start-page: 263 year: 1995 ident: 10.1016/j.agrformet.2013.01.008_bib0100 article-title: A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(95)02265-Y – volume: 115 start-page: 3187 year: 2011 ident: 10.1016/j.agrformet.2013.01.008_bib0140 article-title: An intercomparison of three remote sensing-based energy balance models using large aperture scintillometer measurements over a wheat–corn production region publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.07.004 – volume: 25 start-page: 147 year: 2000 ident: 10.1016/j.agrformet.2013.01.008_bib0120 article-title: S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance publication-title: Phys. Chem. Earth B doi: 10.1016/S1464-1909(99)00128-8 – volume: 149 start-page: 462 year: 2009 ident: 10.1016/j.agrformet.2013.01.008_bib0150 article-title: Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the low-middle São Francisco River basin, Brazil. Part A: calibration and validation publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2008.09.016 – volume: 96 start-page: 489 year: 2010 ident: 10.1016/j.agrformet.2013.01.008_bib0045 article-title: Dependence of remote sensing evapotranspiration algorithm on spatial resolution publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2009.12.003 – volume: 133 start-page: 380 year: 2007 ident: 10.1016/j.agrformet.2013.01.008_bib0005 article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2007)133:4(380) – volume: 116 start-page: D21107 year: 2011 ident: 10.1016/j.agrformet.2013.01.008_bib0085 article-title: How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? publication-title: J. Geophys. Res. doi: 10.1029/2011JD016542 – volume: 114 start-page: 540 year: 2010 ident: 10.1016/j.agrformet.2013.01.008_bib0135 article-title: An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.10.012 – volume: 49 start-page: 246 year: 1994 ident: 10.1016/j.agrformet.2013.01.008_bib0090 article-title: Estimating crop water deficit using the relationship between surface-air temperature and spectral vegetation index publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90020-5 – volume: 108 start-page: D94270 year: 2003 ident: 10.1016/j.agrformet.2013.01.008_bib0095 article-title: An operational remote sensing algorithm of land surface evaporation publication-title: J. Geophys. Res. doi: 10.1029/2002JD002062 – ident: 10.1016/j.agrformet.2013.01.008_bib0020 – volume: 25 start-page: 195 year: 2004 ident: 10.1016/j.agrformet.2013.01.008_bib0065 article-title: Experimental system for the study of the directional thermal emission of natural surfaces publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000116453 – volume: 313 start-page: 1068 year: 2006 ident: 10.1016/j.agrformet.2013.01.008_bib0105 article-title: Global hydrological cycles and world water resources publication-title: Science doi: 10.1126/science.1128845 – volume: 11 start-page: 2415 year: 2001 ident: 10.1016/j.agrformet.2013.01.008_bib0015 article-title: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 – volume: 136 start-page: 282 year: 2010 ident: 10.1016/j.agrformet.2013.01.008_bib0035 article-title: Discussion of “application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska” by Ramesh K. Singh, Ayse Irmak, Suat Irmak, and Derrel L. Martin publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000216 – year: 2004 ident: 10.1016/j.agrformet.2013.01.008_bib0080 – volume: 212–213 start-page: 198 year: 1998 ident: 10.1016/j.agrformet.2013.01.008_bib0025 article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation publication-title: J. Hydrol. doi: 10.1016/S0022-1694(98)00253-4 – volume: 60 start-page: 195 year: 1997 ident: 10.1016/j.agrformet.2013.01.008_bib0010 article-title: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00215-5 – volume: 33 start-page: 127 year: 2008 ident: 10.1016/j.agrformet.2013.01.008_bib0040 article-title: Evaporation mapping at two scales using optical imagery in the White Volta Basin, Upper East Ghana publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2007.04.021 – volume: 131 start-page: 14 year: 2013 ident: 10.1016/j.agrformet.2013.01.008_bib0075 article-title: Satellite-derived land surface temperature: current status and perspectives publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.008 – volume: 28 start-page: 940 year: 1990 ident: 10.1016/j.agrformet.2013.01.008_bib0115 article-title: Using spatial context in satellite data to infer regional scale evapotranspiration publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.58983 – volume: 370 start-page: 122 year: 2009 ident: 10.1016/j.agrformet.2013.01.008_bib0050 article-title: Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30m) to MODIS (250m) scale publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.03.002 – volume: 13 start-page: 51 year: 2008 ident: 10.1016/j.agrformet.2013.01.008_bib0145 article-title: At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2008)13:2(51) – volume: 9 start-page: 857 year: 1970 ident: 10.1016/j.agrformet.2013.01.008_bib0110 article-title: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2 |
| SSID | ssj0012779 |
| Score | 2.3956654 |
| Snippet | ► Spatial effect of the size of both AOI and satellite pixel on SEBAL was examined. ► Analytical equations were proposed to quantify the spatial effects on... The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at... |
| SourceID | proquest crossref fao elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 28 |
| SubjectTerms | air temperature algorithms Analytical equation developmental stages Drying drying temperature energy balance equations Evapotranspiration heat transfer irrigation Mathematical analysis Mathematical models moderate resolution imaging spectroradiometer Pixels remote sensing roughness Satellites SEBAL soil water content Spatial-scale effect Surface energy Surface energy balance Surface temperature |
| Title | Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data |
| URI | https://dx.doi.org/10.1016/j.agrformet.2013.01.008 https://www.proquest.com/docview/1420131901 https://www.proquest.com/docview/1735925419 https://www.proquest.com/docview/1770276582 |
| Volume | 174-175 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012779 issn: 0168-1923 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-2240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012779 issn: 0168-1923 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012779 issn: 0168-1923 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012779 issn: 0168-1923 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012779 issn: 0168-1923 databaseCode: AKRWK dateStart: 19840201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbSZGmHok1axE0bMEDRjbVIURbVzTUSuM1jcQxkI0iKMlQEkmE7HfPbe0dKBoIEydBR0lEieXx8J353R8jXUkqLmY2YEy4FA8U5VkhXsUKVifWiKnlwEru8Gk3n8vdNdrNDJr0vDNIqu7U_rulhte7uDLveHC7rejgDsKICPknj-Rt6sMscsxh8v9_SPLjIY7w9EGYo_YDjZRaBnO-RVMnTEL8T80w-vUO9qkz7aMUO29DZO_K2w490HKv4nuz4Zp-8GS9WXQwNv08GlwCE21X4X06_0cltDag0XB0QhymIYcixNejG08jmoG1DAQfS2enP8QUNuXEoVJj6v2bZbkL08zoOFIoxOaKzI0XG_IKuPOja0zXy4OESCacfyPzs9HoyZV2eBeZkqjasAJNOpVaBZebxmDTLq2RUVsbmJffS-kQ4pUowla1Lcoeeu4UwmSlcCdufqmz6kew2beMPCZUW7FFnVGY4-p1I5apSYLgpAzgH2jQgo75vteuCkGMujFvds83-6K1SNCpFJ1yDUgYk2RZcxjgcLxf50StPPxhSGnaLlwsfgrrxWb3W85lAQxQ9v5TgA3LSjwENcxEPWEzj27s1mFH4BoRYz8jkaVaAVc6L52TyROT4sU__04Yj8lrE5B2MZ5_J7mZ1578AhNrY4zBHjsne-Nf59OofPDQbSw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH_axgE4IBiglU8jIW6hieM0DrdSbSrQ7tJV2s2yHacKmpKq7Tjub997dlJpAm0Hjk7sfD1__H7x770H8LkUwlBmo8hymyJBsTYqhK2iQpaxcbwqE-8kNj8fTZfi52V2eQCT3heGZJXd3B_mdD9bd0eG3dccrut6uECwIj0-ScP-2yE8EhnPiYF9vdnrPBI8UoQA30iXsPodkZdeeXW-I1VlkvoAnpRo8t9L1GGl27-mbL8OnT2HZx2AZOPwjC_gwDXH8HS82nRBNNwxDOaIhNuN_2HOvrDJVY2w1JdegqUcxNjnoi0ax7Eg52BtwxAIssXp9_GM-eQ4DB-YuT963e58-PM69BRGQTmCtyMjyfyKbRwa27EtCeGxSIrTV7A8O72YTKMu0UJkRSp3UYGcTqZGIjVztE-a5VU8Kitt8jJxwriYWylL5MrGxrkl192C60wXtsT1T1YmfQ1HTdu4E2DCICG1WmY6IccTIW1Vcoo3pRHo4DsNYNR_W2W7KOSUDONK9XKz32pvFEVGUXGi0CgDiPcN1yEQx8NNvvXGU3f6lMLl4uHGJ2huOldv1XLBiYmS65fkyQA-9X1A4WCkHRbduPZ6izyKrkAY6546eZoVSMuT4r46ecxzutmb_3mHj_B4ejGfqdmP819v4QkPmTyiJHsHR7vNtXuPeGpnPvjxcguaARzg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial-scale+effect+on+the+SEBAL+model+for+evapotranspiration+estimation+using+remote+sensing+data&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Tang%2C+Ronglin&rft.au=Li%2C+Zhao-Liang&rft.au=Chen%2C+Kun-Shan&rft.au=Jia%2C+Yuanyuan&rft.date=2013-06-15&rft.issn=0168-1923&rft.volume=174&rft.spage=28&rft.epage=42&rft_id=info:doi/10.1016%2Fj.agrformet.2013.01.008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon |