Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data

► Spatial effect of the size of both AOI and satellite pixel on SEBAL was examined. ► Analytical equations were proposed to quantify the spatial effects on SEBAL. ► Effective variables were introduced to bridge the high- and low-scale difference. ► Data used covered a wide range of vegetation cover...

Full description

Saved in:
Bibliographic Details
Published inAgricultural and forest meteorology Vol. 174-175; pp. 28 - 42
Main Authors Tang, Ronglin, Li, Zhao-Liang, Chen, Kun-Shan, Jia, Yuanyuan, Li, Chuanrong, Sun, Xiaomin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.06.2013
Subjects
Online AccessGet full text
ISSN0168-1923
1873-2240
DOI10.1016/j.agrformet.2013.01.008

Cover

Abstract ► Spatial effect of the size of both AOI and satellite pixel on SEBAL was examined. ► Analytical equations were proposed to quantify the spatial effects on SEBAL. ► Effective variables were introduced to bridge the high- and low-scale difference. ► Data used covered a wide range of vegetation cover and soil moisture condition. The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at different spatial and temporal resolutions in more than 30 countries. However, the selection of dry and wet pixels over the area of interest (AOI) makes the SEBAL-estimated ET subject to the sizes of the AOI and the satellite pixels. This paper investigates the effect of the sizes of the AOI and satellite pixels on SEBAL-derived surface energy components by proposing generalized analytical equations. These equations demonstrate how the variations in the intermediate variables, the AOI, and the pixel size affect the resulting surface energy components and under which circumstances the sensible heat flux will be misestimated, without needing to run the SEBAL model. These analytical equations were verified through application to 23 clear-sky MODIS overpasses that cover different soil water contents and crop growth stages from January 2010 to late October 2011. The spatial effects of increasing the size of the AOI for SEBAL can be summarized as follows: (1) if the locations of dry and wet pixels do not vary, the pixel-by-pixel sensible heat flux (HLA) calculated using the larger AOI is equal to that of the smaller AOI (HSA, with HLA/HSA=1), (2) if only the surface temperatures of wet pixels do not vary, the relative variation in H is equal to the relative variation of the slope (a) of the linear equation between the near-surface air temperature difference and the surface temperature (HLA/HSA=1+δHSA/HSA=1+δa/a), and (3) under other circumstances, HLA/HSA decreases with surface temperatures at a slowing pace from ∼∞ at the temperature of the wet pixel (Ts,wet) to a certain value at the temperature of the dry pixel (Ts,dry) (both temperatures are for the small AOI). Analogously, a general analytical equation—a function of the coefficients of the linear equation between the near-surface air temperature difference and surface temperature at the high-resolution, the effective temperature, and the effective momentum roughness length—could be used to quantify the spatial-scale effect of the satellite pixel size. The findings from this study may help determine suitable sizes of the AOIs and the satellite pixels and aid in quantifying uncertainties in the SEBAL-derived surface energy components.
AbstractList The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at different spatial and temporal resolutions in more than 30 countries. However, the selection of dry and wet pixels over the area of interest (AOI) makes the SEBAL-estimated ET subject to the sizes of the AOI and the satellite pixels. This paper investigates the effect of the sizes of the AOI and satellite pixels on SEBAL-derived surface energy components by proposing generalized analytical equations. These equations demonstrate how the variations in the intermediate variables, the AOI, and the pixel size affect the resulting surface energy components and under which circumstances the sensible heat flux will be misestimated, without needing to run the SEBAL model. These analytical equations were verified through application to 23 clear-sky MODIS overpasses that cover different soil water contents and crop growth stages from January 2010 to late October 2011. The spatial effects of increasing the size of the AOI for SEBAL can be summarized as follows: (1) if the locations of dry and wet pixels do not vary, the pixel-by-pixel sensible heat flux (HLA) calculated using the larger AOI is equal to that of the smaller AOI (HSA, with HLA/HSA=1), (2) if only the surface temperatures of wet pixels do not vary, the relative variation in H is equal to the relative variation of the slope (a) of the linear equation between the near-surface air temperature difference and the surface temperature (HLA/HSA=1+ delta HSA/HSA=1+ delta a/a), and (3) under other circumstances, HLA/HSA decreases with surface temperatures at a slowing pace from similar to infinity at the temperature of the wet pixel (Ts,wet) to a certain value at the temperature of the dry pixel (Ts,dry) (both temperatures are for the small AOI). Analogously, a general analytical equation-a function of the coefficients of the linear equation between the near-surface air temperature difference and surface temperature at the high-resolution, the effective temperature, and the effective momentum roughness length-could be used to quantify the spatial-scale effect of the satellite pixel size. The findings from this study may help determine suitable sizes of the AOIs and the satellite pixels and aid in quantifying uncertainties in the SEBAL-derived surface energy components.
The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at different spatial and temporal resolutions in more than 30 countries. However, the selection of dry and wet pixels over the area of interest (AOI) makes the SEBAL-estimated ET subject to the sizes of the AOI and the satellite pixels. This paper investigates the effect of the sizes of the AOI and satellite pixels on SEBAL-derived surface energy components by proposing generalized analytical equations. These equations demonstrate how the variations in the intermediate variables, the AOI, and the pixel size affect the resulting surface energy components and under which circumstances the sensible heat flux will be misestimated, without needing to run the SEBAL model. These analytical equations were verified through application to 23 clear-sky MODIS overpasses that cover different soil water contents and crop growth stages from January 2010 to late October 2011. The spatial effects of increasing the size of the AOI for SEBAL can be summarized as follows: (1) if the locations of dry and wet pixels do not vary, the pixel-by-pixel sensible heat flux (HLA) calculated using the larger AOI is equal to that of the smaller AOI (HSA, with HLA/HSA=1), (2) if only the surface temperatures of wet pixels do not vary, the relative variation in H is equal to the relative variation of the slope (a) of the linear equation between the near-surface air temperature difference and the surface temperature (HLA/HSA=1+δHSA/HSA=1+δa/a), and (3) under other circumstances, HLA/HSA decreases with surface temperatures at a slowing pace from ∼∞ at the temperature of the wet pixel (Ts,wet) to a certain value at the temperature of the dry pixel (Ts,dry) (both temperatures are for the small AOI). Analogously, a general analytical equation—a function of the coefficients of the linear equation between the near-surface air temperature difference and surface temperature at the high-resolution, the effective temperature, and the effective momentum roughness length—could be used to quantify the spatial-scale effect of the satellite pixel size. The findings from this study may help determine suitable sizes of the AOIs and the satellite pixels and aid in quantifying uncertainties in the SEBAL-derived surface energy components.
The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at different spatial and temporal resolutions in more than 30 countries. However, the selection of dry and wet pixels over the area of interest (AOI) makes the SEBAL-estimated ET subject to the sizes of the AOI and the satellite pixels. This paper investigates the effect of the sizes of the AOI and satellite pixels on SEBAL-derived surface energy components by proposing generalized analytical equations. These equations demonstrate how the variations in the intermediate variables, the AOI, and the pixel size affect the resulting surface energy components and under which circumstances the sensible heat flux will be misestimated, without needing to run the SEBAL model. These analytical equations were verified through application to 23 clear-sky MODIS overpasses that cover different soil water contents and crop growth stages from January 2010 to late October 2011. The spatial effects of increasing the size of the AOI for SEBAL can be summarized as follows: (1) if the locations of dry and wet pixels do not vary, the pixel-by-pixel sensible heat flux (HLA) calculated using the larger AOI is equal to that of the smaller AOI (HSA, with HLA/HSA=1), (2) if only the surface temperatures of wet pixels do not vary, the relative variation in H is equal to the relative variation of the slope (a) of the linear equation between the near-surface air temperature difference and the surface temperature (HLA/HSA=1+δHSA/HSA=1+δa/a), and (3) under other circumstances, HLA/HSA decreases with surface temperatures at a slowing pace from ∼∞ at the temperature of the wet pixel (Tₛ,wₑₜ) to a certain value at the temperature of the dry pixel (Tₛ,dᵣy) (both temperatures are for the small AOI). Analogously, a general analytical equation—a function of the coefficients of the linear equation between the near-surface air temperature difference and surface temperature at the high-resolution, the effective temperature, and the effective momentum roughness length—could be used to quantify the spatial-scale effect of the satellite pixel size. The findings from this study may help determine suitable sizes of the AOIs and the satellite pixels and aid in quantifying uncertainties in the SEBAL-derived surface energy components.
► Spatial effect of the size of both AOI and satellite pixel on SEBAL was examined. ► Analytical equations were proposed to quantify the spatial effects on SEBAL. ► Effective variables were introduced to bridge the high- and low-scale difference. ► Data used covered a wide range of vegetation cover and soil moisture condition. The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at different spatial and temporal resolutions in more than 30 countries. However, the selection of dry and wet pixels over the area of interest (AOI) makes the SEBAL-estimated ET subject to the sizes of the AOI and the satellite pixels. This paper investigates the effect of the sizes of the AOI and satellite pixels on SEBAL-derived surface energy components by proposing generalized analytical equations. These equations demonstrate how the variations in the intermediate variables, the AOI, and the pixel size affect the resulting surface energy components and under which circumstances the sensible heat flux will be misestimated, without needing to run the SEBAL model. These analytical equations were verified through application to 23 clear-sky MODIS overpasses that cover different soil water contents and crop growth stages from January 2010 to late October 2011. The spatial effects of increasing the size of the AOI for SEBAL can be summarized as follows: (1) if the locations of dry and wet pixels do not vary, the pixel-by-pixel sensible heat flux (HLA) calculated using the larger AOI is equal to that of the smaller AOI (HSA, with HLA/HSA=1), (2) if only the surface temperatures of wet pixels do not vary, the relative variation in H is equal to the relative variation of the slope (a) of the linear equation between the near-surface air temperature difference and the surface temperature (HLA/HSA=1+δHSA/HSA=1+δa/a), and (3) under other circumstances, HLA/HSA decreases with surface temperatures at a slowing pace from ∼∞ at the temperature of the wet pixel (Ts,wet) to a certain value at the temperature of the dry pixel (Ts,dry) (both temperatures are for the small AOI). Analogously, a general analytical equation—a function of the coefficients of the linear equation between the near-surface air temperature difference and surface temperature at the high-resolution, the effective temperature, and the effective momentum roughness length—could be used to quantify the spatial-scale effect of the satellite pixel size. The findings from this study may help determine suitable sizes of the AOIs and the satellite pixels and aid in quantifying uncertainties in the SEBAL-derived surface energy components.
Author Jia, Yuanyuan
Sun, Xiaomin
Chen, Kun-Shan
Tang, Ronglin
Li, Zhao-Liang
Li, Chuanrong
Author_xml – sequence: 1
  givenname: Ronglin
  surname: Tang
  fullname: Tang, Ronglin
  organization: State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China
– sequence: 2
  givenname: Zhao-Liang
  surname: Li
  fullname: Li, Zhao-Liang
  email: lizl@unistra.fr, lizl@igsnrr.ac.cn, lizhaoliang@caas.cn
  organization: Key Laboratory of Agri-informatics, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 3
  givenname: Kun-Shan
  surname: Chen
  fullname: Chen, Kun-Shan
  organization: Center for Space and Remote Sensing Research, National Central University, Chung-Li, Taoyuan 320, Taiwan
– sequence: 4
  givenname: Yuanyuan
  surname: Jia
  fullname: Jia, Yuanyuan
  organization: Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 5
  givenname: Chuanrong
  surname: Li
  fullname: Li, Chuanrong
  organization: Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 6
  givenname: Xiaomin
  surname: Sun
  fullname: Sun, Xiaomin
  organization: Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China
BookMark eNqNkUtv3CAUhVGVSp1M-xvCshu7vGzwootplD6kkbqYZo0wvqSMbOMCE6n_vjiuuugm2QBX-g733nOu0dUcZkDohpKaEtp-ONfmIboQJ8g1I5TXhNaEqFdoR5XkFWOCXKFdIVVFO8bfoOuUzoRQJmW3Q_a0mOzNWCVrRsDgHNiMw4zzT8Cnu0-HI57CACMuHTA8miXkaOa0-FhkBYOU_bQ9L8nPDzjCFDLgBPNTOZhs3qLXzowJ3v299-j-892P26_V8fuXb7eHY2UFV7nqJJWK94oSAaIlTSMdaQdnejlQED0QZpUalFK9JdJyoco6pjGdHQhvlev5Hr3f_l1i-HUpk-nJJwvjaGYIl6SplITJtlHsBShvOtYI2j2PitV12pVjj-SG2hhSiuD0Eos78bemRK9h6bP-F5ZeZZpQXcIqyo__Ka3PT7YWu_34Av3NpncmrIhP-v5UAFGCXhdeZztsBJQEHj1EnayH2cLgY4lcD8E_2-UP3v3Bbw
CitedBy_id crossref_primary_10_1109_JSTARS_2014_2371135
crossref_primary_10_1109_TGRS_2018_2866555
crossref_primary_10_1007_s11430_015_5087_5
crossref_primary_10_1109_LGRS_2020_2987485
crossref_primary_10_1016_j_rse_2013_07_001
crossref_primary_10_1016_j_agrformet_2014_05_007
crossref_primary_10_3390_rs14081911
crossref_primary_10_1016_j_agrformet_2014_12_005
crossref_primary_10_1016_j_resconrec_2021_105709
crossref_primary_10_1007_s13201_024_02345_6
crossref_primary_10_1007_s10980_023_01648_4
crossref_primary_10_1109_TGRS_2024_3381696
crossref_primary_10_1109_JSTARS_2025_3539822
crossref_primary_10_1080_01431161_2024_2316674
crossref_primary_10_1371_journal_pone_0265138
crossref_primary_10_1016_j_jhydrol_2021_126029
crossref_primary_10_1016_j_heliyon_2024_e28190
crossref_primary_10_1007_s00271_022_00768_0
crossref_primary_10_1016_j_rse_2022_113421
crossref_primary_10_3390_rs11020138
crossref_primary_10_1016_j_isprsjprs_2021_05_018
crossref_primary_10_1080_01431161_2018_1479798
crossref_primary_10_1016_j_rse_2024_114405
crossref_primary_10_1080_01431161_2019_1579385
crossref_primary_10_1080_01431161_2015_1084439
crossref_primary_10_1016_j_rse_2022_112901
crossref_primary_10_3390_w11050955
crossref_primary_10_3390_s17061338
crossref_primary_10_1016_j_agrformet_2021_108775
crossref_primary_10_1016_j_rse_2017_05_009
crossref_primary_10_1016_j_rse_2018_07_019
crossref_primary_10_3741_JKWRA_2016_49_3_227
crossref_primary_10_1109_TGRS_2017_2728815
crossref_primary_10_1016_j_compag_2024_109003
crossref_primary_10_1080_01431161_2015_1040136
crossref_primary_10_1080_01431161_2018_1508919
crossref_primary_10_1016_j_agwat_2023_108294
crossref_primary_10_1371_journal_pone_0245834
crossref_primary_10_1007_s11629_018_5180_2
crossref_primary_10_3390_rs8120983
crossref_primary_10_1016_j_jhydrol_2018_03_054
crossref_primary_10_3390_w10040474
crossref_primary_10_1007_s00477_020_01956_0
crossref_primary_10_3390_rs13081524
crossref_primary_10_1080_15230406_2013_819201
crossref_primary_10_18307_2015_0219
crossref_primary_10_1038_s41598_023_38563_2
crossref_primary_10_3390_rs6075909
crossref_primary_10_1016_j_agrformet_2020_108308
crossref_primary_10_1016_j_agrformet_2021_108421
crossref_primary_10_1016_j_isprsjprs_2023_12_001
crossref_primary_10_1016_j_scitotenv_2019_135111
crossref_primary_10_3390_w10121841
crossref_primary_10_3390_f15122234
crossref_primary_10_3390_rs12071108
crossref_primary_10_1007_s12665_023_11284_5
crossref_primary_10_1016_j_jhydrol_2021_126805
crossref_primary_10_3390_rs12193235
crossref_primary_10_3390_rs11111289
crossref_primary_10_1016_j_agwat_2023_108141
crossref_primary_10_1016_j_agrformet_2025_110468
crossref_primary_10_1029_2017JD027785
crossref_primary_10_1016_j_rse_2019_04_026
crossref_primary_10_3390_rs6054369
crossref_primary_10_3390_su16188025
crossref_primary_10_1007_s10546_020_00507_y
crossref_primary_10_3390_rs8090735
crossref_primary_10_1016_j_ecolmodel_2013_09_004
crossref_primary_10_1002_2013WR014468
crossref_primary_10_1016_j_agrformet_2020_108056
crossref_primary_10_1080_15481603_2019_1643531
crossref_primary_10_1002_hyp_10854
crossref_primary_10_3390_rs9111178
crossref_primary_10_1002_2014WR015619
crossref_primary_10_1080_01431161_2016_1222100
crossref_primary_10_1016_j_jhydrol_2023_130538
crossref_primary_10_1029_2022RG000777
crossref_primary_10_1029_2023WR035234
crossref_primary_10_1002_eco_2126
crossref_primary_10_1007_s12517_022_10853_5
crossref_primary_10_1016_j_jag_2019_02_012
crossref_primary_10_1080_01431161_2018_1523590
crossref_primary_10_1016_j_agwat_2022_107965
crossref_primary_10_3390_rs10091452
crossref_primary_10_1016_j_agrformet_2017_11_011
crossref_primary_10_1016_j_jag_2018_09_001
crossref_primary_10_1016_j_atech_2022_100052
Cites_doi 10.5194/hess-6-85-2002
10.1061/(ASCE)0733-9437(2008)134:3(273)
10.1061/(ASCE)0733-9437(2005)131:1(85)
10.1029/1999GL006049
10.1007/BF02879653
10.3390/s90503801
10.1016/j.rse.2006.11.028
10.1016/0168-1923(95)02265-Y
10.1016/j.rse.2011.07.004
10.1016/S1464-1909(99)00128-8
10.1016/j.agrformet.2008.09.016
10.1016/j.atmosres.2009.12.003
10.1061/(ASCE)0733-9437(2007)133:4(380)
10.1029/2011JD016542
10.1016/j.rse.2009.10.012
10.1016/0034-4257(94)90020-5
10.1029/2002JD002062
10.1080/0143116031000116453
10.1126/science.1128845
10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
10.1061/(ASCE)IR.1943-4774.0000216
10.1016/S0022-1694(98)00253-4
10.1016/S0034-4257(96)00215-5
10.1016/j.pce.2007.04.021
10.1016/j.rse.2012.12.008
10.1109/36.58983
10.1016/j.jhydrol.2009.03.002
10.1061/(ASCE)1084-0699(2008)13:2(51)
10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID FBQ
AAYXX
CITATION
7S9
L.6
7ST
7TG
7UA
C1K
KL.
SOI
7SU
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.agrformet.2013.01.008
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
Environmental Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Meteorological & Geoastrophysical Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
AGRICOLA
Meteorological & Geoastrophysical Abstracts


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
EISSN 1873-2240
EndPage 42
ExternalDocumentID 10_1016_j_agrformet_2013_01_008
US201400165821
S0168192313000130
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABJNI
ABLJU
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
WH7
Y6R
ZMT
~02
~G-
~KM
AALCJ
AAQXK
ABEFU
ABFNM
ABGRD
ABPIF
ABPTK
ADMUD
ASPBG
AVWKF
AZFZN
FBQ
FEDTE
FGOYB
G-2
HLV
HMA
HVGLF
HZ~
R2-
SEP
SEW
WUQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
7ST
7TG
7UA
ABUFD
C1K
KL.
SOI
7SU
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c438t-971783b8104e460557f06dfab7d1e4be02c88d888bc07c348192a5a9cd0368fb3
IEDL.DBID .~1
ISSN 0168-1923
IngestDate Tue Oct 07 09:35:07 EDT 2025
Tue Oct 07 09:26:41 EDT 2025
Sun Sep 28 02:26:56 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Wed Oct 01 05:12:22 EDT 2025
Wed Dec 27 19:16:15 EST 2023
Fri Feb 23 02:31:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Surface energy balance
Spatial-scale effect
SEBAL
Analytical equation
Evapotranspiration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-971783b8104e460557f06dfab7d1e4be02c88d888bc07c348192a5a9cd0368fb3
Notes http://dx.doi.org/10.1016/j.agrformet.2013.01.008
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1420131901
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_1770276582
proquest_miscellaneous_1735925419
proquest_miscellaneous_1420131901
crossref_primary_10_1016_j_agrformet_2013_01_008
crossref_citationtrail_10_1016_j_agrformet_2013_01_008
fao_agris_US201400165821
elsevier_sciencedirect_doi_10_1016_j_agrformet_2013_01_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-15
PublicationDateYYYYMMDD 2013-06-15
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-15
  day: 15
PublicationDecade 2010
PublicationTitle Agricultural and forest meteorology
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tang, Li, Jia, Li, Sun, Kustas, Anderson (bib0140) 2011; 115
Norman, Kustas, Humes (bib0100) 1995; 77
Long, Singh, Li (bib0085) 2011; 116
Bastiaanssen, Menenti, Feddes, Holtslag (bib0025) 1998; 212–213
Tasumi, Allen, Trezza (bib0145) 2008; 13
Roerink, Su, Menenti (bib0120) 2000; 25
Bastiaanssen, Thoreson, Clark, Davids (bib0035) 2010; 136
Oki, Kanae (bib0105) 2006; 313
Timmermans, Kustas, Anderson, French (bib0155) 2007; 108
Compaoré, Hendrickx, Hong, Friesen, van de Giesen, Rodgers, Szarzynski, Vlek (bib0040) 2008; 33
Li, Zhang, Sun, Su, Tang, Zhu, Sobrino (bib0065) 2004; 25
Li, Tang, Wu, Ren, Yan, Wan, Trigo, Sobrino (bib0075) 2013; 131
Su (bib0130) 2002; 6
Allen, Tasumi, Trezza (bib0005) 2007; 133
Hong, Hendrickx, Borchers (bib0050) 2009; 370
Li, Tang, Wan, Bi, Zhou, Tang, Yan, Zhang (bib0070) 2009; 9
Moran, Clarke, Inoue, Vidal (bib0090) 1994; 49
Bastiaanssen, W.G.M., 1995. Regionalization of surface flux densities and moisture indicators in composite terrain. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands.
Gebremichael, Wang, Sammis (bib0045) 2010; 96
Jiang, Islam (bib0055) 1999; 26
Nishida, Nemani, Running, Glassy (bib0095) 2003; 108
Price (bib0115) 1990; 28
Tang, Li, Tang (bib0135) 2010; 114
Liang (bib0080) 2004
Baldocchi, Falge, Gu, Olson, Hollinger, Running, Anthoni, Bernhofer, Davis, Evans, Fuentes, Goldstein, Katul, Law, Lee, Malhi, Meyers, Munger, Oechel, Paw, Pilegaard, Schmid, Valentini, Verma, Vesala, Wilson, Wofsy (bib0015) 2001; 11
Anderson, Norman, Diak, Kustas, Mecikalski (bib0010) 1997; 60
Li, Stoll, Zhang, Jia, Su (bib0060) 2001; 44
Teixeira, Bastiaanssen, Ahmad, Bos (bib0150) 2009; 149
Bastiaanssen, Noordman, Pelgrum, Davids, Thoreson, Allen (bib0030) 2005; 131
Singh, Irmak, Irmak, Martin (bib0125) 2008; 134
Paulson (bib0110) 1970; 9
Bastiaanssen (10.1016/j.agrformet.2013.01.008_bib0025) 1998; 212–213
Bastiaanssen (10.1016/j.agrformet.2013.01.008_bib0030) 2005; 131
Gebremichael (10.1016/j.agrformet.2013.01.008_bib0045) 2010; 96
Roerink (10.1016/j.agrformet.2013.01.008_bib0120) 2000; 25
Singh (10.1016/j.agrformet.2013.01.008_bib0125) 2008; 134
Anderson (10.1016/j.agrformet.2013.01.008_bib0010) 1997; 60
Tang (10.1016/j.agrformet.2013.01.008_bib0140) 2011; 115
Su (10.1016/j.agrformet.2013.01.008_bib0130) 2002; 6
Tasumi (10.1016/j.agrformet.2013.01.008_bib0145) 2008; 13
Jiang (10.1016/j.agrformet.2013.01.008_bib0055) 1999; 26
Tang (10.1016/j.agrformet.2013.01.008_bib0135) 2010; 114
Norman (10.1016/j.agrformet.2013.01.008_bib0100) 1995; 77
10.1016/j.agrformet.2013.01.008_bib0020
Moran (10.1016/j.agrformet.2013.01.008_bib0090) 1994; 49
Timmermans (10.1016/j.agrformet.2013.01.008_bib0155) 2007; 108
Compaoré (10.1016/j.agrformet.2013.01.008_bib0040) 2008; 33
Nishida (10.1016/j.agrformet.2013.01.008_bib0095) 2003; 108
Teixeira (10.1016/j.agrformet.2013.01.008_bib0150) 2009; 149
Bastiaanssen (10.1016/j.agrformet.2013.01.008_bib0035) 2010; 136
Paulson (10.1016/j.agrformet.2013.01.008_bib0110) 1970; 9
Price (10.1016/j.agrformet.2013.01.008_bib0115) 1990; 28
Oki (10.1016/j.agrformet.2013.01.008_bib0105) 2006; 313
Li (10.1016/j.agrformet.2013.01.008_bib0070) 2009; 9
Li (10.1016/j.agrformet.2013.01.008_bib0065) 2004; 25
Li (10.1016/j.agrformet.2013.01.008_bib0075) 2013; 131
Allen (10.1016/j.agrformet.2013.01.008_bib0005) 2007; 133
Hong (10.1016/j.agrformet.2013.01.008_bib0050) 2009; 370
Li (10.1016/j.agrformet.2013.01.008_bib0060) 2001; 44
Liang (10.1016/j.agrformet.2013.01.008_bib0080) 2004
Baldocchi (10.1016/j.agrformet.2013.01.008_bib0015) 2001; 11
Long (10.1016/j.agrformet.2013.01.008_bib0085) 2011; 116
References_xml – volume: 25
  start-page: 147
  year: 2000
  end-page: 157
  ident: bib0120
  article-title: S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance
  publication-title: Phys. Chem. Earth B
– volume: 49
  start-page: 246
  year: 1994
  end-page: 363
  ident: bib0090
  article-title: Estimating crop water deficit using the relationship between surface-air temperature and spectral vegetation index
  publication-title: Remote Sens. Environ.
– volume: 28
  start-page: 940
  year: 1990
  end-page: 948
  ident: bib0115
  article-title: Using spatial context in satellite data to infer regional scale evapotranspiration
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 195
  year: 1997
  end-page: 216
  ident: bib0010
  article-title: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing
  publication-title: Remote Sens. Environ.
– volume: 313
  start-page: 1068
  year: 2006
  end-page: 1072
  ident: bib0105
  article-title: Global hydrological cycles and world water resources
  publication-title: Science
– volume: 114
  start-page: 540
  year: 2010
  end-page: 551
  ident: bib0135
  article-title: An application of the
  publication-title: Remote Sens. Environ.
– volume: 149
  start-page: 462
  year: 2009
  end-page: 476
  ident: bib0150
  article-title: Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the low-middle São Francisco River basin, Brazil. Part A: calibration and validation
  publication-title: Agric. For. Meteorol.
– year: 2004
  ident: bib0080
  article-title: Quantitative Remote Sensing of Land Surfaces
– volume: 134
  start-page: 273
  year: 2008
  end-page: 285
  ident: bib0125
  article-title: Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska
  publication-title: J. Irrig. Drain. Eng.
– volume: 77
  start-page: 263
  year: 1995
  end-page: 293
  ident: bib0100
  article-title: A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature
  publication-title: Agric. For. Meteorol.
– volume: 96
  start-page: 489
  year: 2010
  end-page: 495
  ident: bib0045
  article-title: Dependence of remote sensing evapotranspiration algorithm on spatial resolution
  publication-title: Atmos. Res.
– volume: 133
  start-page: 380
  year: 2007
  end-page: 394
  ident: bib0005
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model
  publication-title: J. Irrig. Drain. Eng.
– volume: 9
  start-page: 3801
  year: 2009
  end-page: 3853
  ident: bib0070
  article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data
  publication-title: Sensors
– volume: 33
  start-page: 127
  year: 2008
  end-page: 140
  ident: bib0040
  article-title: Evaporation mapping at two scales using optical imagery in the White Volta Basin, Upper East Ghana
  publication-title: Phys. Chem. Earth
– volume: 108
  start-page: 369
  year: 2007
  end-page: 384
  ident: bib0155
  article-title: An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes
  publication-title: Remote Sens. Environ.
– volume: 25
  start-page: 195
  year: 2004
  end-page: 204
  ident: bib0065
  article-title: Experimental system for the study of the directional thermal emission of natural surfaces
  publication-title: Int. J. Remote Sens.
– volume: 108
  start-page: D94270
  year: 2003
  ident: bib0095
  article-title: An operational remote sensing algorithm of land surface evaporation
  publication-title: J. Geophys. Res.
– volume: 115
  start-page: 3187
  year: 2011
  end-page: 3202
  ident: bib0140
  article-title: An intercomparison of three remote sensing-based energy balance models using large aperture scintillometer measurements over a wheat–corn production region
  publication-title: Remote Sens. Environ.
– volume: 26
  start-page: 2773
  year: 1999
  end-page: 2776
  ident: bib0055
  article-title: A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations
  publication-title: Geophys. Res. Lett.
– volume: 131
  start-page: 14
  year: 2013
  end-page: 37
  ident: bib0075
  article-title: Satellite-derived land surface temperature: current status and perspectives
  publication-title: Remote Sens. Environ.
– volume: 116
  start-page: D21107
  year: 2011
  ident: bib0085
  article-title: How sensitive is SEBAL to changes in input variables, domain size and satellite sensor?
  publication-title: J. Geophys. Res.
– volume: 11
  start-page: 2415
  year: 2001
  end-page: 2434
  ident: bib0015
  article-title: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 212–213
  start-page: 198
  year: 1998
  end-page: 212
  ident: bib0025
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation
  publication-title: J. Hydrol.
– volume: 131
  start-page: 85
  year: 2005
  end-page: 93
  ident: bib0030
  article-title: SEBAL model with remotely sensed data to improve water-resources management under actual field conditions
  publication-title: J. Irrig. Drain. Eng.
– volume: 13
  start-page: 51
  year: 2008
  end-page: 63
  ident: bib0145
  article-title: At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance
  publication-title: J. Hydrol. Eng.
– volume: 9
  start-page: 857
  year: 1970
  end-page: 861
  ident: bib0110
  article-title: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer
  publication-title: J. Appl. Meteorol.
– volume: 6
  start-page: 85
  year: 2002
  end-page: 99
  ident: bib0130
  article-title: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 44
  start-page: 97
  year: 2001
  end-page: 111
  ident: bib0060
  article-title: On the separate retrieval of soil and vegetation temperatures from ATSR data
  publication-title: Sci. China, Ser. D
– volume: 136
  start-page: 282
  year: 2010
  end-page: 283
  ident: bib0035
  article-title: Discussion of “application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska” by Ramesh K. Singh, Ayse Irmak, Suat Irmak, and Derrel L. Martin
  publication-title: J. Irrig. Drain. Eng.
– reference: Bastiaanssen, W.G.M., 1995. Regionalization of surface flux densities and moisture indicators in composite terrain. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands.
– volume: 370
  start-page: 122
  year: 2009
  end-page: 138
  ident: bib0050
  article-title: Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30
  publication-title: J. Hydrol.
– volume: 6
  start-page: 85
  year: 2002
  ident: 10.1016/j.agrformet.2013.01.008_bib0130
  article-title: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-6-85-2002
– volume: 134
  start-page: 273
  year: 2008
  ident: 10.1016/j.agrformet.2013.01.008_bib0125
  article-title: Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2008)134:3(273)
– volume: 131
  start-page: 85
  year: 2005
  ident: 10.1016/j.agrformet.2013.01.008_bib0030
  article-title: SEBAL model with remotely sensed data to improve water-resources management under actual field conditions
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2005)131:1(85)
– volume: 26
  start-page: 2773
  year: 1999
  ident: 10.1016/j.agrformet.2013.01.008_bib0055
  article-title: A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL006049
– volume: 44
  start-page: 97
  year: 2001
  ident: 10.1016/j.agrformet.2013.01.008_bib0060
  article-title: On the separate retrieval of soil and vegetation temperatures from ATSR data
  publication-title: Sci. China, Ser. D
  doi: 10.1007/BF02879653
– volume: 9
  start-page: 3801
  year: 2009
  ident: 10.1016/j.agrformet.2013.01.008_bib0070
  article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data
  publication-title: Sensors
  doi: 10.3390/s90503801
– volume: 108
  start-page: 369
  year: 2007
  ident: 10.1016/j.agrformet.2013.01.008_bib0155
  article-title: An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.11.028
– volume: 77
  start-page: 263
  year: 1995
  ident: 10.1016/j.agrformet.2013.01.008_bib0100
  article-title: A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(95)02265-Y
– volume: 115
  start-page: 3187
  year: 2011
  ident: 10.1016/j.agrformet.2013.01.008_bib0140
  article-title: An intercomparison of three remote sensing-based energy balance models using large aperture scintillometer measurements over a wheat–corn production region
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.07.004
– volume: 25
  start-page: 147
  year: 2000
  ident: 10.1016/j.agrformet.2013.01.008_bib0120
  article-title: S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance
  publication-title: Phys. Chem. Earth B
  doi: 10.1016/S1464-1909(99)00128-8
– volume: 149
  start-page: 462
  year: 2009
  ident: 10.1016/j.agrformet.2013.01.008_bib0150
  article-title: Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the low-middle São Francisco River basin, Brazil. Part A: calibration and validation
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.09.016
– volume: 96
  start-page: 489
  year: 2010
  ident: 10.1016/j.agrformet.2013.01.008_bib0045
  article-title: Dependence of remote sensing evapotranspiration algorithm on spatial resolution
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2009.12.003
– volume: 133
  start-page: 380
  year: 2007
  ident: 10.1016/j.agrformet.2013.01.008_bib0005
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
– volume: 116
  start-page: D21107
  year: 2011
  ident: 10.1016/j.agrformet.2013.01.008_bib0085
  article-title: How sensitive is SEBAL to changes in input variables, domain size and satellite sensor?
  publication-title: J. Geophys. Res.
  doi: 10.1029/2011JD016542
– volume: 114
  start-page: 540
  year: 2010
  ident: 10.1016/j.agrformet.2013.01.008_bib0135
  article-title: An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.10.012
– volume: 49
  start-page: 246
  year: 1994
  ident: 10.1016/j.agrformet.2013.01.008_bib0090
  article-title: Estimating crop water deficit using the relationship between surface-air temperature and spectral vegetation index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90020-5
– volume: 108
  start-page: D94270
  year: 2003
  ident: 10.1016/j.agrformet.2013.01.008_bib0095
  article-title: An operational remote sensing algorithm of land surface evaporation
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JD002062
– ident: 10.1016/j.agrformet.2013.01.008_bib0020
– volume: 25
  start-page: 195
  year: 2004
  ident: 10.1016/j.agrformet.2013.01.008_bib0065
  article-title: Experimental system for the study of the directional thermal emission of natural surfaces
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000116453
– volume: 313
  start-page: 1068
  year: 2006
  ident: 10.1016/j.agrformet.2013.01.008_bib0105
  article-title: Global hydrological cycles and world water resources
  publication-title: Science
  doi: 10.1126/science.1128845
– volume: 11
  start-page: 2415
  year: 2001
  ident: 10.1016/j.agrformet.2013.01.008_bib0015
  article-title: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
– volume: 136
  start-page: 282
  year: 2010
  ident: 10.1016/j.agrformet.2013.01.008_bib0035
  article-title: Discussion of “application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska” by Ramesh K. Singh, Ayse Irmak, Suat Irmak, and Derrel L. Martin
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000216
– year: 2004
  ident: 10.1016/j.agrformet.2013.01.008_bib0080
– volume: 212–213
  start-page: 198
  year: 1998
  ident: 10.1016/j.agrformet.2013.01.008_bib0025
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00253-4
– volume: 60
  start-page: 195
  year: 1997
  ident: 10.1016/j.agrformet.2013.01.008_bib0010
  article-title: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00215-5
– volume: 33
  start-page: 127
  year: 2008
  ident: 10.1016/j.agrformet.2013.01.008_bib0040
  article-title: Evaporation mapping at two scales using optical imagery in the White Volta Basin, Upper East Ghana
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2007.04.021
– volume: 131
  start-page: 14
  year: 2013
  ident: 10.1016/j.agrformet.2013.01.008_bib0075
  article-title: Satellite-derived land surface temperature: current status and perspectives
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.008
– volume: 28
  start-page: 940
  year: 1990
  ident: 10.1016/j.agrformet.2013.01.008_bib0115
  article-title: Using spatial context in satellite data to infer regional scale evapotranspiration
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.58983
– volume: 370
  start-page: 122
  year: 2009
  ident: 10.1016/j.agrformet.2013.01.008_bib0050
  article-title: Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30m) to MODIS (250m) scale
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.03.002
– volume: 13
  start-page: 51
  year: 2008
  ident: 10.1016/j.agrformet.2013.01.008_bib0145
  article-title: At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2008)13:2(51)
– volume: 9
  start-page: 857
  year: 1970
  ident: 10.1016/j.agrformet.2013.01.008_bib0110
  article-title: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
SSID ssj0012779
Score 2.3956654
Snippet ► Spatial effect of the size of both AOI and satellite pixel on SEBAL was examined. ► Analytical equations were proposed to quantify the spatial effects on...
The Surface Energy Balance Algorithm for Land (SEBAL) has been successfully applied to remote sensing data to estimate surface evapotranspiration (ET) at...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 28
SubjectTerms air temperature
algorithms
Analytical equation
developmental stages
Drying
drying temperature
energy balance
equations
Evapotranspiration
heat transfer
irrigation
Mathematical analysis
Mathematical models
moderate resolution imaging spectroradiometer
Pixels
remote sensing
roughness
Satellites
SEBAL
soil water content
Spatial-scale effect
Surface energy
Surface energy balance
Surface temperature
Title Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data
URI https://dx.doi.org/10.1016/j.agrformet.2013.01.008
https://www.proquest.com/docview/1420131901
https://www.proquest.com/docview/1735925419
https://www.proquest.com/docview/1770276582
Volume 174-175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: AKRWK
  dateStart: 19840201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbSZGmHok1axE0bMEDRjbVIURbVzTUSuM1jcQxkI0iKMlQEkmE7HfPbe0dKBoIEydBR0lEieXx8J353R8jXUkqLmY2YEy4FA8U5VkhXsUKVifWiKnlwEru8Gk3n8vdNdrNDJr0vDNIqu7U_rulhte7uDLveHC7rejgDsKICPknj-Rt6sMscsxh8v9_SPLjIY7w9EGYo_YDjZRaBnO-RVMnTEL8T80w-vUO9qkz7aMUO29DZO_K2w490HKv4nuz4Zp-8GS9WXQwNv08GlwCE21X4X06_0cltDag0XB0QhymIYcixNejG08jmoG1DAQfS2enP8QUNuXEoVJj6v2bZbkL08zoOFIoxOaKzI0XG_IKuPOja0zXy4OESCacfyPzs9HoyZV2eBeZkqjasAJNOpVaBZebxmDTLq2RUVsbmJffS-kQ4pUowla1Lcoeeu4UwmSlcCdufqmz6kew2beMPCZUW7FFnVGY4-p1I5apSYLgpAzgH2jQgo75vteuCkGMujFvds83-6K1SNCpFJ1yDUgYk2RZcxjgcLxf50StPPxhSGnaLlwsfgrrxWb3W85lAQxQ9v5TgA3LSjwENcxEPWEzj27s1mFH4BoRYz8jkaVaAVc6L52TyROT4sU__04Yj8lrE5B2MZ5_J7mZ1578AhNrY4zBHjsne-Nf59OofPDQbSw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH_axgE4IBiglU8jIW6hieM0DrdSbSrQ7tJV2s2yHacKmpKq7Tjub997dlJpAm0Hjk7sfD1__H7x770H8LkUwlBmo8hymyJBsTYqhK2iQpaxcbwqE-8kNj8fTZfi52V2eQCT3heGZJXd3B_mdD9bd0eG3dccrut6uECwIj0-ScP-2yE8EhnPiYF9vdnrPBI8UoQA30iXsPodkZdeeXW-I1VlkvoAnpRo8t9L1GGl27-mbL8OnT2HZx2AZOPwjC_gwDXH8HS82nRBNNwxDOaIhNuN_2HOvrDJVY2w1JdegqUcxNjnoi0ax7Eg52BtwxAIssXp9_GM-eQ4DB-YuT963e58-PM69BRGQTmCtyMjyfyKbRwa27EtCeGxSIrTV7A8O72YTKMu0UJkRSp3UYGcTqZGIjVztE-a5VU8Kitt8jJxwriYWylL5MrGxrkl192C60wXtsT1T1YmfQ1HTdu4E2DCICG1WmY6IccTIW1Vcoo3pRHo4DsNYNR_W2W7KOSUDONK9XKz32pvFEVGUXGi0CgDiPcN1yEQx8NNvvXGU3f6lMLl4uHGJ2huOldv1XLBiYmS65fkyQA-9X1A4WCkHRbduPZ6izyKrkAY6546eZoVSMuT4r46ecxzutmb_3mHj_B4ejGfqdmP819v4QkPmTyiJHsHR7vNtXuPeGpnPvjxcguaARzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial-scale+effect+on+the+SEBAL+model+for+evapotranspiration+estimation+using+remote+sensing+data&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Tang%2C+Ronglin&rft.au=Li%2C+Zhao-Liang&rft.au=Chen%2C+Kun-Shan&rft.au=Jia%2C+Yuanyuan&rft.date=2013-06-15&rft.issn=0168-1923&rft.volume=174&rft.spage=28&rft.epage=42&rft_id=info:doi/10.1016%2Fj.agrformet.2013.01.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon