Image Denoising Using Trivariate Shrinkage Filter in the Wavelet Domain and Joint Bilateral Filter in the Spatial Domain

This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter. In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distributi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 18; no. 10; pp. 2364 - 2369
Main Authors Yu, Hancheng, Zhao, Li, Wang, Haixian
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2009.2026685

Cover

Abstract This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter. In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among intrascale wavelet coefficients, and then a trivariate shrinkage filter is derived by using the maximum a posteriori (MAP) estimator. Although wavelet-based methods are efficient in image denoising, they are prone to producing salient artifacts such as low-frequency noise and edge ringing which relate to the structure of the underlying wavelet. On the other hand, most spatial-based algorithms output much higher quality denoising image with less artifacts. However, they are usually too computationally demanding. In order to reduce the computational cost, we develop an efficient joint bilateral filter by using the wavelet denoising result rather than directly processing the noisy image in the spatial domain. This filter could suppress the noise while preserve image details with small computational cost. Extension to color image denoising is also presented. We compare our denoising algorithm with other denoising techniques in terms of PSNR and visual quality. The experimental results indicate that our algorithm is competitive with other denoising techniques.
AbstractList In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among intrascale wavelet coefficients, and then a trivariate shrinkage filter is derived by using the maximum a posteriori (MAP) estimator.
This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter. In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among intrascale wavelet coefficients, and then a trivariate shrinkage filter is derived by using the maximum a posteriori (MAP) estimator. Although wavelet-based methods are efficient in image denoising, they are prone to producing salient artifacts such as low-frequency noise and edge ringing which relate to the structure of the underlying wavelet. On the other hand, most spatial-based algorithms output much higher quality denoising image with less artifacts. However, they are usually too computationally demanding. In order to reduce the computational cost, we develop an efficient joint bilateral filter by using the wavelet denoising result rather than directly processing the noisy image in the spatial domain. This filter could suppress the noise while preserve image details with small computational cost. Extension to color image denoising is also presented. We compare our denoising algorithm with other denoising techniques in terms of PSNR and visual quality. The experimental results indicate that our algorithm is competitive with other denoising techniques.
This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter. In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among intrascale wavelet coefficients, and then a trivariate shrinkage filter is derived by using the maximum a posteriori (MAP) estimator. Although wavelet-based methods are efficient in image denoising, they are prone to producing salient artifacts such as low-frequency noise and edge ringing which relate to the structure of the underlying wavelet. On the other hand, most spatial-based algorithms output much higher quality denoising image with less artifacts. However, they are usually too computationally demanding. In order to reduce the computational cost, we develop an efficient joint bilateral filter by using the wavelet denoising result rather than directly processing the noisy image in the spatial domain. This filter could suppress the noise while preserve image details with small computational cost. Extension to color image denoising is also presented. We compare our denoising algorithm with other denoising techniques in terms of PSNR and visual quality. The experimental results indicate that our algorithm is competitive with other denoising techniques.This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter. In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among intrascale wavelet coefficients, and then a trivariate shrinkage filter is derived by using the maximum a posteriori (MAP) estimator. Although wavelet-based methods are efficient in image denoising, they are prone to producing salient artifacts such as low-frequency noise and edge ringing which relate to the structure of the underlying wavelet. On the other hand, most spatial-based algorithms output much higher quality denoising image with less artifacts. However, they are usually too computationally demanding. In order to reduce the computational cost, we develop an efficient joint bilateral filter by using the wavelet denoising result rather than directly processing the noisy image in the spatial domain. This filter could suppress the noise while preserve image details with small computational cost. Extension to color image denoising is also presented. We compare our denoising algorithm with other denoising techniques in terms of PSNR and visual quality. The experimental results indicate that our algorithm is competitive with other denoising techniques.
Author Li Zhao
Hancheng Yu
Haixian Wang
Author_xml – sequence: 1
  givenname: Hancheng
  surname: Yu
  fullname: Yu, Hancheng
– sequence: 2
  givenname: Li
  surname: Zhao
  fullname: Zhao, Li
– sequence: 3
  givenname: Haixian
  surname: Wang
  fullname: Wang, Haixian
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22098010$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19586815$$D View this record in MEDLINE/PubMed
BookMark eNqFktFrFDEQh4NUbHv6LgiyCOrT1plsspt91NbWk4JCr_gYctnZNnUveya5ov-9ud55DwfqyyQM3xcyye-YHfjRE2PPEU4QoX03m3494QBtLryulXzEjrAVWAIIfpD3IJuyQdEesuMY7wBQSKyfsENspaoVyiP2c7owN1SckR9ddP6muH6os-DuTXAmUXF1G5z_vobO3ZAoFM4X6ZaKb-aeBkrF2bgwuWV8V3wenU_FBzdkL5hhT7hamuRydyM8ZY97M0R6tl0n7Pr84-z0U3n55WJ6-v6ytKJSqVQW5lJIRcZKK-q55Ui25WCgryRV1FeNaRroutZa6hCqOnegxwbnFg1QNWFvN-cuw_hjRTHphYuWhsF4GldRq0YC5w2v_0s2lQAhKi4z-eafZCUBuAKRwVd74N24Cj7Pq1WNClEolaGXW2g1X1Cnl8EtTPil_3xSBl5vAROtGfpgvHVxx3EOrYI8-oTVG86GMcZAvbYu5TcffQrGDRpBr1Ojc2r0OjV6m5oswp64u8PflRcbxRHRDpcoa66w-g1Q_MrY
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_procs_2015_08_088
crossref_primary_10_3390_app8091688
crossref_primary_10_1109_TIP_2019_2928644
crossref_primary_10_1016_j_bspc_2019_101625
crossref_primary_10_1016_j_infrared_2018_05_028
crossref_primary_10_1016_j_jksuci_2023_04_005
crossref_primary_10_1080_0952813X_2015_1020518
crossref_primary_10_1186_1687_6180_2012_110
crossref_primary_10_5370_JEET_2015_10_5_2189
crossref_primary_10_1016_j_sigpro_2011_08_009
crossref_primary_10_3390_app9122529
crossref_primary_10_1109_ACCESS_2020_3010127
crossref_primary_10_1016_j_neucom_2015_09_079
crossref_primary_10_1109_TGRS_2018_2862384
crossref_primary_10_1007_s11859_010_0212_y
crossref_primary_10_1155_2010_914564
crossref_primary_10_1016_j_nima_2019_02_041
crossref_primary_10_1016_j_patcog_2012_01_023
crossref_primary_10_1021_acsami_4c17502
crossref_primary_10_1007_s12517_020_05798_6
crossref_primary_10_1016_j_inffus_2019_09_003
crossref_primary_10_1049_iet_ipr_2010_0014
crossref_primary_10_1080_14680629_2024_2329457
crossref_primary_10_1109_TGRS_2021_3138740
crossref_primary_10_1016_j_sigpro_2020_107767
crossref_primary_10_1016_j_image_2012_01_011
crossref_primary_10_5370_JEET_2014_9_3_1016
crossref_primary_10_1016_j_isatra_2014_04_007
crossref_primary_10_1016_j_measurement_2019_01_001
crossref_primary_10_1109_TCSVT_2023_3348804
crossref_primary_10_1155_2013_483791
crossref_primary_10_1007_s11432_014_5112_x
crossref_primary_10_1016_j_media_2013_01_006
crossref_primary_10_1016_j_matpr_2020_08_313
crossref_primary_10_1109_TCE_2011_5955208
crossref_primary_10_1155_2021_6679556
crossref_primary_10_1002_mma_2935
crossref_primary_10_1109_TIP_2011_2159226
crossref_primary_10_1186_s13640_018_0259_9
crossref_primary_10_3390_rs15235548
crossref_primary_10_3390_electronics12173588
crossref_primary_10_1007_s11042_017_5375_5
crossref_primary_10_1155_2012_767613
crossref_primary_10_1364_JOSAA_31_000283
crossref_primary_10_1016_j_isatra_2019_02_010
crossref_primary_10_1007_s11265_013_0783_x
crossref_primary_10_1007_s12204_015_1601_3
crossref_primary_10_1007_s00034_018_0853_1
crossref_primary_10_1007_s11760_012_0379_0
crossref_primary_10_7840_kics_2013_38C_5_409
crossref_primary_10_1049_iet_spr_2013_0139
crossref_primary_10_1007_s10851_013_0476_x
crossref_primary_10_3390_s22176602
crossref_primary_10_1049_iet_ipr_2018_5563
crossref_primary_10_1016_j_cviu_2011_07_005
crossref_primary_10_1049_iet_ipr_2012_0105
crossref_primary_10_1061_JMCEE7_MTENG_17430
crossref_primary_10_3390_app14020635
crossref_primary_10_1016_j_ins_2016_01_007
crossref_primary_10_1155_2012_138581
crossref_primary_10_1016_j_sigpro_2017_02_005
Cites_doi 10.1098/rsta.1999.0447
10.1109/TIP.2007.911828
10.1109/TIP.2006.881969
10.1109/TIP.2005.863698
10.1109/TPAMI.2006.64
10.1109/TIP.2007.891064
10.1109/97.803428
10.1109/TIP.2003.818640
10.1145/1186562.1015777
10.1214/aos/1176345632
10.1109/TIP.2006.877352
10.1109/34.93808
10.1109/ICCV.1998.710815
10.1006/acha.2000.0343
10.1109/TIP.2008.919370
10.1109/CVPR.2006.142
10.1109/LSP.2002.806054
10.1109/TIP.2006.877529
10.1109/TIP.2002.801126
10.1109/TSP.2002.804091
10.1109/TIP.2007.901238
10.1109/TIP.2006.888330
10.1109/LSP.2005.855555
10.2307/2291512
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TIP.2009.2026685
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
Technology Research Database

MEDLINE
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) - IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2369
ExternalDocumentID 2319487571
19586815
22098010
10_1109_TIP_2009_2026685
5156281
Genre orig-research
Letter
Correspondence
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c438t-8c0b5458eac5c46bc21ec920a0f35e3ef37a770dd9cced1036f370f171bc1a0e3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 01:09:59 EDT 2025
Wed Oct 01 12:58:26 EDT 2025
Sun Sep 28 01:41:46 EDT 2025
Sun Sep 07 03:44:43 EDT 2025
Mon Jul 21 06:04:14 EDT 2025
Mon Jul 21 09:14:21 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Wed Oct 01 02:44:24 EDT 2025
Tue Aug 26 16:37:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Cost minimization
Image processing
Noise reduction
Gaussian distribution
Artefact
1/f noise
joint bilateral filter
spatial domain
Gaussian noise
trivariate shrinkage filter
A posteriori estimation
Joint
Algorithm
Computational complexity
Color image
Noisy image
Image quality
Wavelets
Algorithm performance
Wavelet transformation
Signal processing
wavelet domain
Open market
Signal analysis
Signal to noise ratio
Image denoising
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-8c0b5458eac5c46bc21ec920a0f35e3ef37a770dd9cced1036f370f171bc1a0e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Correspondence-1
PMID 19586815
PQID 861811488
PQPubID 23500
PageCount 6
ParticipantIDs proquest_journals_861811488
pubmed_primary_19586815
crossref_primary_10_1109_TIP_2009_2026685
proquest_miscellaneous_734044325
pascalfrancis_primary_22098010
proquest_miscellaneous_875022726
proquest_miscellaneous_35002804
crossref_citationtrail_10_1109_TIP_2009_2026685
ieee_primary_5156281
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-10-01
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2009
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref25
ref20
ref22
ref21
ref8
ref7
ref4
ref3
ref6
ref5
selesnick (ref9) 2001
References_xml – ident: ref11
  doi: 10.1098/rsta.1999.0447
– ident: ref23
  doi: 10.1109/TIP.2007.911828
– ident: ref18
  doi: 10.1109/TIP.2006.881969
– ident: ref25
  doi: 10.1109/TIP.2005.863698
– ident: ref15
  doi: 10.1109/TPAMI.2006.64
– ident: ref8
  doi: 10.1109/TIP.2007.891064
– ident: ref2
  doi: 10.1109/97.803428
– ident: ref6
  doi: 10.1109/TIP.2003.818640
– ident: ref21
  doi: 10.1145/1186562.1015777
– ident: ref7
  doi: 10.1214/aos/1176345632
– ident: ref13
  doi: 10.1109/TIP.2006.877352
– ident: ref10
  doi: 10.1109/34.93808
– ident: ref20
  doi: 10.1109/ICCV.1998.710815
– ident: ref12
  doi: 10.1006/acha.2000.0343
– ident: ref24
  doi: 10.1109/TIP.2008.919370
– ident: ref17
  doi: 10.1109/CVPR.2006.142
– ident: ref5
  doi: 10.1109/LSP.2002.806054
– ident: ref16
  doi: 10.1109/TIP.2006.877529
– ident: ref22
  doi: 10.1109/TIP.2002.801126
– ident: ref4
  doi: 10.1109/TSP.2002.804091
– ident: ref19
  doi: 10.1109/TIP.2007.901238
– ident: ref14
  doi: 10.1109/TIP.2006.888330
– year: 2001
  ident: ref9
  publication-title: Wavelets in Signal and Image Analysis From Theory to Practice
– ident: ref3
  doi: 10.1109/LSP.2005.855555
– ident: ref1
  doi: 10.2307/2291512
SSID ssj0014516
Score 2.3149388
Snippet This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage...
In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2364
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Computational efficiency
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Filters
Gaussian distribution
Gaussian noise
Image denoising
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Imaging, Three-Dimensional - methods
Information, signal and communications theory
joint bilateral filter
Low-frequency noise
Mathematical models
Miscellaneous
Noise
Noise reduction
Pattern Recognition, Automated - methods
PSNR
Reproducibility of Results
Sensitivity and Specificity
Shrinkage
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
spatial domain
Studies
Telecommunications and information theory
trivariate shrinkage filter
Wavelet
Wavelet coefficients
Wavelet domain
Wavelet transforms
Title Image Denoising Using Trivariate Shrinkage Filter in the Wavelet Domain and Joint Bilateral Filter in the Spatial Domain
URI https://ieeexplore.ieee.org/document/5156281
https://www.ncbi.nlm.nih.gov/pubmed/19586815
https://www.proquest.com/docview/861811488
https://www.proquest.com/docview/35002804
https://www.proquest.com/docview/734044325
https://www.proquest.com/docview/875022726
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) - IEEE Xplore
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBAoeURCsUHLkhk13HiOD4CZdVWKkJiK3qLbMcRUbcJ6maril_P2PGGUrGIW5SMpTgee77JPD6AN5zrWqLbEFtW2zirRRUrSXmsmasJQSWQ1hU4n37Oj86yk3N-vgXvxloYa61PPrMTd-lj-VVnVu5X2RRtb85cnfU9UeRDrdYYMXCEsz6yyUUsEPavQ5JUTufHX4bGlOjo53nhyWokL_LCceHeskaeXsUlR6olfp96ILbYjDy9BZrtwOn63YfEk4vJqtcT8_NOW8f_ndwjeBigKHk_6M5j2LLtLuwEWErCpl_uwoNbPQv34Ob4Eo8gcmjbrnH_GYhPOiDzq-Ya3W5EruTrd5S8cEKzxsXiSdMShJnkm3IkFz057C4V3lJtRU66pu3Jh2ahXCH04s4AR5eM2yMMeAJns0_zj0dxoG-ITZYWfVwYql1YDo92brJcG5ZYIxlVtE65TW2dCiUErSppjK0SNKV4h9aJSLRJFLXpU9huu9Y-B8K05LWhhZAIRxgiOm50Ume6RjiYGWsimK6XsTSht7mj2FiU3sehskQdcIybsgw6EMHbccSPoa_HP2T33HKNcmGlIjj4Q1PG54xRiYafRrC_Vp0ynAzLssgRU6EPWkTwenyKW9rFaVRru9WyTLkPeGcRkA0SIs1olqWMbxZBP9R1h2R5BM8Grf09z6D8L_4-r32470NmPmPxJWz3Vyv7CpFXrw_8lvsF32AnwQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcKLQ8QqH1gQsS2TqOncRHoKx2S7dCYit6ixLHFlG3CepmEeLXM3a8oVQs4hYlYymOx55vMo8P4JUQpZHoNoSaGR1yk1ZhIakIS2ZrQlAJpLYFzrOzZHLOTy7ExRa8GWphtNYu-UyP7KWL5VetWtlfZUdoexNm66zvCM656Ku1hpiBpZx1sU2RhikC_3VQksqj-fRT35oSXf0kyRxdjRRZklk23Bv2yBGs2PTIYolfyPTUFpuxp7NB4x2Yrd--Tz25HK26cqR-3mrs-L_TewgPPBglb3vteQRbutmFHQ9Mid_2y124f6Nr4R78mF7hIUSOddPW9k8DcWkHZH5df0fHG7Er-fwVJS-t0Li20XhSNwSBJvlSWJqLjhy3VwXeKpqKnLR105F39aKwpdCLWwMsYTJuED_gMZyPP8zfT0JP4BAqHmddmCla2sAcHu5C8aRULNJKMlpQEwsdaxOnRZrSqpJK6SpCY4p3qInSqFRRQXX8BLabttHPgLBSCqNolkoEJAwxnVBlZHhpEBBypVUAR-tlzJXvbm5JNha583KozFEHLOemzL0OBPB6GPGt7-zxD9k9u1yDnF-pAA7-0JThOWNUoumnAeyvVSf3Z8MyzxJEVeiFZgEcDk9xU9tITdHodrXMY-FC3jwAskEijTnlPGZiswh6orY_JEsCeNpr7e95euV__vd5HcLdyXx2mp9Ozz7uwz0XQHP5iy9gu7te6ZeIw7rywG2_X3N4Kw4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Denoising+Using+Trivariate+Shrinkage+Filter+in+the+Wavelet+Domain+and+Joint+Bilateral+Filter+in+the+Spatial+Domain&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Hancheng+Yu%2C+Hancheng+Yu&rft.au=Li+Zhao%2C+Li+Zhao&rft.au=Haixian+Wang%2C+Haixian+Wang&rft.date=2009-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=18&rft.issue=10&rft.spage=2364&rft_id=info:doi/10.1109%2FTIP.2009.2026685&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2319487571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon