Image Denoising Using Trivariate Shrinkage Filter in the Wavelet Domain and Joint Bilateral Filter in the Spatial Domain
This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter. In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distributi...
Saved in:
| Published in | IEEE transactions on image processing Vol. 18; no. 10; pp. 2364 - 2369 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.10.2009
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1057-7149 1941-0042 1941-0042 |
| DOI | 10.1109/TIP.2009.2026685 |
Cover
| Abstract | This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter. In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among intrascale wavelet coefficients, and then a trivariate shrinkage filter is derived by using the maximum a posteriori (MAP) estimator. Although wavelet-based methods are efficient in image denoising, they are prone to producing salient artifacts such as low-frequency noise and edge ringing which relate to the structure of the underlying wavelet. On the other hand, most spatial-based algorithms output much higher quality denoising image with less artifacts. However, they are usually too computationally demanding. In order to reduce the computational cost, we develop an efficient joint bilateral filter by using the wavelet denoising result rather than directly processing the noisy image in the spatial domain. This filter could suppress the noise while preserve image details with small computational cost. Extension to color image denoising is also presented. We compare our denoising algorithm with other denoising techniques in terms of PSNR and visual quality. The experimental results indicate that our algorithm is competitive with other denoising techniques. |
|---|---|
| AbstractList | In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among intrascale wavelet coefficients, and then a trivariate shrinkage filter is derived by using the maximum a posteriori (MAP) estimator. This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter. In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among intrascale wavelet coefficients, and then a trivariate shrinkage filter is derived by using the maximum a posteriori (MAP) estimator. Although wavelet-based methods are efficient in image denoising, they are prone to producing salient artifacts such as low-frequency noise and edge ringing which relate to the structure of the underlying wavelet. On the other hand, most spatial-based algorithms output much higher quality denoising image with less artifacts. However, they are usually too computationally demanding. In order to reduce the computational cost, we develop an efficient joint bilateral filter by using the wavelet denoising result rather than directly processing the noisy image in the spatial domain. This filter could suppress the noise while preserve image details with small computational cost. Extension to color image denoising is also presented. We compare our denoising algorithm with other denoising techniques in terms of PSNR and visual quality. The experimental results indicate that our algorithm is competitive with other denoising techniques. This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter. In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among intrascale wavelet coefficients, and then a trivariate shrinkage filter is derived by using the maximum a posteriori (MAP) estimator. Although wavelet-based methods are efficient in image denoising, they are prone to producing salient artifacts such as low-frequency noise and edge ringing which relate to the structure of the underlying wavelet. On the other hand, most spatial-based algorithms output much higher quality denoising image with less artifacts. However, they are usually too computationally demanding. In order to reduce the computational cost, we develop an efficient joint bilateral filter by using the wavelet denoising result rather than directly processing the noisy image in the spatial domain. This filter could suppress the noise while preserve image details with small computational cost. Extension to color image denoising is also presented. We compare our denoising algorithm with other denoising techniques in terms of PSNR and visual quality. The experimental results indicate that our algorithm is competitive with other denoising techniques.This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter. In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among intrascale wavelet coefficients, and then a trivariate shrinkage filter is derived by using the maximum a posteriori (MAP) estimator. Although wavelet-based methods are efficient in image denoising, they are prone to producing salient artifacts such as low-frequency noise and edge ringing which relate to the structure of the underlying wavelet. On the other hand, most spatial-based algorithms output much higher quality denoising image with less artifacts. However, they are usually too computationally demanding. In order to reduce the computational cost, we develop an efficient joint bilateral filter by using the wavelet denoising result rather than directly processing the noisy image in the spatial domain. This filter could suppress the noise while preserve image details with small computational cost. Extension to color image denoising is also presented. We compare our denoising algorithm with other denoising techniques in terms of PSNR and visual quality. The experimental results indicate that our algorithm is competitive with other denoising techniques. |
| Author | Li Zhao Hancheng Yu Haixian Wang |
| Author_xml | – sequence: 1 givenname: Hancheng surname: Yu fullname: Yu, Hancheng – sequence: 2 givenname: Li surname: Zhao fullname: Zhao, Li – sequence: 3 givenname: Haixian surname: Wang fullname: Wang, Haixian |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22098010$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19586815$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFktFrFDEQh4NUbHv6LgiyCOrT1plsspt91NbWk4JCr_gYctnZNnUveya5ov-9ud55DwfqyyQM3xcyye-YHfjRE2PPEU4QoX03m3494QBtLryulXzEjrAVWAIIfpD3IJuyQdEesuMY7wBQSKyfsENspaoVyiP2c7owN1SckR9ddP6muH6os-DuTXAmUXF1G5z_vobO3ZAoFM4X6ZaKb-aeBkrF2bgwuWV8V3wenU_FBzdkL5hhT7hamuRydyM8ZY97M0R6tl0n7Pr84-z0U3n55WJ6-v6ytKJSqVQW5lJIRcZKK-q55Ui25WCgryRV1FeNaRroutZa6hCqOnegxwbnFg1QNWFvN-cuw_hjRTHphYuWhsF4GldRq0YC5w2v_0s2lQAhKi4z-eafZCUBuAKRwVd74N24Cj7Pq1WNClEolaGXW2g1X1Cnl8EtTPil_3xSBl5vAROtGfpgvHVxx3EOrYI8-oTVG86GMcZAvbYu5TcffQrGDRpBr1Ojc2r0OjV6m5oswp64u8PflRcbxRHRDpcoa66w-g1Q_MrY |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_procs_2015_08_088 crossref_primary_10_3390_app8091688 crossref_primary_10_1109_TIP_2019_2928644 crossref_primary_10_1016_j_bspc_2019_101625 crossref_primary_10_1016_j_infrared_2018_05_028 crossref_primary_10_1016_j_jksuci_2023_04_005 crossref_primary_10_1080_0952813X_2015_1020518 crossref_primary_10_1186_1687_6180_2012_110 crossref_primary_10_5370_JEET_2015_10_5_2189 crossref_primary_10_1016_j_sigpro_2011_08_009 crossref_primary_10_3390_app9122529 crossref_primary_10_1109_ACCESS_2020_3010127 crossref_primary_10_1016_j_neucom_2015_09_079 crossref_primary_10_1109_TGRS_2018_2862384 crossref_primary_10_1007_s11859_010_0212_y crossref_primary_10_1155_2010_914564 crossref_primary_10_1016_j_nima_2019_02_041 crossref_primary_10_1016_j_patcog_2012_01_023 crossref_primary_10_1021_acsami_4c17502 crossref_primary_10_1007_s12517_020_05798_6 crossref_primary_10_1016_j_inffus_2019_09_003 crossref_primary_10_1049_iet_ipr_2010_0014 crossref_primary_10_1080_14680629_2024_2329457 crossref_primary_10_1109_TGRS_2021_3138740 crossref_primary_10_1016_j_sigpro_2020_107767 crossref_primary_10_1016_j_image_2012_01_011 crossref_primary_10_5370_JEET_2014_9_3_1016 crossref_primary_10_1016_j_isatra_2014_04_007 crossref_primary_10_1016_j_measurement_2019_01_001 crossref_primary_10_1109_TCSVT_2023_3348804 crossref_primary_10_1155_2013_483791 crossref_primary_10_1007_s11432_014_5112_x crossref_primary_10_1016_j_media_2013_01_006 crossref_primary_10_1016_j_matpr_2020_08_313 crossref_primary_10_1109_TCE_2011_5955208 crossref_primary_10_1155_2021_6679556 crossref_primary_10_1002_mma_2935 crossref_primary_10_1109_TIP_2011_2159226 crossref_primary_10_1186_s13640_018_0259_9 crossref_primary_10_3390_rs15235548 crossref_primary_10_3390_electronics12173588 crossref_primary_10_1007_s11042_017_5375_5 crossref_primary_10_1155_2012_767613 crossref_primary_10_1364_JOSAA_31_000283 crossref_primary_10_1016_j_isatra_2019_02_010 crossref_primary_10_1007_s11265_013_0783_x crossref_primary_10_1007_s12204_015_1601_3 crossref_primary_10_1007_s00034_018_0853_1 crossref_primary_10_1007_s11760_012_0379_0 crossref_primary_10_7840_kics_2013_38C_5_409 crossref_primary_10_1049_iet_spr_2013_0139 crossref_primary_10_1007_s10851_013_0476_x crossref_primary_10_3390_s22176602 crossref_primary_10_1049_iet_ipr_2018_5563 crossref_primary_10_1016_j_cviu_2011_07_005 crossref_primary_10_1049_iet_ipr_2012_0105 crossref_primary_10_1061_JMCEE7_MTENG_17430 crossref_primary_10_3390_app14020635 crossref_primary_10_1016_j_ins_2016_01_007 crossref_primary_10_1155_2012_138581 crossref_primary_10_1016_j_sigpro_2017_02_005 |
| Cites_doi | 10.1098/rsta.1999.0447 10.1109/TIP.2007.911828 10.1109/TIP.2006.881969 10.1109/TIP.2005.863698 10.1109/TPAMI.2006.64 10.1109/TIP.2007.891064 10.1109/97.803428 10.1109/TIP.2003.818640 10.1145/1186562.1015777 10.1214/aos/1176345632 10.1109/TIP.2006.877352 10.1109/34.93808 10.1109/ICCV.1998.710815 10.1006/acha.2000.0343 10.1109/TIP.2008.919370 10.1109/CVPR.2006.142 10.1109/LSP.2002.806054 10.1109/TIP.2006.877529 10.1109/TIP.2002.801126 10.1109/TSP.2002.804091 10.1109/TIP.2007.901238 10.1109/TIP.2006.888330 10.1109/LSP.2005.855555 10.2307/2291512 |
| ContentType | Journal Article |
| Copyright | 2009 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
| Copyright_xml | – notice: 2009 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| DOI | 10.1109/TIP.2009.2026685 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database Technology Research Database MEDLINE Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library (IEL) - IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 2369 |
| ExternalDocumentID | 2319487571 19586815 22098010 10_1109_TIP_2009_2026685 5156281 |
| Genre | orig-research Letter Correspondence |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| ID | FETCH-LOGICAL-c438t-8c0b5458eac5c46bc21ec920a0f35e3ef37a770dd9cced1036f370f171bc1a0e3 |
| IEDL.DBID | RIE |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sun Sep 28 01:09:59 EDT 2025 Wed Oct 01 12:58:26 EDT 2025 Sun Sep 28 01:41:46 EDT 2025 Sun Sep 07 03:44:43 EDT 2025 Mon Jul 21 06:04:14 EDT 2025 Mon Jul 21 09:14:21 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Wed Oct 01 02:44:24 EDT 2025 Tue Aug 26 16:37:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Cost minimization Image processing Noise reduction Gaussian distribution Artefact 1/f noise joint bilateral filter spatial domain Gaussian noise trivariate shrinkage filter A posteriori estimation Joint Algorithm Computational complexity Color image Noisy image Image quality Wavelets Algorithm performance Wavelet transformation Signal processing wavelet domain Open market Signal analysis Signal to noise ratio Image denoising |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-8c0b5458eac5c46bc21ec920a0f35e3ef37a770dd9cced1036f370f171bc1a0e3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Correspondence-1 |
| PMID | 19586815 |
| PQID | 861811488 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_861811488 pubmed_primary_19586815 crossref_primary_10_1109_TIP_2009_2026685 proquest_miscellaneous_734044325 pascalfrancis_primary_22098010 proquest_miscellaneous_875022726 proquest_miscellaneous_35002804 crossref_citationtrail_10_1109_TIP_2009_2026685 ieee_primary_5156281 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-10-01 |
| PublicationDateYYYYMMDD | 2009-10-01 |
| PublicationDate_xml | – month: 10 year: 2009 text: 2009-10-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2009 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref25 ref20 ref22 ref21 ref8 ref7 ref4 ref3 ref6 ref5 selesnick (ref9) 2001 |
| References_xml | – ident: ref11 doi: 10.1098/rsta.1999.0447 – ident: ref23 doi: 10.1109/TIP.2007.911828 – ident: ref18 doi: 10.1109/TIP.2006.881969 – ident: ref25 doi: 10.1109/TIP.2005.863698 – ident: ref15 doi: 10.1109/TPAMI.2006.64 – ident: ref8 doi: 10.1109/TIP.2007.891064 – ident: ref2 doi: 10.1109/97.803428 – ident: ref6 doi: 10.1109/TIP.2003.818640 – ident: ref21 doi: 10.1145/1186562.1015777 – ident: ref7 doi: 10.1214/aos/1176345632 – ident: ref13 doi: 10.1109/TIP.2006.877352 – ident: ref10 doi: 10.1109/34.93808 – ident: ref20 doi: 10.1109/ICCV.1998.710815 – ident: ref12 doi: 10.1006/acha.2000.0343 – ident: ref24 doi: 10.1109/TIP.2008.919370 – ident: ref17 doi: 10.1109/CVPR.2006.142 – ident: ref5 doi: 10.1109/LSP.2002.806054 – ident: ref16 doi: 10.1109/TIP.2006.877529 – ident: ref22 doi: 10.1109/TIP.2002.801126 – ident: ref4 doi: 10.1109/TSP.2002.804091 – ident: ref19 doi: 10.1109/TIP.2007.901238 – ident: ref14 doi: 10.1109/TIP.2006.888330 – year: 2001 ident: ref9 publication-title: Wavelets in Signal and Image Analysis From Theory to Practice – ident: ref3 doi: 10.1109/LSP.2005.855555 – ident: ref1 doi: 10.2307/2291512 |
| SSID | ssj0014516 |
| Score | 2.3149388 |
| Snippet | This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage... In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2364 |
| SubjectTerms | Algorithms Applied sciences Artificial Intelligence Computational efficiency Detection, estimation, filtering, equalization, prediction Exact sciences and technology Filters Gaussian distribution Gaussian noise Image denoising Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Imaging, Three-Dimensional - methods Information, signal and communications theory joint bilateral filter Low-frequency noise Mathematical models Miscellaneous Noise Noise reduction Pattern Recognition, Automated - methods PSNR Reproducibility of Results Sensitivity and Specificity Shrinkage Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise spatial domain Studies Telecommunications and information theory trivariate shrinkage filter Wavelet Wavelet coefficients Wavelet domain Wavelet transforms |
| Title | Image Denoising Using Trivariate Shrinkage Filter in the Wavelet Domain and Joint Bilateral Filter in the Spatial Domain |
| URI | https://ieeexplore.ieee.org/document/5156281 https://www.ncbi.nlm.nih.gov/pubmed/19586815 https://www.proquest.com/docview/861811488 https://www.proquest.com/docview/35002804 https://www.proquest.com/docview/734044325 https://www.proquest.com/docview/875022726 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) - IEEE Xplore customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBAoeURCsUHLkhk13HiOD4CZdVWKkJiK3qLbMcRUbcJ6maril_P2PGGUrGIW5SMpTgee77JPD6AN5zrWqLbEFtW2zirRRUrSXmsmasJQSWQ1hU4n37Oj86yk3N-vgXvxloYa61PPrMTd-lj-VVnVu5X2RRtb85cnfU9UeRDrdYYMXCEsz6yyUUsEPavQ5JUTufHX4bGlOjo53nhyWokL_LCceHeskaeXsUlR6olfp96ILbYjDy9BZrtwOn63YfEk4vJqtcT8_NOW8f_ndwjeBigKHk_6M5j2LLtLuwEWErCpl_uwoNbPQv34Ob4Eo8gcmjbrnH_GYhPOiDzq-Ya3W5EruTrd5S8cEKzxsXiSdMShJnkm3IkFz057C4V3lJtRU66pu3Jh2ahXCH04s4AR5eM2yMMeAJns0_zj0dxoG-ITZYWfVwYql1YDo92brJcG5ZYIxlVtE65TW2dCiUErSppjK0SNKV4h9aJSLRJFLXpU9huu9Y-B8K05LWhhZAIRxgiOm50Ume6RjiYGWsimK6XsTSht7mj2FiU3sehskQdcIybsgw6EMHbccSPoa_HP2T33HKNcmGlIjj4Q1PG54xRiYafRrC_Vp0ynAzLssgRU6EPWkTwenyKW9rFaVRru9WyTLkPeGcRkA0SIs1olqWMbxZBP9R1h2R5BM8Grf09z6D8L_4-r32470NmPmPxJWz3Vyv7CpFXrw_8lvsF32AnwQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcKLQ8QqH1gQsS2TqOncRHoKx2S7dCYit6ixLHFlG3CepmEeLXM3a8oVQs4hYlYymOx55vMo8P4JUQpZHoNoSaGR1yk1ZhIakIS2ZrQlAJpLYFzrOzZHLOTy7ExRa8GWphtNYu-UyP7KWL5VetWtlfZUdoexNm66zvCM656Ku1hpiBpZx1sU2RhikC_3VQksqj-fRT35oSXf0kyRxdjRRZklk23Bv2yBGs2PTIYolfyPTUFpuxp7NB4x2Yrd--Tz25HK26cqR-3mrs-L_TewgPPBglb3vteQRbutmFHQ9Mid_2y124f6Nr4R78mF7hIUSOddPW9k8DcWkHZH5df0fHG7Er-fwVJS-t0Li20XhSNwSBJvlSWJqLjhy3VwXeKpqKnLR105F39aKwpdCLWwMsYTJuED_gMZyPP8zfT0JP4BAqHmddmCla2sAcHu5C8aRULNJKMlpQEwsdaxOnRZrSqpJK6SpCY4p3qInSqFRRQXX8BLabttHPgLBSCqNolkoEJAwxnVBlZHhpEBBypVUAR-tlzJXvbm5JNha583KozFEHLOemzL0OBPB6GPGt7-zxD9k9u1yDnF-pAA7-0JThOWNUoumnAeyvVSf3Z8MyzxJEVeiFZgEcDk9xU9tITdHodrXMY-FC3jwAskEijTnlPGZiswh6orY_JEsCeNpr7e95euV__vd5HcLdyXx2mp9Ozz7uwz0XQHP5iy9gu7te6ZeIw7rywG2_X3N4Kw4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Denoising+Using+Trivariate+Shrinkage+Filter+in+the+Wavelet+Domain+and+Joint+Bilateral+Filter+in+the+Spatial+Domain&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Hancheng+Yu%2C+Hancheng+Yu&rft.au=Li+Zhao%2C+Li+Zhao&rft.au=Haixian+Wang%2C+Haixian+Wang&rft.date=2009-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=18&rft.issue=10&rft.spage=2364&rft_id=info:doi/10.1109%2FTIP.2009.2026685&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2319487571 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |