k-Tournament Grasshopper Extreme Learner for FMG-Based Gesture Recognition
The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature s...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 3; p. 1096 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
18.01.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23031096 |
Cover
| Abstract | The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature selection is needed. In this paper, a novel classification method based on an extreme learning machine (ELM), supported by an improved grasshopper optimization algorithm (GOA) as a core for a weight-pruning process, is proposed. The k-tournament grasshopper optimization algorithm was implemented to select and prune the ELM weights resulting in the proposed k-tournament grasshopper extreme learner (KTGEL) classifier. Myographic methods, such as force myography (FMG), deliver interesting signals that can build the basis for hand sign recognition. FMG was investigated to limit the number of sensors at suitable positions and provide adequate signal processing algorithms for perspective implementation in wearable embedded systems. Based on the proposed KTGEL, the number of sensors and the effect of the number of subjects was investigated in the first stage. It was shown that by increasing the number of subjects participating in the data collection, eight was the minimal number of sensors needed to result in acceptable sign recognition performance. Moreover, implemented with 3000 hidden nodes, after the feature selection wrapper, the ELM had both a microaverage precision and a microaverage sensitivity of 97% for the recognition of a set of gestures, including a middle ambiguity level. The KTGEL reduced the hidden nodes to only 1000, reaching the same total sensitivity with a reduced total precision of only 1% without needing an additional feature selection method. |
|---|---|
| AbstractList | The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature selection is needed. In this paper, a novel classification method based on an extreme learning machine (ELM), supported by an improved grasshopper optimization algorithm (GOA) as a core for a weight-pruning process, is proposed. The k-tournament grasshopper optimization algorithm was implemented to select and prune the ELM weights resulting in the proposed k-tournament grasshopper extreme learner (KTGEL) classifier. Myographic methods, such as force myography (FMG), deliver interesting signals that can build the basis for hand sign recognition. FMG was investigated to limit the number of sensors at suitable positions and provide adequate signal processing algorithms for perspective implementation in wearable embedded systems. Based on the proposed KTGEL, the number of sensors and the effect of the number of subjects was investigated in the first stage. It was shown that by increasing the number of subjects participating in the data collection, eight was the minimal number of sensors needed to result in acceptable sign recognition performance. Moreover, implemented with 3000 hidden nodes, after the feature selection wrapper, the ELM had both a microaverage precision and a microaverage sensitivity of 97% for the recognition of a set of gestures, including a middle ambiguity level. The KTGEL reduced the hidden nodes to only 1000, reaching the same total sensitivity with a reduced total precision of only 1% without needing an additional feature selection method. The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature selection is needed. In this paper, a novel classification method based on an extreme learning machine (ELM), supported by an improved grasshopper optimization algorithm (GOA) as a core for a weight-pruning process, is proposed. The k-tournament grasshopper optimization algorithm was implemented to select and prune the ELM weights resulting in the proposed k-tournament grasshopper extreme learner (KTGEL) classifier. Myographic methods, such as force myography (FMG), deliver interesting signals that can build the basis for hand sign recognition. FMG was investigated to limit the number of sensors at suitable positions and provide adequate signal processing algorithms for perspective implementation in wearable embedded systems. Based on the proposed KTGEL, the number of sensors and the effect of the number of subjects was investigated in the first stage. It was shown that by increasing the number of subjects participating in the data collection, eight was the minimal number of sensors needed to result in acceptable sign recognition performance. Moreover, implemented with 3000 hidden nodes, after the feature selection wrapper, the ELM had both a microaverage precision and a microaverage sensitivity of 97% for the recognition of a set of gestures, including a middle ambiguity level. The KTGEL reduced the hidden nodes to only 1000, reaching the same total sensitivity with a reduced total precision of only 1% without needing an additional feature selection method.The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature selection is needed. In this paper, a novel classification method based on an extreme learning machine (ELM), supported by an improved grasshopper optimization algorithm (GOA) as a core for a weight-pruning process, is proposed. The k-tournament grasshopper optimization algorithm was implemented to select and prune the ELM weights resulting in the proposed k-tournament grasshopper extreme learner (KTGEL) classifier. Myographic methods, such as force myography (FMG), deliver interesting signals that can build the basis for hand sign recognition. FMG was investigated to limit the number of sensors at suitable positions and provide adequate signal processing algorithms for perspective implementation in wearable embedded systems. Based on the proposed KTGEL, the number of sensors and the effect of the number of subjects was investigated in the first stage. It was shown that by increasing the number of subjects participating in the data collection, eight was the minimal number of sensors needed to result in acceptable sign recognition performance. Moreover, implemented with 3000 hidden nodes, after the feature selection wrapper, the ELM had both a microaverage precision and a microaverage sensitivity of 97% for the recognition of a set of gestures, including a middle ambiguity level. The KTGEL reduced the hidden nodes to only 1000, reaching the same total sensitivity with a reduced total precision of only 1% without needing an additional feature selection method. |
| Audience | Academic |
| Author | Kanoun, Olfa Barioul, Rim |
| AuthorAffiliation | Chair of Measurement and Sensor Technology, Technische Universitat Chemnitz, 09126 Chemnitz, Germany |
| AuthorAffiliation_xml | – name: Chair of Measurement and Sensor Technology, Technische Universitat Chemnitz, 09126 Chemnitz, Germany |
| Author_xml | – sequence: 1 givenname: Rim orcidid: 0000-0003-1954-5396 surname: Barioul fullname: Barioul, Rim – sequence: 2 givenname: Olfa orcidid: 0000-0002-7166-1266 surname: Kanoun fullname: Kanoun, Olfa |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36772136$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kttu1DAQhiNURA9wwQugSNwAUtr4EDu-QSpVuxQtQkLl2pr4sPWS2MFOgL497m5ZtRVCvvDp8--Zf-aw2PPBm6J4iepjQkR9kjCpCaoFe1IcIIpp1WJc791b7xeHKa3rGhNC2mfFPmGcY0TYQfHpe3UV5uhhMH4qFxFSug7jaGJ5_nuKZjDl0kD0eW9DLC8-L6oPkIwuFyZNczTlV6PCyrvJBf-8eGqhT-bF3XxUfLs4vzr7WC2_LC7PTpeVoqSdKkYo64QFBlojMIIzbTvcEdQ1gumWcE5xw4VudSM6hprWYg4ELDJM1a225Ki43OrqAGs5RjdAvJEBnNwchLiSECeneiMJU43pWNMqKig2Frimuu241kpQJFjWerfVmv0IN7-g73eCqJa35sqduRl-v4XHuRuMVtmxCP2DCB7eeHctV-GnFALXjDZZ4M2dQAw_5uygHFxSpu_BmzAniTlvGGaswRl9_Qhdb8rUbygqOMEMZep4S60gZ-u8DflflYc2g1O5SazL56ecklzxlpP84NX9FHax_22IDLzdAiqGlKKx__Xj5BGr3AS3rZCjcP0_XvwBmlfTBw |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3305255 crossref_primary_10_1017_S0263574724002194 |
| Cites_doi | 10.1007/s12530-010-9005-y 10.1007/s11042-019-07827-3 10.1109/SSD52085.2021.9429399 10.1109/MRA.2017.2747899 10.1007/978-3-319-53480-0_9 10.1016/j.asoc.2015.03.036 10.1016/j.eswa.2018.07.022 10.1109/72.248452 10.1080/10298436.2020.1776281 10.3390/s19204557 10.1016/j.advengsoft.2017.01.004 10.1109/CSCWD.2017.8066682 10.1109/SENSORS47125.2020.9278884 10.3390/electronics9050811 10.1007/s12559-015-9333-0 10.1080/21642583.2020.1759156 10.1016/j.neunet.2016.09.004 10.1109/CIVEMSA48639.2020.9132742 10.1109/TNN.2009.2036259 10.1145/3175603.3175623 10.1109/LSENS.2021.3081689 10.1109/LA-CCI.2018.8625247 10.1145/2642918.2647396 10.1109/BIOROB.2018.8487790 10.1109/ICInfA.2017.8078997 10.1109/ACCESS.2019.2915925 10.1016/j.medengphy.2017.01.015 10.1109/NanofIM49467.2019.9233484 10.1177/1045389X12463462 10.1016/j.eswa.2018.09.015 10.1016/j.sna.2019.111738 10.1007/s00521-018-3414-4 10.1371/journal.pone.0194770 10.1016/j.neucom.2013.08.009 10.1109/TSMCB.2011.2168604 10.1109/ICIT.2018.8352174 10.1007/s11517-012-1010-9 10.1016/j.asoc.2016.03.019 10.1186/s12938-017-0349-4 10.3389/fbioe.2016.00018 10.1016/S1672-6529(16)60435-3 10.1109/LSC.2017.8268158 10.1007/s12559-014-9259-y 10.1109/THMS.2017.2693245 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s23031096 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_36c5eb658c4942efa7d4d8b7ddc94196 10.3390/s23031096 PMC9920645 A743367873 36772136 10_3390_s23031096 |
| Genre | Journal Article |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: Project-ID 416228727 - SFB 1410 – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grantid: 416228727–SFB 1410 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c438t-6346b9fa6add1ae976dfb2b31b596d837742579d8d59b6158f27a3af1e6c08df3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:52:05 EDT 2025 Sun Oct 26 04:15:34 EDT 2025 Tue Sep 30 17:17:03 EDT 2025 Thu Oct 02 10:22:03 EDT 2025 Tue Oct 07 07:45:35 EDT 2025 Mon Oct 20 17:00:44 EDT 2025 Mon Jul 21 05:42:25 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 Thu Oct 16 04:22:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | grasshopper optimization algorithm k-tournament selection extreme learning machine force myography |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-6346b9fa6add1ae976dfb2b31b596d837742579d8d59b6158f27a3af1e6c08df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7166-1266 0000-0003-1954-5396 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23031096 |
| PMID | 36772136 |
| PQID | 2774973261 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_36c5eb658c4942efa7d4d8b7ddc94196 unpaywall_primary_10_3390_s23031096 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9920645 proquest_miscellaneous_2775626652 proquest_journals_2774973261 gale_infotracacademiconefile_A743367873 pubmed_primary_36772136 crossref_primary_10_3390_s23031096 crossref_citationtrail_10_3390_s23031096 |
| PublicationCentury | 2000 |
| PublicationDate | 20230118 |
| PublicationDateYYYYMMDD | 2023-01-18 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230118 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Saremi (ref_10) 2017; 105 ref_14 ref_13 Ahila (ref_9) 2015; 32 Anam (ref_45) 2017; 85 Ahmadizadeh (ref_27) 2017; 24 ref_18 Alencar (ref_8) 2016; 44 Awadallah (ref_12) 2018; 113 ref_16 ref_15 Huang (ref_44) 2015; 7 Jiang (ref_19) 2017; 41 Zhao (ref_2) 2014; 6 Ferigo (ref_23) 2017; 14 Ramalingame (ref_34) 2021; 5 Miche (ref_4) 2010; 21 Wang (ref_11) 2013; 82 ref_25 Saadeh (ref_17) 2012; 24 ref_21 ref_20 Jiang (ref_33) 2020; 301 Islam (ref_30) 2020; 7 ref_29 ref_26 Sadarangani (ref_28) 2017; 16 Song (ref_3) 2020; 8 Ibrahim (ref_47) 2018; 31 ref_35 Reed (ref_36) 1993; 4 ref_32 Pouzols (ref_7) 2010; 1 ref_31 ref_39 ref_38 ref_37 Kaloop (ref_6) 2022; 23 Cho (ref_24) 2016; 4 Chorowski (ref_46) 2014; 128 Huang (ref_49) 2012; 42 ref_42 ref_40 ref_1 Shi (ref_48) 2012; 51 Li (ref_41) 2019; 7 ref_5 Jiang (ref_22) 2018; 48 Carrara (ref_50) 2019; 78 Mafarja (ref_43) 2019; 117 |
| References_xml | – ident: ref_5 – volume: 1 start-page: 43 year: 2010 ident: ref_7 article-title: Evolving fuzzy optimally pruned extreme learning machine for regression problems publication-title: Evol. Syst. doi: 10.1007/s12530-010-9005-y – volume: 78 start-page: 27309 year: 2019 ident: ref_50 article-title: LSTM-based real-time action detection and prediction in human motion streams publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-07827-3 – ident: ref_35 doi: 10.1109/SSD52085.2021.9429399 – volume: 24 start-page: 102 year: 2017 ident: ref_27 article-title: Toward Intuitive Prosthetic Control: Solving Common Issues Using Force Myography, Surface Electromyography, and Pattern Recognition in a Pilot Case Study publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2017.2747899 – ident: ref_38 doi: 10.1007/978-3-319-53480-0_9 – ident: ref_16 – volume: 32 start-page: 23 year: 2015 ident: ref_9 article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.03.036 – volume: 113 start-page: 481 year: 2018 ident: ref_12 article-title: Natural selection methods for Grey Wolf Optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.07.022 – volume: 4 start-page: 740 year: 1993 ident: ref_36 article-title: Pruning algorithms-a survey publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.248452 – volume: 23 start-page: 862 year: 2022 ident: ref_6 article-title: A hybrid wavelet-optimally-pruned extreme learning machine model for the estimation of international roughness index of rigid pavements publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2020.1776281 – ident: ref_14 doi: 10.3390/s19204557 – volume: 105 start-page: 30 year: 2017 ident: ref_10 article-title: Grasshopper Optimisation Algorithm: Theory and application publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.01.004 – ident: ref_20 doi: 10.1109/CSCWD.2017.8066682 – ident: ref_26 doi: 10.1109/SENSORS47125.2020.9278884 – ident: ref_42 doi: 10.3390/electronics9050811 – ident: ref_13 – volume: 7 start-page: 263 year: 2015 ident: ref_44 article-title: What are Extreme Learning Machines? Filling the Gap Between Frank Rosenblatt’s Dream and John von Neumann’s Puzzle publication-title: Cogn. Comput. doi: 10.1007/s12559-015-9333-0 – volume: 8 start-page: 308 year: 2020 ident: ref_3 article-title: An improved algorithm for incremental extreme learning machine publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2020.1759156 – volume: 85 start-page: 51 year: 2017 ident: ref_45 article-title: Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees publication-title: Neural Netw. doi: 10.1016/j.neunet.2016.09.004 – ident: ref_25 doi: 10.1109/CIVEMSA48639.2020.9132742 – volume: 21 start-page: 158 year: 2010 ident: ref_4 article-title: OP-ELM: Optimally Pruned Extreme Learning Machine publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2009.2036259 – ident: ref_39 doi: 10.1145/3175603.3175623 – volume: 5 start-page: 1 year: 2021 ident: ref_34 article-title: Wearable Smart Band for American Sign Language Recognition With Polymer Carbon Nanocomposite-Based Pressure Sensors publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2021.3081689 – ident: ref_40 doi: 10.1109/LA-CCI.2018.8625247 – ident: ref_21 doi: 10.1145/2642918.2647396 – ident: ref_29 doi: 10.1109/BIOROB.2018.8487790 – ident: ref_37 doi: 10.1109/ICInfA.2017.8078997 – volume: 7 start-page: 60650 year: 2019 ident: ref_41 article-title: Data-Driven Control of Ground-Granulated Blast-Furnace Slag Production Based on IOEM-ELM publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915925 – volume: 41 start-page: 63 year: 2017 ident: ref_19 article-title: Exploration of Force Myography and surface Electromyography in hand gesture classification publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2017.01.015 – ident: ref_18 doi: 10.1109/NanofIM49467.2019.9233484 – volume: 24 start-page: 813 year: 2012 ident: ref_17 article-title: Identification of a force-sensing resistor for tactile applications publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X12463462 – volume: 117 start-page: 267 year: 2019 ident: ref_43 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.015 – volume: 7 start-page: 205566832093858 year: 2020 ident: ref_30 article-title: A comparative study of motion detection with FMG and sEMG methods for assistive applications publication-title: J. Rehabil. Assist. Technol. Eng. – volume: 301 start-page: 111738 year: 2020 ident: ref_33 article-title: A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2019.111738 – volume: 31 start-page: 5965 year: 2018 ident: ref_47 article-title: A grasshopper optimizer approach for feature selection and optimizing SVM parameters utilizing real biomedical data sets publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3414-4 – ident: ref_1 doi: 10.1371/journal.pone.0194770 – volume: 128 start-page: 507 year: 2014 ident: ref_46 article-title: Review and performance comparison of SVM- and ELM-based classifiers publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.009 – volume: 42 start-page: 513 year: 2012 ident: ref_49 article-title: Extreme Learning Machine for Regression and Multiclass Classification publication-title: IEEE Trans. Syst. Man, Cybern. Part (Cybernetics) doi: 10.1109/TSMCB.2011.2168604 – volume: 82 start-page: 15 year: 2013 ident: ref_11 article-title: Surface EMG Signal Amplification and Filtering publication-title: Int. J. Comput. Appl. – ident: ref_32 doi: 10.1109/ICIT.2018.8352174 – volume: 51 start-page: 417 year: 2012 ident: ref_48 article-title: SEMG based hand motion recognition using cumulative residual entropy and extreme learning machine publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-012-1010-9 – ident: ref_15 – volume: 44 start-page: 101 year: 2016 ident: ref_8 article-title: A new pruning method for extreme learning machines via genetic algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.03.019 – volume: 16 start-page: 59 year: 2017 ident: ref_28 article-title: A preliminary investigation on the utility of temporal features of Force Myography in the two-class problem of grasp vs. no-grasp in the presence of upper-extremity movements publication-title: Biomed. Eng. Online doi: 10.1186/s12938-017-0349-4 – volume: 4 start-page: 18 year: 2016 ident: ref_24 article-title: Force Myography to Control Robotic Upper Extremity Prostheses: A Feasibility Study publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2016.00018 – volume: 14 start-page: 692 year: 2017 ident: ref_23 article-title: A Case Study of a Force-myography Controlled Bionic Hand Mitigating Limb Position Effect publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(16)60435-3 – ident: ref_31 doi: 10.1109/LSC.2017.8268158 – volume: 6 start-page: 423 year: 2014 ident: ref_2 article-title: A Class Incremental Extreme Learning Machine for Activity Recognition publication-title: Cogn. Comput. doi: 10.1007/s12559-014-9259-y – volume: 48 start-page: 219 year: 2018 ident: ref_22 article-title: Force Exertion Affects Grasp Classification Using Force Myography publication-title: IEEE Trans. -Hum.-Mach. Syst. doi: 10.1109/THMS.2017.2693245 |
| SSID | ssj0023338 |
| Score | 2.3986564 |
| Snippet | The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1096 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Bias Classification Electromyography Embedded systems extreme learning machine Feature selection force myography Gesture Gestures grasshopper optimization algorithm Hand Humans Identification and classification k-tournament selection Linear algebra Machine learning Machine vision Mechanical Phenomena Myography Network management systems Neural networks Neural Networks, Computer Optimization Physiology Sensors Sign language |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB5KLm0PpelTTRrUB7QXEUv7PiYhdgi0h5JAbmKfpMTIxrFp8-8zI8nC7oNeepQ0rGZnZ3a-Wa2-BfjIEhMh-FFhmRgVvNSusD4InAyd0gIBL7ftLt-v8uySn1-Jq42jvmhPWEcP3BnukEkvosM86bnhVUxWBR60U_gCw9F9aPYdabMupvpSi2Hl1fEIMSzqD28RaBMFptzKPi1J_-9T8UYu-nWf5MNVM7d3P-x0upGExk_hSY8e86NO6114EJtn8HiDU_A5nN8UF60YLfvlkwWC4-vZfB4X-enPJS0G5i2lKl4jXM3HXybFMSaykE9Qp9Ui5t_WO4pmzQu4HJ9enJwV_YEJhedMLwvJuHQmWYmTVmkjIo2QXOVY6YSRAUtRRRFqgg7COIQyOlXKMpvKKP1Ih8Rewk4za-JryJ3iMtmkdawslxjlQiWeiD3PM4dtZPB5bcja92zidKjFtMaqgmxeDzbP4P0gOu8oNP4kdEyjMQgQ63V7A32h7n2h_pcvZPCJxrKm2ERlvO1_McAuEctVfYRwiWF2ViyD_fVw133Q3tYV2ofIi2SZwbvhMYYbfUOxTZytWhlEjFKKKoNXnXcMOmPTWE8zVENt-c1Wp7afNN-vW0pvYyoiDszgw-Bhf7fVm_9hqz14VGGc0GpSqfdhZ7lYxbeIr5buoA2le60FIv4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcEG8MBZmHBBersXe9Xh8QalCSqhIRqlqpN2ufFBHZxk0E_HtmHNskvI62R6vx7jy-Wa-_AXjFPEutNeNIsXQc8VjqSBmbYjDUmUwR8HLVnvJdiONzfnKRXuzBov8Xho5V9jGxDdS2MrRHfpggTiFmGRG_q79G1DWKvq72LTRU11rBvm0pxq7BfkLMWCPYn0wXH0-HEoxhRbbhF2JY7B9eIQAnakyxk5Va8v4_Q_RWjvr9_OT1dVmrH9_UcrmVnGa34VaHKsOjjRncgT1X3oWbW1yD9-DkS3TWitF2YDhvEDRfVnXtmnD6fUWbhGFLtYrXCGPD2Yd5NMEEZ8M56rRuXHjanzSqyvtwPpuevT-OukYKkeFMriLBuNC5VwKDWawcIhDrdaJZrNNcWCxRM_Lc3Eqb5hohjvRJppjysRNmLK1nD2BUVqV7BKHOuPDKS-kSxQV6f5p57olVzzCNYwTwpp_IwnQs49TsYllgtUFzXgxzHsCLQbTeUGv8TWhCqzEIEBt2e6NqPhWdcxVMmNRpxFKG5zxxXmWWW6kzNMKcxzTIa1rLgnwWlTGq-_UAX4nYr4ojhFEMs3bGAjjol7vonPmq-GV6ATwfHqMb0rcVVbpq3cogkhQiTQJ4uLGOQWccGutshmpkO3az81K7T8rPly3Vd54nRCgYwMvBwv49V4__r_wTuJGgB9D-USwPYLRq1u4pIqqVfta5yU-Q2SBl priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceFMMBZmHBBc3sXe9tk8oRU2qSlQINVI5mX3SqpFtOTavX8-MvbGSAhISx8ST1Y5nduabzey3hLyilsZaq0kgaDwJWJjKQCgdQzCUSRoD4GWi6_I94UcLdnwWn7l7TleurRJK8YsuSOMprAAy2GQc0TGFBZ7xcaXt269uKwk76JGTC8kkd3gMYHxEdhYnH6afujNF7sc9nxCF4n68AsCNVJh8Kwt1ZP2_h-SNnHS1X_J6W1TixzexXG4ko9lt8nmtRt-DcrnfNnJf_bzC8Pgfet4htxxQ9ae9Z90l10xxj9zcoC-8T44vg9NODHcY_XkNOPy8rCpT-4ffG9x39Dv2VvgMyNifvZ8HB5AztT8Htdva-B_XzUtl8YAsZoen744CdzdDoBhNm4BTxmVmBYf4GAoDoEZbGUkaSjCDhqo3wWCQ6VTHmQTUlNooEVTY0HA1SbWlD8moKAvziPgyYdwKm6YmEoxDQIkTyywS9SkqYQyPvFnbKleOuBzvz1jmUMCgWfPBrB55MYhWPVvHn4QO0OCDABJsd1-U9ZfcrdecchUbCfBMsYxFxopEM53KBPw6YyEO8hrdJccwAJNRwp1mAJWQUCufAjKjAAQS6pG9tUflLj6s8gjeD_Ik8dAjz4fHsLLx7xpRmLLtZACcch5HHtntHXCYMwwNpTuFaSRbrrml1PaT4uK8Yw_Psgg5Cj3ycnDiv7-rx_8k9YTciAD74c5UmO6RUVO35ilgtUY-c-vxF3VEN28 priority: 102 providerName: Unpaywall |
| Title | k-Tournament Grasshopper Extreme Learner for FMG-Based Gesture Recognition |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36772136 https://www.proquest.com/docview/2774973261 https://www.proquest.com/docview/2775626652 https://pubmed.ncbi.nlm.nih.gov/PMC9920645 https://www.mdpi.com/1424-8220/23/3/1096/pdf?version=1674024802 https://doaj.org/article/36c5eb658c4942efa7d4d8b7ddc94196 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Medical Journals Open Access customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Medical Journals Open Access customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t4wF4QHwTGFX4kOAlo4kd23lAqEVrp0mrpmmVylNkxzZDVGnJWrH999yladTCkHiplORq2ec73-8c53cA75hnqbVFN9Is7UY8VibShU1xMTRSpQh4ua5P-Y7E8ZifTNLJDqxrbDYKvLo1taN6UuNqenj98-YzOvwnyjgxZf94hTCaCC7FLuxjgMqogsMpb18mJIzVBa3pm64I42F3RTC0_detsFSz9_-9Rm8EqT8PUN5ZlnN980tPpxvRafAA7jewMuyt7OAh7LjyEdzbIBt8DCc_ootajPYDw2GFqPlyNp-7Kjy6XtAuYVhzreI14thwcDqM-hjhbDjEPi0rF56vjxrNyicwHhxdfDmOmkoKUcGZWkSCcWEyrwWuZrF2CEGsN4lhsUkzYTFHleS6mVU2zQxiHOUTqZn2sRNFV1nPnsJeOSvdcwiN5MJrr5RLNBfo_qn03BOtXsEMthHAh7Ui86KhGadqF9Mc0w3Sed7qPIA3reh8xa1xm1CfZqMVIDrs-sas-pY33pUzUaTOIJgqeMYT57W03Coj0QozHlMj72kuczIj7Eyhm28PcEhEf5X3EEcxDNuSBXCwnu58bYx5gvohViMRB_C6fYx-SC9XdOlmy1oGoaQQaRLAs5V1tH3GpjHRZtgNuWU3W4PaflJ-v6y5vrMsIUbBAN62FvZvXb3472G-hLsJOgbtJcXqAPYW1dK9QnS1MB3YlROJv2ow7MB-_2h0dt6pdyo6tVfhvfHorPf1N7D5Jz0 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEG8CBcJL9BJ1EztOckCohe5unwe0lfYW7NimiFUS9qHSP8VvZCav7vK69ZhkZDnjeXzjON8AvGaWhVpnPU-ysOdxP1aezHSIwVBFcYiAl8vqlO-JGJ7yg3E4XoOf7b8wdKyyjYlVoNZFRnvk2wHiFGKWEf778rtHXaPo62rbQqM2i0NzcY4l2-zd_kdc3zdB0N8bfRh6TVcBL-MsnnuCcaESKwV6ti8NpmNtVaCYr8JEaKzXIjLjRMc6TBTm-9gGkWTS-kZkvVhbhuNeg-ucYSxB_4nGlwUew3qvZi9iLOltzxDeE_GmWMl5VWuAPxPAUgb8_XTmxiIv5cW5nEyWUl__NtxqMKu7UxvZHVgz-V24ucRkeA8OvnmjSow2G93BFCH5WVGWZuru_ZjTFqRbEbniNYJkt3888HYxfWp3gHNaTI37qT3HVOT34fRKFPoA1vMiN4_AVREXVto4NoHkAmNLGFluibMvYwrHcGCrVWSaNRzm1EpjkmItQzpPO5078LITLWvijr8J7dJqdALEtV3dKKZf0sZ1Uyay0ChEahlPeGCsjDTXsYrQxBPu0yBvaS1Tigg4mUw2PzbgKxG3VrqDII0hJoiYA5vtcqdNqJill4btwIvuMTo5fbmRuSkWlQziVCHCwIGHtXV0c8ahsYpnOI1oxW5WXmr1Sf71rCIST5KA6AodeNVZ2L919fj_k38OG8PR8VF6tH9y-ARuBOgNtFPlx5uwPp8uzFPEbnP1rHIYFz5ftYf-Ak6rVxo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIkF5QNwECoRL5SXaTezYyQNCLe1uD6gQaqV9C3Zst4hVsuyh0r_Gr2Mmm6S7XG993LVlTew5vnEm3wC8Yo7FxuTdQLG4G_Aw0YHKTYzOUMskRsDLVVXleyh2j_n-IB6swM_mWxgqq2x8YuWoTZnTHXknQpxCzDIi7Li6LOLTdu_d6HtAHaToTWvTTmOuIgf2_AzTt8nbvW0869dR1Ns5er8b1B0GgpyzZBoIxoVOnRJo5aGyGJqN05FmoY5TYTB3k6TSqUlMnGqM_YmLpGLKhVbk3cQ4hutegauSsZTKCeXgItljmPvNmYxwsNuZINQnEk6xFP-qNgF_BoOFaPh7peb1WTFS52dqOFwIg71bcLPGr_7mXOFuw4ot7sCNBVbDu7D_LTiqptHFo98fIzw_LUcjO_Z3fkzpOtKvSF3xNwJmv_exH2xhKDV-H2Waja3_ualpKot7cHwpG3ofVouysA_B15ILp1yS2EhxgX4mlo474u_LmcY1PHjTbGSW13zm1FZjmGFeQ3uetXvuwYt26mhO4vG3SVt0Gu0E4t2u_ijHJ1ltxhkTeWw1oracpzyyTknDTaIlqnvKQ1pkg84yI--AwuSq_sgBH4l4trJNBGwM8YFkHqw3x53VbmOSXSi5B8_bYTR4eoujClvOqjmIWYWIIw8ezLWjlRmXxoyeoRhySW-WHmp5pPh6WpGKp2lE1IUevGw17N979ej_wj-Da2ib2Ye9w4PHsBahMdClVZisw-p0PLNPEMZN9dPKXnz4ctkG-gtt81td |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceFMMBZmHBBc3sXe9tk8oRU2qSlQINVI5mX3SqpFtOTavX8-MvbGSAhISx8ST1Y5nduabzey3hLyilsZaq0kgaDwJWJjKQCgdQzCUSRoD4GWi6_I94UcLdnwWn7l7TleurRJK8YsuSOMprAAy2GQc0TGFBZ7xcaXt269uKwk76JGTC8kkd3gMYHxEdhYnH6afujNF7sc9nxCF4n68AsCNVJh8Kwt1ZP2_h-SNnHS1X_J6W1TixzexXG4ko9lt8nmtRt-DcrnfNnJf_bzC8Pgfet4htxxQ9ae9Z90l10xxj9zcoC-8T44vg9NODHcY_XkNOPy8rCpT-4ffG9x39Dv2VvgMyNifvZ8HB5AztT8Htdva-B_XzUtl8YAsZoen744CdzdDoBhNm4BTxmVmBYf4GAoDoEZbGUkaSjCDhqo3wWCQ6VTHmQTUlNooEVTY0HA1SbWlD8moKAvziPgyYdwKm6YmEoxDQIkTyywS9SkqYQyPvFnbKleOuBzvz1jmUMCgWfPBrB55MYhWPVvHn4QO0OCDABJsd1-U9ZfcrdecchUbCfBMsYxFxopEM53KBPw6YyEO8hrdJccwAJNRwp1mAJWQUCufAjKjAAQS6pG9tUflLj6s8gjeD_Ik8dAjz4fHsLLx7xpRmLLtZACcch5HHtntHXCYMwwNpTuFaSRbrrml1PaT4uK8Yw_Psgg5Cj3ycnDiv7-rx_8k9YTciAD74c5UmO6RUVO35ilgtUY-c-vxF3VEN28 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=k-Tournament+Grasshopper+Extreme+Learner+for+FMG-Based+Gesture+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Barioul%2C+Rim&rft.au=Kanoun%2C+Olfa&rft.date=2023-01-18&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=3&rft_id=info:doi/10.3390%2Fs23031096&rft.externalDocID=A743367873 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |