k-Tournament Grasshopper Extreme Learner for FMG-Based Gesture Recognition

The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature s...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 3; p. 1096
Main Authors Barioul, Rim, Kanoun, Olfa
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.01.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23031096

Cover

Abstract The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature selection is needed. In this paper, a novel classification method based on an extreme learning machine (ELM), supported by an improved grasshopper optimization algorithm (GOA) as a core for a weight-pruning process, is proposed. The k-tournament grasshopper optimization algorithm was implemented to select and prune the ELM weights resulting in the proposed k-tournament grasshopper extreme learner (KTGEL) classifier. Myographic methods, such as force myography (FMG), deliver interesting signals that can build the basis for hand sign recognition. FMG was investigated to limit the number of sensors at suitable positions and provide adequate signal processing algorithms for perspective implementation in wearable embedded systems. Based on the proposed KTGEL, the number of sensors and the effect of the number of subjects was investigated in the first stage. It was shown that by increasing the number of subjects participating in the data collection, eight was the minimal number of sensors needed to result in acceptable sign recognition performance. Moreover, implemented with 3000 hidden nodes, after the feature selection wrapper, the ELM had both a microaverage precision and a microaverage sensitivity of 97% for the recognition of a set of gestures, including a middle ambiguity level. The KTGEL reduced the hidden nodes to only 1000, reaching the same total sensitivity with a reduced total precision of only 1% without needing an additional feature selection method.
AbstractList The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature selection is needed. In this paper, a novel classification method based on an extreme learning machine (ELM), supported by an improved grasshopper optimization algorithm (GOA) as a core for a weight-pruning process, is proposed. The k-tournament grasshopper optimization algorithm was implemented to select and prune the ELM weights resulting in the proposed k-tournament grasshopper extreme learner (KTGEL) classifier. Myographic methods, such as force myography (FMG), deliver interesting signals that can build the basis for hand sign recognition. FMG was investigated to limit the number of sensors at suitable positions and provide adequate signal processing algorithms for perspective implementation in wearable embedded systems. Based on the proposed KTGEL, the number of sensors and the effect of the number of subjects was investigated in the first stage. It was shown that by increasing the number of subjects participating in the data collection, eight was the minimal number of sensors needed to result in acceptable sign recognition performance. Moreover, implemented with 3000 hidden nodes, after the feature selection wrapper, the ELM had both a microaverage precision and a microaverage sensitivity of 97% for the recognition of a set of gestures, including a middle ambiguity level. The KTGEL reduced the hidden nodes to only 1000, reaching the same total sensitivity with a reduced total precision of only 1% without needing an additional feature selection method.
The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature selection is needed. In this paper, a novel classification method based on an extreme learning machine (ELM), supported by an improved grasshopper optimization algorithm (GOA) as a core for a weight-pruning process, is proposed. The k-tournament grasshopper optimization algorithm was implemented to select and prune the ELM weights resulting in the proposed k-tournament grasshopper extreme learner (KTGEL) classifier. Myographic methods, such as force myography (FMG), deliver interesting signals that can build the basis for hand sign recognition. FMG was investigated to limit the number of sensors at suitable positions and provide adequate signal processing algorithms for perspective implementation in wearable embedded systems. Based on the proposed KTGEL, the number of sensors and the effect of the number of subjects was investigated in the first stage. It was shown that by increasing the number of subjects participating in the data collection, eight was the minimal number of sensors needed to result in acceptable sign recognition performance. Moreover, implemented with 3000 hidden nodes, after the feature selection wrapper, the ELM had both a microaverage precision and a microaverage sensitivity of 97% for the recognition of a set of gestures, including a middle ambiguity level. The KTGEL reduced the hidden nodes to only 1000, reaching the same total sensitivity with a reduced total precision of only 1% without needing an additional feature selection method.The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for hand gesture recognition, a new artificial neural network algorithm providing high accuracy with a reduced architecture and automatic feature selection is needed. In this paper, a novel classification method based on an extreme learning machine (ELM), supported by an improved grasshopper optimization algorithm (GOA) as a core for a weight-pruning process, is proposed. The k-tournament grasshopper optimization algorithm was implemented to select and prune the ELM weights resulting in the proposed k-tournament grasshopper extreme learner (KTGEL) classifier. Myographic methods, such as force myography (FMG), deliver interesting signals that can build the basis for hand sign recognition. FMG was investigated to limit the number of sensors at suitable positions and provide adequate signal processing algorithms for perspective implementation in wearable embedded systems. Based on the proposed KTGEL, the number of sensors and the effect of the number of subjects was investigated in the first stage. It was shown that by increasing the number of subjects participating in the data collection, eight was the minimal number of sensors needed to result in acceptable sign recognition performance. Moreover, implemented with 3000 hidden nodes, after the feature selection wrapper, the ELM had both a microaverage precision and a microaverage sensitivity of 97% for the recognition of a set of gestures, including a middle ambiguity level. The KTGEL reduced the hidden nodes to only 1000, reaching the same total sensitivity with a reduced total precision of only 1% without needing an additional feature selection method.
Audience Academic
Author Kanoun, Olfa
Barioul, Rim
AuthorAffiliation Chair of Measurement and Sensor Technology, Technische Universitat Chemnitz, 09126 Chemnitz, Germany
AuthorAffiliation_xml – name: Chair of Measurement and Sensor Technology, Technische Universitat Chemnitz, 09126 Chemnitz, Germany
Author_xml – sequence: 1
  givenname: Rim
  orcidid: 0000-0003-1954-5396
  surname: Barioul
  fullname: Barioul, Rim
– sequence: 2
  givenname: Olfa
  orcidid: 0000-0002-7166-1266
  surname: Kanoun
  fullname: Kanoun, Olfa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36772136$$D View this record in MEDLINE/PubMed
BookMark eNp9kttu1DAQhiNURA9wwQugSNwAUtr4EDu-QSpVuxQtQkLl2pr4sPWS2MFOgL497m5ZtRVCvvDp8--Zf-aw2PPBm6J4iepjQkR9kjCpCaoFe1IcIIpp1WJc791b7xeHKa3rGhNC2mfFPmGcY0TYQfHpe3UV5uhhMH4qFxFSug7jaGJ5_nuKZjDl0kD0eW9DLC8-L6oPkIwuFyZNczTlV6PCyrvJBf-8eGqhT-bF3XxUfLs4vzr7WC2_LC7PTpeVoqSdKkYo64QFBlojMIIzbTvcEdQ1gumWcE5xw4VudSM6hprWYg4ELDJM1a225Ki43OrqAGs5RjdAvJEBnNwchLiSECeneiMJU43pWNMqKig2Frimuu241kpQJFjWerfVmv0IN7-g73eCqJa35sqduRl-v4XHuRuMVtmxCP2DCB7eeHctV-GnFALXjDZZ4M2dQAw_5uygHFxSpu_BmzAniTlvGGaswRl9_Qhdb8rUbygqOMEMZep4S60gZ-u8DflflYc2g1O5SazL56ecklzxlpP84NX9FHax_22IDLzdAiqGlKKx__Xj5BGr3AS3rZCjcP0_XvwBmlfTBw
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3305255
crossref_primary_10_1017_S0263574724002194
Cites_doi 10.1007/s12530-010-9005-y
10.1007/s11042-019-07827-3
10.1109/SSD52085.2021.9429399
10.1109/MRA.2017.2747899
10.1007/978-3-319-53480-0_9
10.1016/j.asoc.2015.03.036
10.1016/j.eswa.2018.07.022
10.1109/72.248452
10.1080/10298436.2020.1776281
10.3390/s19204557
10.1016/j.advengsoft.2017.01.004
10.1109/CSCWD.2017.8066682
10.1109/SENSORS47125.2020.9278884
10.3390/electronics9050811
10.1007/s12559-015-9333-0
10.1080/21642583.2020.1759156
10.1016/j.neunet.2016.09.004
10.1109/CIVEMSA48639.2020.9132742
10.1109/TNN.2009.2036259
10.1145/3175603.3175623
10.1109/LSENS.2021.3081689
10.1109/LA-CCI.2018.8625247
10.1145/2642918.2647396
10.1109/BIOROB.2018.8487790
10.1109/ICInfA.2017.8078997
10.1109/ACCESS.2019.2915925
10.1016/j.medengphy.2017.01.015
10.1109/NanofIM49467.2019.9233484
10.1177/1045389X12463462
10.1016/j.eswa.2018.09.015
10.1016/j.sna.2019.111738
10.1007/s00521-018-3414-4
10.1371/journal.pone.0194770
10.1016/j.neucom.2013.08.009
10.1109/TSMCB.2011.2168604
10.1109/ICIT.2018.8352174
10.1007/s11517-012-1010-9
10.1016/j.asoc.2016.03.019
10.1186/s12938-017-0349-4
10.3389/fbioe.2016.00018
10.1016/S1672-6529(16)60435-3
10.1109/LSC.2017.8268158
10.1007/s12559-014-9259-y
10.1109/THMS.2017.2693245
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s23031096
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_36c5eb658c4942efa7d4d8b7ddc94196
10.3390/s23031096
PMC9920645
A743367873
36772136
10_3390_s23031096
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: Project-ID 416228727 - SFB 1410
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  grantid: 416228727–SFB 1410
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c438t-6346b9fa6add1ae976dfb2b31b596d837742579d8d59b6158f27a3af1e6c08df3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:52:05 EDT 2025
Sun Oct 26 04:15:34 EDT 2025
Tue Sep 30 17:17:03 EDT 2025
Thu Oct 02 10:22:03 EDT 2025
Tue Oct 07 07:45:35 EDT 2025
Mon Oct 20 17:00:44 EDT 2025
Mon Jul 21 05:42:25 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
Thu Oct 16 04:22:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords grasshopper optimization algorithm
k-tournament selection
extreme learning machine
force myography
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-6346b9fa6add1ae976dfb2b31b596d837742579d8d59b6158f27a3af1e6c08df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7166-1266
0000-0003-1954-5396
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23031096
PMID 36772136
PQID 2774973261
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_36c5eb658c4942efa7d4d8b7ddc94196
unpaywall_primary_10_3390_s23031096
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9920645
proquest_miscellaneous_2775626652
proquest_journals_2774973261
gale_infotracacademiconefile_A743367873
pubmed_primary_36772136
crossref_primary_10_3390_s23031096
crossref_citationtrail_10_3390_s23031096
PublicationCentury 2000
PublicationDate 20230118
PublicationDateYYYYMMDD 2023-01-18
PublicationDate_xml – month: 1
  year: 2023
  text: 20230118
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Saremi (ref_10) 2017; 105
ref_14
ref_13
Ahila (ref_9) 2015; 32
Anam (ref_45) 2017; 85
Ahmadizadeh (ref_27) 2017; 24
ref_18
Alencar (ref_8) 2016; 44
Awadallah (ref_12) 2018; 113
ref_16
ref_15
Huang (ref_44) 2015; 7
Jiang (ref_19) 2017; 41
Zhao (ref_2) 2014; 6
Ferigo (ref_23) 2017; 14
Ramalingame (ref_34) 2021; 5
Miche (ref_4) 2010; 21
Wang (ref_11) 2013; 82
ref_25
Saadeh (ref_17) 2012; 24
ref_21
ref_20
Jiang (ref_33) 2020; 301
Islam (ref_30) 2020; 7
ref_29
ref_26
Sadarangani (ref_28) 2017; 16
Song (ref_3) 2020; 8
Ibrahim (ref_47) 2018; 31
ref_35
Reed (ref_36) 1993; 4
ref_32
Pouzols (ref_7) 2010; 1
ref_31
ref_39
ref_38
ref_37
Kaloop (ref_6) 2022; 23
Cho (ref_24) 2016; 4
Chorowski (ref_46) 2014; 128
Huang (ref_49) 2012; 42
ref_42
ref_40
ref_1
Shi (ref_48) 2012; 51
Li (ref_41) 2019; 7
ref_5
Jiang (ref_22) 2018; 48
Carrara (ref_50) 2019; 78
Mafarja (ref_43) 2019; 117
References_xml – ident: ref_5
– volume: 1
  start-page: 43
  year: 2010
  ident: ref_7
  article-title: Evolving fuzzy optimally pruned extreme learning machine for regression problems
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-010-9005-y
– volume: 78
  start-page: 27309
  year: 2019
  ident: ref_50
  article-title: LSTM-based real-time action detection and prediction in human motion streams
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-07827-3
– ident: ref_35
  doi: 10.1109/SSD52085.2021.9429399
– volume: 24
  start-page: 102
  year: 2017
  ident: ref_27
  article-title: Toward Intuitive Prosthetic Control: Solving Common Issues Using Force Myography, Surface Electromyography, and Pattern Recognition in a Pilot Case Study
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2017.2747899
– ident: ref_38
  doi: 10.1007/978-3-319-53480-0_9
– ident: ref_16
– volume: 32
  start-page: 23
  year: 2015
  ident: ref_9
  article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.036
– volume: 113
  start-page: 481
  year: 2018
  ident: ref_12
  article-title: Natural selection methods for Grey Wolf Optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.022
– volume: 4
  start-page: 740
  year: 1993
  ident: ref_36
  article-title: Pruning algorithms-a survey
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.248452
– volume: 23
  start-page: 862
  year: 2022
  ident: ref_6
  article-title: A hybrid wavelet-optimally-pruned extreme learning machine model for the estimation of international roughness index of rigid pavements
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2020.1776281
– ident: ref_14
  doi: 10.3390/s19204557
– volume: 105
  start-page: 30
  year: 2017
  ident: ref_10
  article-title: Grasshopper Optimisation Algorithm: Theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– ident: ref_20
  doi: 10.1109/CSCWD.2017.8066682
– ident: ref_26
  doi: 10.1109/SENSORS47125.2020.9278884
– ident: ref_42
  doi: 10.3390/electronics9050811
– ident: ref_13
– volume: 7
  start-page: 263
  year: 2015
  ident: ref_44
  article-title: What are Extreme Learning Machines? Filling the Gap Between Frank Rosenblatt’s Dream and John von Neumann’s Puzzle
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-015-9333-0
– volume: 8
  start-page: 308
  year: 2020
  ident: ref_3
  article-title: An improved algorithm for incremental extreme learning machine
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2020.1759156
– volume: 85
  start-page: 51
  year: 2017
  ident: ref_45
  article-title: Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2016.09.004
– ident: ref_25
  doi: 10.1109/CIVEMSA48639.2020.9132742
– volume: 21
  start-page: 158
  year: 2010
  ident: ref_4
  article-title: OP-ELM: Optimally Pruned Extreme Learning Machine
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2036259
– ident: ref_39
  doi: 10.1145/3175603.3175623
– volume: 5
  start-page: 1
  year: 2021
  ident: ref_34
  article-title: Wearable Smart Band for American Sign Language Recognition With Polymer Carbon Nanocomposite-Based Pressure Sensors
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2021.3081689
– ident: ref_40
  doi: 10.1109/LA-CCI.2018.8625247
– ident: ref_21
  doi: 10.1145/2642918.2647396
– ident: ref_29
  doi: 10.1109/BIOROB.2018.8487790
– ident: ref_37
  doi: 10.1109/ICInfA.2017.8078997
– volume: 7
  start-page: 60650
  year: 2019
  ident: ref_41
  article-title: Data-Driven Control of Ground-Granulated Blast-Furnace Slag Production Based on IOEM-ELM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915925
– volume: 41
  start-page: 63
  year: 2017
  ident: ref_19
  article-title: Exploration of Force Myography and surface Electromyography in hand gesture classification
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2017.01.015
– ident: ref_18
  doi: 10.1109/NanofIM49467.2019.9233484
– volume: 24
  start-page: 813
  year: 2012
  ident: ref_17
  article-title: Identification of a force-sensing resistor for tactile applications
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X12463462
– volume: 117
  start-page: 267
  year: 2019
  ident: ref_43
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.015
– volume: 7
  start-page: 205566832093858
  year: 2020
  ident: ref_30
  article-title: A comparative study of motion detection with FMG and sEMG methods for assistive applications
  publication-title: J. Rehabil. Assist. Technol. Eng.
– volume: 301
  start-page: 111738
  year: 2020
  ident: ref_33
  article-title: A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2019.111738
– volume: 31
  start-page: 5965
  year: 2018
  ident: ref_47
  article-title: A grasshopper optimizer approach for feature selection and optimizing SVM parameters utilizing real biomedical data sets
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3414-4
– ident: ref_1
  doi: 10.1371/journal.pone.0194770
– volume: 128
  start-page: 507
  year: 2014
  ident: ref_46
  article-title: Review and performance comparison of SVM- and ELM-based classifiers
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.009
– volume: 42
  start-page: 513
  year: 2012
  ident: ref_49
  article-title: Extreme Learning Machine for Regression and Multiclass Classification
  publication-title: IEEE Trans. Syst. Man, Cybern. Part (Cybernetics)
  doi: 10.1109/TSMCB.2011.2168604
– volume: 82
  start-page: 15
  year: 2013
  ident: ref_11
  article-title: Surface EMG Signal Amplification and Filtering
  publication-title: Int. J. Comput. Appl.
– ident: ref_32
  doi: 10.1109/ICIT.2018.8352174
– volume: 51
  start-page: 417
  year: 2012
  ident: ref_48
  article-title: SEMG based hand motion recognition using cumulative residual entropy and extreme learning machine
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-012-1010-9
– ident: ref_15
– volume: 44
  start-page: 101
  year: 2016
  ident: ref_8
  article-title: A new pruning method for extreme learning machines via genetic algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.03.019
– volume: 16
  start-page: 59
  year: 2017
  ident: ref_28
  article-title: A preliminary investigation on the utility of temporal features of Force Myography in the two-class problem of grasp vs. no-grasp in the presence of upper-extremity movements
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-017-0349-4
– volume: 4
  start-page: 18
  year: 2016
  ident: ref_24
  article-title: Force Myography to Control Robotic Upper Extremity Prostheses: A Feasibility Study
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2016.00018
– volume: 14
  start-page: 692
  year: 2017
  ident: ref_23
  article-title: A Case Study of a Force-myography Controlled Bionic Hand Mitigating Limb Position Effect
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(16)60435-3
– ident: ref_31
  doi: 10.1109/LSC.2017.8268158
– volume: 6
  start-page: 423
  year: 2014
  ident: ref_2
  article-title: A Class Incremental Extreme Learning Machine for Activity Recognition
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-014-9259-y
– volume: 48
  start-page: 219
  year: 2018
  ident: ref_22
  article-title: Force Exertion Affects Grasp Classification Using Force Myography
  publication-title: IEEE Trans. -Hum.-Mach. Syst.
  doi: 10.1109/THMS.2017.2693245
SSID ssj0023338
Score 2.3986564
Snippet The recognition of hand signs is essential for several applications. Due to the variation of possible signals and the complexity of sensor-based systems for...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1096
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Bias
Classification
Electromyography
Embedded systems
extreme learning machine
Feature selection
force myography
Gesture
Gestures
grasshopper optimization algorithm
Hand
Humans
Identification and classification
k-tournament selection
Linear algebra
Machine learning
Machine vision
Mechanical Phenomena
Myography
Network management systems
Neural networks
Neural Networks, Computer
Optimization
Physiology
Sensors
Sign language
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB5KLm0PpelTTRrUB7QXEUv7PiYhdgi0h5JAbmKfpMTIxrFp8-8zI8nC7oNeepQ0rGZnZ3a-Wa2-BfjIEhMh-FFhmRgVvNSusD4InAyd0gIBL7ftLt-v8uySn1-Jq42jvmhPWEcP3BnukEkvosM86bnhVUxWBR60U_gCw9F9aPYdabMupvpSi2Hl1fEIMSzqD28RaBMFptzKPi1J_-9T8UYu-nWf5MNVM7d3P-x0upGExk_hSY8e86NO6114EJtn8HiDU_A5nN8UF60YLfvlkwWC4-vZfB4X-enPJS0G5i2lKl4jXM3HXybFMSaykE9Qp9Ui5t_WO4pmzQu4HJ9enJwV_YEJhedMLwvJuHQmWYmTVmkjIo2QXOVY6YSRAUtRRRFqgg7COIQyOlXKMpvKKP1Ih8Rewk4za-JryJ3iMtmkdawslxjlQiWeiD3PM4dtZPB5bcja92zidKjFtMaqgmxeDzbP4P0gOu8oNP4kdEyjMQgQ63V7A32h7n2h_pcvZPCJxrKm2ERlvO1_McAuEctVfYRwiWF2ViyD_fVw133Q3tYV2ofIi2SZwbvhMYYbfUOxTZytWhlEjFKKKoNXnXcMOmPTWE8zVENt-c1Wp7afNN-vW0pvYyoiDszgw-Bhf7fVm_9hqz14VGGc0GpSqfdhZ7lYxbeIr5buoA2le60FIv4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcEG8MBZmHBBersXe9Xh8QalCSqhIRqlqpN2ufFBHZxk0E_HtmHNskvI62R6vx7jy-Wa-_AXjFPEutNeNIsXQc8VjqSBmbYjDUmUwR8HLVnvJdiONzfnKRXuzBov8Xho5V9jGxDdS2MrRHfpggTiFmGRG_q79G1DWKvq72LTRU11rBvm0pxq7BfkLMWCPYn0wXH0-HEoxhRbbhF2JY7B9eIQAnakyxk5Va8v4_Q_RWjvr9_OT1dVmrH9_UcrmVnGa34VaHKsOjjRncgT1X3oWbW1yD9-DkS3TWitF2YDhvEDRfVnXtmnD6fUWbhGFLtYrXCGPD2Yd5NMEEZ8M56rRuXHjanzSqyvtwPpuevT-OukYKkeFMriLBuNC5VwKDWawcIhDrdaJZrNNcWCxRM_Lc3Eqb5hohjvRJppjysRNmLK1nD2BUVqV7BKHOuPDKS-kSxQV6f5p57olVzzCNYwTwpp_IwnQs49TsYllgtUFzXgxzHsCLQbTeUGv8TWhCqzEIEBt2e6NqPhWdcxVMmNRpxFKG5zxxXmWWW6kzNMKcxzTIa1rLgnwWlTGq-_UAX4nYr4ojhFEMs3bGAjjol7vonPmq-GV6ATwfHqMb0rcVVbpq3cogkhQiTQJ4uLGOQWccGutshmpkO3az81K7T8rPly3Vd54nRCgYwMvBwv49V4__r_wTuJGgB9D-USwPYLRq1u4pIqqVfta5yU-Q2SBl
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceFMMBZmHBBc3sXe9tk8oRU2qSlQINVI5mX3SqpFtOTavX8-MvbGSAhISx8ST1Y5nduabzey3hLyilsZaq0kgaDwJWJjKQCgdQzCUSRoD4GWi6_I94UcLdnwWn7l7TleurRJK8YsuSOMprAAy2GQc0TGFBZ7xcaXt269uKwk76JGTC8kkd3gMYHxEdhYnH6afujNF7sc9nxCF4n68AsCNVJh8Kwt1ZP2_h-SNnHS1X_J6W1TixzexXG4ko9lt8nmtRt-DcrnfNnJf_bzC8Pgfet4htxxQ9ae9Z90l10xxj9zcoC-8T44vg9NODHcY_XkNOPy8rCpT-4ffG9x39Dv2VvgMyNifvZ8HB5AztT8Htdva-B_XzUtl8YAsZoen744CdzdDoBhNm4BTxmVmBYf4GAoDoEZbGUkaSjCDhqo3wWCQ6VTHmQTUlNooEVTY0HA1SbWlD8moKAvziPgyYdwKm6YmEoxDQIkTyywS9SkqYQyPvFnbKleOuBzvz1jmUMCgWfPBrB55MYhWPVvHn4QO0OCDABJsd1-U9ZfcrdecchUbCfBMsYxFxopEM53KBPw6YyEO8hrdJccwAJNRwp1mAJWQUCufAjKjAAQS6pG9tUflLj6s8gjeD_Ik8dAjz4fHsLLx7xpRmLLtZACcch5HHtntHXCYMwwNpTuFaSRbrrml1PaT4uK8Yw_Psgg5Cj3ycnDiv7-rx_8k9YTciAD74c5UmO6RUVO35ilgtUY-c-vxF3VEN28
  priority: 102
  providerName: Unpaywall
Title k-Tournament Grasshopper Extreme Learner for FMG-Based Gesture Recognition
URI https://www.ncbi.nlm.nih.gov/pubmed/36772136
https://www.proquest.com/docview/2774973261
https://www.proquest.com/docview/2775626652
https://pubmed.ncbi.nlm.nih.gov/PMC9920645
https://www.mdpi.com/1424-8220/23/3/1096/pdf?version=1674024802
https://doaj.org/article/36c5eb658c4942efa7d4d8b7ddc94196
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Medical Journals Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Medical Journals Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t4wF4QHwTGFX4kOAlo4kd23lAqEVrp0mrpmmVylNkxzZDVGnJWrH999yladTCkHiplORq2ec73-8c53cA75hnqbVFN9Is7UY8VibShU1xMTRSpQh4ua5P-Y7E8ZifTNLJDqxrbDYKvLo1taN6UuNqenj98-YzOvwnyjgxZf94hTCaCC7FLuxjgMqogsMpb18mJIzVBa3pm64I42F3RTC0_detsFSz9_-9Rm8EqT8PUN5ZlnN980tPpxvRafAA7jewMuyt7OAh7LjyEdzbIBt8DCc_ootajPYDw2GFqPlyNp-7Kjy6XtAuYVhzreI14thwcDqM-hjhbDjEPi0rF56vjxrNyicwHhxdfDmOmkoKUcGZWkSCcWEyrwWuZrF2CEGsN4lhsUkzYTFHleS6mVU2zQxiHOUTqZn2sRNFV1nPnsJeOSvdcwiN5MJrr5RLNBfo_qn03BOtXsEMthHAh7Ui86KhGadqF9Mc0w3Sed7qPIA3reh8xa1xm1CfZqMVIDrs-sas-pY33pUzUaTOIJgqeMYT57W03Coj0QozHlMj72kuczIj7Eyhm28PcEhEf5X3EEcxDNuSBXCwnu58bYx5gvohViMRB_C6fYx-SC9XdOlmy1oGoaQQaRLAs5V1tH3GpjHRZtgNuWU3W4PaflJ-v6y5vrMsIUbBAN62FvZvXb3472G-hLsJOgbtJcXqAPYW1dK9QnS1MB3YlROJv2ow7MB-_2h0dt6pdyo6tVfhvfHorPf1N7D5Jz0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEG8CBcJL9BJ1EztOckCohe5unwe0lfYW7NimiFUS9qHSP8VvZCav7vK69ZhkZDnjeXzjON8AvGaWhVpnPU-ysOdxP1aezHSIwVBFcYiAl8vqlO-JGJ7yg3E4XoOf7b8wdKyyjYlVoNZFRnvk2wHiFGKWEf778rtHXaPo62rbQqM2i0NzcY4l2-zd_kdc3zdB0N8bfRh6TVcBL-MsnnuCcaESKwV6ti8NpmNtVaCYr8JEaKzXIjLjRMc6TBTm-9gGkWTS-kZkvVhbhuNeg-ucYSxB_4nGlwUew3qvZi9iLOltzxDeE_GmWMl5VWuAPxPAUgb8_XTmxiIv5cW5nEyWUl__NtxqMKu7UxvZHVgz-V24ucRkeA8OvnmjSow2G93BFCH5WVGWZuru_ZjTFqRbEbniNYJkt3888HYxfWp3gHNaTI37qT3HVOT34fRKFPoA1vMiN4_AVREXVto4NoHkAmNLGFluibMvYwrHcGCrVWSaNRzm1EpjkmItQzpPO5078LITLWvijr8J7dJqdALEtV3dKKZf0sZ1Uyay0ChEahlPeGCsjDTXsYrQxBPu0yBvaS1Tigg4mUw2PzbgKxG3VrqDII0hJoiYA5vtcqdNqJill4btwIvuMTo5fbmRuSkWlQziVCHCwIGHtXV0c8ahsYpnOI1oxW5WXmr1Sf71rCIST5KA6AodeNVZ2L919fj_k38OG8PR8VF6tH9y-ARuBOgNtFPlx5uwPp8uzFPEbnP1rHIYFz5ftYf-Ak6rVxo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIkF5QNwECoRL5SXaTezYyQNCLe1uD6gQaqV9C3Zst4hVsuyh0r_Gr2Mmm6S7XG993LVlTew5vnEm3wC8Yo7FxuTdQLG4G_Aw0YHKTYzOUMskRsDLVVXleyh2j_n-IB6swM_mWxgqq2x8YuWoTZnTHXknQpxCzDIi7Li6LOLTdu_d6HtAHaToTWvTTmOuIgf2_AzTt8nbvW0869dR1Ns5er8b1B0GgpyzZBoIxoVOnRJo5aGyGJqN05FmoY5TYTB3k6TSqUlMnGqM_YmLpGLKhVbk3cQ4hutegauSsZTKCeXgItljmPvNmYxwsNuZINQnEk6xFP-qNgF_BoOFaPh7peb1WTFS52dqOFwIg71bcLPGr_7mXOFuw4ot7sCNBVbDu7D_LTiqptHFo98fIzw_LUcjO_Z3fkzpOtKvSF3xNwJmv_exH2xhKDV-H2Waja3_ualpKot7cHwpG3ofVouysA_B15ILp1yS2EhxgX4mlo474u_LmcY1PHjTbGSW13zm1FZjmGFeQ3uetXvuwYt26mhO4vG3SVt0Gu0E4t2u_ijHJ1ltxhkTeWw1oracpzyyTknDTaIlqnvKQ1pkg84yI--AwuSq_sgBH4l4trJNBGwM8YFkHqw3x53VbmOSXSi5B8_bYTR4eoujClvOqjmIWYWIIw8ezLWjlRmXxoyeoRhySW-WHmp5pPh6WpGKp2lE1IUevGw17N979ej_wj-Da2ib2Ye9w4PHsBahMdClVZisw-p0PLNPEMZN9dPKXnz4ctkG-gtt81td
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceFMMBZmHBBc3sXe9tk8oRU2qSlQINVI5mX3SqpFtOTavX8-MvbGSAhISx8ST1Y5nduabzey3hLyilsZaq0kgaDwJWJjKQCgdQzCUSRoD4GWi6_I94UcLdnwWn7l7TleurRJK8YsuSOMprAAy2GQc0TGFBZ7xcaXt269uKwk76JGTC8kkd3gMYHxEdhYnH6afujNF7sc9nxCF4n68AsCNVJh8Kwt1ZP2_h-SNnHS1X_J6W1TixzexXG4ko9lt8nmtRt-DcrnfNnJf_bzC8Pgfet4htxxQ9ae9Z90l10xxj9zcoC-8T44vg9NODHcY_XkNOPy8rCpT-4ffG9x39Dv2VvgMyNifvZ8HB5AztT8Htdva-B_XzUtl8YAsZoen744CdzdDoBhNm4BTxmVmBYf4GAoDoEZbGUkaSjCDhqo3wWCQ6VTHmQTUlNooEVTY0HA1SbWlD8moKAvziPgyYdwKm6YmEoxDQIkTyywS9SkqYQyPvFnbKleOuBzvz1jmUMCgWfPBrB55MYhWPVvHn4QO0OCDABJsd1-U9ZfcrdecchUbCfBMsYxFxopEM53KBPw6YyEO8hrdJccwAJNRwp1mAJWQUCufAjKjAAQS6pG9tUflLj6s8gjeD_Ik8dAjz4fHsLLx7xpRmLLtZACcch5HHtntHXCYMwwNpTuFaSRbrrml1PaT4uK8Yw_Psgg5Cj3ycnDiv7-rx_8k9YTciAD74c5UmO6RUVO35ilgtUY-c-vxF3VEN28
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=k-Tournament+Grasshopper+Extreme+Learner+for+FMG-Based+Gesture+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Barioul%2C+Rim&rft.au=Kanoun%2C+Olfa&rft.date=2023-01-18&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=3&rft_id=info:doi/10.3390%2Fs23031096&rft.externalDocID=A743367873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon