Parkinson disease detection based on in-air dynamics feature extraction and selection using machine learning

Parkinson’s disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and bradykinesia. Early and accurate PD detection is essential for effective management and improving patient outcomes. Many researchers analyzing handwritin...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 28027 - 23
Main Authors Shin, Jungpil, Miah, Abu Saleh Musa, Hirooka, Koki, Hasan, Md. Al Mehedi, Maniruzzaman, Md
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-12115-2

Cover

Abstract Parkinson’s disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and bradykinesia. Early and accurate PD detection is essential for effective management and improving patient outcomes. Many researchers analyzing handwriting data for PD detection typically rely on computing statistical features over the entirety of the handwriting task. While this method can capture broad patterns, it has several limitations, including a lack of focus on dynamic change, oversimplified feature representation, a lack of directional information, and missing micro-movements or subtle variations. Consequently, these systems face challenges in achieving good performance accuracy, robustness, and sensitivity. To overcome this problem, we proposed an optimized PD detection methodology that incorporates newly developed dynamic kinematic features and machine learning (ML)—based techniques to capture movement dynamics during handwriting tasks. Unlike typical Parkinson’s Disease (PD) detection methods, which only differentiate between PD and non-PD cases, our approach classifies PD patients into distinct stages—early, mid, and late—based on the age of the disease, reflecting its progression over time. In the procedure, we first extracted 65 newly developed kinematic features from the handwriting task, aiming to bring significant variations in acceleration, deceleration, and directional changes—subtle movements that traditional methods may struggle to detect. We also reused 23 existing kinematic features, resulting in a comprehensive new feature set. Next, we enhanced the kinematic features by applying statistical formulas to compute hierarchical features from the handwriting data. This approach allows us to capture subtle movement variations that distinguish PD patients from healthy controls. To further optimize the feature set, we applied the Sequential Forward Floating Selection method to select the most relevant features, reducing dimensionality and computational complexity. Finally, we employed an ML-based approach based on ensemble voting across top-performing tasks, achieving an impressive 96.99% accuracy on task-wise classification and 99.98% accuracy on task ensembles, surpassing the existing state-of-the-art model by 2% for the PaHaW dataset. This exceptional accuracy underscores the transformative potential of our approach in redefining the benchmarks for PD detection. Our code and data are available at: https://github.com/musaru/PD_PaHaW .
AbstractList Parkinson's disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and bradykinesia. Early and accurate PD detection is essential for effective management and improving patient outcomes. Many researchers analyzing handwriting data for PD detection typically rely on computing statistical features over the entirety of the handwriting task. While this method can capture broad patterns, it has several limitations, including a lack of focus on dynamic change, oversimplified feature representation, a lack of directional information, and missing micro-movements or subtle variations. Consequently, these systems face challenges in achieving good performance accuracy, robustness, and sensitivity. To overcome this problem, we proposed an optimized PD detection methodology that incorporates newly developed dynamic kinematic features and machine learning (ML)-based techniques to capture movement dynamics during handwriting tasks. Unlike typical Parkinson's Disease (PD) detection methods, which only differentiate between PD and non-PD cases, our approach classifies PD patients into distinct stages-early, mid, and late-based on the age of the disease, reflecting its progression over time. In the procedure, we first extracted 65 newly developed kinematic features from the handwriting task, aiming to bring significant variations in acceleration, deceleration, and directional changes-subtle movements that traditional methods may struggle to detect. We also reused 23 existing kinematic features, resulting in a comprehensive new feature set. Next, we enhanced the kinematic features by applying statistical formulas to compute hierarchical features from the handwriting data. This approach allows us to capture subtle movement variations that distinguish PD patients from healthy controls. To further optimize the feature set, we applied the Sequential Forward Floating Selection method to select the most relevant features, reducing dimensionality and computational complexity. Finally, we employed an ML-based approach based on ensemble voting across top-performing tasks, achieving an impressive 96.99% accuracy on task-wise classification and 99.98% accuracy on task ensembles, surpassing the existing state-of-the-art model by 2% for the PaHaW dataset. This exceptional accuracy underscores the transformative potential of our approach in redefining the benchmarks for PD detection. Our code and data are available at: https://github.com/musaru/PD_PaHaW .Parkinson's disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and bradykinesia. Early and accurate PD detection is essential for effective management and improving patient outcomes. Many researchers analyzing handwriting data for PD detection typically rely on computing statistical features over the entirety of the handwriting task. While this method can capture broad patterns, it has several limitations, including a lack of focus on dynamic change, oversimplified feature representation, a lack of directional information, and missing micro-movements or subtle variations. Consequently, these systems face challenges in achieving good performance accuracy, robustness, and sensitivity. To overcome this problem, we proposed an optimized PD detection methodology that incorporates newly developed dynamic kinematic features and machine learning (ML)-based techniques to capture movement dynamics during handwriting tasks. Unlike typical Parkinson's Disease (PD) detection methods, which only differentiate between PD and non-PD cases, our approach classifies PD patients into distinct stages-early, mid, and late-based on the age of the disease, reflecting its progression over time. In the procedure, we first extracted 65 newly developed kinematic features from the handwriting task, aiming to bring significant variations in acceleration, deceleration, and directional changes-subtle movements that traditional methods may struggle to detect. We also reused 23 existing kinematic features, resulting in a comprehensive new feature set. Next, we enhanced the kinematic features by applying statistical formulas to compute hierarchical features from the handwriting data. This approach allows us to capture subtle movement variations that distinguish PD patients from healthy controls. To further optimize the feature set, we applied the Sequential Forward Floating Selection method to select the most relevant features, reducing dimensionality and computational complexity. Finally, we employed an ML-based approach based on ensemble voting across top-performing tasks, achieving an impressive 96.99% accuracy on task-wise classification and 99.98% accuracy on task ensembles, surpassing the existing state-of-the-art model by 2% for the PaHaW dataset. This exceptional accuracy underscores the transformative potential of our approach in redefining the benchmarks for PD detection. Our code and data are available at: https://github.com/musaru/PD_PaHaW .
Parkinson’s disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and bradykinesia. Early and accurate PD detection is essential for effective management and improving patient outcomes. Many researchers analyzing handwriting data for PD detection typically rely on computing statistical features over the entirety of the handwriting task. While this method can capture broad patterns, it has several limitations, including a lack of focus on dynamic change, oversimplified feature representation, a lack of directional information, and missing micro-movements or subtle variations. Consequently, these systems face challenges in achieving good performance accuracy, robustness, and sensitivity. To overcome this problem, we proposed an optimized PD detection methodology that incorporates newly developed dynamic kinematic features and machine learning (ML)—based techniques to capture movement dynamics during handwriting tasks. Unlike typical Parkinson’s Disease (PD) detection methods, which only differentiate between PD and non-PD cases, our approach classifies PD patients into distinct stages—early, mid, and late—based on the age of the disease, reflecting its progression over time. In the procedure, we first extracted 65 newly developed kinematic features from the handwriting task, aiming to bring significant variations in acceleration, deceleration, and directional changes—subtle movements that traditional methods may struggle to detect. We also reused 23 existing kinematic features, resulting in a comprehensive new feature set. Next, we enhanced the kinematic features by applying statistical formulas to compute hierarchical features from the handwriting data. This approach allows us to capture subtle movement variations that distinguish PD patients from healthy controls. To further optimize the feature set, we applied the Sequential Forward Floating Selection method to select the most relevant features, reducing dimensionality and computational complexity. Finally, we employed an ML-based approach based on ensemble voting across top-performing tasks, achieving an impressive 96.99% accuracy on task-wise classification and 99.98% accuracy on task ensembles, surpassing the existing state-of-the-art model by 2% for the PaHaW dataset. This exceptional accuracy underscores the transformative potential of our approach in redefining the benchmarks for PD detection. Our code and data are available at: https://github.com/musaru/PD_PaHaW.
Abstract Parkinson’s disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and bradykinesia. Early and accurate PD detection is essential for effective management and improving patient outcomes. Many researchers analyzing handwriting data for PD detection typically rely on computing statistical features over the entirety of the handwriting task. While this method can capture broad patterns, it has several limitations, including a lack of focus on dynamic change, oversimplified feature representation, a lack of directional information, and missing micro-movements or subtle variations. Consequently, these systems face challenges in achieving good performance accuracy, robustness, and sensitivity. To overcome this problem, we proposed an optimized PD detection methodology that incorporates newly developed dynamic kinematic features and machine learning (ML)—based techniques to capture movement dynamics during handwriting tasks. Unlike typical Parkinson’s Disease (PD) detection methods, which only differentiate between PD and non-PD cases, our approach classifies PD patients into distinct stages—early, mid, and late—based on the age of the disease, reflecting its progression over time. In the procedure, we first extracted 65 newly developed kinematic features from the handwriting task, aiming to bring significant variations in acceleration, deceleration, and directional changes—subtle movements that traditional methods may struggle to detect. We also reused 23 existing kinematic features, resulting in a comprehensive new feature set. Next, we enhanced the kinematic features by applying statistical formulas to compute hierarchical features from the handwriting data. This approach allows us to capture subtle movement variations that distinguish PD patients from healthy controls. To further optimize the feature set, we applied the Sequential Forward Floating Selection method to select the most relevant features, reducing dimensionality and computational complexity. Finally, we employed an ML-based approach based on ensemble voting across top-performing tasks, achieving an impressive 96.99% accuracy on task-wise classification and 99.98% accuracy on task ensembles, surpassing the existing state-of-the-art model by 2% for the PaHaW dataset. This exceptional accuracy underscores the transformative potential of our approach in redefining the benchmarks for PD detection. Our code and data are available at: https://github.com/musaru/PD_PaHaW .
Parkinson’s disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and bradykinesia. Early and accurate PD detection is essential for effective management and improving patient outcomes. Many researchers analyzing handwriting data for PD detection typically rely on computing statistical features over the entirety of the handwriting task. While this method can capture broad patterns, it has several limitations, including a lack of focus on dynamic change, oversimplified feature representation, a lack of directional information, and missing micro-movements or subtle variations. Consequently, these systems face challenges in achieving good performance accuracy, robustness, and sensitivity. To overcome this problem, we proposed an optimized PD detection methodology that incorporates newly developed dynamic kinematic features and machine learning (ML)—based techniques to capture movement dynamics during handwriting tasks. Unlike typical Parkinson’s Disease (PD) detection methods, which only differentiate between PD and non-PD cases, our approach classifies PD patients into distinct stages—early, mid, and late—based on the age of the disease, reflecting its progression over time. In the procedure, we first extracted 65 newly developed kinematic features from the handwriting task, aiming to bring significant variations in acceleration, deceleration, and directional changes—subtle movements that traditional methods may struggle to detect. We also reused 23 existing kinematic features, resulting in a comprehensive new feature set. Next, we enhanced the kinematic features by applying statistical formulas to compute hierarchical features from the handwriting data. This approach allows us to capture subtle movement variations that distinguish PD patients from healthy controls. To further optimize the feature set, we applied the Sequential Forward Floating Selection method to select the most relevant features, reducing dimensionality and computational complexity. Finally, we employed an ML-based approach based on ensemble voting across top-performing tasks, achieving an impressive 96.99% accuracy on task-wise classification and 99.98% accuracy on task ensembles, surpassing the existing state-of-the-art model by 2% for the PaHaW dataset. This exceptional accuracy underscores the transformative potential of our approach in redefining the benchmarks for PD detection. Our code and data are available at: https://github.com/musaru/PD_PaHaW .
ArticleNumber 28027
Author Miah, Abu Saleh Musa
Maniruzzaman, Md
Shin, Jungpil
Hirooka, Koki
Hasan, Md. Al Mehedi
Author_xml – sequence: 1
  givenname: Jungpil
  surname: Shin
  fullname: Shin, Jungpil
  email: jpshin@u-aizu.ac.jp
  organization: School of Computer Science and Engineering, The University of Aizu
– sequence: 2
  givenname: Abu Saleh Musa
  surname: Miah
  fullname: Miah, Abu Saleh Musa
  organization: School of Computer Science and Engineering, The University of Aizu
– sequence: 3
  givenname: Koki
  surname: Hirooka
  fullname: Hirooka, Koki
  organization: School of Computer Science and Engineering, The University of Aizu
– sequence: 4
  givenname: Md. Al Mehedi
  surname: Hasan
  fullname: Hasan, Md. Al Mehedi
  organization: Department of Computer Science & Engineering, Rajshahi University of Engineering & Technology
– sequence: 5
  givenname: Md
  surname: Maniruzzaman
  fullname: Maniruzzaman, Md
  organization: Statistics Discipline, Khulna University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40744959$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1UREvpH-CAInHhEvBXEvuIKj4qVYIDnK2JPVm8ZJ3FTgT775luloI4IHzxePS8r8d-H7OzNCVk7KngLwVX5lXRorGm5rKphRSiqeUDdiG5pkJJefZHfc6uStlyWo20WthH7FzzTmvb2As2foT8NaYypSrEglCwCjijnyN1ejqGioqYaoi5CocEu-hLNSDMS8YKf8wZVhZSqAqOJ-VSYtpUO_BfYsJqRMiJGk_YwwHGglen_ZJ9fvvm0_X7-vbDu5vr17e118rMdcv7wdjOSuwC9F4Zr4PoW923FgVvB3MHBKOFNxCCHDyCwaFruh6RBFxdspvVN0ywdfscd5APboLojo0pbxzkOfoRXYuyp0_qyLLRCAoG7Iz3HRn2NAGQl1q9lrSHw3cYx3tDwd1dFG6NwlEU7hiFk6R6sar2efq2YJndLhaP4wgJp6U4JVWjDCXQEfr8L3Q7LTnR_xwpKbRVlqhnJ2rpdxjuZ_iVJAFyBXyeSsk4_N-Yp8cVgtMG8--7_6H6CQS_wjU
Cites_doi 10.1109/TNSRE.2014.2359997
10.3390/jimaging10060141
10.3390/app8122566
10.3390/math11081921
10.1109/RBME.2018.2840679
10.3233/JAD-160921
10.1016/j.toxlet.2014.01.039
10.1016/j.patrec.2018.04.008
10.1016/j.artmed.2016.01.004
10.3389/fnagi.2017.00101
10.1007/978-3-030-68154-8_69
10.1016/j.patrec.2018.05.013
10.1109/BIBE.2013.6701692
10.1109/ACCESS.2023.3235368
10.1016/j.humov.2006.05.006
10.1016/0022-510X(72)90002-0
10.3390/electronics9101584
10.1109/TELFOR48224.2019.8971180
10.1145/3292500.3330701
10.1109/EBBT.2019.8741603
10.1109/LSP.2019.2902936
10.1371/journal.pone.0175951
10.1109/ICCIT64611.2024.11022576
10.1109/ICCITECHN.2017.8281828
10.1109/ACCESS.2025.3553528
10.1109/ICPR56361.2022.9956516
10.32604/cmes.2024.048714
10.1109/EHB.2013.6707378
10.1093/brain/awf080
10.1109/ACCESS.2024.3372425
10.3390/app13053029
10.1109/ICAEEE54957.2022.9836398
10.1016/0167-8655(94)90127-9
10.1016/S1474-4422(18)30295-3
10.1023/A:1022627411411
10.1109/ICEE50131.2020.9260903
10.1109/MeMeA.2015.7145225
10.1109/MCSoC57363.2022.00014
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-12115-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_6e2b232760b54ea3afe78cc78efb792a
10.1038/s41598-025-12115-2
40744959
10_1038_s41598_025_12115_2
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PUEGO
AARCD
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c438t-60bf89792e7dabc38c4d1b64b69e106f860bfd841c8add2fcea8ef757beedab03
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Tue Oct 14 19:02:57 EDT 2025
Sun Oct 26 04:01:43 EDT 2025
Fri Sep 05 15:28:08 EDT 2025
Tue Oct 07 08:05:23 EDT 2025
Wed Aug 06 16:36:37 EDT 2025
Wed Oct 01 05:26:51 EDT 2025
Sun Aug 17 01:18:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Handwriting
Feature selection
Mid stage
Computer-aided disease recognition
Decision support system
SFFS
Late stage PD
Early stage
Dynamic movement
Features extraction
PaHaW dataset
Kinematic features
Machine learning
Parkinson’s disease
Language English
License 2025. The Author(s).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-60bf89792e7dabc38c4d1b64b69e106f860bfd841c8add2fcea8ef757beedab03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1038%2Fs41598-025-12115-2
PMID 40744959
PQID 3235214939
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_6e2b232760b54ea3afe78cc78efb792a
unpaywall_primary_10_1038_s41598_025_12115_2
proquest_miscellaneous_3235389597
proquest_journals_3235214939
pubmed_primary_40744959
crossref_primary_10_1038_s41598_025_12115_2
springer_journals_10_1038_s41598_025_12115_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-31
PublicationDateYYYYMMDD 2025-07-31
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-31
  day: 31
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 12115_CR19
12115_CR17
D Impedovo (12115_CR14) 2019; 12
12115_CR18
MN Alam (12115_CR6) 2017; 12
C Cortes (12115_CR33) 1995; 20
P Pudil (12115_CR32) 1994; 15
M Naghavi (12115_CR2) 2018; 17
KW Lange (12115_CR15) 2006; 25
P Drotár (12115_CR20) 2015; 23
12115_CR23
12115_CR21
12115_CR26
12115_CR27
12115_CR24
J Shin (12115_CR39) 2023; 13
12115_CR25
12115_CR29
MT Baltazar (12115_CR1) 2019; 230
12115_CR7
P Drotár (12115_CR28) 2016; 67
12115_CR9
12115_CR8
P Drotár (12115_CR40) 2016; 67
D Impedovo (12115_CR22) 2019; 26
AJ Hughes (12115_CR5) 2002; 125
MH Kabir (12115_CR36) 2023; 11
ASM Miah (12115_CR30) 2020; 9
M Matsumoto (12115_CR3) 2025; 13
J McLennan (12115_CR16) 1972; 15
12115_CR11
12115_CR12
12115_CR34
12115_CR31
12115_CR37
P Drotár (12115_CR4) 2015; 23
N Hassan (12115_CR10) 2024; 10
12115_CR38
12115_CR13
12115_CR35
References_xml – volume: 23
  start-page: 508
  year: 2015
  ident: 12115_CR4
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2359997
– volume: 10
  start-page: 141
  year: 2024
  ident: 12115_CR10
  publication-title: J. Imaging
  doi: 10.3390/jimaging10060141
– ident: 12115_CR21
  doi: 10.3390/app8122566
– volume: 11
  start-page: 1921
  year: 2023
  ident: 12115_CR36
  publication-title: Mathematics
  doi: 10.3390/math11081921
– volume: 12
  start-page: 209
  year: 2019
  ident: 12115_CR14
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2018.2840679
– ident: 12115_CR7
  doi: 10.3233/JAD-160921
– volume: 230
  start-page: 85
  year: 2019
  ident: 12115_CR1
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2014.01.039
– ident: 12115_CR24
  doi: 10.1016/j.patrec.2018.04.008
– volume: 67
  start-page: 39
  year: 2016
  ident: 12115_CR28
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2016.01.004
– ident: 12115_CR8
  doi: 10.3389/fnagi.2017.00101
– volume: 23
  start-page: 508
  year: 2015
  ident: 12115_CR20
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2359997
– ident: 12115_CR9
  doi: 10.1007/978-3-030-68154-8_69
– ident: 12115_CR17
  doi: 10.1016/j.patrec.2018.05.013
– ident: 12115_CR19
  doi: 10.1109/BIBE.2013.6701692
– ident: 12115_CR37
  doi: 10.1109/ACCESS.2023.3235368
– volume: 25
  start-page: 492
  year: 2006
  ident: 12115_CR15
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2006.05.006
– volume: 15
  start-page: 141
  year: 1972
  ident: 12115_CR16
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(72)90002-0
– volume: 9
  start-page: 1584
  year: 2020
  ident: 12115_CR30
  publication-title: Electronics
  doi: 10.3390/electronics9101584
– ident: 12115_CR26
  doi: 10.1109/TELFOR48224.2019.8971180
– ident: 12115_CR34
  doi: 10.1145/3292500.3330701
– ident: 12115_CR31
  doi: 10.1109/EBBT.2019.8741603
– volume: 26
  start-page: 632
  year: 2019
  ident: 12115_CR22
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2902936
– volume: 12
  start-page: e0175951
  year: 2017
  ident: 12115_CR6
  publication-title: PloS one
  doi: 10.1371/journal.pone.0175951
– ident: 12115_CR12
  doi: 10.1109/ICCIT64611.2024.11022576
– ident: 12115_CR29
  doi: 10.1109/ICCITECHN.2017.8281828
– volume: 13
  start-page: 54090
  year: 2025
  ident: 12115_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3553528
– ident: 12115_CR25
  doi: 10.1109/ICPR56361.2022.9956516
– ident: 12115_CR13
  doi: 10.32604/cmes.2024.048714
– ident: 12115_CR18
  doi: 10.1109/EHB.2013.6707378
– volume: 125
  start-page: 861
  year: 2002
  ident: 12115_CR5
  publication-title: Brain
  doi: 10.1093/brain/awf080
– ident: 12115_CR38
  doi: 10.1109/ACCESS.2024.3372425
– volume: 13
  start-page: 3029
  year: 2023
  ident: 12115_CR39
  publication-title: Appl. Sci.
  doi: 10.3390/app13053029
– volume: 67
  start-page: 39
  year: 2016
  ident: 12115_CR40
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2016.01.004
– ident: 12115_CR11
  doi: 10.1109/ICAEEE54957.2022.9836398
– volume: 15
  start-page: 1119
  year: 1994
  ident: 12115_CR32
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(94)90127-9
– volume: 17
  start-page: 939
  year: 2018
  ident: 12115_CR2
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30295-3
– volume: 20
  start-page: 273
  year: 1995
  ident: 12115_CR33
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– ident: 12115_CR27
  doi: 10.1109/ICEE50131.2020.9260903
– ident: 12115_CR23
  doi: 10.1109/MeMeA.2015.7145225
– ident: 12115_CR35
  doi: 10.1109/MCSoC57363.2022.00014
SSID ssj0000529419
Score 2.4574316
Snippet Parkinson’s disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and...
Parkinson's disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and...
Abstract Parkinson’s disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and...
SourceID doaj
unpaywall
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 28027
SubjectTerms 631/114/1305
631/114/2397
631/114/794
692/700/139
Accuracy
Aged
Algorithms
Automation
Benchmarks
Biomechanical Phenomena
Classification
Computer-aided disease recognition
Datasets
Disease detection
Dynamic movement
Female
Fourier transforms
Handwriting
Humanities and Social Sciences
Humans
Kinematic features
Kinematics
Learning algorithms
Machine Learning
Male
Methods
Middle Aged
Movement disorders
multidisciplinary
Neurodegenerative diseases
PaHaW dataset
Parkinson Disease - diagnosis
Parkinson Disease - physiopathology
Parkinson's disease
Science
Science (multidisciplinary)
Statistics
Stroke
Variation
Velocity
Writing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1LSx4xcCiCtD2IrbZdtSWCtxrcTbK7ydGWivTQk4K3kKcIn6t8D4r_3kmy3-dXkNpDb_vIhmQemZmdF8CRQRliW6eo4qKlwneeGss5bbj1DpkrRQSkaItf3fml-HnVXq21-koxYaU8cAHcSReYRanfd7VtRTDcxNBL53oZou0Vy6pRLdWaMVWqejMlGjVmydRcnsxQUqVsMtbSVNWspewPSZQL9j-nZa55SN_C68Vwbx5-m8lkTQidbcPWqD2S07Lqd_AqDO9hs_STfNiBScphzulcZHS8EB_mOdhqIEleeYIXNwM1N1PiSy_6GYkhF_ckeExPS5oDMYMns9whJ92l2PhrcpvDLgMZ-0xc78Ll2Y-L7-d0bKdAneByThGCUSqEWei9sY5LJ3xjO2E7FdAwjDIN8FI0TuKhx6ILBoHct71FOWpszT_AxnA3hE9AoveiN0pFnE240BiOalesnQ9ROC94BV-XoNX3pWqGzt5uLnVBhEZE6IwIzSr4lqC_GpkqXucHSAd6pAP9Eh1UcLDEnR7ZcKY5Q_0SbUCuKjhcvUYGSl4RM4S7RRmDWhsaVhV8LDhfrQStXYEWJH59vCSCp8n_tqHjFaH8w_73_sf-9-ENS8SdfzsfwMZ8ugifUV-a2y-ZNR4B1u0RTA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFbE-iNaPRqus4Jtdesluks2DiJWW4sMhYqFvy34ehTN33gel_70zm-RaQYpv-diESWZm57c7XwAfDNoQW7qGN0KWXPrKc2OF4Lmw3qFyUUQARVtMqvML-e2yvNyByZALQ2GVw5yYJmo_d7RHfiwKhAoI50XzefGbU9co8q4OLTRM31rBf0olxh7AbkGVsUawe3I6-f5ju-tCfi2ZN332zFio4xVaMMoyK0pO1c5KXvxloVIh_3-hzzue08fwaNMuzM21mc3uGKezp_CkR5XsSycGz2AntPvwsOszebMPewQpu4rMz2FGic4p54v13hnmwzpFZLWMjJpneHDVcnO1ZL5rWL9iMaQKoAzn8mWXC8FM69kqtdGhMwqgn7JfKTYzsL4ZxfQFXJyd_vx6zvueC9xJoda8GtuomropQu2NdUI56XNbSVs1AVePUdEAr2TuFM6MRXTBqBDrsrZobI0di5cwaudtOAAWvZe1aZqIb5Mu5EYgNotj50OUzkuRwcfhP-tFV1pDJ5e4ULrjikau6MQVXWRwQqzYjqSy2OnCfDnVvZbpKhQWIWKNRJYyGGFiqJVzNZJokQqTweHASN3r6krfSlYG77e3UcvIdWLaMN90YxDa4eorg1edAGwpwSWxxGUmPn00SMTty-_7oKOt1PzH97--n_Q3sFeQDKdd50MYrZeb8Bbh0tq-63XgDzz2ErE
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ_gEaM-ICroKpqa-CaFu213t_uIRkJ8IDxwAZ-afl4Ixx6524vBv95pu3ugIUbe9mO6mbbTzm-28wHwSaEO0YWpac14QbktLVWaMTpi2hpcXMEjIHhbHJdHY_79vDhfg7KPhYlO-zGlZdyme--w_QUqmhAMlhc0JCUrKNqD1j-C9bJADD6A9fHxycGPUEkOMQpFmJB3ETJDJu5p_IcWisn670OYd05Hn8GTZXOtbn6q6fSOAjp8Dmc968nv5HJv2eo98-uvrI4P79smbHSYlBwkyhew5pqX8DhVqbx5BdMQGR2DxEh3nEOsa6MLV0OCFrQELy4aqi7mxKYK9wviXeSB4OY_T8ETRDWWLGLdnXAXPO4n5Co6czrSVa-YbMH48Nvp1yPaFWmghjPR0nKovairOneVVdowYbgd6ZLrsnZobnoRCKzgIyNwK829cUo4XxWVRu2s9JBtw6CZNe4NEG8tr1Rde_waN26kGII5PzTWeW4sZxl87idNXqdcHDKeoTMh0xhKHEMZx1DmGXwJ87qiDHm044PZfCK7sZelyzUKS4VMFtwppryrhDEVsqiRC5XBTi8VslvcC8lyRK1oWbI6g4-r17gsw1mLatxsmWgQC6K5lsHrJE0rTtCG5miXYuvdXrxuP_6vDu2uRPA_-v_2YeTv4GkeJDD-tt6BQTtfuveIt1r9oVtcvwGG2yUR
  priority: 102
  providerName: Unpaywall
Title Parkinson disease detection based on in-air dynamics feature extraction and selection using machine learning
URI https://link.springer.com/article/10.1038/s41598-025-12115-2
https://www.ncbi.nlm.nih.gov/pubmed/40744959
https://www.proquest.com/docview/3235214939
https://www.proquest.com/docview/3235389597
https://www.nature.com/articles/s41598-025-12115-2.pdf
https://doaj.org/article/6e2b232760b54ea3afe78cc78efb792a
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8DQ6IeAB8U1gVEbijVo0sRM7j121aepDNQGVypPlz2lSyaZ-CO3fc3bSsAmE4CmJY1u2z-e7830BfNBIQ0xpa1ozXlLuKke1YYzmzDiLyBUtAqK1xbw6W_DZslwewGjvC3NHf59Cd2-QxEQ3sKKkMRxZSfHAPZS4MeUADieT2ZdZf6cStVY8rzvfGGz-6ffGd-hPCtP_J97yll70ETzYNdf65oderW6RntMn8LjjGcmkBfJTOPDNM7jfZpG8eQ6r6LmcnLhIp24hzm-TiVVDIpVyBF8uG6ov18S1Geg3JPgU0pPg4bxunRuIbhzZpLw48StaxF-Q78nY0pMuu8TFC1icnnydntEuiQK1nMktrcYmyFrUhRdOG8uk5S43FTdV7VEcDDJWcJLnVuJRVwTrtfRBlMIg9dRmzF7CoLlq_GsgwTkudF0H7I1bn2uGzFYYW-cDt46zDD7ul1Zdt7EyVNJxM6laQCgEhEqAUEUGx3H1-5oxznUqQPCrDm1U5QuDPJ_AQZbca6aDF9JagUM0OAqdwdEedqpDvo1iBXKVKPmxOoP3_W9Em6gL0Y2_2rV1kFdDcSqDVy3M-5GgjMtRbsTWo_0m-NX53yY06jfKP8z_zf_1_hYeFnEbp2vlIxhs1zv_DvmhrRnCPbEUww4Z8Hl8Mj__jKXTajpMdwxYtpifT779BGyVCI8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZThRBsIIQAz4YxWsUtU30STrsdPdcD8SIQhbBjTGQ8Nb0NRuSZXbdI2R_zm-zuucAE0N84W2Onk71VFVXVdcF8F6hDNGJKWjBRUKFTS1VmnMac20NMpePCPDRFoO0fyq-nSVnK_C7zYXxYZXtnhg2ajs2_ox8hzNUFVCd58WnyS_qu0Z572rbQkM1rRXsbigx1iR2HLnlFZpws93Dr4jvD4wd7J986dOmywA1gudzmvZ0mRdZwVxmlTY8N8LGOhU6LRzaS2XuB9hcxCbHvYCVxqnclVmSaRQvSvc4znsP1gQXBRp_a3v7gx8_u1Me70cTcdFk6_R4vjNDiemz2lhCfXW1hLK_JGJoHPAvbfeGp_YBrC-qiVpeqdHohjA8eAQPGy2WfK7J7jGsuGoT7td9LZebsOFV2LoC9BMY-cTqkGNGGm8QsW4eIsAq4oWoJXhxUVF1MSV2WalL_IyULlQcJSg7pnXuBVGVJbPQtsff-YD9IbkMsaCONM0vhk_h9E7-_jNYrcaVewGktFZkqihKnE0YFyuOumDZM9aVwljBI_jY_mc5qUt5yOCC57mssSIRKzJgRbII9jwqupG-DHd4MJ4OZcPVMnVMo0qaIZCJcIqr0mW5MRmCqBEKFcFWi0jZ7A0zeU3JEbzrXiNXe1eNqtx4UY9BVRKtvQie1wTQQYImuECzFr_ebinievLbFrTdUc1_rP_l7aC_hfX-yfdjeXw4OHoFG8zTczjx3oLV-XThXqOqNtdvGn4gcH7XLPgHv5NSjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKgHJAUKAEChgJTtTaTezEyQEhoKxaiioOVNqb8XNVaZvd7kPV_hpfx9hJtkVCFZfe8nCsiWfGM-N5AbxVKEN0bipaMZ5TbgtLlWaMpkxbg8wVIgJCtMVxcXDCvw3z4Qb87nJhQlhltyfGjdpOTDgj77EMVQVU51nV821YxI_9wcfpOQ0dpIKntWun0ZDIkVtdoPk2_3C4j7h-l2WDrz-_HNC2wwA1nJULWvS1LytRZU5YpQ0rDbepLrguKoe2ki_DAFvy1JS4D2TeOFU6L3KhUbQo3Wc47y24LRirQjihGIr1-U7woPG0avN0-qzszVFWhny2LKehrlpOs79kYWwZ8C8994qP9j7cW9ZTtbpQ4_EVMTh4CA9a_ZV8agjuEWy4ehvuNB0tV9uwFZTXpvbzYxiHlOqYXUZaPxCxbhFjv2oSxKcleHFaU3U6I3ZVqzP8jHgXa40SXPpZk3VBVG3JPDbsCXchVH9EzmIUqCNt24vREzi5kbV_Cpv1pHbPgHhruVBV5XE2blyqGGqBvm-s89xYzhJ4362znDZFPGR0vrNSNliRiBUZsSKzBD4HVKxHhgLc8cFkNpItP8vCZRqVUYFA5twpprwTpTECQdQIhUpgt0OkbHeFubyk4QTerF8jPwcnjardZNmMQSUS7bwEdhoCWEOCxjdHgxa_3uso4nLy635ob001__H_z68H_TXcRcaT3w-Pj17AVhbIOR5178LmYrZ0L1FHW-hXkRkI_Lpp7vsDhR1QKQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ_gEaM-ICroKpqa-CaFu213t_uIRkJ8IDxwAZ-afl4Ixx6524vBv95pu3ugIUbe9mO6mbbTzm-28wHwSaEO0YWpac14QbktLVWaMTpi2hpcXMEjIHhbHJdHY_79vDhfg7KPhYlO-zGlZdyme--w_QUqmhAMlhc0JCUrKNqD1j-C9bJADD6A9fHxycGPUEkOMQpFmJB3ETJDJu5p_IcWisn670OYd05Hn8GTZXOtbn6q6fSOAjp8Dmc968nv5HJv2eo98-uvrI4P79smbHSYlBwkyhew5pqX8DhVqbx5BdMQGR2DxEh3nEOsa6MLV0OCFrQELy4aqi7mxKYK9wviXeSB4OY_T8ETRDWWLGLdnXAXPO4n5Co6czrSVa-YbMH48Nvp1yPaFWmghjPR0nKovairOneVVdowYbgd6ZLrsnZobnoRCKzgIyNwK829cUo4XxWVRu2s9JBtw6CZNe4NEG8tr1Rde_waN26kGII5PzTWeW4sZxl87idNXqdcHDKeoTMh0xhKHEMZx1DmGXwJ87qiDHm044PZfCK7sZelyzUKS4VMFtwppryrhDEVsqiRC5XBTi8VslvcC8lyRK1oWbI6g4-r17gsw1mLatxsmWgQC6K5lsHrJE0rTtCG5miXYuvdXrxuP_6vDu2uRPA_-v_2YeTv4GkeJDD-tt6BQTtfuveIt1r9oVtcvwGG2yUR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson+disease+detection+based+on+in-air+dynamics+feature+extraction+and+selection+using+machine+learning&rft.jtitle=Scientific+reports&rft.au=Shin%2C+Jungpil&rft.au=Miah%2C+Abu+Saleh+Musa&rft.au=Hirooka%2C+Koki&rft.au=Hasan%2C+Md.+Al+Mehedi&rft.date=2025-07-31&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-12115-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_12115_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon