Competency of improved artificial ecosystem optimizer in parameters identification of small and medium sized distribution transformers
Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs...
Saved in:
| Published in | Scientific reports Vol. 15; no. 1; pp. 32421 - 21 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
12.09.2025
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-025-14233-3 |
Cover
| Abstract | Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs with different four sizes (i.e. 4, 15, 112.5 and 167 kVA ratings). Comparison with well-known literature optimizers, including genetic algorithm, particle swarm optimizer, coyote optimization algorithm, artificial hummingbird optimizer, and others, validates the performance of the proposed IAEO. The IAEO demonstrates its superiority by getting the lowest possible value of the sum of absolute errors (SAEs) between measured and calculated values, which serves as the objective function (OF) to be optimized. Moreover, three additional optimizers are employed and compared to IAEO for all study cases: firefly algorithm, political optimizer, and exponential distribution optimizer. It is found that IAEO attains the minimum SAEs values of 1.12e-5 and 0.0322, outperforming the best competitors for 4 kVA and 15 kVA TXs, respectively. Furthermore, IAEO accurately captures the steady state fingerprint of all studied TXs in terms of efficiency and voltage regulation (VR). This way, the peak efficiency occurs at 36.2% loading in 112.5 kVA TX while the negative VR may reach -8% when the 167 kVA TX is loaded with its rated leading power factor. Finally, all executed optimizers are analyzed using several statistical indices, including t-test, where the proposed IAEO gets the smoothest and fastest OF minimization trend. |
|---|---|
| AbstractList | Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs with different four sizes (i.e. 4, 15, 112.5 and 167 kVA ratings). Comparison with well-known literature optimizers, including genetic algorithm, particle swarm optimizer, coyote optimization algorithm, artificial hummingbird optimizer, and others, validates the performance of the proposed IAEO. The IAEO demonstrates its superiority by getting the lowest possible value of the sum of absolute errors (SAEs) between measured and calculated values, which serves as the objective function (OF) to be optimized. Moreover, three additional optimizers are employed and compared to IAEO for all study cases: firefly algorithm, political optimizer, and exponential distribution optimizer. It is found that IAEO attains the minimum SAEs values of 1.12e-5 and 0.0322, outperforming the best competitors for 4 kVA and 15 kVA TXs, respectively. Furthermore, IAEO accurately captures the steady state fingerprint of all studied TXs in terms of efficiency and voltage regulation (VR). This way, the peak efficiency occurs at 36.2% loading in 112.5 kVA TX while the negative VR may reach -8% when the 167 kVA TX is loaded with its rated leading power factor. Finally, all executed optimizers are analyzed using several statistical indices, including t-test, where the proposed IAEO gets the smoothest and fastest OF minimization trend. Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs with different four sizes (i.e. 4, 15, 112.5 and 167 kVA ratings). Comparison with well-known literature optimizers, including genetic algorithm, particle swarm optimizer, coyote optimization algorithm, artificial hummingbird optimizer, and others, validates the performance of the proposed IAEO. The IAEO demonstrates its superiority by getting the lowest possible value of the sum of absolute errors (SAEs) between measured and calculated values, which serves as the objective function (OF) to be optimized. Moreover, three additional optimizers are employed and compared to IAEO for all study cases: firefly algorithm, political optimizer, and exponential distribution optimizer. It is found that IAEO attains the minimum SAEs values of 1.12e-5 and 0.0322, outperforming the best competitors for 4 kVA and 15 kVA TXs, respectively. Furthermore, IAEO accurately captures the steady state fingerprint of all studied TXs in terms of efficiency and voltage regulation (VR). This way, the peak efficiency occurs at 36.2% loading in 112.5 kVA TX while the negative VR may reach -8% when the 167 kVA TX is loaded with its rated leading power factor. Finally, all executed optimizers are analyzed using several statistical indices, including t-test, where the proposed IAEO gets the smoothest and fastest OF minimization trend.Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs with different four sizes (i.e. 4, 15, 112.5 and 167 kVA ratings). Comparison with well-known literature optimizers, including genetic algorithm, particle swarm optimizer, coyote optimization algorithm, artificial hummingbird optimizer, and others, validates the performance of the proposed IAEO. The IAEO demonstrates its superiority by getting the lowest possible value of the sum of absolute errors (SAEs) between measured and calculated values, which serves as the objective function (OF) to be optimized. Moreover, three additional optimizers are employed and compared to IAEO for all study cases: firefly algorithm, political optimizer, and exponential distribution optimizer. It is found that IAEO attains the minimum SAEs values of 1.12e-5 and 0.0322, outperforming the best competitors for 4 kVA and 15 kVA TXs, respectively. Furthermore, IAEO accurately captures the steady state fingerprint of all studied TXs in terms of efficiency and voltage regulation (VR). This way, the peak efficiency occurs at 36.2% loading in 112.5 kVA TX while the negative VR may reach -8% when the 167 kVA TX is loaded with its rated leading power factor. Finally, all executed optimizers are analyzed using several statistical indices, including t-test, where the proposed IAEO gets the smoothest and fastest OF minimization trend. Abstract Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications. Consequently, this paper employs an improved version of the artificial ecosystem optimizer (called IAEO) in parameters estimation of distribution TXs with different four sizes (i.e. 4, 15, 112.5 and 167 kVA ratings). Comparison with well-known literature optimizers, including genetic algorithm, particle swarm optimizer, coyote optimization algorithm, artificial hummingbird optimizer, and others, validates the performance of the proposed IAEO. The IAEO demonstrates its superiority by getting the lowest possible value of the sum of absolute errors (SAEs) between measured and calculated values, which serves as the objective function (OF) to be optimized. Moreover, three additional optimizers are employed and compared to IAEO for all study cases: firefly algorithm, political optimizer, and exponential distribution optimizer. It is found that IAEO attains the minimum SAEs values of 1.12e-5 and 0.0322, outperforming the best competitors for 4 kVA and 15 kVA TXs, respectively. Furthermore, IAEO accurately captures the steady state fingerprint of all studied TXs in terms of efficiency and voltage regulation (VR). This way, the peak efficiency occurs at 36.2% loading in 112.5 kVA TX while the negative VR may reach -8% when the 167 kVA TX is loaded with its rated leading power factor. Finally, all executed optimizers are analyzed using several statistical indices, including t-test, where the proposed IAEO gets the smoothest and fastest OF minimization trend. |
| ArticleNumber | 32421 |
| Author | El-Fergany, Attia A. Ashraf, Hossam Draz, Abdelmonem El Shamy, Ahmed R. |
| Author_xml | – sequence: 1 givenname: Abdelmonem surname: Draz fullname: Draz, Abdelmonem email: aaderaz@zu.edu.eg organization: Electrical Power and Machines Department, Faculty of Engineering, Zagazig University – sequence: 2 givenname: Hossam surname: Ashraf fullname: Ashraf, Hossam organization: Department of Electrical Engineering and Information Systems, The University of Tokyo – sequence: 3 givenname: Ahmed R. surname: El Shamy fullname: El Shamy, Ahmed R. organization: Advanced Power and Energy Center, Department of Electrical Engineering, Khalifa University, Faculty of Engineering, Zagazig University – sequence: 4 givenname: Attia A. surname: El-Fergany fullname: El-Fergany, Attia A. organization: Electrical Power and Machines Department, Faculty of Engineering, Zagazig University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40940361$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctu1DAYhSNUREvpC7BAlth0E_A1lyUaQalUiQ2sLcf-XXkU28FOQNMH4LlxJkNBLBDe2LK-c_7LeV6dhRigql4S_IZg1r3NnIi-qzEVNeGUsZo9qS4o5qKmjNKzP97n1VXOe1yOoD0n_bPqnOOeY9aQi-rHLvoJZgj6gKJFzk8pfgODVJqdddqpEYGO-ZBn8ChOs_PuARJyAU0qKV-UKSNnIBxxNbsYVp_s1TgiFQzyYNziUS4yg4zLc3LDcsTmpEK2Mfli8aJ6atWY4ep0X1ZfPrz_vPtY3326ud29u6s1Z91cc4NL36LnoFQ3cN6qhjHQbasHSm07CM4bwYZeaMO4FVx3TBNoteLaAm47dlndbr4mqr2ckvMqHWRUTh4_YrqX6-R6BNlCwzkTQPpmrWd70omyU6JZa0hjVy-2eS1hUofvZeBHQ4LlGpLcQpIlJHkMSbKiut5UZdFfF8iz9C5rGEcVIC5ZMiowIW2D1wKv_0L3cUmh7OdIYcr7hhbq1YlahrLsxx5-ZVwAugE6xZwT2P9r8zRcLnC4h_S79j9UPwHXGsqU |
| Cites_doi | 10.1109/PEDES.2016.7914531 10.1016/j.swevo.2017.03.003 10.1007/s00202-023-01803-9 10.1016/j.epsr.2008.08.009 10.3390/s21186284 10.1007/s10586-024-04488-2 10.1007/s00521-024-09928-z 10.1109/ACCESS.2024.3456088 10.1038/s41598-023-34057-3 10.1109/ICPEE50452.2021.9358765 10.3390/computers11010009 10.21533/pen.v5i3.103 10.1109/ACCESS.2020.2978398 10.18273/revuin.v19n4-2020006 10.1109/ICAACCA51523.2021.9465279 10.3390/en17071710 10.1016/j.eswa.2023.122460 10.3390/en14134009 10.3390/app112110334 10.3390/en16062867 10.1109/TPWRD.2014.2311153 10.1109/TPWRD.2016.2621753 10.1038/s41598-025-85524-y 10.1109/TPWRD.2013.2284243 10.32604/iasc.2021.016464 10.1038/s41598-023-29618-5 10.3390/computers11040055 10.1007/s00202-023-02035-7 10.1016/j.epsr.2022.108604 10.1038/s41598-022-24122-8 10.1109/TPWRD.2011.2164424 10.3390/en12091697 10.1038/s41598-024-58565-y 10.1038/s41598-024-61434-3 10.3390/electronics10243119 10.1038/s41598-023-46847-w 10.3390/asi7050075 10.3390/math11030774 10.1016/j.epsr.2022.107990 10.1016/j.epsr.2023.109582 10.1016/j.engappai.2024.108252 10.1109/MEPCON50283.2021.9686276 10.1016/j.epsr.2023.109194 10.1007/s00521-023-09240-2 10.1007/s00521-023-08449-5 10.1016/j.aej.2020.10.027 10.1016/j.advengsoft.2024.103671 10.1038/s41598-024-53688-8 10.3390/computers10100124 10.1016/j.rineng.2024.101760 10.1038/s41598-024-56670-6 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-025-14233-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) ProQuest Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 21 |
| ExternalDocumentID | oai_doaj_org_article_7e64435e19694eaf91852041c37d16f8 10.1038/s41598-025-14233-3 40940361 10_1038_s41598_025_14233_3 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Zagazig University |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c438t-4d0403594eaa8b447a633ec77cb22f7b544653b95cd34f54c83c1e7ca4cfe0783 |
| IEDL.DBID | BENPR |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:04:47 EDT 2025 Mon Sep 15 08:22:06 EDT 2025 Sat Sep 13 16:51:05 EDT 2025 Tue Oct 07 07:42:18 EDT 2025 Tue Sep 16 01:46:24 EDT 2025 Wed Oct 01 05:18:44 EDT 2025 Sat Sep 13 01:10:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Artificial ecosystem optimizer Statistical analysis Metaheuristic algorithms parameters estimation Distribution transformers |
| Language | English |
| License | 2025. The Author(s). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-4d0403594eaa8b447a633ec77cb22f7b544653b95cd34f54c83c1e7ca4cfe0783 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3250024962?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 40940361 |
| PQID | 3250024962 |
| PQPubID | 2041939 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7e64435e19694eaf91852041c37d16f8 unpaywall_primary_10_1038_s41598_025_14233_3 proquest_miscellaneous_3250117608 proquest_journals_3250024962 pubmed_primary_40940361 crossref_primary_10_1038_s41598_025_14233_3 springer_journals_10_1038_s41598_025_14233_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-12 |
| PublicationDateYYYYMMDD | 2025-09-12 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | M Ćalasan (14233_CR34) 2019; 12 L Sima (14233_CR5) 2023; 223 14233_CR29 R Kazemi (14233_CR6) 2016; 32 RM Rizk-Allah (14233_CR16) 2024; 36 MA El-Dabah (14233_CR15) 2024; 7 L Wu (14233_CR22) 2024; 133 14233_CR32 KP Choi (14233_CR27) 2023; 13 MI Mossad (14233_CR38) 2014; 29 SY Bocanegra (14233_CR50) 2020; 19 SD Mitchell (14233_CR13) 2011; 26 W-C Chang (14233_CR17) 2021; 11 J Yang (14233_CR47) 2023; 16 A Draz (14233_CR19) 2023; 11 AAZ Diab (14233_CR25) 2024; 14 V Suresh (14233_CR53) 2021; 10 S Bogarra (14233_CR14) 2009; 79 Y Wang (14233_CR46) 2024; 27 L Jin (14233_CR1) 2023; 218 14233_CR8 CA Arenas-Acuña (14233_CR33) 2021; 10 14233_CR4 DG Gracia-Velásquez (14233_CR35) 2022; 11 B Cortés-Caicedo (14233_CR40) 2022; 11 H Ashraf (14233_CR20) 2023; 13 SK Elsayed (14233_CR42) 2021; 28 MF Kotb (14233_CR30) 2022; 12 AB Alyu (14233_CR24) 2023; 13 H Bakır (14233_CR31) 2023; 105 14233_CR52 MI Abdelwanis (14233_CR28) 2020; 8 14233_CR51 F Geth (14233_CR11) 2022; 213 H Dirik (14233_CR12) 2013; 29 HM Sultan (14233_CR48) 2021; 60 LH Medeiros (14233_CR18) 2024; 106 K Nagarajan (14233_CR23) 2024; 14 MP Ćalasan (14233_CR9) 2020; 56 C Zhang (14233_CR54) 2025; 15 14233_CR36 H Bakır (14233_CR44) 2024; 240 E Kolesnikov (14233_CR3) 2024; 17 HA Illias (14233_CR39) 2017; 36 H Bakır (14233_CR43) 2024; 36 14233_CR41 Y Yoon (14233_CR10) 2021; 14 P Sharma (14233_CR21) 2025; 15 AR Abbasi (14233_CR2) 2022; 209 JD Camelo-Daza (14233_CR37) 2024; 21 RM Rizk-Allah (14233_CR49) 2023; 35 EH Cui (14233_CR26) 2024; 14 H Pires Corrêa (14233_CR7) 2021; 21 H Bakır (14233_CR45) 2024; 194 |
| References_xml | – ident: 14233_CR51 doi: 10.1109/PEDES.2016.7914531 – volume: 36 start-page: 18 year: 2017 ident: 14233_CR39 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.03.003 – volume: 105 start-page: 3121 year: 2023 ident: 14233_CR31 publication-title: Electr. Eng. doi: 10.1007/s00202-023-01803-9 – volume: 56 start-page: 3710 year: 2020 ident: 14233_CR9 publication-title: IEEE Trans. Ind. Appl. – volume: 79 start-page: 417 year: 2009 ident: 14233_CR14 publication-title: Electr. power syst. Res. doi: 10.1016/j.epsr.2008.08.009 – volume: 21 start-page: 6284 year: 2021 ident: 14233_CR7 publication-title: Sensor doi: 10.3390/s21186284 – volume: 27 start-page: 10053 year: 2024 ident: 14233_CR46 publication-title: Clust. Comput. doi: 10.1007/s10586-024-04488-2 – volume: 36 start-page: 16873 year: 2024 ident: 14233_CR43 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-024-09928-z – ident: 14233_CR4 doi: 10.1109/ACCESS.2024.3456088 – volume: 13 start-page: 6903 year: 2023 ident: 14233_CR24 publication-title: Sci. Rep. doi: 10.1038/s41598-023-34057-3 – ident: 14233_CR8 doi: 10.1109/ICPEE50452.2021.9358765 – volume: 11 start-page: 9 year: 2022 ident: 14233_CR35 publication-title: Computer doi: 10.3390/computers11010009 – ident: 14233_CR29 doi: 10.21533/pen.v5i3.103 – volume: 8 start-page: 50036 year: 2020 ident: 14233_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2978398 – volume: 19 start-page: 63 year: 2020 ident: 14233_CR50 publication-title: Rev. UIS Ing doi: 10.18273/revuin.v19n4-2020006 – ident: 14233_CR41 doi: 10.1109/ICAACCA51523.2021.9465279 – volume: 17 start-page: 1710 year: 2024 ident: 14233_CR3 publication-title: Energie doi: 10.3390/en17071710 – volume: 240 year: 2024 ident: 14233_CR44 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122460 – volume: 14 start-page: 4009 year: 2021 ident: 14233_CR10 publication-title: Energie doi: 10.3390/en14134009 – volume: 11 start-page: 10334 year: 2021 ident: 14233_CR17 publication-title: Appl. Sci. doi: 10.3390/app112110334 – volume: 16 start-page: 2867 year: 2023 ident: 14233_CR47 publication-title: Energies doi: 10.3390/en16062867 – volume: 29 start-page: 2118 year: 2014 ident: 14233_CR38 publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2014.2311153 – volume: 32 start-page: 2031 year: 2016 ident: 14233_CR6 publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2016.2621753 – volume: 15 start-page: 1773 year: 2025 ident: 14233_CR54 publication-title: Sci. Rep. doi: 10.1038/s41598-025-85524-y – volume: 29 start-page: 1074 year: 2013 ident: 14233_CR12 publication-title: IEEE Trans. Power Delivery doi: 10.1109/TPWRD.2013.2284243 – volume: 28 start-page: 639 year: 2021 ident: 14233_CR42 publication-title: Intell. Autom. Soft Comput doi: 10.32604/iasc.2021.016464 – volume: 13 start-page: 5291 year: 2023 ident: 14233_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-023-29618-5 – volume: 11 start-page: 55 year: 2022 ident: 14233_CR40 publication-title: Computer doi: 10.3390/computers11040055 – volume: 106 start-page: 931 year: 2024 ident: 14233_CR18 publication-title: Electr. Eng. doi: 10.1007/s00202-023-02035-7 – volume: 213 year: 2022 ident: 14233_CR11 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.108604 – ident: 14233_CR52 – volume: 12 start-page: 19623 year: 2022 ident: 14233_CR30 publication-title: Sci. Rep. doi: 10.1038/s41598-022-24122-8 – volume: 26 start-page: 2705 year: 2011 ident: 14233_CR13 publication-title: IEEE Trans. Power Delivery doi: 10.1109/TPWRD.2011.2164424 – volume: 12 start-page: 1697 year: 2019 ident: 14233_CR34 publication-title: Energie doi: 10.3390/en12091697 – volume: 14 start-page: 13422 year: 2024 ident: 14233_CR25 publication-title: Sci. Rep. doi: 10.1038/s41598-024-58565-y – volume: 15 start-page: 4001 year: 2025 ident: 14233_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-024-61434-3 – volume: 10 start-page: 3119 year: 2021 ident: 14233_CR53 publication-title: Electronics doi: 10.3390/electronics10243119 – volume: 13 start-page: 19532 year: 2023 ident: 14233_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-023-46847-w – volume: 7 start-page: 75 year: 2024 ident: 14233_CR15 publication-title: Appl. Syst. Innov. doi: 10.3390/asi7050075 – volume: 11 start-page: 774 year: 2023 ident: 14233_CR19 publication-title: Mathematics doi: 10.3390/math11030774 – volume: 209 year: 2022 ident: 14233_CR2 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.107990 – volume: 223 year: 2023 ident: 14233_CR5 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2023.109582 – volume: 133 year: 2024 ident: 14233_CR22 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108252 – ident: 14233_CR36 doi: 10.1109/MEPCON50283.2021.9686276 – volume: 218 year: 2023 ident: 14233_CR1 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2023.109194 – volume: 36 start-page: 3141 year: 2024 ident: 14233_CR16 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-09240-2 – volume: 35 start-page: 13983 year: 2023 ident: 14233_CR49 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08449-5 – volume: 60 start-page: 1001 year: 2021 ident: 14233_CR48 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.10.027 – volume: 194 year: 2024 ident: 14233_CR45 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2024.103671 – volume: 14 start-page: 3091 year: 2024 ident: 14233_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-024-53688-8 – volume: 10 start-page: 124 year: 2021 ident: 14233_CR33 publication-title: Computer doi: 10.3390/computers10100124 – ident: 14233_CR32 – volume: 21 year: 2024 ident: 14233_CR37 publication-title: Result. Eng. doi: 10.1016/j.rineng.2024.101760 – volume: 14 start-page: 9403 year: 2024 ident: 14233_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-024-56670-6 |
| SSID | ssj0000529419 |
| Score | 2.4606998 |
| Snippet | Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications.... Abstract Accurate modelling of distribution transformers (TXs) is crucial to identify their operating characteristics across several power system applications.... |
| SourceID | doaj unpaywall proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 32421 |
| SubjectTerms | 639/166 639/166/987 Accuracy Algorithms Artificial ecosystem optimizer Behavior Distribution transformers Efficiency Exploitation Genetic algorithms Humanities and Social Sciences Metaheuristic algorithms parameters estimation multidisciplinary Normal distribution Objective function Optimization algorithms Optimization techniques Parameter estimation Parameter identification Science Science (multidisciplinary) Statistical analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9xADB5KoLQ9hL7rJC0T6K0x8bw89rEJDaGHnhLIbZiXYSHrDfEuZfMD8rsjzdjbLZSmh179EKORZEnW6BMhn3XgTHhrSw_-pZTBdqVl1pUQuXonlefeJrTPH_X5pfx-pa62Rn3hmbAMD5w37lhH8NhCRYRxkdF2LXb7VpJ5oQOru9TmWzXtVjKVUb15K1k7dslUojkewFNhNxlXJYMQQpTiN0-UAPv_FGVuVUhfkGer_sauf9rr6y0ndPaS7I7RI_2aV_2KPIn9a_I0z5NcvyH3p1MUvKaLjs7SD4MYKHKZkSIoZJsZvJku4GMxn93FWzrrKSKAz_FkzEBnYTxAlGSGdIY5LIXaPlCsxK_mdIDXAg2IuTuOy6LLKQAGEm_J5dm3i9Pzchy0UHopmiWICExZKNxf2zgpta2FiF6DuDjvtFMJhc21ygchOyV9IzyL2lvpu4h1wHdkp1_08QOhPLgIea-N2jlsWnVN7UXtZFPVQdkqFuTLtOnmJuNpmFQHF43JIjIgIpNEZERBTlAumycRCztdAA0xo4aYxzSkIAeTVM1ooIMREPohWmLNC3K4uQ2mhfUS28fFKj_DmK4rIPE-a8NmJZgWg_NnBTma1OMX8b8xdLRRoX_gf-9_8L9PnnNU-zT34oDsLG9X8SNEUkv3KRnNA4YWGDg priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBwQLwKgYKMxI2NWMdO7D0uFVW1By5QqTfLr0grdbNVsyu0_AB-NzPOg1YgBNfEHtn5ZjJjj-czwDsVCi68tblH_5LLYOvccutyjFy9k6UvvE1sn5-rs3O5vCgvDmA61MLcyt8n6u4WXQyVgRVlztH3i1zcgUONiqkncLhYLL8sxz0VylpJPu9rY7D7h9873_I_iab_T7HljbzoA7i3a67s_pu9vLzhek4fwcM-ZmSLDuTHcBCbJ3C3u0Vy_xR-nAyx755tarZK2wQxMFKKjh-C4Rqzo2xmG_xFrFff4zVbNYx4v9d0HqZlq9AfG0pIkZx2jUNhtgmM8u-7NWuxW2CBmHb7S7LYdgh7UcQzOD_99PXkLO-vV8i9FHqLwKABi3Iuo7XaSalsJUT0CkEqilq5MnGvuXnpg5B1Kb0WnkflrfR1pOzfEUyaTRNfACuCi7jatVE5R6WqTldeVE7qWRVKO4sZvB8-urnqWDRMyn4LbTqIDEJkEkRGZPCRcBlbEgN2eoCKYXqDMipiJCfKSPQ-OIN6TlXgM8m9UIFXtc7geEDV9GbZGoEBH3EkVkUGb8fXaFCUJbFN3Oy6NpyraoYinnfaMI6EFsPo8nkG00E9fgn_24Smowr9w_xf_p_0V3C_IAVP91ocw2R7vYuvMVLauje9gfwE0z4Lpg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwLsQWpCRuNGUJH4ke2wrqopDxYEV5WT5FbSim1SbRGj7A_jdjJ1kW6oK0WtijzL22P6cmfkG4H1us5QapWKD50vMrCpjlSodI3I1mnGTGRXYPk_FyYx9PuNnGyDGXJgQtB8oLcM2PUaHfWzwoPHJYBmPU0QANMYroC3vwabgiMEnsDk7_XLw3VeSQ4wSI0zIhgyZhBa3dP7rFApk_bchzGve0YfwoKsu1OqXOj-_dgAdP4Zv46f3cSc_97tW75vLG6yOd9ftCTwaMCk56Fs-hQ1XPYP7fZXK1XP4fTRi6xWpSzIPvyGcJV5yzz9B8A7bU0KTGregxfzSLcm8Ip5XfOHjbRoyt0NYUrAEL6dZoJJEVZZ4_363IA12s8R6Jt-hCBdpR1iNIl7A7PjT16OTeCjfEBtGixYnHjcIyqfMKVVoxnIlKHUmRyPIsjLXPHC76Sk3lrKSM1NQk7rcKGZK572L2zCp6sq9ApJZ7fA2rVyutU-F1YUwVGhWJMJylbgIPozTKS96lg4ZvOu0kP3oShxdGUZX0ggO_YyvW3qG7fCgXv6Qw6zI3CFSpNx5-iDUoJz6LPOEpYbmNhVlEcHuaC9yWPaNpAgoPQejyCJ4t36NC9Z7YVTl6q5vk6a5SFDEy97O1l_iL9sIKdII9kbDuxL-L4X21sb5H_q_vlvzHdjKvG2Guhm7MGmXnXuDSKzVb4dl9weTYi4v priority: 102 providerName: Unpaywall |
| Title | Competency of improved artificial ecosystem optimizer in parameters identification of small and medium sized distribution transformers |
| URI | https://link.springer.com/article/10.1038/s41598-025-14233-3 https://www.ncbi.nlm.nih.gov/pubmed/40940361 https://www.proquest.com/docview/3250024962 https://www.proquest.com/docview/3250117608 https://www.nature.com/articles/s41598-025-14233-3.pdf https://doaj.org/article/7e64435e19694eaf91852041c37d16f8 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_ahLHtYey72bqgwd5WU9uSLedhjDS0lDyEsi2QPRl9eQQaO80HI_sD9nfvTrbTDkbZq2wLyXen-0mn-x3AB2njiBulAoP-JRBWFYGKlA4QuRotEhMb5dk-J-nlVIxnyewAJm0uDF2rbNdEv1DbytAZ-SlHX030dmn8eXkTUNUoiq62JTRUU1rBfvIUY4fQjYkZqwPds_PJ1Zf9qQvFtUQ0aLJnQp6drtGDUZZZnAQRQgse8L88lCfy_xf6vBM5fQwPt-VS7X6q6-s7zuniKTxpUCUb1mrwDA5c-Rwe1HUmdy_g96hFxztWFWzuDxKcZaQ2NYMEw11oTerMKlxEFvNfbsXmJSNm8AXdmFmzuW0uFnlZUj_rBQ6FqdIyitBvF2yNn1lmiYu3KaPFNi0wxi5ewvTi_NvoMmgKMARG8GyDokMT58lAOKUyLYRUKefOSBRjHBdSJ56dTQ8SY7koEmEybiInjRKmcBQffAWdsirdEbDYaof7YeWk1pTMqrPU8FSLLExtokLXg4_tT8-XNc9G7uPjPMtrEeUootyLKOc9OCO57N8kjmzfUK1-5I3J5dIh1uOJIwIgnEExoDzxUESGSxulRdaD41aqeWO46_xWzXrwfv8YTY7iKKp01bZ-J4pkGmIXr2tt2I-EtssICqIenLTqcdv5fRM62avQf8z_zf1DfwuPYlJoX-niGDqb1da9Q-y00X04lDPZh-5wOP467jfmga2jdNT35xHYNp1cDb__AYLzHWA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKK1Q4IN4sFBgkONGoSWby2EOFaGm1pWWFUCv1Np1X0ErdZNnsqlp-AD-L34Y9SbZFQhWXXpOJ5Yk9Y3s8_gzwNrNxxI1SgUH7EgirikBFSgfouRotEhMb5dE-h-ngRHw-TU5X4HdXC0PXKrs90W_UtjJ0Rr7F0VYTvF0af5j8CKhrFGVXuxYaqm2tYLc9xFhb2HHoFhcYwtXbB59Q3u_ieH_veHcQtF0GAiN4PkP-UI950hdOqVwLkamUc2cy5DWOi0wnHoJM9xNjuSgSYXJuIpcZJUzhKAmGdG_BmuCij8Hf2s7e8Ou35SkP5dFE1G-rdUKeb9VoMamqLU6CCF0ZHvC_LKJvHPAvb_dKpvYurM_LiVpcqPPzK8Zw_z7ca71Y9rFRuwew4sqHcLvpa7l4BL92O298waqCjfzBhbOM1LRBrGAY9TYg0qzCTWs8-ummbFQyQiIf0w2dmo1se5HJ6w7RqcfIClOlZXQjYD5mNX5mmSXs37ZtF5t1jjiSeAwnNyKKJ7BaVqV7Biy22mH8rVymNRXP6jw1PNUiD1ObqND14H330-WkwfWQPh_Pc9mISKKIpBeR5D3YIbksRxImt39QTb_LdonLzKFvyRNHgEM4g6JPdemhiAzPbJQWeQ82OqnKdqOo5aVa9-DN8jUuccrbqNJV82ZMFGVpiCSeNtqw5ITCc3RCoh5sdupxSfy6CW0uVeg_5v_8etZfw_rg-MuRPDoYHr6AOzEpt--ysQGrs-ncvUS_baZftYuDwdlNr8c_6NpUMw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLfGEAweEH9HYcAhwROL2uQuufQBIdioNoYmHpjUt-P-BVVak9K0msoH4EPx6bAvSTckNPGy1yS1fLV99p3tnwFeSZfE3GodWfQvkXC6iHSsTYSRqzUitYnVAe3zODs4EZ_G6XgDfne9MFRW2e2JYaN2laU78j5HX03wdlnSL9qyiC_7o3ezHxFNkKJMazdOo1GRI786w-Nb_fZwH2X9OklGH7_uHUTthIHICp4vkDfUYZ4Ohdc6N0JInXHurUQ-k6SQJg3wY2aYWsdFkQqbcxt7abWwhacEGNK9Btcl50MqJ5Rjub7foQyaiIdtn86A5_0afSX1syVpFGMQwyP-ly8MIwP-FedeyNHehq1lOdOrM316esENju7CnTZ-Ze8bhbsHG768DzeaiZarB_Brr4vDV6wq2CRcWXjHSEEbrAqG590GPppVuF1NJz_9nE1KRhjkU6rNqdnEtSVMQWuITj1FVpguHaNagOWU1fgzxxyh_rYDu9iiC8GRxEM4uRJBPILNsir9Y2CJMx5P3tpLY6ht1uSZ5ZkR-SBzqR74Hrzp_nQ1axA9VMjE81w1IlIoIhVEpHgPPpBc1l8SGnd4UM2_q9a4lfQYVfLUE9QQrqAYUkf6QMSWSxdnRd6DnU6qqt0ianWu0D14uX6Nxk0ZG136atl8E8cyGyCJ7UYb1pzQwRzDj7gHu516nBO_bEG7axX6j_U_uZz1F3ATrVB9Pjw-egq3EtLtMF5jBzYX86V_hgHbwjwPlsHg21Wb4h-QO1HN |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwLsQWpCRuNGUJH4ke2wrqopDxYEV5WT5FbSim1SbRGj7A_jdjJ1kW6oK0WtijzL22P6cmfkG4H1us5QapWKD50vMrCpjlSodI3I1mnGTGRXYPk_FyYx9PuNnGyDGXJgQtB8oLcM2PUaHfWzwoPHJYBmPU0QANMYroC3vwabgiMEnsDk7_XLw3VeSQ4wSI0zIhgyZhBa3dP7rFApk_bchzGve0YfwoKsu1OqXOj-_dgAdP4Zv46f3cSc_97tW75vLG6yOd9ftCTwaMCk56Fs-hQ1XPYP7fZXK1XP4fTRi6xWpSzIPvyGcJV5yzz9B8A7bU0KTGregxfzSLcm8Ip5XfOHjbRoyt0NYUrAEL6dZoJJEVZZ4_363IA12s8R6Jt-hCBdpR1iNIl7A7PjT16OTeCjfEBtGixYnHjcIyqfMKVVoxnIlKHUmRyPIsjLXPHC76Sk3lrKSM1NQk7rcKGZK572L2zCp6sq9ApJZ7fA2rVyutU-F1YUwVGhWJMJylbgIPozTKS96lg4ZvOu0kP3oShxdGUZX0ggO_YyvW3qG7fCgXv6Qw6zI3CFSpNx5-iDUoJz6LPOEpYbmNhVlEcHuaC9yWPaNpAgoPQejyCJ4t36NC9Z7YVTl6q5vk6a5SFDEy97O1l_iL9sIKdII9kbDuxL-L4X21sb5H_q_vlvzHdjKvG2Guhm7MGmXnXuDSKzVb4dl9weTYi4v |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competency+of+improved+artificial+ecosystem+optimizer+in+parameters+identification+of+small+and+medium+sized+distribution+transformers&rft.jtitle=Scientific+reports&rft.au=Draz%2C+Abdelmonem&rft.au=Ashraf%2C+Hossam&rft.au=El+Shamy%2C+Ahmed+R&rft.au=El-Fergany%2C+Attia+A&rft.date=2025-09-12&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=32421&rft_id=info:doi/10.1038%2Fs41598-025-14233-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |