Design of experiments and focused grid search for neural network parameter optimization

The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Networks (ANNs) in machining processes. It proposes a method for an optimized project of a Multi-Layer Perceptron (MLP) network architecture applied for the prediction of Average Surface Roughne...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 186; pp. 22 - 34
Main Authors Pontes, F.J., Amorim, G.F., Balestrassi, P.P., Paiva, A.P., Ferreira, J.R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 19.04.2016
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2015.12.061

Cover

Abstract The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Networks (ANNs) in machining processes. It proposes a method for an optimized project of a Multi-Layer Perceptron (MLP) network architecture applied for the prediction of Average Surface Roughness (Ra). The tuning method is expressed in the format of an algorithm employing two techniques from Design of Experiments (DOE) methodology: Full factorials and Evolutionary Operations (EVOP). Datasets retrieved from literature are employed to form training and test data sets for the ANN. The proposed tuning method leads to significant reduction of roughness prediction errors in machining operations in comparison to techniques currently used. It constitutes an effective option for the systematic design models based on ANN for prediction of surface roughness, filling the gap reported in the literature on this subject. •We propose a systematic approach to design and optimize MLP networks.•We used DOE, Evolutionary Operation and Focused Grid Search for optimization.•The proposed method is compared to previous studies in machining applications.•The method presents superior results for all the comparisons.
AbstractList The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Networks (ANNs) in machining processes. It proposes a method for an optimized project of a Multi-Layer Perceptron (MLP) network architecture applied for the prediction of Average Surface Roughness (Ra). The tuning method is expressed in the format of an algorithm employing two techniques from Design of Experiments (DOE) methodology: Full factorials and Evolutionary Operations (EVOP). Datasets retrieved from literature are employed to form training and test data sets for the ANN. The proposed tuning method leads to significant reduction of roughness prediction errors in machining operations in comparison to techniques currently used. It constitutes an effective option for the systematic design models based on ANN for prediction of surface roughness, filling the gap reported in the literature on this subject. •We propose a systematic approach to design and optimize MLP networks.•We used DOE, Evolutionary Operation and Focused Grid Search for optimization.•The proposed method is compared to previous studies in machining applications.•The method presents superior results for all the comparisons.
The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Networks (ANNs) in machining processes. It proposes a method for an optimized project of a Multi-Layer Perceptron (MLP) network architecture applied for the prediction of Average Surface Roughness (R sub(a)). The tuning method is expressed in the format of an algorithm employing two techniques from Design of Experiments (DOE) methodology: Full factorials and Evolutionary Operations (EVOP). Datasets retrieved from literature are employed to form training and test data sets for the ANN. The proposed tuning method leads to significant reduction of roughness prediction errors in machining operations in comparison to techniques currently used. It constitutes an effective option for the systematic design models based on ANN for prediction of surface roughness, filling the gap reported in the literature on this subject.
Author Paiva, A.P.
Pontes, F.J.
Balestrassi, P.P.
Ferreira, J.R.
Amorim, G.F.
Author_xml – sequence: 1
  givenname: F.J.
  surname: Pontes
  fullname: Pontes, F.J.
  email: fabriciojosepontes@uol.com.br
  organization: UNESP (Universidade Estadual Paulista)-Avenida Ariberto Pereira da Cunha, no. 333, Pedregulho, Guaratinguetá, SP CEP: 12516-410, Brazil
– sequence: 2
  givenname: G.F.
  surname: Amorim
  fullname: Amorim, G.F.
  email: gabi@unifei.edu.br
  organization: Institute of Industrial Engineering and Management, UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho, Itajubá, MG CEP: 37500-903, Brazil
– sequence: 3
  givenname: P.P.
  surname: Balestrassi
  fullname: Balestrassi, P.P.
  email: ppbalestrassi@gmail.com
  organization: Institute of Industrial Engineering and Management, UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho, Itajubá, MG CEP: 37500-903, Brazil
– sequence: 4
  givenname: A.P.
  surname: Paiva
  fullname: Paiva, A.P.
  email: andersonppaiva@unifei.edu.br
  organization: Institute of Industrial Engineering and Management, UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho, Itajubá, MG CEP: 37500-903, Brazil
– sequence: 5
  givenname: J.R.
  surname: Ferreira
  fullname: Ferreira, J.R.
  email: jorofe@unifei.edu.br
  organization: Institute of Mechanical Engineering, UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho, Itajubá, MG CEP: 37500-903, Brazil
BookMark eNqNkEtr3TAQhUVJoTePf9CFlt3Y1ciWbXURKGmbBALZpGQpZHmU6taWHEk3r19f396sskgCAweGc84w3z7Z88EjIZ-BlcCg-bouPW5MmErOQJTAS9bAB7KCruVFx7tmj6yY5KLgFfBPZD-lNWPQApcrcv0Dk7vxNFiKDzNGN6HPiWo_UBvMJuFAb6IbaEIdzZ9lF-lyK-pxkXwf4l8666gnzBhpmLOb3JPOLvhD8tHqMeHRsx6Q379-Xp2cFReXp-cn3y8KU1ddLureGmZY3_e8ZnWjoZbCgjGi09UyYLjk0jZSDtA2VrbYA1poheBt3Yiqrw7Il13vHMPtBlNWk0sGx1F7DJukoBOiErIW8h1WJgQTLdtav-2sJoaUIlplXP7_V47ajQqY2oJXa7UDr7bgFXC1gF_C9YvwvGDV8fGt2PEuhguuO4dRJePQGxxcRJPVENzrBf8AZUah-A
CitedBy_id crossref_primary_10_1061_JHYEFF_HEENG_6262
crossref_primary_10_1007_s00170_021_07733_9
crossref_primary_10_1038_s41598_022_23326_2
crossref_primary_10_1109_TASE_2020_3000946
crossref_primary_10_1016_j_neunet_2020_12_007
crossref_primary_10_14775_ksmpe_2024_23_3_028
crossref_primary_10_1016_j_measurement_2018_07_071
crossref_primary_10_2166_wpt_2024_211
crossref_primary_10_1002_cem_3349
crossref_primary_10_1016_j_eswa_2021_115147
crossref_primary_10_1016_j_resourpol_2019_02_017
crossref_primary_10_1016_j_eswa_2020_114451
crossref_primary_10_1109_TVT_2021_3120267
crossref_primary_10_1016_j_asoc_2017_07_015
crossref_primary_10_1016_j_neucom_2022_06_085
crossref_primary_10_1002_cpe_7190
crossref_primary_10_1177_03019233241306076
crossref_primary_10_1177_20552076231205744
crossref_primary_10_1109_TMC_2023_3344645
crossref_primary_10_1016_j_ijpe_2021_108380
crossref_primary_10_1016_j_jclepro_2019_04_077
crossref_primary_10_1186_s12859_022_04582_5
crossref_primary_10_1186_s42400_023_00149_w
crossref_primary_10_1016_j_energy_2017_04_032
crossref_primary_10_3390_math11112466
crossref_primary_10_1080_10426914_2021_1885709
crossref_primary_10_1016_j_jclepro_2018_04_084
crossref_primary_10_1177_00187208221129940
crossref_primary_10_1016_j_ecoinf_2024_102781
crossref_primary_10_1016_j_compbiomed_2021_104743
crossref_primary_10_3390_app142412041
crossref_primary_10_1016_j_simpat_2021_102414
crossref_primary_10_3390_horticulturae10020128
crossref_primary_10_1016_j_isatra_2018_05_005
crossref_primary_10_1109_TETC_2024_3387026
crossref_primary_10_1177_1471082X241258261
crossref_primary_10_3390_ani11051263
crossref_primary_10_1016_j_rinp_2017_02_027
crossref_primary_10_3390_en16010369
crossref_primary_10_1007_s11044_020_09772_8
crossref_primary_10_1080_00032719_2017_1375940
crossref_primary_10_5194_gmd_16_6479_2023
crossref_primary_10_1002_mgg3_1255
crossref_primary_10_1016_j_engappai_2024_109811
crossref_primary_10_1039_D4SU00196F
crossref_primary_10_3390_ma13173828
crossref_primary_10_3390_geosciences13060183
crossref_primary_10_1016_j_conbuildmat_2023_134637
crossref_primary_10_1016_j_rineng_2023_101639
crossref_primary_10_1016_j_heliyon_2024_e24374
crossref_primary_10_1177_20552076231152751
crossref_primary_10_1109_ACCESS_2021_3092743
crossref_primary_10_1089_big_2021_0067
crossref_primary_10_3390_en13082017
crossref_primary_10_3390_fi14050153
crossref_primary_10_1007_s13369_019_04071_7
crossref_primary_10_4315_JFP_20_447
crossref_primary_10_1016_j_knosys_2023_110864
crossref_primary_10_1088_1361_6501_ad3b2c
crossref_primary_10_1109_ACCESS_2021_3068959
crossref_primary_10_3390_fluids9100239
crossref_primary_10_1016_j_enbuild_2021_111467
crossref_primary_10_3390_s22228630
crossref_primary_10_1109_ACCESS_2021_3056050
crossref_primary_10_2118_209594_PA
crossref_primary_10_1109_TII_2024_3359416
crossref_primary_10_1115_1_4045446
crossref_primary_10_1002_eng2_12119
crossref_primary_10_1177_09576509221095347
crossref_primary_10_1155_2024_5564380
crossref_primary_10_3390_app12188967
crossref_primary_10_3390_en13040807
crossref_primary_10_1177_16878140211017632
crossref_primary_10_3390_bioengineering9090482
crossref_primary_10_18048_2020_59_08
crossref_primary_10_1109_JIOT_2020_3024223
crossref_primary_10_1016_j_powtec_2023_118373
crossref_primary_10_1371_journal_pone_0188577
crossref_primary_10_1155_2020_2858471
crossref_primary_10_1109_TDSC_2022_3143493
crossref_primary_10_1016_j_compag_2020_105530
crossref_primary_10_1016_j_oceaneng_2023_115542
crossref_primary_10_1088_2053_1591_ab3964
crossref_primary_10_3390_math11040957
crossref_primary_10_1016_j_knosys_2022_109465
crossref_primary_10_3390_app13031305
crossref_primary_10_3390_app10113680
crossref_primary_10_1145_3588730
crossref_primary_10_1093_milmed_usad210
crossref_primary_10_3390_su151914383
crossref_primary_10_1007_s11044_024_10043_z
crossref_primary_10_1016_j_buildenv_2023_110276
crossref_primary_10_1016_j_precisioneng_2024_02_018
crossref_primary_10_1016_j_caeai_2022_100066
crossref_primary_10_3390_sym16040428
crossref_primary_10_1109_JBHI_2024_3465929
crossref_primary_10_1007_s10596_022_10151_9
crossref_primary_10_3390_pr9020323
crossref_primary_10_1109_ACCESS_2023_3331955
crossref_primary_10_1016_j_anucene_2021_108265
crossref_primary_10_1002_joc_7738
crossref_primary_10_1016_j_conbuildmat_2024_134867
crossref_primary_10_1061__ASCE_ST_1943_541X_0003345
crossref_primary_10_3390_electronics11233976
crossref_primary_10_1016_j_jweia_2024_105752
crossref_primary_10_1007_s13753_023_00465_2
crossref_primary_10_1016_j_eswa_2022_118178
crossref_primary_10_1016_j_oceaneng_2022_111171
crossref_primary_10_1007_s13278_024_01371_1
crossref_primary_10_1177_00031348211038568
crossref_primary_10_1016_j_cattod_2020_06_030
crossref_primary_10_1109_TMLCN_2023_3332021
crossref_primary_10_1155_2020_1846926
crossref_primary_10_1080_00207543_2019_1614691
crossref_primary_10_33725_mamad_1116999
crossref_primary_10_1016_j_ress_2023_109333
crossref_primary_10_1016_j_anucene_2024_111053
crossref_primary_10_1186_s12245_023_00573_2
crossref_primary_10_1109_ACCESS_2022_3188111
crossref_primary_10_1109_ACCESS_2019_2919189
crossref_primary_10_21205_deufmd_2025277910
crossref_primary_10_3390_forecast3010006
crossref_primary_10_1016_j_ymssp_2017_08_001
crossref_primary_10_1080_19331681_2022_2082622
crossref_primary_10_1016_j_jmapro_2021_04_014
crossref_primary_10_1108_IMDS_01_2022_0015
crossref_primary_10_1016_j_compbiomed_2020_103665
crossref_primary_10_1007_s00521_021_06865_z
crossref_primary_10_1017_dsj_2020_31
crossref_primary_10_1109_ACCESS_2019_2936443
crossref_primary_10_1007_s00170_024_13766_7
crossref_primary_10_1016_j_asoc_2024_112088
crossref_primary_10_1016_j_compbiomed_2023_106856
crossref_primary_10_1016_j_rcim_2021_102226
crossref_primary_10_1016_j_bspc_2023_105938
crossref_primary_10_3390_electronics10151857
crossref_primary_10_1016_j_rser_2020_110450
crossref_primary_10_1177_00202940221135903
crossref_primary_10_1016_j_ress_2025_110866
crossref_primary_10_3389_fbioe_2023_1204972
crossref_primary_10_1002_cjce_23832
crossref_primary_10_1016_j_heliyon_2024_e26192
crossref_primary_10_1016_j_conbuildmat_2024_138240
crossref_primary_10_1016_j_matdes_2024_113377
crossref_primary_10_1111_exsy_12954
crossref_primary_10_1088_1742_6596_2724_1_012011
crossref_primary_10_1016_j_energy_2024_130866
crossref_primary_10_1007_s11696_024_03715_9
crossref_primary_10_1016_j_ins_2023_03_030
crossref_primary_10_1002_qre_3408
crossref_primary_10_1016_j_bdr_2021_100286
crossref_primary_10_1186_s40854_023_00490_6
crossref_primary_10_3389_fbuil_2024_1439700
crossref_primary_10_1002_aisy_202000075
crossref_primary_10_1016_j_ijhydene_2024_12_283
crossref_primary_10_1186_s12859_022_04815_7
crossref_primary_10_1007_s00521_024_09857_x
crossref_primary_10_2174_18741207_v17_e230510_2022_HT28_4371_8
crossref_primary_10_1080_10803548_2022_2135281
crossref_primary_10_1111_risa_14124
Cites_doi 10.1016/j.matdes.2005.01.010
10.1243/09544054JEM884
10.1007/s00170-010-2668-5
10.1007/s11665-009-9452-4
10.1007/s00170-010-2710-7
10.1109/CERMA.2006.83
10.1007/s00170-005-2604-2
10.1007/s10845-008-0097-1
10.1016/j.jmatprotec.2007.11.082
10.1007/s00170-004-2429-4
10.1007/s00170-005-0175-x
10.1016/j.eswa.2009.07.033
10.1007/s00170-007-0999-7
10.1016/j.neucom.2008.02.002
10.1080/00401706.1993.10484984
10.1007/s00521-005-0468-x
10.1108/17410380610688232
10.1016/S0736-5845(02)00005-4
10.1109/PCT.2007.4538630
10.1007/s00170-006-0719-8
10.1016/j.jmatprotec.2005.04.123
10.1007/s00170-006-0429-2
10.1016/j.eswa.2009.05.098
10.1007/s00170-004-2215-3
10.1007/s00170-007-1140-7
10.1016/j.neucom.2008.09.024
10.1590/S1678-58782008000100011
10.1006/mssp.2001.1460
10.1007/s10845-010-0415-2
10.1016/j.ijmachtools.2004.09.007
10.1016/j.eswa.2008.09.024
10.1016/j.mcm.2010.03.007
10.1142/S1469026810002823
10.1016/j.jmatprotec.2008.07.023
10.1007/s00170-009-2456-2
10.1287/ijoc.1050.0136
10.1016/j.cor.2005.02.043
10.1016/j.jmatprotec.2007.10.024
10.1016/S0890-6955(03)00059-2
10.1007/s00170-004-2203-7
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2015.12.061
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Engineering Research Database
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 34
ExternalDocumentID 10_1016_j_neucom_2015_12_061
S0925231215020184
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c438t-4bfc0c0bbb24046a1495f1cc58a38a31c2929f699d176f97eb1ef1755274653b3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Sat Sep 27 21:08:47 EDT 2025
Tue Oct 07 09:56:11 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Wed Oct 01 02:27:26 EDT 2025
Fri Feb 23 02:28:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Design of Experiment
Artificial Neural Network
Focused Grid Search
Tuning
Machining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-4bfc0c0bbb24046a1495f1cc58a38a31c2929f699d176f97eb1ef1755274653b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1805505709
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_1855359459
proquest_miscellaneous_1805505709
crossref_citationtrail_10_1016_j_neucom_2015_12_061
crossref_primary_10_1016_j_neucom_2015_12_061
elsevier_sciencedirect_doi_10_1016_j_neucom_2015_12_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-19
PublicationDateYYYYMMDD 2016-04-19
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-19
  day: 19
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Haykin (bib47) 2009
Zain, Haron, Sharif (bib28) 2010; 37
Montgomery (bib13) 2001
Correa, Bielza, Pamies-Teixeira (bib10) 2009; 36
Yang, Natarajan, Sekar, Palani (bib25) 2010; 51
Cus, Zuperl (bib2) 2006; 173
bib27
Çaydaş, Ekici (bib3) 2012; 23
Cervellera, Wen, Chen (bib15) 2007; 34
Quiza, Figueira, Davim (bib36) 2008; 37
Box (bib44) 1957; 6
Chen, Hsu, Hsieh, Tai (bib39) 2010; 37
Taguchi, Elsayed, Hsiang (bib45) 1988
Benardos, Vosniakos (bib19) 2003; 43
.
Lasheras, Vilán, García Nieto, Díaz (bib37) 2010; 52
Antony, Anand, Kumar, Tiwari (bib8) 2006; 17
Kleijnen, Sanchez, Lucas, Cioppa (bib43) 2005; 17
Chang, Lu (bib22) 2006; 29
Zhong, Khoo, Han (bib29) 2006; 28
Karayel (bib6) 2009; 209
Coleman, Montgomery, Systematic (bib34) 1993; 35
Singh, Rao (bib1) 2007; 32
Sarkar, Mitra, Bhattacharyya (bib51) 2006; 27
Jiménez, Lázaro, Dorronsoro (bib9) 2009; 72
Bagci, Işik (bib17) 2006; 31
Trent, Wright (bib18) 2000
Kuo, Wu (bib35) 2006; 27
Muñoz-Escalona, Maropoulos (bib5) 2010; 19
Oktem, Erzurumlu, Erzincanli (bib21) 2006; 27
Dhokia, Kumar, Vichare, Newman, Allen (bib14) 2008; 222
Sharma, Dhiman, Sehgal, Sharma (bib20) 2008; 19
A.R. Queiroz, F.A. Oliveira, J.W.M. Lima, P.P. Balestrassi, Simulating electricity spot prices in brazil using neural network and design of experiments, In: Proceedings of the IEEE Lausanne PowerTech, 2007, pp. 2029–2034
Box, Hunter, Hunter (bib46) 2006
Benardos, Vosniakos (bib31) 2002; 18
Montgomery, Jennings, Kulahci (bib49) 2008
Karnik, Gaitonde, Davim (bib16) 2008; 38
Özel, Karpat (bib30) 2005; 45
Balestrassi, Popova, Paiva, Marangon Lima (bib41) 2009; 72
Pontes, Ferreira, Silva, Paiva, Balestrassi (bib12) 2010; 49
Zanchettin, Minku, Ludermir (bib40) 2010; 09
Lopes, Sales, Palma (bib7) 2008; 30
bib26
Zanchettin, Ludermir (bib33) 2007; 14
Sick (bib50) 2002; 16
Karpat, Özel (bib32) 2007; 35
Davim, Gaitonde, Karnik (bib24) 2008; 205
Kilickap, Huseyinoglu, Yardimeden (bib4) 2011; 52
J.M. Ortiz-Rodriguez, M.R. Martínez-Blanco, H.R. Vega-Carrillo, Robust design of artificial neural networks applying the taguchi methodology and DoE, In: Proc. Electron. Robot. Automot. Mech. Conf. CERMA 2006, pp. 131–136
Çaydaş, Hasçalık (bib11) 2008; 202
Pal, Chakraborty (bib23) 2005; 14
Bishop (bib48) 2006
Oktem (10.1016/j.neucom.2015.12.061_bib21) 2006; 27
Karnik (10.1016/j.neucom.2015.12.061_bib16) 2008; 38
Benardos (10.1016/j.neucom.2015.12.061_bib19) 2003; 43
Özel (10.1016/j.neucom.2015.12.061_bib30) 2005; 45
10.1016/j.neucom.2015.12.061_bib42
Davim (10.1016/j.neucom.2015.12.061_bib24) 2008; 205
10.1016/j.neucom.2015.12.061_bib38
Zanchettin (10.1016/j.neucom.2015.12.061_bib40) 2010; 09
Cervellera (10.1016/j.neucom.2015.12.061_bib15) 2007; 34
Chen (10.1016/j.neucom.2015.12.061_bib39) 2010; 37
Lasheras (10.1016/j.neucom.2015.12.061_bib37) 2010; 52
Kuo (10.1016/j.neucom.2015.12.061_bib35) 2006; 27
Muñoz-Escalona (10.1016/j.neucom.2015.12.061_bib5) 2010; 19
Zanchettin (10.1016/j.neucom.2015.12.061_bib33) 2007; 14
Dhokia (10.1016/j.neucom.2015.12.061_bib14) 2008; 222
Haykin (10.1016/j.neucom.2015.12.061_bib47) 2009
Montgomery (10.1016/j.neucom.2015.12.061_bib13) 2001
Cus (10.1016/j.neucom.2015.12.061_bib2) 2006; 173
Çaydaş (10.1016/j.neucom.2015.12.061_bib3) 2012; 23
Box (10.1016/j.neucom.2015.12.061_bib46) 2006
Sarkar (10.1016/j.neucom.2015.12.061_bib51) 2006; 27
Jiménez (10.1016/j.neucom.2015.12.061_bib9) 2009; 72
Quiza (10.1016/j.neucom.2015.12.061_bib36) 2008; 37
Sick (10.1016/j.neucom.2015.12.061_bib50) 2002; 16
Kilickap (10.1016/j.neucom.2015.12.061_bib4) 2011; 52
Balestrassi (10.1016/j.neucom.2015.12.061_bib41) 2009; 72
Box (10.1016/j.neucom.2015.12.061_bib44) 1957; 6
Correa (10.1016/j.neucom.2015.12.061_bib10) 2009; 36
Yang (10.1016/j.neucom.2015.12.061_bib25) 2010; 51
Çaydaş (10.1016/j.neucom.2015.12.061_bib11) 2008; 202
Karpat (10.1016/j.neucom.2015.12.061_bib32) 2007; 35
Antony (10.1016/j.neucom.2015.12.061_bib8) 2006; 17
Taguchi (10.1016/j.neucom.2015.12.061_bib45) 1988
Bishop (10.1016/j.neucom.2015.12.061_bib48) 2006
Chang (10.1016/j.neucom.2015.12.061_bib22) 2006; 29
Pal (10.1016/j.neucom.2015.12.061_bib23) 2005; 14
Lopes (10.1016/j.neucom.2015.12.061_bib7) 2008; 30
Singh (10.1016/j.neucom.2015.12.061_bib1) 2007; 32
Coleman (10.1016/j.neucom.2015.12.061_bib34) 1993; 35
Bagci (10.1016/j.neucom.2015.12.061_bib17) 2006; 31
Sharma (10.1016/j.neucom.2015.12.061_bib20) 2008; 19
Karayel (10.1016/j.neucom.2015.12.061_bib6) 2009; 209
Montgomery (10.1016/j.neucom.2015.12.061_bib49) 2008
Zain (10.1016/j.neucom.2015.12.061_bib28) 2010; 37
Zhong (10.1016/j.neucom.2015.12.061_bib29) 2006; 28
Trent (10.1016/j.neucom.2015.12.061_bib18) 2000
Kleijnen (10.1016/j.neucom.2015.12.061_bib43) 2005; 17
Benardos (10.1016/j.neucom.2015.12.061_bib31) 2002; 18
Pontes (10.1016/j.neucom.2015.12.061_bib12) 2010; 49
References_xml – volume: 27
  start-page: 455
  year: 2006
  end-page: 461
  ident: bib35
  article-title: Application of a Taguchi-based neural network prediction design of the film coating process for polymer blends
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 32
  start-page: 1115
  year: 2007
  end-page: 1124
  ident: bib1
  article-title: A surface roughness prediction model for hard turning process
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 2000
  ident: bib18
  publication-title: Metal Cutting
– volume: 222
  start-page: 137
  year: 2008
  end-page: 153
  ident: bib14
  article-title: Surface roughness prediction model for CNC machining of polypropylene
  publication-title: J. Eng. Manuf.
– volume: 52
  start-page: 79
  year: 2011
  end-page: 88
  ident: bib4
  article-title: Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 1988
  ident: bib45
  publication-title: Quality Engineering in Production Systems
– volume: 18
  start-page: 343
  year: 2002
  end-page: 354
  ident: bib31
  article-title: Prediction of surface roughness in CNC face milling using neural networks and Taguchi’ s design of experiments
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 19
  start-page: 473
  year: 2008
  end-page: 483
  ident: bib20
  article-title: Estimation of cutting forces and surface roughness for hard turning using neural networks
  publication-title: J. Intell. Manuf.
– volume: 29
  start-page: 867
  year: 2006
  end-page: 878
  ident: bib22
  article-title: Study on the prediction model of surface roughness for side milling operations
  publication-title: Int. J. Adv. Manuf. Technol.
– ident: bib26
– volume: 35
  start-page: 1
  year: 1993
  end-page: 12
  ident: bib34
  article-title: Approach to planning for a designed industrial experiment
  publication-title: Technometrics
– volume: 19
  start-page: 185
  year: 2010
  end-page: 193
  ident: bib5
  article-title: Artificial neural networks for surface roughness prediction when face milling Al 7075-T7351
  publication-title: J. Mater. Eng. Perform.
– volume: 209
  start-page: 3125
  year: 2009
  end-page: 3137
  ident: bib6
  article-title: Prediction and control of surface roughness in CNC lathe using artificial neural network
  publication-title: J. Mater. Process. Technol.
– volume: 43
  start-page: 833
  year: 2003
  end-page: 844
  ident: bib19
  article-title: Predicting surface roughness in machining: A review
  publication-title: Int. J. Mach. Tools Manuf.
– year: 2006
  ident: bib46
  article-title: Statistics for Experimenters: Design Innovation and Discovery
– volume: 49
  start-page: 879
  year: 2010
  end-page: 902
  ident: bib12
  article-title: Artificial neural networks for machining processes surface roughness modeling
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 72
  start-page: 1160
  year: 2009
  end-page: 1178
  ident: bib41
  article-title: Design of experiments on neural network’s training for nonlinear time series forecasting
  publication-title: Neurocomputing
– volume: 37
  start-page: 1755
  year: 2010
  end-page: 1768
  ident: bib28
  article-title: Prediction of surface roughness in the end milling machining using artificial neural network
  publication-title: Expert Syst. Appl.
– reference: J.M. Ortiz-Rodriguez, M.R. Martínez-Blanco, H.R. Vega-Carrillo, Robust design of artificial neural networks applying the taguchi methodology and DoE, In: Proc. Electron. Robot. Automot. Mech. Conf. CERMA 2006, pp. 131–136
– volume: 34
  start-page: 70
  year: 2007
  end-page: 90
  ident: bib15
  article-title: Neural network and regression spline value function approximations for stochastic dynamic programming
  publication-title: Comput. Oper. Res.
– volume: 31
  start-page: 10
  year: 2006
  end-page: 17
  ident: bib17
  article-title: Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 202
  start-page: 574
  year: 2008
  end-page: 582
  ident: bib11
  article-title: A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method
  publication-title: J. Mater. Process. Technol.
– volume: 09
  start-page: 137
  year: 2010
  end-page: 152
  ident: bib40
  article-title: Design of experiments in neuro-fuzzy systems
  publication-title: Int. J. Comput. Intell. Appl.
– volume: 51
  start-page: 965
  year: 2010
  end-page: 971
  ident: bib25
  article-title: Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 23
  start-page: 639
  year: 2012
  end-page: 650
  ident: bib3
  article-title: Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel
  publication-title: J. Intell. Manuf.
– volume: 38
  start-page: 868
  year: 2008
  end-page: 883
  ident: bib16
  article-title: A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 2009
  ident: bib47
  article-title: Neural Networks and Learning Machines
– volume: 27
  start-page: 735
  year: 2006
  end-page: 744
  ident: bib21
  article-title: Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm
  publication-title: Mater. Des.
– volume: 52
  start-page: 1169
  year: 2010
  end-page: 1176
  ident: bib37
  article-title: The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process
  publication-title: Math. Comput. Model.
– volume: 37
  start-page: 641
  year: 2008
  end-page: 648
  ident: bib36
  article-title: Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 37
  start-page: 716
  year: 2010
  end-page: 726
  ident: bib39
  article-title: A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN
  publication-title: Expert Syst. Appl.
– volume: 16
  start-page: 487
  year: 2002
  end-page: 546
  ident: bib50
  article-title: On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research
  publication-title: Mech. Syst. Signal Process.
– volume: 30
  start-page: 77
  year: 2008
  end-page: 83
  ident: bib7
  article-title: Influence of machining parameters on fatigue endurance limit of AISI 4140 steel
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– year: 2001
  ident: bib13
  publication-title: Design and Analysis of Experiments
– volume: 45
  start-page: 467
  year: 2005
  end-page: 479
  ident: bib30
  article-title: Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 6
  start-page: 81
  year: 1957
  end-page: 101
  ident: bib44
  article-title: Evolutionary operation: a method for increasing industrial productivity
  publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.)
– volume: 14
  start-page: 328
  year: 2007
  end-page: 337
  ident: bib33
  article-title: Global Optimization Methods for Designing and Training Feedforward Artificial Neural Networks
  publication-title: Adv. Neural Netw.
– volume: 36
  start-page: 7270
  year: 2009
  end-page: 7279
  ident: bib10
  article-title: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process
  publication-title: Expert Syst. Appl.
– volume: 17
  start-page: 263
  year: 2005
  end-page: 289
  ident: bib43
  article-title: State-of-the-art review: a user’s guide to the brave new world of designing simulation experiments
  publication-title: Inf. J. Comput.
– volume: 17
  start-page: 908
  year: 2006
  end-page: 925
  ident: bib8
  article-title: Multiple response optimization using Taguchi methodology and neuro-fuzzy based model
  publication-title: J. Manuf. Technol. Manag.
– volume: 205
  start-page: 16
  year: 2008
  end-page: 23
  ident: bib24
  article-title: Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models
  publication-title: J. Mater. Process. Technol.
– year: 2008
  ident: bib49
  publication-title: Introduction to Time Series Analysis and Forecasting
– volume: 14
  start-page: 319
  year: 2005
  end-page: 324
  ident: bib23
  article-title: Surface roughness prediction in turning using artificial neural network
  publication-title: Neural Comput. Appl.
– volume: 27
  start-page: 501
  year: 2006
  end-page: 508
  ident: bib51
  article-title: Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: .
– reference: A.R. Queiroz, F.A. Oliveira, J.W.M. Lima, P.P. Balestrassi, Simulating electricity spot prices in brazil using neural network and design of experiments, In: Proceedings of the IEEE Lausanne PowerTech, 2007, pp. 2029–2034
– volume: 35
  start-page: 234
  year: 2007
  end-page: 247
  ident: bib32
  article-title: Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 28
  start-page: 688
  year: 2006
  end-page: 693
  ident: bib29
  article-title: Prediction of surface roughness of turned surfaces using neural networks
  publication-title: Int. J. Adv. Manuf. Technol.
– ident: bib27
– volume: 173
  start-page: 281
  year: 2006
  end-page: 290
  ident: bib2
  article-title: Approach to optimization of cutting conditions by using artificial neural networks
  publication-title: J. Mater. Process. Technol.
– year: 2006
  ident: bib48
  article-title: Pattern Recognition and Machine Learning
– volume: 72
  start-page: 2824
  year: 2009
  end-page: 2832
  ident: bib9
  article-title: Finding optimal model parameters by deterministic and annealed focused grid search
  publication-title: Neurocomputing
– volume: 27
  start-page: 735
  year: 2006
  ident: 10.1016/j.neucom.2015.12.061_bib21
  article-title: Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2005.01.010
– volume: 222
  start-page: 137
  year: 2008
  ident: 10.1016/j.neucom.2015.12.061_bib14
  article-title: Surface roughness prediction model for CNC machining of polypropylene
  publication-title: J. Eng. Manuf.
  doi: 10.1243/09544054JEM884
– volume: 51
  start-page: 965
  year: 2010
  ident: 10.1016/j.neucom.2015.12.061_bib25
  article-title: Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2668-5
– volume: 19
  start-page: 185
  year: 2010
  ident: 10.1016/j.neucom.2015.12.061_bib5
  article-title: Artificial neural networks for surface roughness prediction when face milling Al 7075-T7351
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-009-9452-4
– volume: 52
  start-page: 79
  year: 2011
  ident: 10.1016/j.neucom.2015.12.061_bib4
  article-title: Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2710-7
– ident: 10.1016/j.neucom.2015.12.061_bib38
  doi: 10.1109/CERMA.2006.83
– volume: 29
  start-page: 867
  year: 2006
  ident: 10.1016/j.neucom.2015.12.061_bib22
  article-title: Study on the prediction model of surface roughness for side milling operations
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-005-2604-2
– year: 2006
  ident: 10.1016/j.neucom.2015.12.061_bib46
– volume: 19
  start-page: 473
  year: 2008
  ident: 10.1016/j.neucom.2015.12.061_bib20
  article-title: Estimation of cutting forces and surface roughness for hard turning using neural networks
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-008-0097-1
– volume: 205
  start-page: 16
  year: 2008
  ident: 10.1016/j.neucom.2015.12.061_bib24
  article-title: Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.11.082
– volume: 6
  start-page: 81
  year: 1957
  ident: 10.1016/j.neucom.2015.12.061_bib44
  article-title: Evolutionary operation: a method for increasing industrial productivity
  publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.)
– volume: 28
  start-page: 688
  year: 2006
  ident: 10.1016/j.neucom.2015.12.061_bib29
  article-title: Prediction of surface roughness of turned surfaces using neural networks
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-004-2429-4
– year: 2001
  ident: 10.1016/j.neucom.2015.12.061_bib13
– volume: 31
  start-page: 10
  year: 2006
  ident: 10.1016/j.neucom.2015.12.061_bib17
  article-title: Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-005-0175-x
– volume: 37
  start-page: 1755
  year: 2010
  ident: 10.1016/j.neucom.2015.12.061_bib28
  article-title: Prediction of surface roughness in the end milling machining using artificial neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.07.033
– volume: 37
  start-page: 641
  year: 2008
  ident: 10.1016/j.neucom.2015.12.061_bib36
  article-title: Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-007-0999-7
– volume: 72
  start-page: 1160
  year: 2009
  ident: 10.1016/j.neucom.2015.12.061_bib41
  article-title: Design of experiments on neural network’s training for nonlinear time series forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.02.002
– volume: 35
  start-page: 1
  year: 1993
  ident: 10.1016/j.neucom.2015.12.061_bib34
  article-title: Approach to planning for a designed industrial experiment
  publication-title: Technometrics
  doi: 10.1080/00401706.1993.10484984
– volume: 14
  start-page: 319
  year: 2005
  ident: 10.1016/j.neucom.2015.12.061_bib23
  article-title: Surface roughness prediction in turning using artificial neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-005-0468-x
– volume: 17
  start-page: 908
  year: 2006
  ident: 10.1016/j.neucom.2015.12.061_bib8
  article-title: Multiple response optimization using Taguchi methodology and neuro-fuzzy based model
  publication-title: J. Manuf. Technol. Manag.
  doi: 10.1108/17410380610688232
– volume: 18
  start-page: 343
  year: 2002
  ident: 10.1016/j.neucom.2015.12.061_bib31
  article-title: Prediction of surface roughness in CNC face milling using neural networks and Taguchi’ s design of experiments
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/S0736-5845(02)00005-4
– ident: 10.1016/j.neucom.2015.12.061_bib42
  doi: 10.1109/PCT.2007.4538630
– volume: 35
  start-page: 234
  year: 2007
  ident: 10.1016/j.neucom.2015.12.061_bib32
  article-title: Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-006-0719-8
– volume: 14
  start-page: 328
  year: 2007
  ident: 10.1016/j.neucom.2015.12.061_bib33
  article-title: Global Optimization Methods for Designing and Training Feedforward Artificial Neural Networks
  publication-title: Adv. Neural Netw.
– volume: 173
  start-page: 281
  year: 2006
  ident: 10.1016/j.neucom.2015.12.061_bib2
  article-title: Approach to optimization of cutting conditions by using artificial neural networks
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2005.04.123
– volume: 32
  start-page: 1115
  year: 2007
  ident: 10.1016/j.neucom.2015.12.061_bib1
  article-title: A surface roughness prediction model for hard turning process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-006-0429-2
– volume: 37
  start-page: 716
  year: 2010
  ident: 10.1016/j.neucom.2015.12.061_bib39
  article-title: A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.05.098
– year: 2008
  ident: 10.1016/j.neucom.2015.12.061_bib49
– volume: 27
  start-page: 455
  year: 2006
  ident: 10.1016/j.neucom.2015.12.061_bib35
  article-title: Application of a Taguchi-based neural network prediction design of the film coating process for polymer blends
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-004-2215-3
– volume: 38
  start-page: 868
  year: 2008
  ident: 10.1016/j.neucom.2015.12.061_bib16
  article-title: A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-007-1140-7
– volume: 72
  start-page: 2824
  year: 2009
  ident: 10.1016/j.neucom.2015.12.061_bib9
  article-title: Finding optimal model parameters by deterministic and annealed focused grid search
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.09.024
– volume: 30
  start-page: 77
  year: 2008
  ident: 10.1016/j.neucom.2015.12.061_bib7
  article-title: Influence of machining parameters on fatigue endurance limit of AISI 4140 steel
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1590/S1678-58782008000100011
– volume: 16
  start-page: 487
  year: 2002
  ident: 10.1016/j.neucom.2015.12.061_bib50
  article-title: On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1006/mssp.2001.1460
– volume: 23
  start-page: 639
  year: 2012
  ident: 10.1016/j.neucom.2015.12.061_bib3
  article-title: Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-010-0415-2
– volume: 45
  start-page: 467
  year: 2005
  ident: 10.1016/j.neucom.2015.12.061_bib30
  article-title: Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2004.09.007
– volume: 36
  start-page: 7270
  year: 2009
  ident: 10.1016/j.neucom.2015.12.061_bib10
  article-title: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.024
– volume: 52
  start-page: 1169
  year: 2010
  ident: 10.1016/j.neucom.2015.12.061_bib37
  article-title: The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2010.03.007
– year: 1988
  ident: 10.1016/j.neucom.2015.12.061_bib45
– year: 2009
  ident: 10.1016/j.neucom.2015.12.061_bib47
– year: 2006
  ident: 10.1016/j.neucom.2015.12.061_bib48
– volume: 09
  start-page: 137
  year: 2010
  ident: 10.1016/j.neucom.2015.12.061_bib40
  article-title: Design of experiments in neuro-fuzzy systems
  publication-title: Int. J. Comput. Intell. Appl.
  doi: 10.1142/S1469026810002823
– volume: 209
  start-page: 3125
  year: 2009
  ident: 10.1016/j.neucom.2015.12.061_bib6
  article-title: Prediction and control of surface roughness in CNC lathe using artificial neural network
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2008.07.023
– volume: 49
  start-page: 879
  year: 2010
  ident: 10.1016/j.neucom.2015.12.061_bib12
  article-title: Artificial neural networks for machining processes surface roughness modeling
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2456-2
– volume: 17
  start-page: 263
  year: 2005
  ident: 10.1016/j.neucom.2015.12.061_bib43
  article-title: State-of-the-art review: a user’s guide to the brave new world of designing simulation experiments
  publication-title: Inf. J. Comput.
  doi: 10.1287/ijoc.1050.0136
– volume: 34
  start-page: 70
  year: 2007
  ident: 10.1016/j.neucom.2015.12.061_bib15
  article-title: Neural network and regression spline value function approximations for stochastic dynamic programming
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2005.02.043
– year: 2000
  ident: 10.1016/j.neucom.2015.12.061_bib18
– volume: 202
  start-page: 574
  year: 2008
  ident: 10.1016/j.neucom.2015.12.061_bib11
  article-title: A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.10.024
– volume: 43
  start-page: 833
  year: 2003
  ident: 10.1016/j.neucom.2015.12.061_bib19
  article-title: Predicting surface roughness in machining: A review
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/S0890-6955(03)00059-2
– volume: 27
  start-page: 501
  year: 2006
  ident: 10.1016/j.neucom.2015.12.061_bib51
  article-title: Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-004-2203-7
SSID ssj0017129
Score 2.5481417
Snippet The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Networks (ANNs) in machining processes. It proposes a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22
SubjectTerms Artificial Neural Network
Design of Experiment
Design of experiments
Focused Grid Search
Learning theory
Machining
Mathematical models
Neural networks
Searching
Surface roughness
Tuning
Title Design of experiments and focused grid search for neural network parameter optimization
URI https://dx.doi.org/10.1016/j.neucom.2015.12.061
https://www.proquest.com/docview/1805505709
https://www.proquest.com/docview/1855359459
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEA4PvXhxF3cieK2vSZqkOYoLT0UvKnoLzSZPtJW3XP3tTro8UVBB6KVhUsJkMkvzzQxCh4E650RqEpsFAQGKT5O8oC6hMsjcC1swGnOHr2_E4D67fOSPPXTS5cJEWGWr-xudXmvrdqTfcrP_Nhz2b1NFIYqK1RHA5YFAJWawZzJ2MTh6n8E8iCS0qbdHeRKpu_S5GuNV-mnEjMB0Xv8UFOQn8_RNUdfW53wZLbZuIz5uVraCer5cRUtdSwbcntA19HBaIzJwFfBn7f4xLkqHQ2WnY-_w02jocCPgMDbCsaIlfLps8OA41gJ_jRgZXIE2eW3TNNfR_fnZ3ckgaXsnANNZPkkyE2xqU2MMmOxMFDEQCsRanhcMHmIp-EVBKOWIFEFJUNk-gCvBIUoVnBm2gebKqvSbCIvg8gCG3VNqMu9kngKtt5Ixlctg6BZiHcu0bQuLx_4WL7pDkD3rhtE6MloTqoHRWyiZzXprCmv8QS-73dBfBESD7v9j5kG3eRrOTrwQKUpfTcea5GkdoKXqNxrOGVcZV9v_XsEOWoA3ES-hiNpFc5PR1O-BLzMx-7Ww7qP544urwc0HuFD1kQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6jHvTiLu5G8FqnSZukOcqojOtFRW-h2WREW5nl6m_3pYuioILQU_pSwkvyluZ7XxA68NRay2MdmdRzSFBcHGU5tREVXmSOmzyhoXb46pr379LzB_bQQb22FibAKhvbX9v0ylo3Ld1Gm93XwaB7E0sKWVRgR4CQBxKVKTSTMipCBnb49oHzIILQmnCPsiiIt_VzFcircJMAGoH-rPoryMlP_umbpa7cz-kimm_iRnxUD20JdVyxjBbaOxlws0VX0P1xBcnApcef5P0jnBcW-9JMRs7ix-HA4nqFQ9sQB0pL-HRRA8JxIAN_CSAZXII5eWnqNFfR3enJba8fNZcngNaTbByl2pvYxFpr8Nkpz0Mm5IkxLMsTeIihEBh5LqUlgnspwGY7D7EEaDBQrulkDU0XZeHWEebeZh48u6NUp86KLAZZZ0SSyEx4TTdQ0qpMmYZZPFxw8axaCNmTqhWtgqIVoQoUvYGij16vNbPGH_KinQ31ZYUoMP5_9NxvJ0_B5gknInnhyslIkSyuMrRY_ibDWMJkyuTmv0ewh2b7t1eX6vLs-mILzcEbHk6kiNxG0-PhxO1AYDPWu9XCfQdlHvcm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+experiments+and+focused+grid+search+for+neural+network+parameter+optimization&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Pontesa%2C+F+J&rft.au=Amorimb%2C+G+F&rft.au=Balestrassib%2C+P+P&rft.au=Paivab%2C+A+P&rft.date=2016-04-19&rft.issn=0925-2312&rft.volume=186&rft.spage=22&rft.epage=34&rft_id=info:doi/10.1016%2Fj.neucom.2015.12.061&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon