Design of experiments and focused grid search for neural network parameter optimization
The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Networks (ANNs) in machining processes. It proposes a method for an optimized project of a Multi-Layer Perceptron (MLP) network architecture applied for the prediction of Average Surface Roughne...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 186; pp. 22 - 34 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
19.04.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 |
| DOI | 10.1016/j.neucom.2015.12.061 |
Cover
| Abstract | The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Networks (ANNs) in machining processes. It proposes a method for an optimized project of a Multi-Layer Perceptron (MLP) network architecture applied for the prediction of Average Surface Roughness (Ra). The tuning method is expressed in the format of an algorithm employing two techniques from Design of Experiments (DOE) methodology: Full factorials and Evolutionary Operations (EVOP). Datasets retrieved from literature are employed to form training and test data sets for the ANN. The proposed tuning method leads to significant reduction of roughness prediction errors in machining operations in comparison to techniques currently used. It constitutes an effective option for the systematic design models based on ANN for prediction of surface roughness, filling the gap reported in the literature on this subject.
•We propose a systematic approach to design and optimize MLP networks.•We used DOE, Evolutionary Operation and Focused Grid Search for optimization.•The proposed method is compared to previous studies in machining applications.•The method presents superior results for all the comparisons. |
|---|---|
| AbstractList | The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Networks (ANNs) in machining processes. It proposes a method for an optimized project of a Multi-Layer Perceptron (MLP) network architecture applied for the prediction of Average Surface Roughness (Ra). The tuning method is expressed in the format of an algorithm employing two techniques from Design of Experiments (DOE) methodology: Full factorials and Evolutionary Operations (EVOP). Datasets retrieved from literature are employed to form training and test data sets for the ANN. The proposed tuning method leads to significant reduction of roughness prediction errors in machining operations in comparison to techniques currently used. It constitutes an effective option for the systematic design models based on ANN for prediction of surface roughness, filling the gap reported in the literature on this subject.
•We propose a systematic approach to design and optimize MLP networks.•We used DOE, Evolutionary Operation and Focused Grid Search for optimization.•The proposed method is compared to previous studies in machining applications.•The method presents superior results for all the comparisons. The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Networks (ANNs) in machining processes. It proposes a method for an optimized project of a Multi-Layer Perceptron (MLP) network architecture applied for the prediction of Average Surface Roughness (R sub(a)). The tuning method is expressed in the format of an algorithm employing two techniques from Design of Experiments (DOE) methodology: Full factorials and Evolutionary Operations (EVOP). Datasets retrieved from literature are employed to form training and test data sets for the ANN. The proposed tuning method leads to significant reduction of roughness prediction errors in machining operations in comparison to techniques currently used. It constitutes an effective option for the systematic design models based on ANN for prediction of surface roughness, filling the gap reported in the literature on this subject. |
| Author | Paiva, A.P. Pontes, F.J. Balestrassi, P.P. Ferreira, J.R. Amorim, G.F. |
| Author_xml | – sequence: 1 givenname: F.J. surname: Pontes fullname: Pontes, F.J. email: fabriciojosepontes@uol.com.br organization: UNESP (Universidade Estadual Paulista)-Avenida Ariberto Pereira da Cunha, no. 333, Pedregulho, Guaratinguetá, SP CEP: 12516-410, Brazil – sequence: 2 givenname: G.F. surname: Amorim fullname: Amorim, G.F. email: gabi@unifei.edu.br organization: Institute of Industrial Engineering and Management, UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho, Itajubá, MG CEP: 37500-903, Brazil – sequence: 3 givenname: P.P. surname: Balestrassi fullname: Balestrassi, P.P. email: ppbalestrassi@gmail.com organization: Institute of Industrial Engineering and Management, UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho, Itajubá, MG CEP: 37500-903, Brazil – sequence: 4 givenname: A.P. surname: Paiva fullname: Paiva, A.P. email: andersonppaiva@unifei.edu.br organization: Institute of Industrial Engineering and Management, UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho, Itajubá, MG CEP: 37500-903, Brazil – sequence: 5 givenname: J.R. surname: Ferreira fullname: Ferreira, J.R. email: jorofe@unifei.edu.br organization: Institute of Mechanical Engineering, UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho, Itajubá, MG CEP: 37500-903, Brazil |
| BookMark | eNqNkEtr3TAQhUVJoTePf9CFlt3Y1ciWbXURKGmbBALZpGQpZHmU6taWHEk3r19f396sskgCAweGc84w3z7Z88EjIZ-BlcCg-bouPW5MmErOQJTAS9bAB7KCruVFx7tmj6yY5KLgFfBPZD-lNWPQApcrcv0Dk7vxNFiKDzNGN6HPiWo_UBvMJuFAb6IbaEIdzZ9lF-lyK-pxkXwf4l8666gnzBhpmLOb3JPOLvhD8tHqMeHRsx6Q379-Xp2cFReXp-cn3y8KU1ddLureGmZY3_e8ZnWjoZbCgjGi09UyYLjk0jZSDtA2VrbYA1poheBt3Yiqrw7Il13vHMPtBlNWk0sGx1F7DJukoBOiErIW8h1WJgQTLdtav-2sJoaUIlplXP7_V47ajQqY2oJXa7UDr7bgFXC1gF_C9YvwvGDV8fGt2PEuhguuO4dRJePQGxxcRJPVENzrBf8AZUah-A |
| CitedBy_id | crossref_primary_10_1061_JHYEFF_HEENG_6262 crossref_primary_10_1007_s00170_021_07733_9 crossref_primary_10_1038_s41598_022_23326_2 crossref_primary_10_1109_TASE_2020_3000946 crossref_primary_10_1016_j_neunet_2020_12_007 crossref_primary_10_14775_ksmpe_2024_23_3_028 crossref_primary_10_1016_j_measurement_2018_07_071 crossref_primary_10_2166_wpt_2024_211 crossref_primary_10_1002_cem_3349 crossref_primary_10_1016_j_eswa_2021_115147 crossref_primary_10_1016_j_resourpol_2019_02_017 crossref_primary_10_1016_j_eswa_2020_114451 crossref_primary_10_1109_TVT_2021_3120267 crossref_primary_10_1016_j_asoc_2017_07_015 crossref_primary_10_1016_j_neucom_2022_06_085 crossref_primary_10_1002_cpe_7190 crossref_primary_10_1177_03019233241306076 crossref_primary_10_1177_20552076231205744 crossref_primary_10_1109_TMC_2023_3344645 crossref_primary_10_1016_j_ijpe_2021_108380 crossref_primary_10_1016_j_jclepro_2019_04_077 crossref_primary_10_1186_s12859_022_04582_5 crossref_primary_10_1186_s42400_023_00149_w crossref_primary_10_1016_j_energy_2017_04_032 crossref_primary_10_3390_math11112466 crossref_primary_10_1080_10426914_2021_1885709 crossref_primary_10_1016_j_jclepro_2018_04_084 crossref_primary_10_1177_00187208221129940 crossref_primary_10_1016_j_ecoinf_2024_102781 crossref_primary_10_1016_j_compbiomed_2021_104743 crossref_primary_10_3390_app142412041 crossref_primary_10_1016_j_simpat_2021_102414 crossref_primary_10_3390_horticulturae10020128 crossref_primary_10_1016_j_isatra_2018_05_005 crossref_primary_10_1109_TETC_2024_3387026 crossref_primary_10_1177_1471082X241258261 crossref_primary_10_3390_ani11051263 crossref_primary_10_1016_j_rinp_2017_02_027 crossref_primary_10_3390_en16010369 crossref_primary_10_1007_s11044_020_09772_8 crossref_primary_10_1080_00032719_2017_1375940 crossref_primary_10_5194_gmd_16_6479_2023 crossref_primary_10_1002_mgg3_1255 crossref_primary_10_1016_j_engappai_2024_109811 crossref_primary_10_1039_D4SU00196F crossref_primary_10_3390_ma13173828 crossref_primary_10_3390_geosciences13060183 crossref_primary_10_1016_j_conbuildmat_2023_134637 crossref_primary_10_1016_j_rineng_2023_101639 crossref_primary_10_1016_j_heliyon_2024_e24374 crossref_primary_10_1177_20552076231152751 crossref_primary_10_1109_ACCESS_2021_3092743 crossref_primary_10_1089_big_2021_0067 crossref_primary_10_3390_en13082017 crossref_primary_10_3390_fi14050153 crossref_primary_10_1007_s13369_019_04071_7 crossref_primary_10_4315_JFP_20_447 crossref_primary_10_1016_j_knosys_2023_110864 crossref_primary_10_1088_1361_6501_ad3b2c crossref_primary_10_1109_ACCESS_2021_3068959 crossref_primary_10_3390_fluids9100239 crossref_primary_10_1016_j_enbuild_2021_111467 crossref_primary_10_3390_s22228630 crossref_primary_10_1109_ACCESS_2021_3056050 crossref_primary_10_2118_209594_PA crossref_primary_10_1109_TII_2024_3359416 crossref_primary_10_1115_1_4045446 crossref_primary_10_1002_eng2_12119 crossref_primary_10_1177_09576509221095347 crossref_primary_10_1155_2024_5564380 crossref_primary_10_3390_app12188967 crossref_primary_10_3390_en13040807 crossref_primary_10_1177_16878140211017632 crossref_primary_10_3390_bioengineering9090482 crossref_primary_10_18048_2020_59_08 crossref_primary_10_1109_JIOT_2020_3024223 crossref_primary_10_1016_j_powtec_2023_118373 crossref_primary_10_1371_journal_pone_0188577 crossref_primary_10_1155_2020_2858471 crossref_primary_10_1109_TDSC_2022_3143493 crossref_primary_10_1016_j_compag_2020_105530 crossref_primary_10_1016_j_oceaneng_2023_115542 crossref_primary_10_1088_2053_1591_ab3964 crossref_primary_10_3390_math11040957 crossref_primary_10_1016_j_knosys_2022_109465 crossref_primary_10_3390_app13031305 crossref_primary_10_3390_app10113680 crossref_primary_10_1145_3588730 crossref_primary_10_1093_milmed_usad210 crossref_primary_10_3390_su151914383 crossref_primary_10_1007_s11044_024_10043_z crossref_primary_10_1016_j_buildenv_2023_110276 crossref_primary_10_1016_j_precisioneng_2024_02_018 crossref_primary_10_1016_j_caeai_2022_100066 crossref_primary_10_3390_sym16040428 crossref_primary_10_1109_JBHI_2024_3465929 crossref_primary_10_1007_s10596_022_10151_9 crossref_primary_10_3390_pr9020323 crossref_primary_10_1109_ACCESS_2023_3331955 crossref_primary_10_1016_j_anucene_2021_108265 crossref_primary_10_1002_joc_7738 crossref_primary_10_1016_j_conbuildmat_2024_134867 crossref_primary_10_1061__ASCE_ST_1943_541X_0003345 crossref_primary_10_3390_electronics11233976 crossref_primary_10_1016_j_jweia_2024_105752 crossref_primary_10_1007_s13753_023_00465_2 crossref_primary_10_1016_j_eswa_2022_118178 crossref_primary_10_1016_j_oceaneng_2022_111171 crossref_primary_10_1007_s13278_024_01371_1 crossref_primary_10_1177_00031348211038568 crossref_primary_10_1016_j_cattod_2020_06_030 crossref_primary_10_1109_TMLCN_2023_3332021 crossref_primary_10_1155_2020_1846926 crossref_primary_10_1080_00207543_2019_1614691 crossref_primary_10_33725_mamad_1116999 crossref_primary_10_1016_j_ress_2023_109333 crossref_primary_10_1016_j_anucene_2024_111053 crossref_primary_10_1186_s12245_023_00573_2 crossref_primary_10_1109_ACCESS_2022_3188111 crossref_primary_10_1109_ACCESS_2019_2919189 crossref_primary_10_21205_deufmd_2025277910 crossref_primary_10_3390_forecast3010006 crossref_primary_10_1016_j_ymssp_2017_08_001 crossref_primary_10_1080_19331681_2022_2082622 crossref_primary_10_1016_j_jmapro_2021_04_014 crossref_primary_10_1108_IMDS_01_2022_0015 crossref_primary_10_1016_j_compbiomed_2020_103665 crossref_primary_10_1007_s00521_021_06865_z crossref_primary_10_1017_dsj_2020_31 crossref_primary_10_1109_ACCESS_2019_2936443 crossref_primary_10_1007_s00170_024_13766_7 crossref_primary_10_1016_j_asoc_2024_112088 crossref_primary_10_1016_j_compbiomed_2023_106856 crossref_primary_10_1016_j_rcim_2021_102226 crossref_primary_10_1016_j_bspc_2023_105938 crossref_primary_10_3390_electronics10151857 crossref_primary_10_1016_j_rser_2020_110450 crossref_primary_10_1177_00202940221135903 crossref_primary_10_1016_j_ress_2025_110866 crossref_primary_10_3389_fbioe_2023_1204972 crossref_primary_10_1002_cjce_23832 crossref_primary_10_1016_j_heliyon_2024_e26192 crossref_primary_10_1016_j_conbuildmat_2024_138240 crossref_primary_10_1016_j_matdes_2024_113377 crossref_primary_10_1111_exsy_12954 crossref_primary_10_1088_1742_6596_2724_1_012011 crossref_primary_10_1016_j_energy_2024_130866 crossref_primary_10_1007_s11696_024_03715_9 crossref_primary_10_1016_j_ins_2023_03_030 crossref_primary_10_1002_qre_3408 crossref_primary_10_1016_j_bdr_2021_100286 crossref_primary_10_1186_s40854_023_00490_6 crossref_primary_10_3389_fbuil_2024_1439700 crossref_primary_10_1002_aisy_202000075 crossref_primary_10_1016_j_ijhydene_2024_12_283 crossref_primary_10_1186_s12859_022_04815_7 crossref_primary_10_1007_s00521_024_09857_x crossref_primary_10_2174_18741207_v17_e230510_2022_HT28_4371_8 crossref_primary_10_1080_10803548_2022_2135281 crossref_primary_10_1111_risa_14124 |
| Cites_doi | 10.1016/j.matdes.2005.01.010 10.1243/09544054JEM884 10.1007/s00170-010-2668-5 10.1007/s11665-009-9452-4 10.1007/s00170-010-2710-7 10.1109/CERMA.2006.83 10.1007/s00170-005-2604-2 10.1007/s10845-008-0097-1 10.1016/j.jmatprotec.2007.11.082 10.1007/s00170-004-2429-4 10.1007/s00170-005-0175-x 10.1016/j.eswa.2009.07.033 10.1007/s00170-007-0999-7 10.1016/j.neucom.2008.02.002 10.1080/00401706.1993.10484984 10.1007/s00521-005-0468-x 10.1108/17410380610688232 10.1016/S0736-5845(02)00005-4 10.1109/PCT.2007.4538630 10.1007/s00170-006-0719-8 10.1016/j.jmatprotec.2005.04.123 10.1007/s00170-006-0429-2 10.1016/j.eswa.2009.05.098 10.1007/s00170-004-2215-3 10.1007/s00170-007-1140-7 10.1016/j.neucom.2008.09.024 10.1590/S1678-58782008000100011 10.1006/mssp.2001.1460 10.1007/s10845-010-0415-2 10.1016/j.ijmachtools.2004.09.007 10.1016/j.eswa.2008.09.024 10.1016/j.mcm.2010.03.007 10.1142/S1469026810002823 10.1016/j.jmatprotec.2008.07.023 10.1007/s00170-009-2456-2 10.1287/ijoc.1050.0136 10.1016/j.cor.2005.02.043 10.1016/j.jmatprotec.2007.10.024 10.1016/S0890-6955(03)00059-2 10.1007/s00170-004-2203-7 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
| DOI | 10.1016/j.neucom.2015.12.061 |
| DatabaseName | CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Engineering Research Database Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 34 |
| ExternalDocumentID | 10_1016_j_neucom_2015_12_061 S0925231215020184 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c438t-4bfc0c0bbb24046a1495f1cc58a38a31c2929f699d176f97eb1ef1755274653b3 |
| IEDL.DBID | .~1 |
| ISSN | 0925-2312 |
| IngestDate | Sat Sep 27 21:08:47 EDT 2025 Tue Oct 07 09:56:11 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Wed Oct 01 02:27:26 EDT 2025 Fri Feb 23 02:28:32 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Design of Experiment Artificial Neural Network Focused Grid Search Tuning Machining |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-4bfc0c0bbb24046a1495f1cc58a38a31c2929f699d176f97eb1ef1755274653b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1805505709 |
| PQPubID | 23462 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1855359459 proquest_miscellaneous_1805505709 crossref_citationtrail_10_1016_j_neucom_2015_12_061 crossref_primary_10_1016_j_neucom_2015_12_061 elsevier_sciencedirect_doi_10_1016_j_neucom_2015_12_061 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-04-19 |
| PublicationDateYYYYMMDD | 2016-04-19 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Haykin (bib47) 2009 Zain, Haron, Sharif (bib28) 2010; 37 Montgomery (bib13) 2001 Correa, Bielza, Pamies-Teixeira (bib10) 2009; 36 Yang, Natarajan, Sekar, Palani (bib25) 2010; 51 Cus, Zuperl (bib2) 2006; 173 bib27 Çaydaş, Ekici (bib3) 2012; 23 Cervellera, Wen, Chen (bib15) 2007; 34 Quiza, Figueira, Davim (bib36) 2008; 37 Box (bib44) 1957; 6 Chen, Hsu, Hsieh, Tai (bib39) 2010; 37 Taguchi, Elsayed, Hsiang (bib45) 1988 Benardos, Vosniakos (bib19) 2003; 43 . Lasheras, Vilán, García Nieto, Díaz (bib37) 2010; 52 Antony, Anand, Kumar, Tiwari (bib8) 2006; 17 Kleijnen, Sanchez, Lucas, Cioppa (bib43) 2005; 17 Chang, Lu (bib22) 2006; 29 Zhong, Khoo, Han (bib29) 2006; 28 Karayel (bib6) 2009; 209 Coleman, Montgomery, Systematic (bib34) 1993; 35 Singh, Rao (bib1) 2007; 32 Sarkar, Mitra, Bhattacharyya (bib51) 2006; 27 Jiménez, Lázaro, Dorronsoro (bib9) 2009; 72 Bagci, Işik (bib17) 2006; 31 Trent, Wright (bib18) 2000 Kuo, Wu (bib35) 2006; 27 Muñoz-Escalona, Maropoulos (bib5) 2010; 19 Oktem, Erzurumlu, Erzincanli (bib21) 2006; 27 Dhokia, Kumar, Vichare, Newman, Allen (bib14) 2008; 222 Sharma, Dhiman, Sehgal, Sharma (bib20) 2008; 19 A.R. Queiroz, F.A. Oliveira, J.W.M. Lima, P.P. Balestrassi, Simulating electricity spot prices in brazil using neural network and design of experiments, In: Proceedings of the IEEE Lausanne PowerTech, 2007, pp. 2029–2034 Box, Hunter, Hunter (bib46) 2006 Benardos, Vosniakos (bib31) 2002; 18 Montgomery, Jennings, Kulahci (bib49) 2008 Karnik, Gaitonde, Davim (bib16) 2008; 38 Özel, Karpat (bib30) 2005; 45 Balestrassi, Popova, Paiva, Marangon Lima (bib41) 2009; 72 Pontes, Ferreira, Silva, Paiva, Balestrassi (bib12) 2010; 49 Zanchettin, Minku, Ludermir (bib40) 2010; 09 Lopes, Sales, Palma (bib7) 2008; 30 bib26 Zanchettin, Ludermir (bib33) 2007; 14 Sick (bib50) 2002; 16 Karpat, Özel (bib32) 2007; 35 Davim, Gaitonde, Karnik (bib24) 2008; 205 Kilickap, Huseyinoglu, Yardimeden (bib4) 2011; 52 J.M. Ortiz-Rodriguez, M.R. Martínez-Blanco, H.R. Vega-Carrillo, Robust design of artificial neural networks applying the taguchi methodology and DoE, In: Proc. Electron. Robot. Automot. Mech. Conf. CERMA 2006, pp. 131–136 Çaydaş, Hasçalık (bib11) 2008; 202 Pal, Chakraborty (bib23) 2005; 14 Bishop (bib48) 2006 Oktem (10.1016/j.neucom.2015.12.061_bib21) 2006; 27 Karnik (10.1016/j.neucom.2015.12.061_bib16) 2008; 38 Benardos (10.1016/j.neucom.2015.12.061_bib19) 2003; 43 Özel (10.1016/j.neucom.2015.12.061_bib30) 2005; 45 10.1016/j.neucom.2015.12.061_bib42 Davim (10.1016/j.neucom.2015.12.061_bib24) 2008; 205 10.1016/j.neucom.2015.12.061_bib38 Zanchettin (10.1016/j.neucom.2015.12.061_bib40) 2010; 09 Cervellera (10.1016/j.neucom.2015.12.061_bib15) 2007; 34 Chen (10.1016/j.neucom.2015.12.061_bib39) 2010; 37 Lasheras (10.1016/j.neucom.2015.12.061_bib37) 2010; 52 Kuo (10.1016/j.neucom.2015.12.061_bib35) 2006; 27 Muñoz-Escalona (10.1016/j.neucom.2015.12.061_bib5) 2010; 19 Zanchettin (10.1016/j.neucom.2015.12.061_bib33) 2007; 14 Dhokia (10.1016/j.neucom.2015.12.061_bib14) 2008; 222 Haykin (10.1016/j.neucom.2015.12.061_bib47) 2009 Montgomery (10.1016/j.neucom.2015.12.061_bib13) 2001 Cus (10.1016/j.neucom.2015.12.061_bib2) 2006; 173 Çaydaş (10.1016/j.neucom.2015.12.061_bib3) 2012; 23 Box (10.1016/j.neucom.2015.12.061_bib46) 2006 Sarkar (10.1016/j.neucom.2015.12.061_bib51) 2006; 27 Jiménez (10.1016/j.neucom.2015.12.061_bib9) 2009; 72 Quiza (10.1016/j.neucom.2015.12.061_bib36) 2008; 37 Sick (10.1016/j.neucom.2015.12.061_bib50) 2002; 16 Kilickap (10.1016/j.neucom.2015.12.061_bib4) 2011; 52 Balestrassi (10.1016/j.neucom.2015.12.061_bib41) 2009; 72 Box (10.1016/j.neucom.2015.12.061_bib44) 1957; 6 Correa (10.1016/j.neucom.2015.12.061_bib10) 2009; 36 Yang (10.1016/j.neucom.2015.12.061_bib25) 2010; 51 Çaydaş (10.1016/j.neucom.2015.12.061_bib11) 2008; 202 Karpat (10.1016/j.neucom.2015.12.061_bib32) 2007; 35 Antony (10.1016/j.neucom.2015.12.061_bib8) 2006; 17 Taguchi (10.1016/j.neucom.2015.12.061_bib45) 1988 Bishop (10.1016/j.neucom.2015.12.061_bib48) 2006 Chang (10.1016/j.neucom.2015.12.061_bib22) 2006; 29 Pal (10.1016/j.neucom.2015.12.061_bib23) 2005; 14 Lopes (10.1016/j.neucom.2015.12.061_bib7) 2008; 30 Singh (10.1016/j.neucom.2015.12.061_bib1) 2007; 32 Coleman (10.1016/j.neucom.2015.12.061_bib34) 1993; 35 Bagci (10.1016/j.neucom.2015.12.061_bib17) 2006; 31 Sharma (10.1016/j.neucom.2015.12.061_bib20) 2008; 19 Karayel (10.1016/j.neucom.2015.12.061_bib6) 2009; 209 Montgomery (10.1016/j.neucom.2015.12.061_bib49) 2008 Zain (10.1016/j.neucom.2015.12.061_bib28) 2010; 37 Zhong (10.1016/j.neucom.2015.12.061_bib29) 2006; 28 Trent (10.1016/j.neucom.2015.12.061_bib18) 2000 Kleijnen (10.1016/j.neucom.2015.12.061_bib43) 2005; 17 Benardos (10.1016/j.neucom.2015.12.061_bib31) 2002; 18 Pontes (10.1016/j.neucom.2015.12.061_bib12) 2010; 49 |
| References_xml | – volume: 27 start-page: 455 year: 2006 end-page: 461 ident: bib35 article-title: Application of a Taguchi-based neural network prediction design of the film coating process for polymer blends publication-title: Int. J. Adv. Manuf. Technol. – volume: 32 start-page: 1115 year: 2007 end-page: 1124 ident: bib1 article-title: A surface roughness prediction model for hard turning process publication-title: Int. J. Adv. Manuf. Technol. – year: 2000 ident: bib18 publication-title: Metal Cutting – volume: 222 start-page: 137 year: 2008 end-page: 153 ident: bib14 article-title: Surface roughness prediction model for CNC machining of polypropylene publication-title: J. Eng. Manuf. – volume: 52 start-page: 79 year: 2011 end-page: 88 ident: bib4 article-title: Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm publication-title: Int. J. Adv. Manuf. Technol. – year: 1988 ident: bib45 publication-title: Quality Engineering in Production Systems – volume: 18 start-page: 343 year: 2002 end-page: 354 ident: bib31 article-title: Prediction of surface roughness in CNC face milling using neural networks and Taguchi’ s design of experiments publication-title: Robot. Comput. Integr. Manuf. – volume: 19 start-page: 473 year: 2008 end-page: 483 ident: bib20 article-title: Estimation of cutting forces and surface roughness for hard turning using neural networks publication-title: J. Intell. Manuf. – volume: 29 start-page: 867 year: 2006 end-page: 878 ident: bib22 article-title: Study on the prediction model of surface roughness for side milling operations publication-title: Int. J. Adv. Manuf. Technol. – ident: bib26 – volume: 35 start-page: 1 year: 1993 end-page: 12 ident: bib34 article-title: Approach to planning for a designed industrial experiment publication-title: Technometrics – volume: 19 start-page: 185 year: 2010 end-page: 193 ident: bib5 article-title: Artificial neural networks for surface roughness prediction when face milling Al 7075-T7351 publication-title: J. Mater. Eng. Perform. – volume: 209 start-page: 3125 year: 2009 end-page: 3137 ident: bib6 article-title: Prediction and control of surface roughness in CNC lathe using artificial neural network publication-title: J. Mater. Process. Technol. – volume: 43 start-page: 833 year: 2003 end-page: 844 ident: bib19 article-title: Predicting surface roughness in machining: A review publication-title: Int. J. Mach. Tools Manuf. – year: 2006 ident: bib46 article-title: Statistics for Experimenters: Design Innovation and Discovery – volume: 49 start-page: 879 year: 2010 end-page: 902 ident: bib12 article-title: Artificial neural networks for machining processes surface roughness modeling publication-title: Int. J. Adv. Manuf. Technol. – volume: 72 start-page: 1160 year: 2009 end-page: 1178 ident: bib41 article-title: Design of experiments on neural network’s training for nonlinear time series forecasting publication-title: Neurocomputing – volume: 37 start-page: 1755 year: 2010 end-page: 1768 ident: bib28 article-title: Prediction of surface roughness in the end milling machining using artificial neural network publication-title: Expert Syst. Appl. – reference: J.M. Ortiz-Rodriguez, M.R. Martínez-Blanco, H.R. Vega-Carrillo, Robust design of artificial neural networks applying the taguchi methodology and DoE, In: Proc. Electron. Robot. Automot. Mech. Conf. CERMA 2006, pp. 131–136 – volume: 34 start-page: 70 year: 2007 end-page: 90 ident: bib15 article-title: Neural network and regression spline value function approximations for stochastic dynamic programming publication-title: Comput. Oper. Res. – volume: 31 start-page: 10 year: 2006 end-page: 17 ident: bib17 article-title: Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN publication-title: Int. J. Adv. Manuf. Technol. – volume: 202 start-page: 574 year: 2008 end-page: 582 ident: bib11 article-title: A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method publication-title: J. Mater. Process. Technol. – volume: 09 start-page: 137 year: 2010 end-page: 152 ident: bib40 article-title: Design of experiments in neuro-fuzzy systems publication-title: Int. J. Comput. Intell. Appl. – volume: 51 start-page: 965 year: 2010 end-page: 971 ident: bib25 article-title: Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm publication-title: Int. J. Adv. Manuf. Technol. – volume: 23 start-page: 639 year: 2012 end-page: 650 ident: bib3 article-title: Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel publication-title: J. Intell. Manuf. – volume: 38 start-page: 868 year: 2008 end-page: 883 ident: bib16 article-title: A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling publication-title: Int. J. Adv. Manuf. Technol. – year: 2009 ident: bib47 article-title: Neural Networks and Learning Machines – volume: 27 start-page: 735 year: 2006 end-page: 744 ident: bib21 article-title: Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm publication-title: Mater. Des. – volume: 52 start-page: 1169 year: 2010 end-page: 1176 ident: bib37 article-title: The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process publication-title: Math. Comput. Model. – volume: 37 start-page: 641 year: 2008 end-page: 648 ident: bib36 article-title: Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel publication-title: Int. J. Adv. Manuf. Technol. – volume: 37 start-page: 716 year: 2010 end-page: 726 ident: bib39 article-title: A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN publication-title: Expert Syst. Appl. – volume: 16 start-page: 487 year: 2002 end-page: 546 ident: bib50 article-title: On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research publication-title: Mech. Syst. Signal Process. – volume: 30 start-page: 77 year: 2008 end-page: 83 ident: bib7 article-title: Influence of machining parameters on fatigue endurance limit of AISI 4140 steel publication-title: J. Braz. Soc. Mech. Sci. Eng. – year: 2001 ident: bib13 publication-title: Design and Analysis of Experiments – volume: 45 start-page: 467 year: 2005 end-page: 479 ident: bib30 article-title: Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks publication-title: Int. J. Mach. Tools Manuf. – volume: 6 start-page: 81 year: 1957 end-page: 101 ident: bib44 article-title: Evolutionary operation: a method for increasing industrial productivity publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.) – volume: 14 start-page: 328 year: 2007 end-page: 337 ident: bib33 article-title: Global Optimization Methods for Designing and Training Feedforward Artificial Neural Networks publication-title: Adv. Neural Netw. – volume: 36 start-page: 7270 year: 2009 end-page: 7279 ident: bib10 article-title: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process publication-title: Expert Syst. Appl. – volume: 17 start-page: 263 year: 2005 end-page: 289 ident: bib43 article-title: State-of-the-art review: a user’s guide to the brave new world of designing simulation experiments publication-title: Inf. J. Comput. – volume: 17 start-page: 908 year: 2006 end-page: 925 ident: bib8 article-title: Multiple response optimization using Taguchi methodology and neuro-fuzzy based model publication-title: J. Manuf. Technol. Manag. – volume: 205 start-page: 16 year: 2008 end-page: 23 ident: bib24 article-title: Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models publication-title: J. Mater. Process. Technol. – year: 2008 ident: bib49 publication-title: Introduction to Time Series Analysis and Forecasting – volume: 14 start-page: 319 year: 2005 end-page: 324 ident: bib23 article-title: Surface roughness prediction in turning using artificial neural network publication-title: Neural Comput. Appl. – volume: 27 start-page: 501 year: 2006 end-page: 508 ident: bib51 article-title: Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model publication-title: Int. J. Adv. Manuf. Technol. – reference: . – reference: A.R. Queiroz, F.A. Oliveira, J.W.M. Lima, P.P. Balestrassi, Simulating electricity spot prices in brazil using neural network and design of experiments, In: Proceedings of the IEEE Lausanne PowerTech, 2007, pp. 2029–2034 – volume: 35 start-page: 234 year: 2007 end-page: 247 ident: bib32 article-title: Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization publication-title: Int. J. Adv. Manuf. Technol. – volume: 28 start-page: 688 year: 2006 end-page: 693 ident: bib29 article-title: Prediction of surface roughness of turned surfaces using neural networks publication-title: Int. J. Adv. Manuf. Technol. – ident: bib27 – volume: 173 start-page: 281 year: 2006 end-page: 290 ident: bib2 article-title: Approach to optimization of cutting conditions by using artificial neural networks publication-title: J. Mater. Process. Technol. – year: 2006 ident: bib48 article-title: Pattern Recognition and Machine Learning – volume: 72 start-page: 2824 year: 2009 end-page: 2832 ident: bib9 article-title: Finding optimal model parameters by deterministic and annealed focused grid search publication-title: Neurocomputing – volume: 27 start-page: 735 year: 2006 ident: 10.1016/j.neucom.2015.12.061_bib21 article-title: Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm publication-title: Mater. Des. doi: 10.1016/j.matdes.2005.01.010 – volume: 222 start-page: 137 year: 2008 ident: 10.1016/j.neucom.2015.12.061_bib14 article-title: Surface roughness prediction model for CNC machining of polypropylene publication-title: J. Eng. Manuf. doi: 10.1243/09544054JEM884 – volume: 51 start-page: 965 year: 2010 ident: 10.1016/j.neucom.2015.12.061_bib25 article-title: Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-2668-5 – volume: 19 start-page: 185 year: 2010 ident: 10.1016/j.neucom.2015.12.061_bib5 article-title: Artificial neural networks for surface roughness prediction when face milling Al 7075-T7351 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-009-9452-4 – volume: 52 start-page: 79 year: 2011 ident: 10.1016/j.neucom.2015.12.061_bib4 article-title: Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-2710-7 – ident: 10.1016/j.neucom.2015.12.061_bib38 doi: 10.1109/CERMA.2006.83 – volume: 29 start-page: 867 year: 2006 ident: 10.1016/j.neucom.2015.12.061_bib22 article-title: Study on the prediction model of surface roughness for side milling operations publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-005-2604-2 – year: 2006 ident: 10.1016/j.neucom.2015.12.061_bib46 – volume: 19 start-page: 473 year: 2008 ident: 10.1016/j.neucom.2015.12.061_bib20 article-title: Estimation of cutting forces and surface roughness for hard turning using neural networks publication-title: J. Intell. Manuf. doi: 10.1007/s10845-008-0097-1 – volume: 205 start-page: 16 year: 2008 ident: 10.1016/j.neucom.2015.12.061_bib24 article-title: Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.11.082 – volume: 6 start-page: 81 year: 1957 ident: 10.1016/j.neucom.2015.12.061_bib44 article-title: Evolutionary operation: a method for increasing industrial productivity publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.) – volume: 28 start-page: 688 year: 2006 ident: 10.1016/j.neucom.2015.12.061_bib29 article-title: Prediction of surface roughness of turned surfaces using neural networks publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-004-2429-4 – year: 2001 ident: 10.1016/j.neucom.2015.12.061_bib13 – volume: 31 start-page: 10 year: 2006 ident: 10.1016/j.neucom.2015.12.061_bib17 article-title: Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-005-0175-x – volume: 37 start-page: 1755 year: 2010 ident: 10.1016/j.neucom.2015.12.061_bib28 article-title: Prediction of surface roughness in the end milling machining using artificial neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.07.033 – volume: 37 start-page: 641 year: 2008 ident: 10.1016/j.neucom.2015.12.061_bib36 article-title: Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-007-0999-7 – volume: 72 start-page: 1160 year: 2009 ident: 10.1016/j.neucom.2015.12.061_bib41 article-title: Design of experiments on neural network’s training for nonlinear time series forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.02.002 – volume: 35 start-page: 1 year: 1993 ident: 10.1016/j.neucom.2015.12.061_bib34 article-title: Approach to planning for a designed industrial experiment publication-title: Technometrics doi: 10.1080/00401706.1993.10484984 – volume: 14 start-page: 319 year: 2005 ident: 10.1016/j.neucom.2015.12.061_bib23 article-title: Surface roughness prediction in turning using artificial neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-005-0468-x – volume: 17 start-page: 908 year: 2006 ident: 10.1016/j.neucom.2015.12.061_bib8 article-title: Multiple response optimization using Taguchi methodology and neuro-fuzzy based model publication-title: J. Manuf. Technol. Manag. doi: 10.1108/17410380610688232 – volume: 18 start-page: 343 year: 2002 ident: 10.1016/j.neucom.2015.12.061_bib31 article-title: Prediction of surface roughness in CNC face milling using neural networks and Taguchi’ s design of experiments publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/S0736-5845(02)00005-4 – ident: 10.1016/j.neucom.2015.12.061_bib42 doi: 10.1109/PCT.2007.4538630 – volume: 35 start-page: 234 year: 2007 ident: 10.1016/j.neucom.2015.12.061_bib32 article-title: Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-006-0719-8 – volume: 14 start-page: 328 year: 2007 ident: 10.1016/j.neucom.2015.12.061_bib33 article-title: Global Optimization Methods for Designing and Training Feedforward Artificial Neural Networks publication-title: Adv. Neural Netw. – volume: 173 start-page: 281 year: 2006 ident: 10.1016/j.neucom.2015.12.061_bib2 article-title: Approach to optimization of cutting conditions by using artificial neural networks publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2005.04.123 – volume: 32 start-page: 1115 year: 2007 ident: 10.1016/j.neucom.2015.12.061_bib1 article-title: A surface roughness prediction model for hard turning process publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-006-0429-2 – volume: 37 start-page: 716 year: 2010 ident: 10.1016/j.neucom.2015.12.061_bib39 article-title: A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.05.098 – year: 2008 ident: 10.1016/j.neucom.2015.12.061_bib49 – volume: 27 start-page: 455 year: 2006 ident: 10.1016/j.neucom.2015.12.061_bib35 article-title: Application of a Taguchi-based neural network prediction design of the film coating process for polymer blends publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-004-2215-3 – volume: 38 start-page: 868 year: 2008 ident: 10.1016/j.neucom.2015.12.061_bib16 article-title: A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-007-1140-7 – volume: 72 start-page: 2824 year: 2009 ident: 10.1016/j.neucom.2015.12.061_bib9 article-title: Finding optimal model parameters by deterministic and annealed focused grid search publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.09.024 – volume: 30 start-page: 77 year: 2008 ident: 10.1016/j.neucom.2015.12.061_bib7 article-title: Influence of machining parameters on fatigue endurance limit of AISI 4140 steel publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1590/S1678-58782008000100011 – volume: 16 start-page: 487 year: 2002 ident: 10.1016/j.neucom.2015.12.061_bib50 article-title: On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research publication-title: Mech. Syst. Signal Process. doi: 10.1006/mssp.2001.1460 – volume: 23 start-page: 639 year: 2012 ident: 10.1016/j.neucom.2015.12.061_bib3 article-title: Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel publication-title: J. Intell. Manuf. doi: 10.1007/s10845-010-0415-2 – volume: 45 start-page: 467 year: 2005 ident: 10.1016/j.neucom.2015.12.061_bib30 article-title: Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2004.09.007 – volume: 36 start-page: 7270 year: 2009 ident: 10.1016/j.neucom.2015.12.061_bib10 article-title: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.024 – volume: 52 start-page: 1169 year: 2010 ident: 10.1016/j.neucom.2015.12.061_bib37 article-title: The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2010.03.007 – year: 1988 ident: 10.1016/j.neucom.2015.12.061_bib45 – year: 2009 ident: 10.1016/j.neucom.2015.12.061_bib47 – year: 2006 ident: 10.1016/j.neucom.2015.12.061_bib48 – volume: 09 start-page: 137 year: 2010 ident: 10.1016/j.neucom.2015.12.061_bib40 article-title: Design of experiments in neuro-fuzzy systems publication-title: Int. J. Comput. Intell. Appl. doi: 10.1142/S1469026810002823 – volume: 209 start-page: 3125 year: 2009 ident: 10.1016/j.neucom.2015.12.061_bib6 article-title: Prediction and control of surface roughness in CNC lathe using artificial neural network publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2008.07.023 – volume: 49 start-page: 879 year: 2010 ident: 10.1016/j.neucom.2015.12.061_bib12 article-title: Artificial neural networks for machining processes surface roughness modeling publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2456-2 – volume: 17 start-page: 263 year: 2005 ident: 10.1016/j.neucom.2015.12.061_bib43 article-title: State-of-the-art review: a user’s guide to the brave new world of designing simulation experiments publication-title: Inf. J. Comput. doi: 10.1287/ijoc.1050.0136 – volume: 34 start-page: 70 year: 2007 ident: 10.1016/j.neucom.2015.12.061_bib15 article-title: Neural network and regression spline value function approximations for stochastic dynamic programming publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2005.02.043 – year: 2000 ident: 10.1016/j.neucom.2015.12.061_bib18 – volume: 202 start-page: 574 year: 2008 ident: 10.1016/j.neucom.2015.12.061_bib11 article-title: A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.10.024 – volume: 43 start-page: 833 year: 2003 ident: 10.1016/j.neucom.2015.12.061_bib19 article-title: Predicting surface roughness in machining: A review publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/S0890-6955(03)00059-2 – volume: 27 start-page: 501 year: 2006 ident: 10.1016/j.neucom.2015.12.061_bib51 article-title: Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-004-2203-7 |
| SSID | ssj0017129 |
| Score | 2.5481417 |
| Snippet | The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Networks (ANNs) in machining processes. It proposes a... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 22 |
| SubjectTerms | Artificial Neural Network Design of Experiment Design of experiments Focused Grid Search Learning theory Machining Mathematical models Neural networks Searching Surface roughness Tuning |
| Title | Design of experiments and focused grid search for neural network parameter optimization |
| URI | https://dx.doi.org/10.1016/j.neucom.2015.12.061 https://www.proquest.com/docview/1805505709 https://www.proquest.com/docview/1855359459 |
| Volume | 186 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEA4PvXhxF3cieK2vSZqkOYoLT0UvKnoLzSZPtJW3XP3tTro8UVBB6KVhUsJkMkvzzQxCh4E650RqEpsFAQGKT5O8oC6hMsjcC1swGnOHr2_E4D67fOSPPXTS5cJEWGWr-xudXmvrdqTfcrP_Nhz2b1NFIYqK1RHA5YFAJWawZzJ2MTh6n8E8iCS0qbdHeRKpu_S5GuNV-mnEjMB0Xv8UFOQn8_RNUdfW53wZLbZuIz5uVraCer5cRUtdSwbcntA19HBaIzJwFfBn7f4xLkqHQ2WnY-_w02jocCPgMDbCsaIlfLps8OA41gJ_jRgZXIE2eW3TNNfR_fnZ3ckgaXsnANNZPkkyE2xqU2MMmOxMFDEQCsRanhcMHmIp-EVBKOWIFEFJUNk-gCvBIUoVnBm2gebKqvSbCIvg8gCG3VNqMu9kngKtt5Ixlctg6BZiHcu0bQuLx_4WL7pDkD3rhtE6MloTqoHRWyiZzXprCmv8QS-73dBfBESD7v9j5kG3eRrOTrwQKUpfTcea5GkdoKXqNxrOGVcZV9v_XsEOWoA3ES-hiNpFc5PR1O-BLzMx-7Ww7qP544urwc0HuFD1kQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6jHvTiLu5G8FqnSZukOcqojOtFRW-h2WREW5nl6m_3pYuioILQU_pSwkvyluZ7XxA68NRay2MdmdRzSFBcHGU5tREVXmSOmzyhoXb46pr379LzB_bQQb22FibAKhvbX9v0ylo3Ld1Gm93XwaB7E0sKWVRgR4CQBxKVKTSTMipCBnb49oHzIILQmnCPsiiIt_VzFcircJMAGoH-rPoryMlP_umbpa7cz-kimm_iRnxUD20JdVyxjBbaOxlws0VX0P1xBcnApcef5P0jnBcW-9JMRs7ix-HA4nqFQ9sQB0pL-HRRA8JxIAN_CSAZXII5eWnqNFfR3enJba8fNZcngNaTbByl2pvYxFpr8Nkpz0Mm5IkxLMsTeIihEBh5LqUlgnspwGY7D7EEaDBQrulkDU0XZeHWEebeZh48u6NUp86KLAZZZ0SSyEx4TTdQ0qpMmYZZPFxw8axaCNmTqhWtgqIVoQoUvYGij16vNbPGH_KinQ31ZYUoMP5_9NxvJ0_B5gknInnhyslIkSyuMrRY_ibDWMJkyuTmv0ewh2b7t1eX6vLs-mILzcEbHk6kiNxG0-PhxO1AYDPWu9XCfQdlHvcm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+experiments+and+focused+grid+search+for+neural+network+parameter+optimization&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Pontesa%2C+F+J&rft.au=Amorimb%2C+G+F&rft.au=Balestrassib%2C+P+P&rft.au=Paivab%2C+A+P&rft.date=2016-04-19&rft.issn=0925-2312&rft.volume=186&rft.spage=22&rft.epage=34&rft_id=info:doi/10.1016%2Fj.neucom.2015.12.061&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |