Multisymbol Time Division Coding for High-Frequency Steady-State Visual Evoked Potential-Based Brain-Computer Interface

The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the di...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 1693 - 1704
Main Authors Ye, Xiaochen, Yang, Chen, Chen, Yonghao, Wang, Yijun, Gao, Xiaorong, Zhang, Hongxin
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2022.3183087

Cover

Abstract The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of <inline-formula> <tex-math notation="LaTeX">96.77 \pm 2.47 </tex-math></inline-formula>% and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate.
AbstractList The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of <inline-formula> <tex-math notation="LaTeX">96.77 \pm 2.47 </tex-math></inline-formula>% and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate.
The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of 96.77 ±2.47 % and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate.The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of 96.77 ±2.47 % and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate.
The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of <tex-math notation="LaTeX">$96.77 \pm 2.47$ </tex-math>% and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate.
The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of [Formula Omitted]% and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate.
Author Yang, Chen
Zhang, Hongxin
Gao, Xiaorong
Ye, Xiaochen
Wang, Yijun
Chen, Yonghao
Author_xml – sequence: 1
  givenname: Xiaochen
  orcidid: 0000-0002-9756-2848
  surname: Ye
  fullname: Ye, Xiaochen
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Chen
  orcidid: 0000-0002-0454-6647
  surname: Yang
  fullname: Yang, Chen
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Yonghao
  orcidid: 0000-0002-8788-830X
  surname: Chen
  fullname: Chen, Yonghao
  organization: Department of Biomedical Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Yijun
  orcidid: 0000-0002-8161-2150
  surname: Wang
  fullname: Wang, Yijun
  organization: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Xiaorong
  orcidid: 0000-0003-0499-2740
  surname: Gao
  fullname: Gao, Xiaorong
  organization: Department of Biomedical Engineering, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Hongxin
  orcidid: 0000-0003-1865-9519
  surname: Zhang
  fullname: Zhang, Hongxin
  email: hongxinzhang@bupt.edu.cn
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
BookMark eNptUstuEzEUHaFW9AE_AJuR2LCZ1K8Ze5Y0pDRSeYgEtpbjuRMcHDu1Pa3y9zhJlUXExi-dc3zuPfeqOHPeQVG8w2iEMWpv5t9mPycjgggZUSwoEvxVcYnrWlSIYHS2O1NWMUrQRXEV4wohzJuavy4uaM0xy_jL4vnrYJOJ2_XC23Ju1lB-Nk8mGu_Kse-MW5a9D-W9Wf6p7gI8DuD0tpwlUN22miWVoPxt4qBsOXnyf6Erf_gELhllq1sV8_02KOOqsV9vhgShnLq89krDm-K8VzbC25f9uvh1N5mP76uH71-m408PlWZUpIo1nW4BASe6XQgNDeIcugbYgnSYCtFjXRNMMe2bjqkFJQx1ultgSqDuVcPpdTE96HZereQmmLUKW-mVkfsHH5ZShWS0BUlV37WiFYQzzZhu2ywLotE19EC4arIWPWgNbqO2z8raoyBGcheJTC4GkLtI5EskmfXxwNoEn_sXk1ybqMFa5cAPUZKGC5Zr2EM_nEBXfggu9yejBG7rmvCdDXFA6eBj_q6X2uQkcmQpN9sevezH49QLOaGeFvBf0vsDyQDAkdDyts3TRP8BiCrFYQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_isci_2024_109376
crossref_primary_10_1088_1741_2552_acf242
crossref_primary_10_1016_j_bspc_2024_106868
crossref_primary_10_1016_j_eswa_2024_123679
crossref_primary_10_1109_TNSRE_2023_3243290
crossref_primary_10_1016_j_measurement_2024_114959
crossref_primary_10_1109_TNSRE_2023_3243786
Cites_doi 10.1109/CDC.1985.268599
10.26599/BSA.2020.9050008
10.1088/1741-2560/10/3/036011
10.26599/JNR.2020.9040003
10.1109/TBME.2017.2694818
10.1109/EMBC44109.2020.9176855
10.1109/NER.2009.5109334
10.1016/0377-2217(90)90297-O
10.1088/1741-2552/ab2373
10.1109/TNSRE.2020.2968579
10.26599/BSA.2022.9050004
10.1088/1741-2560/12/4/046008
10.1063/1.4913191
10.1088/1741-2552/ac0bfa
10.1109/TBME.2014.2300164
10.1523/JNEUROSCI.23-37-11621.2003
10.1109/TNSRE.2018.2848222
10.1088/1741-2552/aabb82
10.1371/journal.pone.0029519
10.1109/TBME.2014.2320948
10.1142/S0129065718500284
10.1109/TNSRE.2017.2734164
10.1080/2326263X.2014.944469
10.1109/EMBC.2019.8857326
10.26599/JNR.2020.9040001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
DOA
DOI 10.1109/TNSRE.2022.3183087
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1704
ExternalDocumentID oai_doaj_org_article_3afd9898274c44c99313e86c5efe27a6
10.1109/tnsre.2022.3183087
10_1109_TNSRE_2022_3183087
9799765
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFB1002505
  funderid: 10.13039/501100012166
– fundername: Fundamental Research Funds for the Central Universities Beijing University of Posts and Telecommunications (BUPT)
  grantid: 2019XD17
– fundername: Special Project for Research and Development in Key areas of Guangdong Province; Key Research and Development Program of Guangdong Province
  grantid: 2018B030339001
  funderid: 10.13039/501100015956
– fundername: National Natural Science Foundation of China
  grantid: 62006024
  funderid: 10.13039/501100001809
– fundername: Aeronautical Science Foundation of China
  grantid: 2019ZG073001
  funderid: 10.13039/501100004750
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c438t-46dc9e0e72c9b8ce6077ed6e4b2d1388f1c521313f6d4ab3240dcdb132e5fa673
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:53:19 EDT 2025
Tue Aug 19 19:18:40 EDT 2025
Wed Oct 01 13:02:23 EDT 2025
Sun Jul 13 04:23:33 EDT 2025
Wed Oct 01 01:12:32 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
Wed Aug 27 02:23:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-46dc9e0e72c9b8ce6077ed6e4b2d1388f1c521313f6d4ab3240dcdb132e5fa673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0454-6647
0000-0003-0499-2740
0000-0002-9756-2848
0000-0002-8161-2150
0000-0002-8788-830X
0000-0003-1865-9519
OpenAccessLink https://doaj.org/article/3afd9898274c44c99313e86c5efe27a6
PMID 35714087
PQID 2681955276
PQPubID 85423
PageCount 12
ParticipantIDs proquest_miscellaneous_2678421387
proquest_journals_2681955276
crossref_primary_10_1109_TNSRE_2022_3183087
crossref_citationtrail_10_1109_TNSRE_2022_3183087
ieee_primary_9799765
doaj_primary_oai_doaj_org_article_3afd9898274c44c99313e86c5efe27a6
unpaywall_primary_10_1109_tnsre_2022_3183087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
chen (ref10) 2014
regan (ref4) 1989
ref2
ref17
ref16
ref19
ref18
gao (ref1) 2014; 61
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1109/CDC.1985.268599
– ident: ref8
  doi: 10.26599/BSA.2020.9050008
– ident: ref19
  doi: 10.1088/1741-2560/10/3/036011
– ident: ref3
  doi: 10.26599/JNR.2020.9040003
– ident: ref20
  doi: 10.1109/TBME.2017.2694818
– ident: ref26
  doi: 10.1109/EMBC44109.2020.9176855
– start-page: 3993
  year: 2014
  ident: ref10
  article-title: Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller
  publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref13
  doi: 10.1109/NER.2009.5109334
– ident: ref17
  doi: 10.1016/0377-2217(90)90297-O
– ident: ref24
  doi: 10.1088/1741-2552/ab2373
– ident: ref25
  doi: 10.1109/TNSRE.2020.2968579
– ident: ref7
  doi: 10.26599/BSA.2022.9050004
– ident: ref23
  doi: 10.1088/1741-2560/12/4/046008
– ident: ref15
  doi: 10.1063/1.4913191
– year: 1989
  ident: ref4
  publication-title: Human Brain Electrophysiology Evoked Potential and Evoked Magnetic Fields in Science and Medicine
– ident: ref27
  doi: 10.1088/1741-2552/ac0bfa
– volume: 61
  start-page: 1436
  year: 2014
  ident: ref1
  article-title: Visual and auditory brain-computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2300164
– ident: ref12
  doi: 10.1523/JNEUROSCI.23-37-11621.2003
– ident: ref5
  doi: 10.1109/TNSRE.2018.2848222
– ident: ref21
  doi: 10.1088/1741-2552/aabb82
– ident: ref11
  doi: 10.1371/journal.pone.0029519
– ident: ref6
  doi: 10.1109/TBME.2014.2320948
– ident: ref9
  doi: 10.1142/S0129065718500284
– ident: ref22
  doi: 10.1109/TNSRE.2017.2734164
– ident: ref14
  doi: 10.1080/2326263X.2014.944469
– ident: ref16
  doi: 10.1109/EMBC.2019.8857326
– ident: ref2
  doi: 10.26599/JNR.2020.9040001
SSID ssj0017657
Score 2.4167798
Snippet The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1693
SubjectTerms Accuracy
Algorithms
Brain
Brain-computer interface
Codes
Coding
Computer applications
Datasets
Encoding
Frequency modulation
high-frequency
Human-computer interface
Implants
Information transfer
multi-target
Neural coding
Optimization
phase modulation
Phases
Steady state
steady-state visual evoked potential
Stimulation
Symbols
Time division
time division coding
Training
Visual evoked potentials
Visual stimuli
Visualization
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXuDCqyC2FGQk4EK9zcOxnSNbdlUhtUJli3qLHHssrbpNqm5Ctfx6PHlpFxDiFiWTxI7Hmc-emW8IeSdcGvNYBswbc8u8hXIs11YwrlPpLG70N1Uizs7F6SX_cpVc7ZCjIRcGAJrgMxjjYePLt6WpcavsGF1QUiS7ZFcq0eZqDR4Df1623KjcvzIK-gSZID2en3-7mPqlYBSNUYMDhZX34gSp6jCSbsMeNbT9XZ2VLcj5oC5u9fpeL5cb1mf2mJz17W6DTq7HdZWPzc_fKB3_t2NPyKMOhtJPrd48JTtQPCPvNymH6bzlG6Af6MUWm_c-uW-ydlfrm7z0YosboJ8XbY46PSnRFlKPhClGkLDZXRuqvaYYOGzXrAG39PtiVftXTH-U12Dp17LCmCW9ZBNvUy2dYNkK1teboM2mpdMGnpPL2XR-csq6Ag7M8FhVjAtrUghARibNlQERSAlWAM8jG8ZKudB49BCHsROW6xy5Aa2xuV8gQ-K0kPELsleUBbwk1HmgpgSXQaocF-Bhp1cuB1wmCSiThiMS9sOYme57YJGNZdascoI0a7QgQy3IOi0YkY_DPbctt8c_pSeoHYMk8nI3J_xIZt00z2LtLFbk9Gt9w7nx4C-MQQmTgINIajEi-zj6w0O6gR-Rw17Xsu4fssoigT7OJJL-rrfDZT_70aWjCyhrlJGK-0-IzTsadPSP3lSF7-RWbw7-3pBX5CFKtXtMh2SvuqvhtUddVf6mmW6_ANL_Jhg
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVG98ATXwNRNJCRgBdwm8SOnYindbSakKim0aIhIUWJfS1Vy5JqTRnl13OdpFELEhK8Ve1NE8fHOcfx9bmEvJI25oIrjyGZG4YMZVmWGslEGitr3Iv-ukrEp6k8m4uPl-HlAXnf7YUBgDr5DAbuY72Wv4D8hxoqzvkQyT3GMTb03GqUkuFgaewdcihDFOI9cjifnp98bRxSBZ64NmVEwoyYm9lst8x48bAqkH9wchgEA4dpzyXU7dBS7d7fllvZU55318Uy3dymeb5DQpP75Nv28pvck6vBusoG-udvzo7_2b4H5F4rTulJg6aH5ACKR-T1rhExnTUuBPQNvdjz-D4it_Ve3tXmOisxbHEN9MOi2blOT0vHkBT1MXV5JWxy0yRwb6hLJzYbVkte-mWxWuMpxt_LKzD0vKxcJlOasxEyraEjV8yCbatQ0PpVpk01PCbzyXh2esbasg5MCx5VTEijY_BABTrOIg3SUwqMBJEFxudRZH2NmoL73Eoj0sw5BhptMpw2Q2hTqfgT0ivKAp4SalG-RVIoL46skIBiFCFnQagwhEjHfp_4215NdHs_XOmNPKnnPl6czKafL8aJQ0LSIqFP3nbHLBvHj79GjxxYukjn1l1_gR2btIM_4ak1rk5noIQWQqMk9DlEUodgIVCp7JMjB4buT9rO75PjLfSS9smySgLpVj7DQOFRL7uf8ZngFnrSAsq1i1GRwFvoLu9dB9k_WlOPgr3WPPu38GPSq27W8BxlWZW9aIffLyXIMUs
  priority: 102
  providerName: Unpaywall
Title Multisymbol Time Division Coding for High-Frequency Steady-State Visual Evoked Potential-Based Brain-Computer Interface
URI https://ieeexplore.ieee.org/document/9799765
https://www.proquest.com/docview/2681955276
https://www.proquest.com/docview/2678421387
https://ieeexplore.ieee.org/ielx7/7333/4359219/09799765.pdf
https://doaj.org/article/3afd9898274c44c99313e86c5efe27a6
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQeIAXBAxEYauMBLyAWT4c23lcR6sJiWoaLRpPkeMPqaJLpjXd1P-eOyeNWiHBC6-J7cTnn3V3vvPvCHknfJ7yVEYMlLlloKE8K7UVjOtceosH_aFKxLepOJ_zr1fZ1U6pL8wJa-mBW8GdpNpbrHEI3pPh3IA6jVOnhMmcd4nUgWw7UvnWmeriB1JkcntFJspPZtPvl2NwBpPkM2I4wgS6HTUU2Pq78ip7luajdXWjN_d6udxROpOn5ElnLdLT9i-fkQeuek7e7zID01lLC0A_0Ms90u1Dch8u164212UNzRbXjn5ZtFfJ6VmNKouCwUox0YNNbtuM6g3F_F67YcEGpT8WqzV8YnxX_3KWXtQNphbpJRuB6rN0hNUl2LYsBA1ni14b94LMJ-PZ2Tnr6iwww1PVMC6syV3kZGLyUhknIimdFY6XiY1TpXxsQMmD3L2wXJdI4WeNLcGPdZnXQqYvyUFVV-4VoR7sKSW4jHLluXBgHQIGvOMyy5wyeTwg8VbshenkgbUwlkVwRqK8CEtV4FIV3VINyMe-z01LwfHX1iNczb4l0meHBwCqogNV8S9QDcghYqEfBGOfAKkBOdpio-i2-qpIBIYis0RCr7f9a9ikGHnRlavX2EYqDiLE3_vUY-qP2TQVTHJvNq__x2zekMc4ZntwdEQOmtu1OwZTqimHYdcMw63HIXk4n16c_vwNAL4bgg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGeBgvfA20wgAjAS8sXT4cO3mko1WBtUKjQ3uLHPssVeuSaU2Yyl-Pz0mjFhDiLUrsxB_n3M--u98R8oabNGKR8D2rzLVnNZTxcqm5x2QqjMaDfpclYjLl43P2-SK-2CFHXSwMADjnM-jjpbPl61LVeFR2jCYoweM75G7MGIubaK3OZmCfiIYdldmPhv46RMZPj2fTb2dDuxkMwz7KsJ9g7r0oRrI69KXb0EiOuL_NtLIFOvfq4lqubuVisaF_Rg_IZN3yxu3ksl9XeV_9_I3U8X-79pDcb4Eo_dBIziOyA8Vj8naTdJjOGsYB-o6ebfF575NbF7e7XF3lpS02vwL6cd5EqdOTErUhtViYog-JN7ppnLVXFF2H9cpz8JZ-ny9r-4nhj_ISNP1aVui1JBfewGpVTQeYuMJbZ5yg7tjSSAVPyPloODsZe20KB0-xKKk8xrVKwQcRqjRPFHBfCNAcWB7qIEoSEyiLH6IgMlwzmSM7oFY6t1tkiI3kInpKdouygANCjYVqCWfCTxPDOFjgacXLABNxDIlKgx4J1tOYqXY8MM3GInP7HD_NnBRkKAVZKwU98r6rc92we_yz9ACloyuJzNzuhp3JrF3oWSSNxpycdrevGFMW_gURJFzFYCAUkvfIPs5-95J24nvkcC1rWfsXWWYhRytnHApb63X32K5_NOrIAsoay4iE2SHE5h11MvpHb6rCdnKrN8_-3pBXZG88m5xmp5-mX56Te1ijOXE6JLvVTQ0vLAar8pdu6f0CUUEpZQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVG98ATXwNRNJCRgBdwm8SOnYindbSakKim0aIhIUWJfS1Vy5JqTRnl13OdpFELEhK8Ve1NE8fHOcfx9bmEvJI25oIrjyGZG4YMZVmWGslEGitr3Iv-ukrEp6k8m4uPl-HlAXnf7YUBgDr5DAbuY72Wv4D8hxoqzvkQyT3GMTb03GqUkuFgaewdcihDFOI9cjifnp98bRxSBZ64NmVEwoyYm9lst8x48bAqkH9wchgEA4dpzyXU7dBS7d7fllvZU55318Uy3dymeb5DQpP75Nv28pvck6vBusoG-udvzo7_2b4H5F4rTulJg6aH5ACKR-T1rhExnTUuBPQNvdjz-D4it_Ve3tXmOisxbHEN9MOi2blOT0vHkBT1MXV5JWxy0yRwb6hLJzYbVkte-mWxWuMpxt_LKzD0vKxcJlOasxEyraEjV8yCbatQ0PpVpk01PCbzyXh2esbasg5MCx5VTEijY_BABTrOIg3SUwqMBJEFxudRZH2NmoL73Eoj0sw5BhptMpw2Q2hTqfgT0ivKAp4SalG-RVIoL46skIBiFCFnQagwhEjHfp_4215NdHs_XOmNPKnnPl6czKafL8aJQ0LSIqFP3nbHLBvHj79GjxxYukjn1l1_gR2btIM_4ak1rk5noIQWQqMk9DlEUodgIVCp7JMjB4buT9rO75PjLfSS9smySgLpVj7DQOFRL7uf8ZngFnrSAsq1i1GRwFvoLu9dB9k_WlOPgr3WPPu38GPSq27W8BxlWZW9aIffLyXIMUs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisymbol+Time+Division+Coding+for+High-Frequency+Steady-State+Visual+Evoked+Potential-Based+Brain-Computer+Interface&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Ye%2C+Xiaochen&rft.au=Yang%2C+Chen&rft.au=Chen%2C+Yonghao&rft.au=Wang%2C+Yijun&rft.date=2022&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=30&rft.spage=1693&rft.epage=1704&rft_id=info:doi/10.1109%2FTNSRE.2022.3183087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2022_3183087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon