Multisymbol Time Division Coding for High-Frequency Steady-State Visual Evoked Potential-Based Brain-Computer Interface
The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the di...
Saved in:
| Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 1693 - 1704 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1534-4320 1558-0210 1558-0210 |
| DOI | 10.1109/TNSRE.2022.3183087 |
Cover
| Abstract | The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of <inline-formula> <tex-math notation="LaTeX">96.77 \pm 2.47 </tex-math></inline-formula>% and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate. |
|---|---|
| AbstractList | The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of <inline-formula> <tex-math notation="LaTeX">96.77 \pm 2.47 </tex-math></inline-formula>% and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate. The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of 96.77 ±2.47 % and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate.The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of 96.77 ±2.47 % and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate. The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of <tex-math notation="LaTeX">$96.77 \pm 2.47$ </tex-math>% and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate. The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of [Formula Omitted]% and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate. |
| Author | Yang, Chen Zhang, Hongxin Gao, Xiaorong Ye, Xiaochen Wang, Yijun Chen, Yonghao |
| Author_xml | – sequence: 1 givenname: Xiaochen orcidid: 0000-0002-9756-2848 surname: Ye fullname: Ye, Xiaochen organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Chen orcidid: 0000-0002-0454-6647 surname: Yang fullname: Yang, Chen organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Yonghao orcidid: 0000-0002-8788-830X surname: Chen fullname: Chen, Yonghao organization: Department of Biomedical Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Yijun orcidid: 0000-0002-8161-2150 surname: Wang fullname: Wang, Yijun organization: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Xiaorong orcidid: 0000-0003-0499-2740 surname: Gao fullname: Gao, Xiaorong organization: Department of Biomedical Engineering, Tsinghua University, Beijing, China – sequence: 6 givenname: Hongxin orcidid: 0000-0003-1865-9519 surname: Zhang fullname: Zhang, Hongxin email: hongxinzhang@bupt.edu.cn organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China |
| BookMark | eNptUstuEzEUHaFW9AE_AJuR2LCZ1K8Ze5Y0pDRSeYgEtpbjuRMcHDu1Pa3y9zhJlUXExi-dc3zuPfeqOHPeQVG8w2iEMWpv5t9mPycjgggZUSwoEvxVcYnrWlSIYHS2O1NWMUrQRXEV4wohzJuavy4uaM0xy_jL4vnrYJOJ2_XC23Ju1lB-Nk8mGu_Kse-MW5a9D-W9Wf6p7gI8DuD0tpwlUN22miWVoPxt4qBsOXnyf6Erf_gELhllq1sV8_02KOOqsV9vhgShnLq89krDm-K8VzbC25f9uvh1N5mP76uH71-m408PlWZUpIo1nW4BASe6XQgNDeIcugbYgnSYCtFjXRNMMe2bjqkFJQx1ultgSqDuVcPpdTE96HZereQmmLUKW-mVkfsHH5ZShWS0BUlV37WiFYQzzZhu2ywLotE19EC4arIWPWgNbqO2z8raoyBGcheJTC4GkLtI5EskmfXxwNoEn_sXk1ybqMFa5cAPUZKGC5Zr2EM_nEBXfggu9yejBG7rmvCdDXFA6eBj_q6X2uQkcmQpN9sevezH49QLOaGeFvBf0vsDyQDAkdDyts3TRP8BiCrFYQ |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_1016_j_isci_2024_109376 crossref_primary_10_1088_1741_2552_acf242 crossref_primary_10_1016_j_bspc_2024_106868 crossref_primary_10_1016_j_eswa_2024_123679 crossref_primary_10_1109_TNSRE_2023_3243290 crossref_primary_10_1016_j_measurement_2024_114959 crossref_primary_10_1109_TNSRE_2023_3243786 |
| Cites_doi | 10.1109/CDC.1985.268599 10.26599/BSA.2020.9050008 10.1088/1741-2560/10/3/036011 10.26599/JNR.2020.9040003 10.1109/TBME.2017.2694818 10.1109/EMBC44109.2020.9176855 10.1109/NER.2009.5109334 10.1016/0377-2217(90)90297-O 10.1088/1741-2552/ab2373 10.1109/TNSRE.2020.2968579 10.26599/BSA.2022.9050004 10.1088/1741-2560/12/4/046008 10.1063/1.4913191 10.1088/1741-2552/ac0bfa 10.1109/TBME.2014.2300164 10.1523/JNEUROSCI.23-37-11621.2003 10.1109/TNSRE.2018.2848222 10.1088/1741-2552/aabb82 10.1371/journal.pone.0029519 10.1109/TBME.2014.2320948 10.1142/S0129065718500284 10.1109/TNSRE.2017.2734164 10.1080/2326263X.2014.944469 10.1109/EMBC.2019.8857326 10.26599/JNR.2020.9040001 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY DOA |
| DOI | 10.1109/TNSRE.2022.3183087 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ : Directory of Open Access Journals [open access] |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 1704 |
| ExternalDocumentID | oai_doaj_org_article_3afd9898274c44c99313e86c5efe27a6 10.1109/tnsre.2022.3183087 10_1109_TNSRE_2022_3183087 9799765 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017YFB1002505 funderid: 10.13039/501100012166 – fundername: Fundamental Research Funds for the Central Universities Beijing University of Posts and Telecommunications (BUPT) grantid: 2019XD17 – fundername: Special Project for Research and Development in Key areas of Guangdong Province; Key Research and Development Program of Guangdong Province grantid: 2018B030339001 funderid: 10.13039/501100015956 – fundername: National Natural Science Foundation of China grantid: 62006024 funderid: 10.13039/501100001809 – fundername: Aeronautical Science Foundation of China grantid: 2019ZG073001 funderid: 10.13039/501100004750 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c438t-46dc9e0e72c9b8ce6077ed6e4b2d1388f1c521313f6d4ab3240dcdb132e5fa673 |
| IEDL.DBID | DOA |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Fri Oct 03 12:53:19 EDT 2025 Tue Aug 19 19:18:40 EDT 2025 Wed Oct 01 13:02:23 EDT 2025 Sun Jul 13 04:23:33 EDT 2025 Wed Oct 01 01:12:32 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 Wed Aug 27 02:23:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-46dc9e0e72c9b8ce6077ed6e4b2d1388f1c521313f6d4ab3240dcdb132e5fa673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0454-6647 0000-0003-0499-2740 0000-0002-9756-2848 0000-0002-8161-2150 0000-0002-8788-830X 0000-0003-1865-9519 |
| OpenAccessLink | https://doaj.org/article/3afd9898274c44c99313e86c5efe27a6 |
| PMID | 35714087 |
| PQID | 2681955276 |
| PQPubID | 85423 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2678421387 proquest_journals_2681955276 crossref_primary_10_1109_TNSRE_2022_3183087 crossref_citationtrail_10_1109_TNSRE_2022_3183087 ieee_primary_9799765 doaj_primary_oai_doaj_org_article_3afd9898274c44c99313e86c5efe27a6 unpaywall_primary_10_1109_tnsre_2022_3183087 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 chen (ref10) 2014 regan (ref4) 1989 ref2 ref17 ref16 ref19 ref18 gao (ref1) 2014; 61 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref3 ref6 ref5 |
| References_xml | – ident: ref18 doi: 10.1109/CDC.1985.268599 – ident: ref8 doi: 10.26599/BSA.2020.9050008 – ident: ref19 doi: 10.1088/1741-2560/10/3/036011 – ident: ref3 doi: 10.26599/JNR.2020.9040003 – ident: ref20 doi: 10.1109/TBME.2017.2694818 – ident: ref26 doi: 10.1109/EMBC44109.2020.9176855 – start-page: 3993 year: 2014 ident: ref10 article-title: Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc – ident: ref13 doi: 10.1109/NER.2009.5109334 – ident: ref17 doi: 10.1016/0377-2217(90)90297-O – ident: ref24 doi: 10.1088/1741-2552/ab2373 – ident: ref25 doi: 10.1109/TNSRE.2020.2968579 – ident: ref7 doi: 10.26599/BSA.2022.9050004 – ident: ref23 doi: 10.1088/1741-2560/12/4/046008 – ident: ref15 doi: 10.1063/1.4913191 – year: 1989 ident: ref4 publication-title: Human Brain Electrophysiology Evoked Potential and Evoked Magnetic Fields in Science and Medicine – ident: ref27 doi: 10.1088/1741-2552/ac0bfa – volume: 61 start-page: 1436 year: 2014 ident: ref1 article-title: Visual and auditory brain-computer interfaces publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2300164 – ident: ref12 doi: 10.1523/JNEUROSCI.23-37-11621.2003 – ident: ref5 doi: 10.1109/TNSRE.2018.2848222 – ident: ref21 doi: 10.1088/1741-2552/aabb82 – ident: ref11 doi: 10.1371/journal.pone.0029519 – ident: ref6 doi: 10.1109/TBME.2014.2320948 – ident: ref9 doi: 10.1142/S0129065718500284 – ident: ref22 doi: 10.1109/TNSRE.2017.2734164 – ident: ref14 doi: 10.1080/2326263X.2014.944469 – ident: ref16 doi: 10.1109/EMBC.2019.8857326 – ident: ref2 doi: 10.26599/JNR.2020.9040001 |
| SSID | ssj0017657 |
| Score | 2.4167798 |
| Snippet | The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1693 |
| SubjectTerms | Accuracy Algorithms Brain Brain-computer interface Codes Coding Computer applications Datasets Encoding Frequency modulation high-frequency Human-computer interface Implants Information transfer multi-target Neural coding Optimization phase modulation Phases Steady state steady-state visual evoked potential Stimulation Symbols Time division time division coding Training Visual evoked potentials Visual stimuli Visualization |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXuDCqyC2FGQk4EK9zcOxnSNbdlUhtUJli3qLHHssrbpNqm5Ctfx6PHlpFxDiFiWTxI7Hmc-emW8IeSdcGvNYBswbc8u8hXIs11YwrlPpLG70N1Uizs7F6SX_cpVc7ZCjIRcGAJrgMxjjYePLt6WpcavsGF1QUiS7ZFcq0eZqDR4Df1623KjcvzIK-gSZID2en3-7mPqlYBSNUYMDhZX34gSp6jCSbsMeNbT9XZ2VLcj5oC5u9fpeL5cb1mf2mJz17W6DTq7HdZWPzc_fKB3_t2NPyKMOhtJPrd48JTtQPCPvNymH6bzlG6Af6MUWm_c-uW-ydlfrm7z0YosboJ8XbY46PSnRFlKPhClGkLDZXRuqvaYYOGzXrAG39PtiVftXTH-U12Dp17LCmCW9ZBNvUy2dYNkK1teboM2mpdMGnpPL2XR-csq6Ag7M8FhVjAtrUghARibNlQERSAlWAM8jG8ZKudB49BCHsROW6xy5Aa2xuV8gQ-K0kPELsleUBbwk1HmgpgSXQaocF-Bhp1cuB1wmCSiThiMS9sOYme57YJGNZdascoI0a7QgQy3IOi0YkY_DPbctt8c_pSeoHYMk8nI3J_xIZt00z2LtLFbk9Gt9w7nx4C-MQQmTgINIajEi-zj6w0O6gR-Rw17Xsu4fssoigT7OJJL-rrfDZT_70aWjCyhrlJGK-0-IzTsadPSP3lSF7-RWbw7-3pBX5CFKtXtMh2SvuqvhtUddVf6mmW6_ANL_Jhg priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVG98ATXwNRNJCRgBdwm8SOnYindbSakKim0aIhIUWJfS1Vy5JqTRnl13OdpFELEhK8Ve1NE8fHOcfx9bmEvJI25oIrjyGZG4YMZVmWGslEGitr3Iv-ukrEp6k8m4uPl-HlAXnf7YUBgDr5DAbuY72Wv4D8hxoqzvkQyT3GMTb03GqUkuFgaewdcihDFOI9cjifnp98bRxSBZ64NmVEwoyYm9lst8x48bAqkH9wchgEA4dpzyXU7dBS7d7fllvZU55318Uy3dymeb5DQpP75Nv28pvck6vBusoG-udvzo7_2b4H5F4rTulJg6aH5ACKR-T1rhExnTUuBPQNvdjz-D4it_Ve3tXmOisxbHEN9MOi2blOT0vHkBT1MXV5JWxy0yRwb6hLJzYbVkte-mWxWuMpxt_LKzD0vKxcJlOasxEyraEjV8yCbatQ0PpVpk01PCbzyXh2esbasg5MCx5VTEijY_BABTrOIg3SUwqMBJEFxudRZH2NmoL73Eoj0sw5BhptMpw2Q2hTqfgT0ivKAp4SalG-RVIoL46skIBiFCFnQagwhEjHfp_4215NdHs_XOmNPKnnPl6czKafL8aJQ0LSIqFP3nbHLBvHj79GjxxYukjn1l1_gR2btIM_4ak1rk5noIQWQqMk9DlEUodgIVCp7JMjB4buT9rO75PjLfSS9smySgLpVj7DQOFRL7uf8ZngFnrSAsq1i1GRwFvoLu9dB9k_WlOPgr3WPPu38GPSq27W8BxlWZW9aIffLyXIMUs priority: 102 providerName: Unpaywall |
| Title | Multisymbol Time Division Coding for High-Frequency Steady-State Visual Evoked Potential-Based Brain-Computer Interface |
| URI | https://ieeexplore.ieee.org/document/9799765 https://www.proquest.com/docview/2681955276 https://www.proquest.com/docview/2678421387 https://ieeexplore.ieee.org/ielx7/7333/4359219/09799765.pdf https://doaj.org/article/3afd9898274c44c99313e86c5efe27a6 |
| UnpaywallVersion | publishedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQeIAXBAxEYauMBLyAWT4c23lcR6sJiWoaLRpPkeMPqaJLpjXd1P-eOyeNWiHBC6-J7cTnn3V3vvPvCHknfJ7yVEYMlLlloKE8K7UVjOtceosH_aFKxLepOJ_zr1fZ1U6pL8wJa-mBW8GdpNpbrHEI3pPh3IA6jVOnhMmcd4nUgWw7UvnWmeriB1JkcntFJspPZtPvl2NwBpPkM2I4wgS6HTUU2Pq78ip7luajdXWjN_d6udxROpOn5ElnLdLT9i-fkQeuek7e7zID01lLC0A_0Ms90u1Dch8u164212UNzRbXjn5ZtFfJ6VmNKouCwUox0YNNbtuM6g3F_F67YcEGpT8WqzV8YnxX_3KWXtQNphbpJRuB6rN0hNUl2LYsBA1ni14b94LMJ-PZ2Tnr6iwww1PVMC6syV3kZGLyUhknIimdFY6XiY1TpXxsQMmD3L2wXJdI4WeNLcGPdZnXQqYvyUFVV-4VoR7sKSW4jHLluXBgHQIGvOMyy5wyeTwg8VbshenkgbUwlkVwRqK8CEtV4FIV3VINyMe-z01LwfHX1iNczb4l0meHBwCqogNV8S9QDcghYqEfBGOfAKkBOdpio-i2-qpIBIYis0RCr7f9a9ikGHnRlavX2EYqDiLE3_vUY-qP2TQVTHJvNq__x2zekMc4ZntwdEQOmtu1OwZTqimHYdcMw63HIXk4n16c_vwNAL4bgg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGeBgvfA20wgAjAS8sXT4cO3mko1WBtUKjQ3uLHPssVeuSaU2Yyl-Pz0mjFhDiLUrsxB_n3M--u98R8oabNGKR8D2rzLVnNZTxcqm5x2QqjMaDfpclYjLl43P2-SK-2CFHXSwMADjnM-jjpbPl61LVeFR2jCYoweM75G7MGIubaK3OZmCfiIYdldmPhv46RMZPj2fTb2dDuxkMwz7KsJ9g7r0oRrI69KXb0EiOuL_NtLIFOvfq4lqubuVisaF_Rg_IZN3yxu3ksl9XeV_9_I3U8X-79pDcb4Eo_dBIziOyA8Vj8naTdJjOGsYB-o6ebfF575NbF7e7XF3lpS02vwL6cd5EqdOTErUhtViYog-JN7ppnLVXFF2H9cpz8JZ-ny9r-4nhj_ISNP1aVui1JBfewGpVTQeYuMJbZ5yg7tjSSAVPyPloODsZe20KB0-xKKk8xrVKwQcRqjRPFHBfCNAcWB7qIEoSEyiLH6IgMlwzmSM7oFY6t1tkiI3kInpKdouygANCjYVqCWfCTxPDOFjgacXLABNxDIlKgx4J1tOYqXY8MM3GInP7HD_NnBRkKAVZKwU98r6rc92we_yz9ACloyuJzNzuhp3JrF3oWSSNxpycdrevGFMW_gURJFzFYCAUkvfIPs5-95J24nvkcC1rWfsXWWYhRytnHApb63X32K5_NOrIAsoay4iE2SHE5h11MvpHb6rCdnKrN8_-3pBXZG88m5xmp5-mX56Te1ijOXE6JLvVTQ0vLAar8pdu6f0CUUEpZQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVG98ATXwNRNJCRgBdwm8SOnYindbSakKim0aIhIUWJfS1Vy5JqTRnl13OdpFELEhK8Ve1NE8fHOcfx9bmEvJI25oIrjyGZG4YMZVmWGslEGitr3Iv-ukrEp6k8m4uPl-HlAXnf7YUBgDr5DAbuY72Wv4D8hxoqzvkQyT3GMTb03GqUkuFgaewdcihDFOI9cjifnp98bRxSBZ64NmVEwoyYm9lst8x48bAqkH9wchgEA4dpzyXU7dBS7d7fllvZU55318Uy3dymeb5DQpP75Nv28pvck6vBusoG-udvzo7_2b4H5F4rTulJg6aH5ACKR-T1rhExnTUuBPQNvdjz-D4it_Ve3tXmOisxbHEN9MOi2blOT0vHkBT1MXV5JWxy0yRwb6hLJzYbVkte-mWxWuMpxt_LKzD0vKxcJlOasxEyraEjV8yCbatQ0PpVpk01PCbzyXh2esbasg5MCx5VTEijY_BABTrOIg3SUwqMBJEFxudRZH2NmoL73Eoj0sw5BhptMpw2Q2hTqfgT0ivKAp4SalG-RVIoL46skIBiFCFnQagwhEjHfp_4215NdHs_XOmNPKnnPl6czKafL8aJQ0LSIqFP3nbHLBvHj79GjxxYukjn1l1_gR2btIM_4ak1rk5noIQWQqMk9DlEUodgIVCp7JMjB4buT9rO75PjLfSS9smySgLpVj7DQOFRL7uf8ZngFnrSAsq1i1GRwFvoLu9dB9k_WlOPgr3WPPu38GPSq27W8BxlWZW9aIffLyXIMUs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisymbol+Time+Division+Coding+for+High-Frequency+Steady-State+Visual+Evoked+Potential-Based+Brain-Computer+Interface&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Ye%2C+Xiaochen&rft.au=Yang%2C+Chen&rft.au=Chen%2C+Yonghao&rft.au=Wang%2C+Yijun&rft.date=2022&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=30&rft.spage=1693&rft.epage=1704&rft_id=info:doi/10.1109%2FTNSRE.2022.3183087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2022_3183087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |