Improvement of Lightweight Convolutional Neural Network Model Based on YOLO Algorithm and Its Research in Pavement Defect Detection

To ensure the safe operation of highway traffic lines, given the imperfect feature extraction of existing road pit defect detection models and the practicability of detection equipment, this paper proposes a lightweight target detection algorithm with enhanced feature extraction based on the YOLO (Y...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 9; p. 3537
Main Authors Du, Fu-Jun, Jiao, Shuang-Jian
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.05.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22093537

Cover

More Information
Summary:To ensure the safe operation of highway traffic lines, given the imperfect feature extraction of existing road pit defect detection models and the practicability of detection equipment, this paper proposes a lightweight target detection algorithm with enhanced feature extraction based on the YOLO (You Only Look Once) algorithm. The BIFPN (Bidirectional Feature Pyramid Network) network structure is used for multi-scale feature fusion to enhance the feature extraction ability, and Varifocal Loss is used to optimize the sample imbalance problem, which improves the accuracy of road defect target detection. In the evaluation test of the model in the constructed PCD1 (Pavement Check Dataset) dataset, the mAP@.5 (mean Average Precision when IoU = 0.5) of the BV-YOLOv5S (BiFPN Varifocal Loss-YOLOv5S) model increased by 4.1%, 3%, and 0.9%, respectively, compared with the YOLOv3-tiny, YOLOv5S, and B-YOLOv5S (BiFPN-YOLOv5S; BV-YOLOv5S does not use the Improved Focal Loss function) models. Through the analysis and comparison of experimental results, it is proved that the proposed BV-YOLOv5S network model performs better and is more reliable in the detection of pavement defects and can meet the needs of road safety detection projects with high real-time and flexibility requirements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22093537