Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis

To characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources. Based on the occurrences of UMLS terms in a 51 million document corpus of M...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Medical Informatics Association : JAMIA Vol. 19; no. e1; pp. e149 - e156
Main Authors Wu, S. T., Liu, H., Li, D., Tao, C., Musen, M. A., Chute, C. G., Shah, N. H.
Format Journal Article
LanguageEnglish
Published England BMJ Group 01.06.2012
SeriesFOCUS on clinical research informatics
Subjects
Online AccessGet full text
ISSN1067-5027
1527-974X
1527-974X
DOI10.1136/amiajnl-2011-000744

Cover

Abstract To characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources. Based on the occurrences of UMLS terms in a 51 million document corpus of Mayo Clinic clinical notes, this study computes statistics about the terms' string attributes, source terminologies, semantic types and syntactic categories. Term occurrences in 2010 i2b2/VA text were also mapped; eight example filters were designed from the Mayo-based statistics and applied to i2b2/VA data. For the corpus analysis, negligible numbers of mapped terms in the Mayo corpus had over six words or 55 characters. Of source terminologies in the UMLS, the Consumer Health Vocabulary and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) had the best coverage in Mayo clinical notes at 106426 and 94788 unique terms, respectively. Of 15 semantic groups in the UMLS, seven groups accounted for 92.08% of term occurrences in Mayo data. Syntactically, over 90% of matched terms were in noun phrases. For the cross-institutional analysis, using five example filters on i2b2/VA data reduces the actual lexicon to 19.13% of the size of the UMLS and only sees a 2% reduction in matched terms. The corpus statistics presented here are instructive for building lexicons from the UMLS. Features intrinsic to Metathesaurus terms (well formedness, length and language) generalise easily across clinical institutions, but term frequencies should be adapted with caution. The semantic groups of mapped terms may differ slightly from institution to institution, but they differ greatly when moving to the biomedical literature domain.
AbstractList ObjectiveTo characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources.DesignBased on the occurrences of UMLS terms in a 51 million document corpus of Mayo Clinic clinical notes, this study computes statistics about the terms' string attributes, source terminologies, semantic types and syntactic categories. Term occurrences in 2010 i2b2/VA text were also mapped; eight example filters were designed from the Mayo-based statistics and applied to i2b2/VA data.ResultsFor the corpus analysis, negligible numbers of mapped terms in the Mayo corpus had over six words or 55 characters. Of source terminologies in the UMLS, the Consumer Health Vocabulary and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) had the best coverage in Mayo clinical notes at 106[puncsp]426 and 94[puncsp]788 unique terms, respectively. Of 15 semantic groups in the UMLS, seven groups accounted for 92.08% of term occurrences in Mayo data. Syntactically, over 90% of matched terms were in noun phrases. For the cross-institutional analysis, using five example filters on i2b2/VA data reduces the actual lexicon to 19.13% of the size of the UMLS and only sees a 2% reduction in matched terms.ConclusionThe corpus statistics presented here are instructive for building lexicons from the UMLS. Features intrinsic to Metathesaurus terms (well formedness, length and language) generalise easily across clinical institutions, but term frequencies should be adapted with caution. The semantic groups of mapped terms may differ slightly from institution to institution, but they differ greatly when moving to the biomedical literature domain.
To characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources. Based on the occurrences of UMLS terms in a 51 million document corpus of Mayo Clinic clinical notes, this study computes statistics about the terms' string attributes, source terminologies, semantic types and syntactic categories. Term occurrences in 2010 i2b2/VA text were also mapped; eight example filters were designed from the Mayo-based statistics and applied to i2b2/VA data. For the corpus analysis, negligible numbers of mapped terms in the Mayo corpus had over six words or 55 characters. Of source terminologies in the UMLS, the Consumer Health Vocabulary and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) had the best coverage in Mayo clinical notes at 106426 and 94788 unique terms, respectively. Of 15 semantic groups in the UMLS, seven groups accounted for 92.08% of term occurrences in Mayo data. Syntactically, over 90% of matched terms were in noun phrases. For the cross-institutional analysis, using five example filters on i2b2/VA data reduces the actual lexicon to 19.13% of the size of the UMLS and only sees a 2% reduction in matched terms. The corpus statistics presented here are instructive for building lexicons from the UMLS. Features intrinsic to Metathesaurus terms (well formedness, length and language) generalise easily across clinical institutions, but term frequencies should be adapted with caution. The semantic groups of mapped terms may differ slightly from institution to institution, but they differ greatly when moving to the biomedical literature domain.
To characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources.OBJECTIVETo characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources.Based on the occurrences of UMLS terms in a 51 million document corpus of Mayo Clinic clinical notes, this study computes statistics about the terms' string attributes, source terminologies, semantic types and syntactic categories. Term occurrences in 2010 i2b2/VA text were also mapped; eight example filters were designed from the Mayo-based statistics and applied to i2b2/VA data.DESIGNBased on the occurrences of UMLS terms in a 51 million document corpus of Mayo Clinic clinical notes, this study computes statistics about the terms' string attributes, source terminologies, semantic types and syntactic categories. Term occurrences in 2010 i2b2/VA text were also mapped; eight example filters were designed from the Mayo-based statistics and applied to i2b2/VA data.For the corpus analysis, negligible numbers of mapped terms in the Mayo corpus had over six words or 55 characters. Of source terminologies in the UMLS, the Consumer Health Vocabulary and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) had the best coverage in Mayo clinical notes at 106426 and 94788 unique terms, respectively. Of 15 semantic groups in the UMLS, seven groups accounted for 92.08% of term occurrences in Mayo data. Syntactically, over 90% of matched terms were in noun phrases. For the cross-institutional analysis, using five example filters on i2b2/VA data reduces the actual lexicon to 19.13% of the size of the UMLS and only sees a 2% reduction in matched terms.RESULTSFor the corpus analysis, negligible numbers of mapped terms in the Mayo corpus had over six words or 55 characters. Of source terminologies in the UMLS, the Consumer Health Vocabulary and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) had the best coverage in Mayo clinical notes at 106426 and 94788 unique terms, respectively. Of 15 semantic groups in the UMLS, seven groups accounted for 92.08% of term occurrences in Mayo data. Syntactically, over 90% of matched terms were in noun phrases. For the cross-institutional analysis, using five example filters on i2b2/VA data reduces the actual lexicon to 19.13% of the size of the UMLS and only sees a 2% reduction in matched terms.The corpus statistics presented here are instructive for building lexicons from the UMLS. Features intrinsic to Metathesaurus terms (well formedness, length and language) generalise easily across clinical institutions, but term frequencies should be adapted with caution. The semantic groups of mapped terms may differ slightly from institution to institution, but they differ greatly when moving to the biomedical literature domain.CONCLUSIONThe corpus statistics presented here are instructive for building lexicons from the UMLS. Features intrinsic to Metathesaurus terms (well formedness, length and language) generalise easily across clinical institutions, but term frequencies should be adapted with caution. The semantic groups of mapped terms may differ slightly from institution to institution, but they differ greatly when moving to the biomedical literature domain.
Author Wu, S. T.
Tao, C.
Chute, C. G.
Shah, N. H.
Li, D.
Musen, M. A.
Liu, H.
AuthorAffiliation 1 Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
2 Stanford Center for Biomedical Informatics Research, Stanford, CA, USA
AuthorAffiliation_xml – name: 2 Stanford Center for Biomedical Informatics Research, Stanford, CA, USA
– name: 1 Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
Author_xml – sequence: 1
  givenname: S. T.
  surname: Wu
  fullname: Wu, S. T.
– sequence: 2
  givenname: H.
  surname: Liu
  fullname: Liu, H.
– sequence: 3
  givenname: D.
  surname: Li
  fullname: Li, D.
– sequence: 4
  givenname: C.
  surname: Tao
  fullname: Tao, C.
– sequence: 5
  givenname: M. A.
  surname: Musen
  fullname: Musen, M. A.
– sequence: 6
  givenname: C. G.
  surname: Chute
  fullname: Chute, C. G.
– sequence: 7
  givenname: N. H.
  surname: Shah
  fullname: Shah, N. H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22493050$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuLFDEUhYOMOA_9BYJk6aY073RcCDL4ghYXOuAu3ErdaTOkkjapUvrfW223z81IFgk35xxOvpyTk1wyEvKQsyecS_MUxgg3OXWCcd4xxqxSd8gZ18J2zqpPJ8uZGdtpJuwpOW_thjFuhNT3yKkQykmm2RmBqxyvIw70HQ4xQKJryJsZNkg_7NqEI52wjrSEMNeKOWCjMdOQYv4hzmXC9owCTVA32LVlhjSUup0bhQxp12K7T-5eQ2r44LhfkKtXLz9evunW71-_vXyx7oKSq6njWg12cBqXhiulDQtmcDaoAYxVqHpphJa61710UpjgeK9ZL0QvmA2rQTJ5QdQhd85b2H2DlPy2xhHqznPm98T8kZjfE_MHYovt-cG2nfsRh4B5qvDbWiD6v29y_Ow35auX0omV4UvA42NALV9mbJMfYwuYEmQsc_Nca26W5fTtUiEts8aJfeqjP2v96vPz5xaBOwhCLa1VvPYhTjDFsm8Z0y1vlv94_4fUd3zawUk
CitedBy_id crossref_primary_10_4338_ACI_2014_11_RA_0106
crossref_primary_10_1136_amiajnl_2014_002733
crossref_primary_10_1016_j_jbi_2014_03_010
crossref_primary_10_1159_000476030
crossref_primary_10_1186_1472_6947_13_112
crossref_primary_10_1136_amiajnl_2013_001946
crossref_primary_10_1109_ACCESS_2018_2857499
crossref_primary_10_2196_jmir_6240
crossref_primary_10_1186_s12859_015_0487_2
crossref_primary_10_1155_2022_3990563
crossref_primary_10_1200_JCO_2015_63_6266
crossref_primary_10_1371_journal_pone_0154952
crossref_primary_10_1007_s10579_018_9431_1
crossref_primary_10_1007_s40264_014_0218_z
crossref_primary_10_1186_1471_2105_13_261
crossref_primary_10_1016_j_jbi_2015_09_008
crossref_primary_10_1186_s12911_020_01352_2
crossref_primary_10_1093_bib_bbu006
crossref_primary_10_1136_amiajnl_2014_002902
crossref_primary_10_1186_1546_0096_11_45
crossref_primary_10_1136_amiajnl_2012_001358
crossref_primary_10_1136_amiajnl_2013_001933
crossref_primary_10_1136_amiajnl_2013_002428
crossref_primary_10_1136_amiajnl_2013_001612
crossref_primary_10_1186_s12911_017_0519_0
crossref_primary_10_1200_CCI_19_00134
crossref_primary_10_1136_amiajnl_2012_000968
crossref_primary_10_1016_j_procs_2015_07_304
crossref_primary_10_1007_s10489_024_06138_x
crossref_primary_10_1016_j_jbi_2016_07_017
crossref_primary_10_1186_s40537_017_0067_6
crossref_primary_10_1002_aqc_3875
crossref_primary_10_1371_journal_pone_0063499
crossref_primary_10_1016_j_jbi_2018_02_019
crossref_primary_10_1038_sdata_2014_32
crossref_primary_10_1016_j_jbi_2013_12_006
crossref_primary_10_1016_j_jbi_2015_08_025
crossref_primary_10_1016_j_injury_2020_10_094
crossref_primary_10_1161_CIRCOUTCOMES_118_004741
crossref_primary_10_4103_2153_3539_194838
crossref_primary_10_1017_rsm_2025_9
crossref_primary_10_1016_j_imu_2019_100186
crossref_primary_10_1097_CCE_0000000000000450
Cites_doi 10.1145/360825.360855
10.1136/jamia.2009.001560
10.1136/jamia.2009.002691
10.1186/1471-2105-12-397
10.1136/amiajnl-2011-000203
10.1186/1471-2105-11-492
10.1016/j.jbi.2003.11.002
10.1136/jamia.2001.0080080
10.1136/jamia.2009.002733
10.1126/science.1199644
10.1197/jamia.M1176
10.1055/s-0038-1634945
10.1186/2041-1480-1-5
ContentType Journal Article
Copyright 2012, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions. 2012
Copyright_xml – notice: 2012, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ADTOC
UNPAY
DOI 10.1136/amiajnl-2011-000744
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-974X
EndPage e156
ExternalDocumentID 10.1136/amiajnl-2011-000744
PMC3392861
22493050
10_1136_amiajnl_2011_000744
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM009959
– fundername: NHGRI NIH HHS
  grantid: U54 HG004028
– fundername: NLM NIH HHS
  grantid: R01LM009959A1
– fundername: NIGMS NIH HHS
  grantid: R01 GM102282
GroupedDBID ---
.DC
0R~
18M
1TH
29L
2WC
4.4
48X
53G
5GY
5RE
5WD
6PF
77I
7~T
AABZA
AACZT
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABNHQ
ABOCM
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ACGFO
ACGFS
ACGOD
ACHQT
ACUFI
ACYHN
ADBBV
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADQBN
ADRTK
ADVEK
ADYVW
AEGPL
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AGINJ
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AJBYB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
ATGXG
AVWKF
AXUDD
AYCSE
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CITATION
CS3
DAKXR
DIK
DILTD
DU5
E3Z
EBD
EBS
EJD
EMOBN
ENERS
F5P
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
G-Q
GAUVT
GJXCC
GX1
H13
HAR
IH2
IHE
J21
JXSIZ
KBUDW
KOP
KSI
KSN
LSO
MHKGH
NOMLY
NOYVH
NQ-
NVLIB
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
Q5Y
ROX
ROZ
RPM
RPZ
RUSNO
RWL
RXO
SV3
TAE
TEORI
TJX
TMA
WOW
YAYTL
YKOAZ
YXANX
~S-
--K
.GJ
1B1
3V.
7RV
7X7
88E
88I
8AF
8AO
8FE
8FG
8FI
8FJ
8FW
AAEDT
AAJQQ
AALRI
AAPGJ
AAWDT
AAXUO
ABSAR
ABSMQ
ABUWG
ABWVN
ACFRR
ACRPL
ACUTJ
ACZBC
ADJOM
ADJQC
ADMUD
ADNMO
ADRIX
AFFQV
AFKRA
AFXEN
AFYAG
AGKRT
AGMDO
ALIPV
APJGH
AQDSO
AQKUS
AQUVI
ARAPS
AZQEC
BENPR
BGLVJ
BKEYQ
BPHCQ
BVXVI
BZKNY
C1A
CCPQU
CGR
CUY
CVF
DWQXO
ECM
EIF
EIHJH
EO8
EX3
FYUFA
GNUQQ
HCIFZ
HMCUK
K6V
K7-
M0N
M0T
M1P
M2P
M2Q
M41
MBLQV
NAPCQ
NPM
NU-
P62
PCD
PQQKQ
PROAC
PSQYO
R53
RIG
ROL
S0X
SSZ
UKHRP
WOQ
YHZ
ZGI
7X8
7QO
8FD
FR3
P64
5PM
ACVCV
ADMTO
ADTOC
AHGBF
AJDVS
AVNTJ
OBFPC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
UNPAY
ID FETCH-LOGICAL-c438t-154d7d95e23584560c6d97c4da674e4b362535b5b39326c91b50b22b207c8d303
IEDL.DBID UNPAY
ISSN 1067-5027
1527-974X
IngestDate Sun Oct 26 04:11:24 EDT 2025
Tue Sep 30 16:48:05 EDT 2025
Tue Oct 07 09:26:00 EDT 2025
Sun Sep 28 06:54:51 EDT 2025
Wed Feb 19 01:51:36 EST 2025
Wed Oct 01 02:43:36 EDT 2025
Thu Apr 24 23:10:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue e1
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-154d7d95e23584560c6d97c4da674e4b362535b5b39326c91b50b22b207c8d303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/jamia/article-pdf/19/e1/e149/9517120/19-e1-e149.pdf
PMID 22493050
PQID 1237076921
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1136_amiajnl_2011_000744
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3392861
proquest_miscellaneous_1551616195
proquest_miscellaneous_1237076921
pubmed_primary_22493050
crossref_citationtrail_10_1136_amiajnl_2011_000744
crossref_primary_10_1136_amiajnl_2011_000744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationSeriesTitle FOCUS on clinical research informatics
PublicationTitle Journal of the American Medical Informatics Association : JAMIA
PublicationTitleAlternate J Am Med Inform Assoc
PublicationYear 2012
Publisher BMJ Group
Publisher_xml – name: BMJ Group
References (5_25803510) 1975; 18
(8_40148556) -1; -1
Thompson (17_41010363) 2011; 12
(14_42322756) 2009; 24
(2_49068093) 2010; 17
Hettne (16_37627060) 2010; 1
(21_38837597) 2011; 331
(11_49043303) 2003; 10
Xu (20_39327069) 2010; 2010
Bodenreider (23_18027057) 2003; 36
Cohen (19_38241228) 2010; 11
(22_49067594) 2010; 17
Lindberg (1_14476014) 1993; 32
(10_49022416) 2001; 8
(3_49068190) 2010; 17
Parai (4_39327005) 2010; 2010
21347046 - AMIA Annu Symp Proc. 2010;2010:587-91
8412823 - Methods Inf Med. 1993 Aug;32(4):281-91
11141514 - J Am Med Inform Assoc. 2001 Jan-Feb;8(1):80-91
20920264 - BMC Bioinformatics. 2010;11:492
14759816 - J Biomed Inform. 2003 Dec;36(6):414-32
20190054 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):131-5
11825228 - Proc AMIA Symp. 2001;:448-52
20618981 - J Biomed Semantics. 2010 Mar 31;1(1):5
21992002 - BMC Bioinformatics. 2011;12:397
22195220 - AMIA Annu Symp Proc. 2011;2011:1550-8
20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13
12668688 - J Am Med Inform Assoc. 2003 Jul-Aug;10(4):351-62
21347110 - AMIA Annu Symp Proc. 2010;2010:907-11
21163965 - Science. 2011 Jan 14;331(6014):176-82
20442139 - J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36
21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6
11825149 - Proc AMIA Symp. 2001;:17-21
References_xml – volume: 2010
  start-page: 907
  issn: 1559-4076
  year: 2010
  ident: 20_39327069
  publication-title: AMIA ... Annual Symposium proceedings [electronic resource] / AMIA Symposium. AMIA Symposium
– volume: 18
  start-page: 333
  year: 1975
  ident: 5_25803510
  publication-title: COMMUN. ACM
  doi: 10.1145/360825.360855
– volume: 17
  start-page: 507
  issn: 1067-5027
  issue: 5
  year: 2010
  ident: 3_49068190
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.2009.001560
– volume: 17
  start-page: 131
  issn: 1067-5027
  issue: 2
  year: 2010
  ident: 22_49067594
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.2009.002691
– volume: 12
  start-page: 397
  issn: 1471-2105
  year: 2011
  ident: 17_41010363
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-12-397
– volume: -1
  start-page: MASTER
  year: -1
  ident: 8_40148556
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/amiajnl-2011-000203
– volume: 11
  start-page: 492
  issn: 1471-2105
  year: 2010
  ident: 19_38241228
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-11-492
– volume: 36
  start-page: 414
  issn: 1532-0464
  issue: 6
  year: 2003
  ident: 23_18027057
  publication-title: Journal of biomedical informatics
  doi: 10.1016/j.jbi.2003.11.002
– volume: 8
  start-page: 80
  issn: 1067-5027
  issue: 1
  year: 2001
  ident: 10_49022416
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.2001.0080080
– volume: 17
  start-page: 229
  issn: 1067-5027
  issue: 3
  year: 2010
  ident: 2_49068093
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.2009.002733
– volume: 331
  start-page: 176
  issn: 0036-8075
  issue: 6014
  year: 2011
  ident: 21_38837597
  publication-title: Science
  doi: 10.1126/science.1199644
– volume: 10
  start-page: 351
  issn: 1067-5027
  issue: 4
  year: 2003
  ident: 11_49043303
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1197/jamia.M1176
– volume: 24
  start-page: 8
  year: 2009
  ident: 14_42322756
  publication-title: INTELLIGENT SYSTEMS IEEE
– volume: 32
  start-page: 281
  issn: 0026-1270
  issue: 4
  year: 1993
  ident: 1_14476014
  publication-title: Methods of information in medicine
  doi: 10.1055/s-0038-1634945
– volume: 1
  start-page: 5
  issn: 2041-1480
  issue: 1
  year: 2010
  ident: 16_37627060
  doi: 10.1186/2041-1480-1-5
– volume: 2010
  start-page: 587
  issn: 1559-4076
  year: 2010
  ident: 4_39327005
  publication-title: AMIA ... Annual Symposium proceedings [electronic resource] / AMIA Symposium. AMIA Symposium
– reference: 21347110 - AMIA Annu Symp Proc. 2010;2010:907-11
– reference: 21347046 - AMIA Annu Symp Proc. 2010;2010:587-91
– reference: 20190054 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):131-5
– reference: 8412823 - Methods Inf Med. 1993 Aug;32(4):281-91
– reference: 11825149 - Proc AMIA Symp. 2001;:17-21
– reference: 11141514 - J Am Med Inform Assoc. 2001 Jan-Feb;8(1):80-91
– reference: 21163965 - Science. 2011 Jan 14;331(6014):176-82
– reference: 20920264 - BMC Bioinformatics. 2010;11:492
– reference: 21992002 - BMC Bioinformatics. 2011;12:397
– reference: 22195220 - AMIA Annu Symp Proc. 2011;2011:1550-8
– reference: 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13
– reference: 14759816 - J Biomed Inform. 2003 Dec;36(6):414-32
– reference: 11825228 - Proc AMIA Symp. 2001;:448-52
– reference: 20618981 - J Biomed Semantics. 2010 Mar 31;1(1):5
– reference: 21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6
– reference: 20442139 - J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36
– reference: 12668688 - J Am Med Inform Assoc. 2003 Jul-Aug;10(4):351-62
SSID ssj0016235
Score 2.323115
Snippet To characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what...
ObjectiveTo characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e149
SubjectTerms Algorithms
Electronic Health Records
Natural Language Processing
Research and Applications
Semantics
Unified Medical Language System
Vocabulary, Controlled
Title Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/22493050
https://www.proquest.com/docview/1237076921
https://www.proquest.com/docview/1551616195
https://pubmed.ncbi.nlm.nih.gov/PMC3392861
https://academic.oup.com/jamia/article-pdf/19/e1/e149/9517120/19-e1-e149.pdf
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1527-974X
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016235
  issn: 1527-974X
  databaseCode: DIK
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1527-974X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016235
  issn: 1527-974X
  databaseCode: GX1
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1527-974X
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016235
  issn: 1527-974X
  databaseCode: RPM
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA46C-qL98t4WSL4aKZJc2t9W8RlvezigwPjU8mt7K61MzhTRH-9J206OC4sCtI-tOkJIT1pzpeec74g9ILVvJDOcqI8rYlglBIrnSbCOBtUzrzo2fWPT9TRXLxbyEVKj465MCZFhc_GlIZzWOebLL1GsvJ1xsosMDhFmQE80CynUEQCI7FoBhJX0Z6SgMwnaG9-8vHgc-_whPlA0n4H17iRKwEYvUgkRIyrLDZy3jZk-GMY7arYNVQX0OfFIMrrXbsyP76bpvnNQh3eQl_Hvg2BKV9m3cbO3M8_aB__V-dvo5sJyuKDod4ddCW0d9G14-Ssv4cM4NkaEC5OziD8If0bxQNNOo5WAS-d6ymiYL7CZy0eMzVxuwQQ_Aob3MRYdbKGsoBhqbzq1tgkJpX7aH745tPrI5J2dCBO8GJDAK957UsZYoIuQDfqlC-1E94oLYKwYE0ll1ZaHmGlK5mV1Oa5zal2hQdr-wBN2mUbHiGsauO8Y4FzqKqsKESpvYVr70oNGp6ifFRf5RLdedx1o6n6ZQ9XVdJ5FXVeDTqfopfbSquB7eNy8efjuKjgq4yuFtOGZbeuAA9oqlWZs0tkoo8SjlJO0cNhLG0bBWBVwkxMp0jvjLKtQGQF333Snp327OAcEG-hoF2yHY9_05fH_yj_BN2Au3yImnuKJptvXXgG-Gxj92Fl8vb9fvr4fgH5GDYU
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA46C-qL98t4I4KPZiZpbo1vi7gs4i4-ODA-ldyKu9bO4EwR_fWetOnguLAoSPvQpieE9KQ5X3rO-YLQS1bzUnrHiQq0JoJRSpz0mgjrXVQFC6Jn1z85VccL8W4plzk9OuXC2BwVPhtTGs5hnW_n-TWSdajnzMwjg1OYOcADzQoKRSQykopmIHEVHSgJyHyCDhanHw4_9Q5PmA8k7XdwTRu5EoDRy0xCxLiap0bO24YMfwyTXRX7huoC-rwYRHm9a9f2x3fbNL9ZqKNb6OvYtyEw5cus27qZ__kH7eP_6vxtdDNDWXw41LuDrsT2Lrp2kp3195AFPFsDwsXZGYTf53-jeKBJx8kq4JX3PUUUzFf4rMVjpiZuVwCCX2OLmxSrTjZQFjEsldfdBtvMpHIfLY7efnxzTPKODsQLXm4J4LWgg5ExJegCdKNeBaO9CFZpEYUDayq5dNLxBCu9YU5SVxSuoNqXAaztAzRpV218hLCqrQ-eRc6hqnKiFEYHB9fBGw0anqJiVF_lM9152nWjqfplD1dV1nmVdF4NOp-iV7tK64Ht43LxF-O4qOCrTK4W28ZVt6kAD2iqlSnYJTLJRwmHkVP0cBhLu0YBWBmYiekU6b1RthNIrOD7T9qzzz07OAfEWypol-zG49_05fE_yj9BN-CuGKLmnqLJ9lsXnwE-27rn-bP7BbpWNRs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unified+Medical+Language+System+term+occurrences+in+clinical+notes%3A+a+large-scale+corpus+analysis&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Wu%2C+S.+T.&rft.au=Liu%2C+H.&rft.au=Li%2C+D.&rft.au=Tao%2C+C.&rft.date=2012-06-01&rft.issn=1067-5027&rft.eissn=1527-974X&rft.volume=19&rft.issue=e1&rft.spage=e149&rft.epage=e156&rft_id=info:doi/10.1136%2Famiajnl-2011-000744&rft.externalDBID=n%2Fa&rft.externalDocID=10_1136_amiajnl_2011_000744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-5027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-5027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-5027&client=summon