Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis
To characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources. Based on the occurrences of UMLS terms in a 51 million document corpus of M...
Saved in:
| Published in | Journal of the American Medical Informatics Association : JAMIA Vol. 19; no. e1; pp. e149 - e156 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
BMJ Group
01.06.2012
|
| Series | FOCUS on clinical research informatics |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1067-5027 1527-974X 1527-974X |
| DOI | 10.1136/amiajnl-2011-000744 |
Cover
| Abstract | To characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources.
Based on the occurrences of UMLS terms in a 51 million document corpus of Mayo Clinic clinical notes, this study computes statistics about the terms' string attributes, source terminologies, semantic types and syntactic categories. Term occurrences in 2010 i2b2/VA text were also mapped; eight example filters were designed from the Mayo-based statistics and applied to i2b2/VA data.
For the corpus analysis, negligible numbers of mapped terms in the Mayo corpus had over six words or 55 characters. Of source terminologies in the UMLS, the Consumer Health Vocabulary and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) had the best coverage in Mayo clinical notes at 106426 and 94788 unique terms, respectively. Of 15 semantic groups in the UMLS, seven groups accounted for 92.08% of term occurrences in Mayo data. Syntactically, over 90% of matched terms were in noun phrases. For the cross-institutional analysis, using five example filters on i2b2/VA data reduces the actual lexicon to 19.13% of the size of the UMLS and only sees a 2% reduction in matched terms.
The corpus statistics presented here are instructive for building lexicons from the UMLS. Features intrinsic to Metathesaurus terms (well formedness, length and language) generalise easily across clinical institutions, but term frequencies should be adapted with caution. The semantic groups of mapped terms may differ slightly from institution to institution, but they differ greatly when moving to the biomedical literature domain. |
|---|---|
| AbstractList | ObjectiveTo characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources.DesignBased on the occurrences of UMLS terms in a 51 million document corpus of Mayo Clinic clinical notes, this study computes statistics about the terms' string attributes, source terminologies, semantic types and syntactic categories. Term occurrences in 2010 i2b2/VA text were also mapped; eight example filters were designed from the Mayo-based statistics and applied to i2b2/VA data.ResultsFor the corpus analysis, negligible numbers of mapped terms in the Mayo corpus had over six words or 55 characters. Of source terminologies in the UMLS, the Consumer Health Vocabulary and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) had the best coverage in Mayo clinical notes at 106[puncsp]426 and 94[puncsp]788 unique terms, respectively. Of 15 semantic groups in the UMLS, seven groups accounted for 92.08% of term occurrences in Mayo data. Syntactically, over 90% of matched terms were in noun phrases. For the cross-institutional analysis, using five example filters on i2b2/VA data reduces the actual lexicon to 19.13% of the size of the UMLS and only sees a 2% reduction in matched terms.ConclusionThe corpus statistics presented here are instructive for building lexicons from the UMLS. Features intrinsic to Metathesaurus terms (well formedness, length and language) generalise easily across clinical institutions, but term frequencies should be adapted with caution. The semantic groups of mapped terms may differ slightly from institution to institution, but they differ greatly when moving to the biomedical literature domain. To characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources. Based on the occurrences of UMLS terms in a 51 million document corpus of Mayo Clinic clinical notes, this study computes statistics about the terms' string attributes, source terminologies, semantic types and syntactic categories. Term occurrences in 2010 i2b2/VA text were also mapped; eight example filters were designed from the Mayo-based statistics and applied to i2b2/VA data. For the corpus analysis, negligible numbers of mapped terms in the Mayo corpus had over six words or 55 characters. Of source terminologies in the UMLS, the Consumer Health Vocabulary and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) had the best coverage in Mayo clinical notes at 106426 and 94788 unique terms, respectively. Of 15 semantic groups in the UMLS, seven groups accounted for 92.08% of term occurrences in Mayo data. Syntactically, over 90% of matched terms were in noun phrases. For the cross-institutional analysis, using five example filters on i2b2/VA data reduces the actual lexicon to 19.13% of the size of the UMLS and only sees a 2% reduction in matched terms. The corpus statistics presented here are instructive for building lexicons from the UMLS. Features intrinsic to Metathesaurus terms (well formedness, length and language) generalise easily across clinical institutions, but term frequencies should be adapted with caution. The semantic groups of mapped terms may differ slightly from institution to institution, but they differ greatly when moving to the biomedical literature domain. To characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources.OBJECTIVETo characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what types of term characteristics are generalisable across data sources.Based on the occurrences of UMLS terms in a 51 million document corpus of Mayo Clinic clinical notes, this study computes statistics about the terms' string attributes, source terminologies, semantic types and syntactic categories. Term occurrences in 2010 i2b2/VA text were also mapped; eight example filters were designed from the Mayo-based statistics and applied to i2b2/VA data.DESIGNBased on the occurrences of UMLS terms in a 51 million document corpus of Mayo Clinic clinical notes, this study computes statistics about the terms' string attributes, source terminologies, semantic types and syntactic categories. Term occurrences in 2010 i2b2/VA text were also mapped; eight example filters were designed from the Mayo-based statistics and applied to i2b2/VA data.For the corpus analysis, negligible numbers of mapped terms in the Mayo corpus had over six words or 55 characters. Of source terminologies in the UMLS, the Consumer Health Vocabulary and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) had the best coverage in Mayo clinical notes at 106426 and 94788 unique terms, respectively. Of 15 semantic groups in the UMLS, seven groups accounted for 92.08% of term occurrences in Mayo data. Syntactically, over 90% of matched terms were in noun phrases. For the cross-institutional analysis, using five example filters on i2b2/VA data reduces the actual lexicon to 19.13% of the size of the UMLS and only sees a 2% reduction in matched terms.RESULTSFor the corpus analysis, negligible numbers of mapped terms in the Mayo corpus had over six words or 55 characters. Of source terminologies in the UMLS, the Consumer Health Vocabulary and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) had the best coverage in Mayo clinical notes at 106426 and 94788 unique terms, respectively. Of 15 semantic groups in the UMLS, seven groups accounted for 92.08% of term occurrences in Mayo data. Syntactically, over 90% of matched terms were in noun phrases. For the cross-institutional analysis, using five example filters on i2b2/VA data reduces the actual lexicon to 19.13% of the size of the UMLS and only sees a 2% reduction in matched terms.The corpus statistics presented here are instructive for building lexicons from the UMLS. Features intrinsic to Metathesaurus terms (well formedness, length and language) generalise easily across clinical institutions, but term frequencies should be adapted with caution. The semantic groups of mapped terms may differ slightly from institution to institution, but they differ greatly when moving to the biomedical literature domain.CONCLUSIONThe corpus statistics presented here are instructive for building lexicons from the UMLS. Features intrinsic to Metathesaurus terms (well formedness, length and language) generalise easily across clinical institutions, but term frequencies should be adapted with caution. The semantic groups of mapped terms may differ slightly from institution to institution, but they differ greatly when moving to the biomedical literature domain. |
| Author | Wu, S. T. Tao, C. Chute, C. G. Shah, N. H. Li, D. Musen, M. A. Liu, H. |
| AuthorAffiliation | 1 Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA 2 Stanford Center for Biomedical Informatics Research, Stanford, CA, USA |
| AuthorAffiliation_xml | – name: 2 Stanford Center for Biomedical Informatics Research, Stanford, CA, USA – name: 1 Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA |
| Author_xml | – sequence: 1 givenname: S. T. surname: Wu fullname: Wu, S. T. – sequence: 2 givenname: H. surname: Liu fullname: Liu, H. – sequence: 3 givenname: D. surname: Li fullname: Li, D. – sequence: 4 givenname: C. surname: Tao fullname: Tao, C. – sequence: 5 givenname: M. A. surname: Musen fullname: Musen, M. A. – sequence: 6 givenname: C. G. surname: Chute fullname: Chute, C. G. – sequence: 7 givenname: N. H. surname: Shah fullname: Shah, N. H. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22493050$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUuLFDEUhYOMOA_9BYJk6aY073RcCDL4ghYXOuAu3ErdaTOkkjapUvrfW223z81IFgk35xxOvpyTk1wyEvKQsyecS_MUxgg3OXWCcd4xxqxSd8gZ18J2zqpPJ8uZGdtpJuwpOW_thjFuhNT3yKkQykmm2RmBqxyvIw70HQ4xQKJryJsZNkg_7NqEI52wjrSEMNeKOWCjMdOQYv4hzmXC9owCTVA32LVlhjSUup0bhQxp12K7T-5eQ2r44LhfkKtXLz9evunW71-_vXyx7oKSq6njWg12cBqXhiulDQtmcDaoAYxVqHpphJa61710UpjgeK9ZL0QvmA2rQTJ5QdQhd85b2H2DlPy2xhHqznPm98T8kZjfE_MHYovt-cG2nfsRh4B5qvDbWiD6v29y_Ow35auX0omV4UvA42NALV9mbJMfYwuYEmQsc_Nca26W5fTtUiEts8aJfeqjP2v96vPz5xaBOwhCLa1VvPYhTjDFsm8Z0y1vlv94_4fUd3zawUk |
| CitedBy_id | crossref_primary_10_4338_ACI_2014_11_RA_0106 crossref_primary_10_1136_amiajnl_2014_002733 crossref_primary_10_1016_j_jbi_2014_03_010 crossref_primary_10_1159_000476030 crossref_primary_10_1186_1472_6947_13_112 crossref_primary_10_1136_amiajnl_2013_001946 crossref_primary_10_1109_ACCESS_2018_2857499 crossref_primary_10_2196_jmir_6240 crossref_primary_10_1186_s12859_015_0487_2 crossref_primary_10_1155_2022_3990563 crossref_primary_10_1200_JCO_2015_63_6266 crossref_primary_10_1371_journal_pone_0154952 crossref_primary_10_1007_s10579_018_9431_1 crossref_primary_10_1007_s40264_014_0218_z crossref_primary_10_1186_1471_2105_13_261 crossref_primary_10_1016_j_jbi_2015_09_008 crossref_primary_10_1186_s12911_020_01352_2 crossref_primary_10_1093_bib_bbu006 crossref_primary_10_1136_amiajnl_2014_002902 crossref_primary_10_1186_1546_0096_11_45 crossref_primary_10_1136_amiajnl_2012_001358 crossref_primary_10_1136_amiajnl_2013_001933 crossref_primary_10_1136_amiajnl_2013_002428 crossref_primary_10_1136_amiajnl_2013_001612 crossref_primary_10_1186_s12911_017_0519_0 crossref_primary_10_1200_CCI_19_00134 crossref_primary_10_1136_amiajnl_2012_000968 crossref_primary_10_1016_j_procs_2015_07_304 crossref_primary_10_1007_s10489_024_06138_x crossref_primary_10_1016_j_jbi_2016_07_017 crossref_primary_10_1186_s40537_017_0067_6 crossref_primary_10_1002_aqc_3875 crossref_primary_10_1371_journal_pone_0063499 crossref_primary_10_1016_j_jbi_2018_02_019 crossref_primary_10_1038_sdata_2014_32 crossref_primary_10_1016_j_jbi_2013_12_006 crossref_primary_10_1016_j_jbi_2015_08_025 crossref_primary_10_1016_j_injury_2020_10_094 crossref_primary_10_1161_CIRCOUTCOMES_118_004741 crossref_primary_10_4103_2153_3539_194838 crossref_primary_10_1017_rsm_2025_9 crossref_primary_10_1016_j_imu_2019_100186 crossref_primary_10_1097_CCE_0000000000000450 |
| Cites_doi | 10.1145/360825.360855 10.1136/jamia.2009.001560 10.1136/jamia.2009.002691 10.1186/1471-2105-12-397 10.1136/amiajnl-2011-000203 10.1186/1471-2105-11-492 10.1016/j.jbi.2003.11.002 10.1136/jamia.2001.0080080 10.1136/jamia.2009.002733 10.1126/science.1199644 10.1197/jamia.M1176 10.1055/s-0038-1634945 10.1186/2041-1480-1-5 |
| ContentType | Journal Article |
| Copyright | 2012, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions. 2012 |
| Copyright_xml | – notice: 2012, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions. 2012 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM ADTOC UNPAY |
| DOI | 10.1136/amiajnl-2011-000744 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1527-974X |
| EndPage | e156 |
| ExternalDocumentID | 10.1136/amiajnl-2011-000744 PMC3392861 22493050 10_1136_amiajnl_2011_000744 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NLM NIH HHS grantid: R01 LM009959 – fundername: NHGRI NIH HHS grantid: U54 HG004028 – fundername: NLM NIH HHS grantid: R01LM009959A1 – fundername: NIGMS NIH HHS grantid: R01 GM102282 |
| GroupedDBID | --- .DC 0R~ 18M 1TH 29L 2WC 4.4 48X 53G 5GY 5RE 5WD 6PF 77I 7~T AABZA AACZT AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABNHQ ABOCM ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ACGFO ACGFS ACGOD ACHQT ACUFI ACYHN ADBBV ADGZP ADHKW ADHZD ADIPN ADNBA ADQBN ADRTK ADVEK ADYVW AEGPL AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXAL AGINJ AGQXC AGSYK AGUTN AHMBA AHMMS AJBYB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT ATGXG AVWKF AXUDD AYCSE BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM C45 CDBKE CITATION CS3 DAKXR DIK DILTD DU5 E3Z EBD EBS EJD EMOBN ENERS F5P FDB FECEO FLUFQ FOEOM FOTVD FQBLK G-Q GAUVT GJXCC GX1 H13 HAR IH2 IHE J21 JXSIZ KBUDW KOP KSI KSN LSO MHKGH NOMLY NOYVH NQ- NVLIB O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM Q5Y ROX ROZ RPM RPZ RUSNO RWL RXO SV3 TAE TEORI TJX TMA WOW YAYTL YKOAZ YXANX ~S- --K .GJ 1B1 3V. 7RV 7X7 88E 88I 8AF 8AO 8FE 8FG 8FI 8FJ 8FW AAEDT AAJQQ AALRI AAPGJ AAWDT AAXUO ABSAR ABSMQ ABUWG ABWVN ACFRR ACRPL ACUTJ ACZBC ADJOM ADJQC ADMUD ADNMO ADRIX AFFQV AFKRA AFXEN AFYAG AGKRT AGMDO ALIPV APJGH AQDSO AQKUS AQUVI ARAPS AZQEC BENPR BGLVJ BKEYQ BPHCQ BVXVI BZKNY C1A CCPQU CGR CUY CVF DWQXO ECM EIF EIHJH EO8 EX3 FYUFA GNUQQ HCIFZ HMCUK K6V K7- M0N M0T M1P M2P M2Q M41 MBLQV NAPCQ NPM NU- P62 PCD PQQKQ PROAC PSQYO R53 RIG ROL S0X SSZ UKHRP WOQ YHZ ZGI 7X8 7QO 8FD FR3 P64 5PM ACVCV ADMTO ADTOC AHGBF AJDVS AVNTJ OBFPC PHGZM PHGZT PJZUB PPXIY PQGLB UNPAY |
| ID | FETCH-LOGICAL-c438t-154d7d95e23584560c6d97c4da674e4b362535b5b39326c91b50b22b207c8d303 |
| IEDL.DBID | UNPAY |
| ISSN | 1067-5027 1527-974X |
| IngestDate | Sun Oct 26 04:11:24 EDT 2025 Tue Sep 30 16:48:05 EDT 2025 Tue Oct 07 09:26:00 EDT 2025 Sun Sep 28 06:54:51 EDT 2025 Wed Feb 19 01:51:36 EST 2025 Wed Oct 01 02:43:36 EDT 2025 Thu Apr 24 23:10:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | e1 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-154d7d95e23584560c6d97c4da674e4b362535b5b39326c91b50b22b207c8d303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/jamia/article-pdf/19/e1/e149/9517120/19-e1-e149.pdf |
| PMID | 22493050 |
| PQID | 1237076921 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1136_amiajnl_2011_000744 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3392861 proquest_miscellaneous_1551616195 proquest_miscellaneous_1237076921 pubmed_primary_22493050 crossref_citationtrail_10_1136_amiajnl_2011_000744 crossref_primary_10_1136_amiajnl_2011_000744 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-06-01 |
| PublicationDateYYYYMMDD | 2012-06-01 |
| PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: BMA House, Tavistock Square, London, WC1H 9JR |
| PublicationSeriesTitle | FOCUS on clinical research informatics |
| PublicationTitle | Journal of the American Medical Informatics Association : JAMIA |
| PublicationTitleAlternate | J Am Med Inform Assoc |
| PublicationYear | 2012 |
| Publisher | BMJ Group |
| Publisher_xml | – name: BMJ Group |
| References | (5_25803510) 1975; 18 (8_40148556) -1; -1 Thompson (17_41010363) 2011; 12 (14_42322756) 2009; 24 (2_49068093) 2010; 17 Hettne (16_37627060) 2010; 1 (21_38837597) 2011; 331 (11_49043303) 2003; 10 Xu (20_39327069) 2010; 2010 Bodenreider (23_18027057) 2003; 36 Cohen (19_38241228) 2010; 11 (22_49067594) 2010; 17 Lindberg (1_14476014) 1993; 32 (10_49022416) 2001; 8 (3_49068190) 2010; 17 Parai (4_39327005) 2010; 2010 21347046 - AMIA Annu Symp Proc. 2010;2010:587-91 8412823 - Methods Inf Med. 1993 Aug;32(4):281-91 11141514 - J Am Med Inform Assoc. 2001 Jan-Feb;8(1):80-91 20920264 - BMC Bioinformatics. 2010;11:492 14759816 - J Biomed Inform. 2003 Dec;36(6):414-32 20190054 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):131-5 11825228 - Proc AMIA Symp. 2001;:448-52 20618981 - J Biomed Semantics. 2010 Mar 31;1(1):5 21992002 - BMC Bioinformatics. 2011;12:397 22195220 - AMIA Annu Symp Proc. 2011;2011:1550-8 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13 12668688 - J Am Med Inform Assoc. 2003 Jul-Aug;10(4):351-62 21347110 - AMIA Annu Symp Proc. 2010;2010:907-11 21163965 - Science. 2011 Jan 14;331(6014):176-82 20442139 - J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36 21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6 11825149 - Proc AMIA Symp. 2001;:17-21 |
| References_xml | – volume: 2010 start-page: 907 issn: 1559-4076 year: 2010 ident: 20_39327069 publication-title: AMIA ... Annual Symposium proceedings [electronic resource] / AMIA Symposium. AMIA Symposium – volume: 18 start-page: 333 year: 1975 ident: 5_25803510 publication-title: COMMUN. ACM doi: 10.1145/360825.360855 – volume: 17 start-page: 507 issn: 1067-5027 issue: 5 year: 2010 ident: 3_49068190 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/jamia.2009.001560 – volume: 17 start-page: 131 issn: 1067-5027 issue: 2 year: 2010 ident: 22_49067594 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/jamia.2009.002691 – volume: 12 start-page: 397 issn: 1471-2105 year: 2011 ident: 17_41010363 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-12-397 – volume: -1 start-page: MASTER year: -1 ident: 8_40148556 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/amiajnl-2011-000203 – volume: 11 start-page: 492 issn: 1471-2105 year: 2010 ident: 19_38241228 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-11-492 – volume: 36 start-page: 414 issn: 1532-0464 issue: 6 year: 2003 ident: 23_18027057 publication-title: Journal of biomedical informatics doi: 10.1016/j.jbi.2003.11.002 – volume: 8 start-page: 80 issn: 1067-5027 issue: 1 year: 2001 ident: 10_49022416 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/jamia.2001.0080080 – volume: 17 start-page: 229 issn: 1067-5027 issue: 3 year: 2010 ident: 2_49068093 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/jamia.2009.002733 – volume: 331 start-page: 176 issn: 0036-8075 issue: 6014 year: 2011 ident: 21_38837597 publication-title: Science doi: 10.1126/science.1199644 – volume: 10 start-page: 351 issn: 1067-5027 issue: 4 year: 2003 ident: 11_49043303 publication-title: Journal of the American Medical Informatics Association doi: 10.1197/jamia.M1176 – volume: 24 start-page: 8 year: 2009 ident: 14_42322756 publication-title: INTELLIGENT SYSTEMS IEEE – volume: 32 start-page: 281 issn: 0026-1270 issue: 4 year: 1993 ident: 1_14476014 publication-title: Methods of information in medicine doi: 10.1055/s-0038-1634945 – volume: 1 start-page: 5 issn: 2041-1480 issue: 1 year: 2010 ident: 16_37627060 doi: 10.1186/2041-1480-1-5 – volume: 2010 start-page: 587 issn: 1559-4076 year: 2010 ident: 4_39327005 publication-title: AMIA ... Annual Symposium proceedings [electronic resource] / AMIA Symposium. AMIA Symposium – reference: 21347110 - AMIA Annu Symp Proc. 2010;2010:907-11 – reference: 21347046 - AMIA Annu Symp Proc. 2010;2010:587-91 – reference: 20190054 - J Am Med Inform Assoc. 2010 Mar-Apr;17(2):131-5 – reference: 8412823 - Methods Inf Med. 1993 Aug;32(4):281-91 – reference: 11825149 - Proc AMIA Symp. 2001;:17-21 – reference: 11141514 - J Am Med Inform Assoc. 2001 Jan-Feb;8(1):80-91 – reference: 21163965 - Science. 2011 Jan 14;331(6014):176-82 – reference: 20920264 - BMC Bioinformatics. 2010;11:492 – reference: 21992002 - BMC Bioinformatics. 2011;12:397 – reference: 22195220 - AMIA Annu Symp Proc. 2011;2011:1550-8 – reference: 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13 – reference: 14759816 - J Biomed Inform. 2003 Dec;36(6):414-32 – reference: 11825228 - Proc AMIA Symp. 2001;:448-52 – reference: 20618981 - J Biomed Semantics. 2010 Mar 31;1(1):5 – reference: 21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6 – reference: 20442139 - J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36 – reference: 12668688 - J Am Med Inform Assoc. 2003 Jul-Aug;10(4):351-62 |
| SSID | ssj0016235 |
| Score | 2.323115 |
| Snippet | To characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate what... ObjectiveTo characterise empirical instances of Unified Medical Language System (UMLS) Metathesaurus term strings in a large clinical corpus, and to illustrate... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e149 |
| SubjectTerms | Algorithms Electronic Health Records Natural Language Processing Research and Applications Semantics Unified Medical Language System Vocabulary, Controlled |
| Title | Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22493050 https://www.proquest.com/docview/1237076921 https://www.proquest.com/docview/1551616195 https://pubmed.ncbi.nlm.nih.gov/PMC3392861 https://academic.oup.com/jamia/article-pdf/19/e1/e149/9517120/19-e1-e149.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1527-974X dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016235 issn: 1527-974X databaseCode: DIK dateStart: 19940101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1527-974X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016235 issn: 1527-974X databaseCode: GX1 dateStart: 19940101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1527-974X dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016235 issn: 1527-974X databaseCode: RPM dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA46C-qL98t4WSL4aKZJc2t9W8RlvezigwPjU8mt7K61MzhTRH-9J206OC4sCtI-tOkJIT1pzpeec74g9ILVvJDOcqI8rYlglBIrnSbCOBtUzrzo2fWPT9TRXLxbyEVKj465MCZFhc_GlIZzWOebLL1GsvJ1xsosMDhFmQE80CynUEQCI7FoBhJX0Z6SgMwnaG9-8vHgc-_whPlA0n4H17iRKwEYvUgkRIyrLDZy3jZk-GMY7arYNVQX0OfFIMrrXbsyP76bpvnNQh3eQl_Hvg2BKV9m3cbO3M8_aB__V-dvo5sJyuKDod4ddCW0d9G14-Ssv4cM4NkaEC5OziD8If0bxQNNOo5WAS-d6ymiYL7CZy0eMzVxuwQQ_Aob3MRYdbKGsoBhqbzq1tgkJpX7aH745tPrI5J2dCBO8GJDAK957UsZYoIuQDfqlC-1E94oLYKwYE0ll1ZaHmGlK5mV1Oa5zal2hQdr-wBN2mUbHiGsauO8Y4FzqKqsKESpvYVr70oNGp6ifFRf5RLdedx1o6n6ZQ9XVdJ5FXVeDTqfopfbSquB7eNy8efjuKjgq4yuFtOGZbeuAA9oqlWZs0tkoo8SjlJO0cNhLG0bBWBVwkxMp0jvjLKtQGQF333Snp327OAcEG-hoF2yHY9_05fH_yj_BN2Au3yImnuKJptvXXgG-Gxj92Fl8vb9fvr4fgH5GDYU |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA46C-qL98t4I4KPZiZpbo1vi7gs4i4-ODA-ldyKu9bO4EwR_fWetOnguLAoSPvQpieE9KQ5X3rO-YLQS1bzUnrHiQq0JoJRSpz0mgjrXVQFC6Jn1z85VccL8W4plzk9OuXC2BwVPhtTGs5hnW_n-TWSdajnzMwjg1OYOcADzQoKRSQykopmIHEVHSgJyHyCDhanHw4_9Q5PmA8k7XdwTRu5EoDRy0xCxLiap0bO24YMfwyTXRX7huoC-rwYRHm9a9f2x3fbNL9ZqKNb6OvYtyEw5cus27qZ__kH7eP_6vxtdDNDWXw41LuDrsT2Lrp2kp3195AFPFsDwsXZGYTf53-jeKBJx8kq4JX3PUUUzFf4rMVjpiZuVwCCX2OLmxSrTjZQFjEsldfdBtvMpHIfLY7efnxzTPKODsQLXm4J4LWgg5ExJegCdKNeBaO9CFZpEYUDayq5dNLxBCu9YU5SVxSuoNqXAaztAzRpV218hLCqrQ-eRc6hqnKiFEYHB9fBGw0anqJiVF_lM9152nWjqfplD1dV1nmVdF4NOp-iV7tK64Ht43LxF-O4qOCrTK4W28ZVt6kAD2iqlSnYJTLJRwmHkVP0cBhLu0YBWBmYiekU6b1RthNIrOD7T9qzzz07OAfEWypol-zG49_05fE_yj9BN-CuGKLmnqLJ9lsXnwE-27rn-bP7BbpWNRs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unified+Medical+Language+System+term+occurrences+in+clinical+notes%3A+a+large-scale+corpus+analysis&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Wu%2C+S.+T.&rft.au=Liu%2C+H.&rft.au=Li%2C+D.&rft.au=Tao%2C+C.&rft.date=2012-06-01&rft.issn=1067-5027&rft.eissn=1527-974X&rft.volume=19&rft.issue=e1&rft.spage=e149&rft.epage=e156&rft_id=info:doi/10.1136%2Famiajnl-2011-000744&rft.externalDBID=n%2Fa&rft.externalDocID=10_1136_amiajnl_2011_000744 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-5027&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-5027&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-5027&client=summon |