Across‐vendor standardization of semi‐LASER for single‐voxel MRS at 3T
The semi‐adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single‐shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at...
Saved in:
| Published in | NMR in biomedicine Vol. 34; no. 5; pp. e4218 - n/a |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
01.05.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-3480 1099-1492 1099-1492 |
| DOI | 10.1002/nbm.4218 |
Cover
| Abstract | The semi‐adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single‐shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high‐ and ultra‐high fields. Across‐vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B1 requirements of the adiabatic inversion pulses and maximum B1 limitations on some platforms. The aims of this study were to design a short‐echo sLASER sequence that can be executed within a B1 limit of 15 μT by taking advantage of gradient‐modulated RF pulses, to implement it on three major platforms and to evaluate the between‐vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel‐based first and second order B0 shimming and voxel‐based B1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient‐modulated pulses considered (GOIA, FOCI and BASSI), GOIA‐WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B1 of 15 μT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter‐pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE ‘Braino’ phantom between vendors. High‐quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal‐to‐noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi‐site studies with clinical cohorts.
Harmonization of the single‐voxel sLASER sequence on three major MR vendors (GE, Philips and Siemens) has resulted in high quality and reproducible spectra in multiple brain regions (cerebellar white matter, hippocampus, posterior cingulate cortex, pons and putamen) at 3 T. |
|---|---|
| AbstractList | The semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high- and ultra-high fields. Across-vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B
requirements of the adiabatic inversion pulses and maximum B
limitations on some platforms. The aims of this study were to design a short-echo sLASER sequence that can be executed within a B
limit of 15 μT by taking advantage of gradient-modulated RF pulses, to implement it on three major platforms and to evaluate the between-vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel-based first and second order B
shimming and voxel-based B
adjustments of RF pulses were implemented on all platforms. Amongst the gradient-modulated pulses considered (GOIA, FOCI and BASSI), GOIA-WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B
of 15 μT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter-pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE 'Braino' phantom between vendors. High-quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal-to-noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi-site studies with clinical cohorts. The semi‐adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single‐shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high‐ and ultra‐high fields. Across‐vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B1 requirements of the adiabatic inversion pulses and maximum B1 limitations on some platforms. The aims of this study were to design a short‐echo sLASER sequence that can be executed within a B1 limit of 15 μT by taking advantage of gradient‐modulated RF pulses, to implement it on three major platforms and to evaluate the between‐vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel‐based first and second order B0 shimming and voxel‐based B1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient‐modulated pulses considered (GOIA, FOCI and BASSI), GOIA‐WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B1 of 15 μT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter‐pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE ‘Braino’ phantom between vendors. High‐quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal‐to‐noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi‐site studies with clinical cohorts. Harmonization of the single‐voxel sLASER sequence on three major MR vendors (GE, Philips and Siemens) has resulted in high quality and reproducible spectra in multiple brain regions (cerebellar white matter, hippocampus, posterior cingulate cortex, pons and putamen) at 3 T. The semi‐adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single‐shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high‐ and ultra‐high fields. Across‐vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B 1 requirements of the adiabatic inversion pulses and maximum B 1 limitations on some platforms. The aims of this study were to design a short‐echo sLASER sequence that can be executed within a B 1 limit of 15 μT by taking advantage of gradient‐modulated RF pulses, to implement it on three major platforms and to evaluate the between‐vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel‐based first and second order B 0 shimming and voxel‐based B 1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient‐modulated pulses considered (GOIA, FOCI and BASSI), GOIA‐WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B 1 of 15 μT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter‐pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE ‘Braino’ phantom between vendors. High‐quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal‐to‐noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi‐site studies with clinical cohorts. The semi‐adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high- and ultra-high fields. Across-vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B1 requirements of the adiabatic inversion pulses and maximum B1 limitations on some platforms. The aims of this study were to design a short-echo sLASER sequence that can be executed within a B1 limit of 15 μT by taking advantage of gradient-modulated RF pulses, to implement it on three major platforms and to evaluate the between-vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel-based first and second order B0 shimming and voxel-based B1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient-modulated pulses considered (GOIA, FOCI and BASSI), GOIA-WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B1 of 15 μT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter-pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE ‘Braino’ phantom between vendors. High-quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal-to-noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi-site studies with clinical cohorts. The semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high- and ultra-high fields. Across-vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B1 requirements of the adiabatic inversion pulses and maximum B1 limitations on some platforms. The aims of this study were to design a short-echo sLASER sequence that can be executed within a B1 limit of 15 μT by taking advantage of gradient-modulated RF pulses, to implement it on three major platforms and to evaluate the between-vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel-based first and second order B0 shimming and voxel-based B1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient-modulated pulses considered (GOIA, FOCI and BASSI), GOIA-WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B1 of 15 μT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter-pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE 'Braino' phantom between vendors. High-quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal-to-noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi-site studies with clinical cohorts.The semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high- and ultra-high fields. Across-vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B1 requirements of the adiabatic inversion pulses and maximum B1 limitations on some platforms. The aims of this study were to design a short-echo sLASER sequence that can be executed within a B1 limit of 15 μT by taking advantage of gradient-modulated RF pulses, to implement it on three major platforms and to evaluate the between-vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel-based first and second order B0 shimming and voxel-based B1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient-modulated pulses considered (GOIA, FOCI and BASSI), GOIA-WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B1 of 15 μT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter-pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE 'Braino' phantom between vendors. High-quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal-to-noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi-site studies with clinical cohorts. |
| Author | Ratai, Eva M. Noeske, Ralph Seraji‐Bozorgzad, Navid Noll, Douglas C. Soher, Brian J. Mareci, Thomas H. Öz, Gülin Arani, Arvin Gillen, Joseph Landheer, Karl Deelchand, Dinesh K. Barker, Peter B. Peltier, Scott Juchem, Christoph Schär, Michael Berrington, Adam Joers, James M. Nielsen, Jon‐Fredrik Kantarci, Kejal |
| AuthorAffiliation | 7 Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, USA 10 The Kennedy Krieger Institute, Baltimore, MD, USA 6 Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY, USA 9 Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA 3 GE Healthcare, Berlin, Germany 5 Department of Biomedical Engineering, University of Michigan, MI, USA 4 Department of Radiology, Mayo Clinic, Rochester, MN, USA 2 The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD, USA 8 Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA |
| AuthorAffiliation_xml | – name: 5 Department of Biomedical Engineering, University of Michigan, MI, USA – name: 9 Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA – name: 10 The Kennedy Krieger Institute, Baltimore, MD, USA – name: 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA – name: 7 Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, USA – name: 2 The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD, USA – name: 4 Department of Radiology, Mayo Clinic, Rochester, MN, USA – name: 8 Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA – name: 3 GE Healthcare, Berlin, Germany – name: 6 Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY, USA |
| Author_xml | – sequence: 1 givenname: Dinesh K. orcidid: 0000-0003-4266-4780 surname: Deelchand fullname: Deelchand, Dinesh K. email: deelc001@umn.edu organization: University of Minnesota – sequence: 2 givenname: Adam orcidid: 0000-0002-1207-8193 surname: Berrington fullname: Berrington, Adam organization: University of Nottingham – sequence: 3 givenname: Ralph surname: Noeske fullname: Noeske, Ralph organization: GE Healthcare – sequence: 4 givenname: James M. surname: Joers fullname: Joers, James M. organization: University of Minnesota – sequence: 5 givenname: Arvin surname: Arani fullname: Arani, Arvin organization: Department of Radiology, Mayo Clinic – sequence: 6 givenname: Joseph surname: Gillen fullname: Gillen, Joseph organization: The Johns Hopkins University – sequence: 7 givenname: Michael surname: Schär fullname: Schär, Michael organization: The Johns Hopkins University – sequence: 8 givenname: Jon‐Fredrik surname: Nielsen fullname: Nielsen, Jon‐Fredrik organization: University of Michigan – sequence: 9 givenname: Scott surname: Peltier fullname: Peltier, Scott organization: University of Michigan – sequence: 10 givenname: Navid surname: Seraji‐Bozorgzad fullname: Seraji‐Bozorgzad, Navid organization: University of Michigan – sequence: 11 givenname: Karl orcidid: 0000-0001-5012-3007 surname: Landheer fullname: Landheer, Karl organization: Columbia University – sequence: 12 givenname: Christoph surname: Juchem fullname: Juchem, Christoph organization: Columbia University – sequence: 13 givenname: Brian J. surname: Soher fullname: Soher, Brian J. organization: Duke University Medical Center – sequence: 14 givenname: Douglas C. surname: Noll fullname: Noll, Douglas C. organization: University of Michigan – sequence: 15 givenname: Kejal surname: Kantarci fullname: Kantarci, Kejal organization: Department of Radiology, Mayo Clinic – sequence: 16 givenname: Eva M. surname: Ratai fullname: Ratai, Eva M. organization: Harvard Medical School – sequence: 17 givenname: Thomas H. surname: Mareci fullname: Mareci, Thomas H. organization: University of Florida – sequence: 18 givenname: Peter B. surname: Barker fullname: Barker, Peter B. organization: The Kennedy Krieger Institute – sequence: 19 givenname: Gülin orcidid: 0000-0002-5769-183X surname: Öz fullname: Öz, Gülin organization: University of Minnesota |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31854045$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URKcFiSdAkdjAIoN_J84GaahaQJqC1Ja15TjXxVViT-2kZbriEXhGngTPTKFQASvL8neO7z1nD-344AGhpwRPCcb0lW_6KadEPkATguu6JLymO2iCa0FLxiXeRXspXWCMJWf0EdplRAqOuZigxdzEkNL3r9-uwLchFmnQvtWxdTd6cMEXwRYJepeBxfz08KSwa8b58w7WmvAFuuL45LTQQ8HOHqOHVncJntye--jT0eHZwbty8fHt-4P5ojScSVlWsjHQNgI0Y2CZlWD4rDFW68oa0WrSCEtr2UiYEZEvhFArKbVUE2M5qdg-ern1Hf1Sr65116lldL2OK0WwWieiciJqnUhmX2_Z5dj00BrwQ9R3fNBO_fni3Wd1Hq5URetaMp4NXtwaxHA5QhpU75KBrtMewpgUZVRWgnAxy-jze-hFGKPPUSiaCYprMhOZevb7RL9G-VnK3Y-baiLY_203vYcaN2yKy7u47m-Cciu4dh2s_mmsPrw53vA_AOwbvUE |
| CitedBy_id | crossref_primary_10_1016_j_neuroscience_2023_10_022 crossref_primary_10_1002_mrm_29370 crossref_primary_10_1007_s12311_023_01572_y crossref_primary_10_3233_JHD_240016 crossref_primary_10_1002_nbm_4236 crossref_primary_10_1002_nbm_4676 crossref_primary_10_1002_mrm_29895 crossref_primary_10_1002_mrm_29950 crossref_primary_10_7554_eLife_99920_4 crossref_primary_10_1002_mrm_29034 crossref_primary_10_3389_fneur_2022_1045678 crossref_primary_10_1002_mrm_29836 crossref_primary_10_1093_noajnl_vdac103 crossref_primary_10_1002_nbm_4538 crossref_primary_10_1002_nbm_4415 crossref_primary_10_1002_ana_26573 crossref_primary_10_1016_j_mri_2022_08_020 crossref_primary_10_1002_mrm_30293 crossref_primary_10_1002_mrm_30151 crossref_primary_10_1002_nbm_5095 crossref_primary_10_1002_mrm_30110 crossref_primary_10_7554_eLife_99920 crossref_primary_10_1681_ASN_0000000000000105 crossref_primary_10_3389_fneur_2021_698675 crossref_primary_10_3390_cancers16112141 crossref_primary_10_1002_mrm_29686 crossref_primary_10_1016_j_mric_2021_06_013 crossref_primary_10_1002_mrm_29387 crossref_primary_10_1002_mrm_29640 crossref_primary_10_1016_j_jmr_2019_106670 crossref_primary_10_1002_mrm_29164 crossref_primary_10_1016_j_dcn_2024_101452 crossref_primary_10_1002_mds_29934 crossref_primary_10_1002_nbm_4702 crossref_primary_10_1152_jn_00139_2024 crossref_primary_10_1093_noajnl_vdad001 crossref_primary_10_1148_radiol_2021210826 crossref_primary_10_20900_jpbs_20210007 crossref_primary_10_1093_noajnl_vdab060 |
| Cites_doi | 10.1002/mrm.26022 10.1006/jmre.2001.2340 10.1002/mrm.1910300604 10.1002/mrm.10135 10.1148/radiol.13130531 10.1002/mrm.1910290613 10.1002/mrm.25295 10.1002/(SICI)1522-2594(199904)41:4<649::AID-MRM2>3.0.CO;2-G 10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1 10.1103/PhysRev.94.630 10.1002/(SICI)1099-1492(200002)13:1<28::AID-NBM606>3.0.CO;2-L 10.1111/j.1749-6632.1987.tb32915.x 10.1002/mrm.20262 10.1002/mrm.1910360410 10.1002/mrm.22708 10.1002/mrm.27742 10.1016/j.jmr.2010.01.010 10.1002/mrm.26788 10.1002/(SICI)1099-1492(199712)10:8<423::AID-NBM488>3.0.CO;2-X 10.1002/mrm.21302 10.1002/mrm.1910150309 10.1002/nbm.3309 10.1002/nbm.3252 10.1002/mrm.26826 10.1002/mrm.20337 10.1002/mrm.25088 10.1002/mrm.27203 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons, Ltd. 2021 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/nbm.4218 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Chemistry Physics |
| EISSN | 1099-1492 |
| EndPage | n/a |
| ExternalDocumentID | oai:deepblue.lib.umich.edu:2027.42/167530 PMC7299834 31854045 10_1002_nbm_4218 NBM4218 |
| Genre | article Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institutes of Health (NIH) funderid: P30 NS076408; P41 EB015894; R01 NS080816 – fundername: NINDS NIH HHS grantid: P30 NS076408 – fundername: NIBIB NIH HHS grantid: P41 EB027061 – fundername: NIH HHS grantid: S10 OD021726 – fundername: NIBIB NIH HHS grantid: P41 EB015894 – fundername: NIH HHS grantid: S10 OD021648 – fundername: NINDS NIH HHS grantid: R01 NS080816 – fundername: NINDS NIH HHS grantid: U01 NS100620 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4388-78bcedb5ea33ef3f8ec46bcfaa7fc5da1b5f298b8e6151b5112f822f2a1cf4173 |
| IEDL.DBID | DR2 |
| ISSN | 0952-3480 1099-1492 |
| IngestDate | Sun Oct 26 03:15:05 EDT 2025 Tue Sep 30 16:54:52 EDT 2025 Fri Jul 11 11:48:59 EDT 2025 Tue Oct 07 06:36:02 EDT 2025 Sun Oct 05 09:14:12 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Sat Oct 25 05:36:20 EDT 2025 Wed Jan 22 16:31:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | clinical GOIA-WURST gradient-modulated brain human harmonization MR spectroscopy |
| Language | English |
| License | 2019 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4388-78bcedb5ea33ef3f8ec46bcfaa7fc5da1b5f298b8e6151b5112f822f2a1cf4173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Share equal authorship Current address: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK |
| ORCID | 0000-0001-5012-3007 0000-0002-5769-183X 0000-0002-1207-8193 0000-0003-4266-4780 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hdl.handle.net/2027.42/167530 |
| PMID | 31854045 |
| PQID | 2514209165 |
| PQPubID | 2029982 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1002_nbm_4218 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7299834 proquest_miscellaneous_2328751456 proquest_journals_2514209165 pubmed_primary_31854045 crossref_primary_10_1002_nbm_4218 crossref_citationtrail_10_1002_nbm_4218 wiley_primary_10_1002_nbm_4218_NBM4218 |
| PublicationCentury | 2000 |
| PublicationDate | May 2021 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | NMR in biomedicine |
| PublicationTitleAlternate | NMR Biomed |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1993; 29 1990; 15 2017; 25 2015; 73 2000; 43 2010; 203 2016; 76 2008; 59 2018; 80 1987; 508 1999; 41 2014; 270 1996; 36 1954; 94 2002; 47 2004; 52 2019; 82 2015; 28 2001; 153 1997; 10 2000; 13 1993; 30 2019; 27 2018 2005; 53 2011; 65 2013 2018; 79 e_1_2_8_28_1 e_1_2_8_29_1 Landheer K (e_1_2_8_25_1) 2019; 27 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 Noeske R (e_1_2_8_27_1) 2017; 25 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 36 start-page: 562 issue: 4 year: 1996 end-page: 566 article-title: Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy publication-title: Magn Reson Med – volume: 47 start-page: 629 issue: 4 year: 2002 end-page: 633 article-title: Proton T relaxation study of water, N‐acetylaspartate, and creatine in human brain using Hahn and Carr‐Purcell spin echoes at 4T and 7T publication-title: Magn Reson Med – volume: 29 start-page: 804 issue: 6 year: 1993 end-page: 811 article-title: Automatic, localized in vivo adjustment of all first‐ and second‐order shim coils publication-title: Magn Reson Med – volume: 30 start-page: 672 issue: 6 year: 1993 end-page: 679 article-title: Estimation of metabolite concentrations from localized in vivo proton NMR spectra publication-title: Magn Reson Med – volume: 270 start-page: 658 issue: 3 year: 2014 end-page: 679 article-title: The MRS consensus group. Clinical proton MR spectroscopy in central nervous system disorders publication-title: Radiology – volume: 82 start-page: 527 issue: 2 year: 2019 end-page: 550 article-title: Methodological consensus on clinical proton MRS of the brain: review and recommendations publication-title: Magn Reson Med – volume: 94 start-page: 630 issue: 3 year: 1954 end-page: 638 article-title: Effects of diffusion on free precession in nuclear magnetic resonance experiments publication-title: Phys Rev – volume: 27 year: 2019 article-title: FAMASITO ‐ FASTMAP shim tool towards user‐friendly single‐step B0 homogenization publication-title: Proc Intl Soc Mag Reson Med – volume: 79 start-page: 1260 issue: 3 year: 2018 end-page: 1265 article-title: Transverse relaxation time constants of the five major metabolites in human brain measured in vivo using LASER and PRESS at 3 T publication-title: Magn Reson Med – volume: 52 start-page: 1190 issue: 5 year: 2004 end-page: 1199 article-title: Bandwidth‐modulated adiabatic RF pulses for uniform selective saturation and inversion publication-title: Magn Reson Med – volume: 15 start-page: 438 issue: 3 year: 1990 end-page: 445 article-title: Rapid radiofrequency calibration in MRI publication-title: Magn Reson Med – volume: 203 start-page: 283 issue: 2 year: 2010 end-page: 293 article-title: Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high‐field clinical scanners publication-title: J Magn Reson – volume: 43 start-page: 319 issue: 2 year: 2000 end-page: 323 article-title: Field mapping without reference scan using asymmetric echo‐planar techniques publication-title: Magn Reson Med – volume: 73 start-page: 13 issue: 1 year: 2015 end-page: 20 article-title: Effect of Carr‐Purcell refocusing pulse trains on transverse relaxation times of metabolites in rat brain at 9.4 tesla publication-title: Magn Reson Med – volume: 80 start-page: 1787 issue: 5 year: 2018 end-page: 1798 article-title: AutoVOI: real‐time automatic prescription of volume‐of‐interest for single voxel spectroscopy publication-title: Magn Reson Med – year: 2018 – volume: 53 start-page: 3 issue: 1 year: 2005 end-page: 8 article-title: Use of phased array coils for a determination of absolute metabolite concentrations publication-title: Magn Reson Med – volume: 65 start-page: 901 issue: 4 year: 2011 end-page: 910 article-title: Short‐echo, single‐shot, full‐intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem publication-title: Magn Reson Med – volume: 25 start-page: 5509 year: 2017 article-title: Voxel Based Transmit Gain Calibration using Bloch‐Siegert semi‐LASER at 7T publication-title: Proc Intl Soc Mag Reson Med – volume: 41 start-page: 649 issue: 4 year: 1999 end-page: 656 article-title: In vivo H NMR spectroscopy of rat brain at 1 ms echo time publication-title: Magn Reson Med – volume: 76 start-page: 1083 issue: 4 year: 2016 end-page: 1091 article-title: Test‐retest reproducibility of neurochemical profiles with short‐echo, single‐voxel MR spectroscopy at 3T and 7T publication-title: Magn Reson Med – volume: 508 start-page: 333 issue: 1 year: 1987 end-page: 348 article-title: Spatial localization in NMR spectroscopy in vivo publication-title: Ann N Y Acad Sci – volume: 153 start-page: 155 issue: 2 year: 2001 end-page: 177 article-title: The return of the frequency sweep: designing adiabatic pulses for contemporary NMR publication-title: J Magn Reson – volume: 10 start-page: 423 issue: 8 year: 1997 end-page: 434 article-title: Adiabatic pulses publication-title: NMR Biomed – volume: 28 start-page: 685 issue: 6 year: 2015 end-page: 693 article-title: Feasibility and reproducibility of neurochemical profile quantification in the human hippocampus at 3 T publication-title: NMR Biomed – volume: 59 start-page: 1 issue: 1 year: 2008 end-page: 6 article-title: Short echo time 1H‐MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses publication-title: Magn Reson Med – volume: 28 start-page: 306 issue: 3 year: 2015 end-page: 316 article-title: Multi‐center reproducibility of neurochemical profiles in the human brain at 7 tesla publication-title: NMR Biomed – volume: 73 start-page: 1718 issue: 5 year: 2015 end-page: 1725 article-title: Two‐site reproducibility of cerebellar and brainstem neurochemical profiles with short‐echo, single‐voxel MRS at 3T publication-title: Magn Reson Med – volume: 13 start-page: 28 issue: 1 year: 2000 end-page: 36 article-title: On the reliability of quantitative clinical magnetic resonance spectroscopy of the human brain publication-title: NMR Biomed – volume: 79 start-page: 1241 issue: 3 year: 2018 end-page: 1250 article-title: Improved localization, spectral quality, and repeatability with advanced MRS methodology in the clinical setting publication-title: Magn Reson Med – year: 2013 – ident: e_1_2_8_11_1 doi: 10.1002/mrm.26022 – ident: e_1_2_8_17_1 doi: 10.1006/jmre.2001.2340 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.1910300604 – ident: e_1_2_8_9_1 doi: 10.1002/mrm.10135 – volume: 25 start-page: 5509 year: 2017 ident: e_1_2_8_27_1 article-title: Voxel Based Transmit Gain Calibration using Bloch‐Siegert semi‐LASER at 7T publication-title: Proc Intl Soc Mag Reson Med – ident: e_1_2_8_2_1 doi: 10.1148/radiol.13130531 – ident: e_1_2_8_23_1 doi: 10.1002/mrm.1910290613 – ident: e_1_2_8_14_1 doi: 10.1002/mrm.25295 – ident: e_1_2_8_20_1 doi: 10.1002/(SICI)1522-2594(199904)41:4<649::AID-MRM2>3.0.CO;2-G – ident: e_1_2_8_24_1 doi: 10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1 – volume: 27 year: 2019 ident: e_1_2_8_25_1 article-title: FAMASITO ‐ FASTMAP shim tool towards user‐friendly single‐step B0 homogenization publication-title: Proc Intl Soc Mag Reson Med – ident: e_1_2_8_7_1 doi: 10.1103/PhysRev.94.630 – ident: e_1_2_8_21_1 doi: 10.1002/(SICI)1099-1492(200002)13:1<28::AID-NBM606>3.0.CO;2-L – ident: e_1_2_8_3_1 doi: 10.1111/j.1749-6632.1987.tb32915.x – ident: e_1_2_8_18_1 doi: 10.1002/mrm.20262 – ident: e_1_2_8_33_1 doi: 10.1002/mrm.1910360410 – ident: e_1_2_8_6_1 doi: 10.1002/mrm.22708 – ident: e_1_2_8_4_1 doi: 10.1002/mrm.27742 – ident: e_1_2_8_16_1 doi: 10.1016/j.jmr.2010.01.010 – ident: e_1_2_8_10_1 doi: 10.1002/mrm.26788 – ident: e_1_2_8_19_1 doi: 10.1002/(SICI)1099-1492(199712)10:8<423::AID-NBM488>3.0.CO;2-X – ident: e_1_2_8_5_1 doi: 10.1002/mrm.21302 – ident: e_1_2_8_28_1 doi: 10.1002/mrm.1910150309 – ident: e_1_2_8_12_1 – ident: e_1_2_8_13_1 doi: 10.1002/nbm.3309 – ident: e_1_2_8_15_1 doi: 10.1002/nbm.3252 – ident: e_1_2_8_32_1 doi: 10.1002/mrm.26826 – ident: e_1_2_8_30_1 doi: 10.1002/mrm.20337 – ident: e_1_2_8_8_1 doi: 10.1002/mrm.25088 – ident: e_1_2_8_29_1 – ident: e_1_2_8_22_1 doi: 10.1002/mrm.27203 – ident: e_1_2_8_26_1 – ident: e_1_2_8_34_1 |
| SSID | ssj0008432 |
| Score | 2.517664 |
| Snippet | The semi‐adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single‐shot full intensity signal with clean localization and... The semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and... The semi‐adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e4218 |
| SubjectTerms | Adiabatic Adiabatic flow Adult Biological products brain Cerebellum Chemical equilibrium clinical Computer Simulation Conserved sequence Contamination Cortex (cingulate) Creatinine - metabolism GOIA‐WURST gradient‐modulated harmonization human Humans Inversion Lasers Localization Magnetic Resonance Imaging - standards Metabolome MR spectroscopy Phantoms, Imaging Platforms Pons Putamen Radio Waves Reference Standards Reproducibility Signal-To-Noise Ratio Standardization Substantia alba |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD5CnWC8cClsdBvIIARP6Rpfcnks06oJrRXaVmk8RbZjC7SQTGurDZ72E_Yb90t2nJso5faUSD7HsXOO4-_Ex58B3lrDU2G0S9VRgcc1t55SeKf9wcAYnBCEdbuRx5PgYMo_norTOolmtsov4ELzPqe7PuJahpH5WiAQcndgbTr5NPxc8ehRj_GoYh2IYw8RP21IZgd0N1ffUN8d6fHztLOCJVdTItcX-bn8fimzbBm2lvPO6DGMmhZX6SZn_cVc9fWPX8gc_9mlJ_CoRp5kWLnKU7hn8i6s7zUHvnXhwbheZ-_C_TIxVM-eweGw7NDt9Q1-FdPigjT_Hur9m6SwZIZVoMDh8Hj_iFgng_NhZpxOcWUyMj46JnJO2MlzmI72T_YOvPoEBk9zhkMojJQ2qRJGMmYss5HRPFDaShlaLVLpK2FpHKnIOGCkHHiziDgslb623A_ZBnTyIjcvgJgQIyuRhszGqWP0QSWqWOr7QYwxqBz04H1joETX9OTulIwsqYiVaYKmTJwpe_C6lTyvKDl-I7PT2DipB-UsQSjHKeKjQGAVbTG-ZLdGInNTLFCGYQiJciLowWblEu1D3EZzbDpqh0vO0go4qu7lkvzrl5KyG0OYOGK8B29at_pL29-V_vZHgWTyYeyuW_9T2zY8pC4Np8zR3IHO_GJhXiKOmqtX9Si6A1fAG6o priority: 102 providerName: Unpaywall |
| Title | Across‐vendor standardization of semi‐LASER for single‐voxel MRS at 3T |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4218 https://www.ncbi.nlm.nih.gov/pubmed/31854045 https://www.proquest.com/docview/2514209165 https://www.proquest.com/docview/2328751456 https://pubmed.ncbi.nlm.nih.gov/PMC7299834 https://hdl.handle.net/2027.42/167530 |
| UnpaywallVersion | submittedVersion |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1099-1492 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1492 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008432 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL1Cm2C88NFtUBiTNyH2lC6J7SR9LNOmCa3V1K3SJh4i27EFIiTT2mrA037CfiO_hGvnA8oAoT01Uo7T2LnX99zk-hjgtdEs41rZUh0ZeUwx40mJRyrwfa0xIHBjVyMPR9HhhL0742d1VaVdC1PpQ7Qv3KxnuPnaOriQ091fREPl5x7DAIXTb0Ajl02NfypHJcztTYYEIvQoS_xGd9YPd5uGi5HoFr28XSW5Mi8uxNcrkeeLTNaFooPH8L7pRFWB8qk3n8me-vabvuPdevkEHtUMlQwqk3oK93TRgZW9ZmO4DjwY1t_jO3DfFZCq6SocDVwvv1_f4OyZlZekeUdRr_MkpSFTvAQCjgYn-2NiLAbjZq5tm_KLzslwfELEjNDTNZgc7J_uHXr1Tg2eYhRdLU6k0pnkWlCqDTWJViySyggRG8UzEUhuwn4iE20JlLQkzyAzMaEIlGFBTNdhqSgL_RyIjjED41lMTT-zyj_YKJQ0C4Koj7mq8Luw0zy1VNUy5nY3jTytBJjDFIcstUPWha0WeVFJd_wBs9E8-LR23mmKlI-FyKMijpdoT-Mg228potDlHDEUU03E8agLzyo7af_ELkjHW8fW8YIFtQAr6b14pvj4wUl7Y6rTTyjrwnZra_-49zfOcv4KSEdvh_b3xf8CX8LD0JbsuHrODViaXc71K-RcM7npvGsTliej48H5DwThLU8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4ti6BceJRXYQGDEJzSTWI7ScWprHZVoOmh25X2gBTZji0QIVltW_E48RP4jfwSxs4DygJCnBopn9PYmcl844w_Azw2muVcK1uqIyOPKWY8KfFIBb6vNQYEbuxq5HQWTY7Yy2N-vAXP2rUwtT5EN-FmPcO9r62D2wnp3Z9UQ-X7IcMIdQ7OswjTFMuI5j-0oxLmdidDChF6lCV-qzzrh7tty81YdIZgnq2T7K3LE_HpgyiKTS7rgtHBFXjddqOuQXk3XK_kUH3-ReHxP_t5FS43JJWMa6u6Blu67ENvr90brg8X0-aTfB8uuBpStbwO07Hr5rcvX_EFmlenpJ2maJZ6ksqQJV4CAdPx4f6cGIvB0Flo26b6qAuSzg-JWBG6uAFHB_uLvYnXbNbgKUbR2-JEKp1LrgWl2lCTaMUiqYwQsVE8F4HkJhwlMtGWQ0nL8wySExOKQBkWxPQmbJdVqW8D0TEmYTyPqRnlVvwHG4WS5kEQjTBdFf4AnraPLVONkrndUKPIag3mMMMhy-yQDeBhhzyp1Tt-g9lpn3zW-O8yQ9bHQqRSEcdLdKdxkO3nFFHqao0Yitkm4ng0gFu1oXR_Ytek461j63jDhDqAVfXePFO-fePUvTHbGSWUDeBRZ2x_ufcnznT-CMhmz1P7e-dfgQ-gN1mk02z6YvbqLlwKbQWPK-_cge3V6VrfQwq2kvedq30HQpcvwA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ2y8cCmXdQwwCMFTuiS2cxFPZVs1oK1Qt0l7QIpsx9YmsqRaWzF44ifwG_klHOcGZYAQT4mUz0lsn5PzOT7-DPDMaJZyrWyqjgwcpphxpMQz5bmu1hgQuLGrkUfjYP-IvTnmxyvwslkLU-lDtD_crGeU32vr4Hqamu2fVEPlWY9hhLoCVxmPI5vPtzv5oR0VsXJ3MqQQvkNZ5DbKs66_3ZRcjkWXCOblPMn1RT4Vnz6KLFvmsmUwGtyE9001qhyUD73FXPbU518UHv-znrfgRk1SSb-yqtuwovMOrO80e8N1YG1UT8l34FqZQ6pmd2DYL6v57ctX_ICmxTlpflPUSz1JYcgMb4GAYf9gb0KMxWDozLQtU1zojIwmB0TMCT28C0eDvcOdfaferMFRjKK3hZFUOpVcC0q1oSbSigVSGSFCo3gqPMmNH0cy0pZDScvzDJIT4wtPGeaF9B6s5kWuN4DoEAdhPA2piVMr_oOFfElTzwtiHK4Ktwsvmm5LVK1kbjfUyJJKg9lPsMkS22RdeNIip5V6x28wW03PJ7X_zhJkfcxHKhVwvEV7GRvZTqeIXBcLxFAcbSKOB124XxlK-xC7Jh1fHUuHSybUAqyq9_KV_PSkVPfG0U4cUdaFp62x_eXdn5em80dAMn41ssfNfwU-hrV3u4Nk-Hr89gFc920CT5nduQWr8_OFfogMbC4flZ72HazhL0Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD5CnWC8cClsdBvIIARP6Rpfcnks06oJrRXaVmk8RbZjC7SQTGurDZ72E_Yb90t2nJso5faUSD7HsXOO4-_Ex58B3lrDU2G0S9VRgcc1t55SeKf9wcAYnBCEdbuRx5PgYMo_norTOolmtsov4ELzPqe7PuJahpH5WiAQcndgbTr5NPxc8ehRj_GoYh2IYw8RP21IZgd0N1ffUN8d6fHztLOCJVdTItcX-bn8fimzbBm2lvPO6DGMmhZX6SZn_cVc9fWPX8gc_9mlJ_CoRp5kWLnKU7hn8i6s7zUHvnXhwbheZ-_C_TIxVM-eweGw7NDt9Q1-FdPigjT_Hur9m6SwZIZVoMDh8Hj_iFgng_NhZpxOcWUyMj46JnJO2MlzmI72T_YOvPoEBk9zhkMojJQ2qRJGMmYss5HRPFDaShlaLVLpK2FpHKnIOGCkHHiziDgslb623A_ZBnTyIjcvgJgQIyuRhszGqWP0QSWqWOr7QYwxqBz04H1joETX9OTulIwsqYiVaYKmTJwpe_C6lTyvKDl-I7PT2DipB-UsQSjHKeKjQGAVbTG-ZLdGInNTLFCGYQiJciLowWblEu1D3EZzbDpqh0vO0go4qu7lkvzrl5KyG0OYOGK8B29at_pL29-V_vZHgWTyYeyuW_9T2zY8pC4Np8zR3IHO_GJhXiKOmqtX9Si6A1fAG6o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Across-vendor+standardization+of+semi-LASER+for+single-voxel+MRS+at+3T&rft.jtitle=NMR+in+biomedicine&rft.au=Deelchand%2C+Dinesh+K&rft.au=Berrington%2C+Adam&rft.au=Noeske%2C+Ralph&rft.au=Joers%2C+James+M&rft.date=2021-05-01&rft.eissn=1099-1492&rft.volume=34&rft.issue=5&rft.spage=e4218&rft_id=info:doi/10.1002%2Fnbm.4218&rft_id=info%3Apmid%2F31854045&rft.externalDocID=31854045 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |