Retinal image analytics detects white matter hyperintensities in healthy adults
Objective We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard. Methods In this cross‐sectional study, we evaluated 180...
Saved in:
| Published in | Annals of clinical and translational neurology Vol. 6; no. 1; pp. 98 - 105 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
John Wiley & Sons, Inc
01.01.2019
John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2328-9503 2328-9503 |
| DOI | 10.1002/acn3.688 |
Cover
| Abstract | Objective
We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard.
Methods
In this cross‐sectional study, we evaluated 180 community‐dwelling, stroke‐, and dementia‐free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age‐related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification.
Results
All 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log‐transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922).
Interpretation
We developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community‐based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease. |
|---|---|
| AbstractList | ObjectiveWe investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard.MethodsIn this cross‐sectional study, we evaluated 180 community‐dwelling, stroke‐, and dementia‐free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age‐related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification.ResultsAll 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log‐transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922).InterpretationWe developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community‐based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease. Objective We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard. Methods In this cross‐sectional study, we evaluated 180 community‐dwelling, stroke‐, and dementia‐free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age‐related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification. Results All 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log‐transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922). Interpretation We developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community‐based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease. We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard. In this cross-sectional study, we evaluated 180 community-dwelling, stroke-, and dementia-free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age-related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification. All 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log-transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922). We developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community-based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease. We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard.ObjectiveWe investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard.In this cross-sectional study, we evaluated 180 community-dwelling, stroke-, and dementia-free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age-related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification.MethodsIn this cross-sectional study, we evaluated 180 community-dwelling, stroke-, and dementia-free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age-related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification.All 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log-transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922).ResultsAll 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log-transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922).We developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community-based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease.InterpretationWe developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community-based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease. |
| Author | Wong, Adrian Lai, Maria Mok, Vincent Zeng, Jinsheng Lam, Bonnie Lau, Alexander Y. Lee, Jack Kwok, Chloe Fan, Yuhua Zee, Benny |
| AuthorAffiliation | 1 Division of Neurology Department of Medicine and Therapeutics Faculty of Medicine The Chinese University of Hong Kong Shatin NT Hong Kong 5 Department of Neurology First Affiliated Hospital of Sun Yat‐Sen University Guangzhou Guangdong China 2 Therese Pei Fong Chow Research Centre for Prevention of Dementia and Gerald Choa Neuroscience Centre Faculty of Medicine The Chinese University of Hong Kong Shatin NT Hong Kong 6 Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases National Key Clinical Department National Key Discipline Guangzhou 510080 China 4 Division of Biostatistics Jockey Club School of Public Health and Primary Care Faculty of Medicine The Chinese University of Hong Kong New Territories Hong Kong 3 Clinical Trials and Biostatistics Lab CUHK Shenzhen Research Institute Shenzhen China |
| AuthorAffiliation_xml | – name: 4 Division of Biostatistics Jockey Club School of Public Health and Primary Care Faculty of Medicine The Chinese University of Hong Kong New Territories Hong Kong – name: 6 Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases National Key Clinical Department National Key Discipline Guangzhou 510080 China – name: 3 Clinical Trials and Biostatistics Lab CUHK Shenzhen Research Institute Shenzhen China – name: 1 Division of Neurology Department of Medicine and Therapeutics Faculty of Medicine The Chinese University of Hong Kong Shatin NT Hong Kong – name: 5 Department of Neurology First Affiliated Hospital of Sun Yat‐Sen University Guangzhou Guangdong China – name: 2 Therese Pei Fong Chow Research Centre for Prevention of Dementia and Gerald Choa Neuroscience Centre Faculty of Medicine The Chinese University of Hong Kong Shatin NT Hong Kong |
| Author_xml | – sequence: 1 givenname: Alexander Y. orcidid: 0000-0002-5933-9290 surname: Lau fullname: Lau, Alexander Y. organization: The Chinese University of Hong Kong – sequence: 2 givenname: Vincent surname: Mok fullname: Mok, Vincent organization: The Chinese University of Hong Kong – sequence: 3 givenname: Jack surname: Lee fullname: Lee, Jack organization: The Chinese University of Hong Kong – sequence: 4 givenname: Yuhua surname: Fan fullname: Fan, Yuhua organization: National Key Discipline – sequence: 5 givenname: Jinsheng surname: Zeng fullname: Zeng, Jinsheng organization: National Key Discipline – sequence: 6 givenname: Bonnie surname: Lam fullname: Lam, Bonnie organization: The Chinese University of Hong Kong – sequence: 7 givenname: Adrian surname: Wong fullname: Wong, Adrian organization: The Chinese University of Hong Kong – sequence: 8 givenname: Chloe surname: Kwok fullname: Kwok, Chloe organization: The Chinese University of Hong Kong – sequence: 9 givenname: Maria surname: Lai fullname: Lai, Maria organization: The Chinese University of Hong Kong – sequence: 10 givenname: Benny surname: Zee fullname: Zee, Benny email: bzee@cuhk.edu.hk organization: The Chinese University of Hong Kong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30656187$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90Utr3DAQB3BREppHA_0ExdBLcvBWL0vaSyEsfQRCA6U9i1l5HCto5a0ld_G3r80mbRLanjSgn4aZv07IQewiEvKa0QWjlL8DF8VCGfOCHHPBTbmsqDh4VB-Rs5TuKKWM8Upo_pIcCaoqxYw-JjdfMfsIofAbuMUCpnLM3qWixowup2LX-ozFBnLGvmjHLfY-ZozJZ4-p8LFoEUJuxwLqIeT0ihw2EBKe3Z-n5PvHD99Wn8vrm09Xq8vr0klhTCkqrVmla5S1RgDJOJPOCVVxKaUxTeW4o3RdU6WNxIrxtZDrJTRGNwC6BnFKLvZ9h7iFcQch2G0_7dCPllE752LnXOyUy2Tf7-12WG-wdhhzD398B94-vYm-tbfdT6uEYEs5Nzi_b9B3PwZM2W58chgCROyGZDnTS6GUqORE3z6jd93QT6nOSimjKOd0Um8eT_R7lId_mcBiD1zfpdRjY53PkH03D-jD33Y8f_bgP3GUe7rzAcd_Onu5-iJm_wtMbbx4 |
| CitedBy_id | crossref_primary_10_1016_j_procbio_2024_05_024 crossref_primary_10_3390_diagnostics12071714 crossref_primary_10_1016_j_eclinm_2020_100588 crossref_primary_10_1097_APO_0000000000000515 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108070 crossref_primary_10_1002_jmri_27479 crossref_primary_10_1016_j_cmpb_2023_107904 crossref_primary_10_1186_s12889_020_09726_x crossref_primary_10_1038_s41433_023_02724_4 crossref_primary_10_1161_JAHA_124_036140 crossref_primary_10_3390_diagnostics12112865 crossref_primary_10_4103_kjo_kjo_54_19 crossref_primary_10_3390_ijerph20043530 crossref_primary_10_1016_j_cmpb_2024_108368 crossref_primary_10_3390_jcm11102687 crossref_primary_10_1097_CM9_0000000000001320 crossref_primary_10_1136_bmjdrc_2022_002914 crossref_primary_10_1063_5_0011697 crossref_primary_10_3390_jcm11123309 crossref_primary_10_34133_research_0633 crossref_primary_10_4103_bc_bc_8_23 crossref_primary_10_1186_s12886_021_02143_7 crossref_primary_10_3390_jpm14010045 crossref_primary_10_1097_WCO_0000000000000779 crossref_primary_10_1159_000505157 crossref_primary_10_3389_fneur_2023_1168836 crossref_primary_10_1186_s12938_023_01110_1 crossref_primary_10_3389_fneur_2022_916966 crossref_primary_10_3390_diagnostics11060937 crossref_primary_10_1007_s42979_020_0099_4 crossref_primary_10_1093_braincomms_fcab124 |
| Cites_doi | 10.1016/S0140-6736(17)31363-6 10.1016/j.preteyeres.2017.01.001 10.1161/STROKEAHA.113.001196 10.1016/j.jstrokecerebrovasdis.2017.01.020 10.1016/j.dadm.2016.11.001 10.1038/tp.2012.150 10.1161/STROKEAHA.115.011226 10.1111/j.1552-6569.2003.tb00187.x 10.1136/jnnp-2016-315324 10.1161/01.STR.32.6.1318 10.1109/TNN.2006.882371 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E 10.1136/bmj.c3666 10.3389/fnhum.2017.00414 10.1016/j.jacc.2017.11.006 10.1097/WCO.0000000000000513 10.1038/nrneurol.2017.16 10.1016/j.jneumeth.2012.12.014 10.1038/srep19053 10.1016/j.dadm.2016.09.001 10.1016/S0140-6736(17)31756-7 10.1016/S1474-4422(10)70104-6 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors. published by Wiley Periodicals, Inc on behalf of American Neurological Association. 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2018 The Authors. published by Wiley Periodicals, Inc on behalf of American Neurological Association. – notice: 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88G 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ K9. M0S M2M PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/acn3.688 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Psychology Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Psychology Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | A. Y. Lau et al |
| EISSN | 2328-9503 |
| EndPage | 105 |
| ExternalDocumentID | 10.1002/acn3.688 PMC6331948 30656187 10_1002_acn3_688 ACN3688 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Hong Kong China China |
| GeographicLocations_xml | – name: Hong Kong China – name: China |
| GrantInformation_xml | – fundername: Research Grants Council of the Hong Kong Special Administrative Region, China funderid: CUHK 471911 – fundername: Technology and Business Development Fund (TBF) of the Chinese University of Hong Kong funderid: TBF15MED005 – fundername: National Key Research and Development Programme of China funderid: 2016YFC1300603 – fundername: Innovation and Technology Fund funderid: MRP/037/17X – fundername: Research Grants Council of the Hong Kong Special Administrative Region, China grantid: CUHK 471911 – fundername: National Key Research and Development Programme of China grantid: 2016YFC1300603 – fundername: Innovation and Technology Fund grantid: MRP/037/17X – fundername: Technology and Business Development Fund (TBF) of the Chinese University of Hong Kong grantid: TBF15MED005 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 7X7 8FI 8FJ AAMMB ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN AEFGJ AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU DIK DWQXO EBS EJD FYUFA GNUQQ GODZA GROUPED_DOAJ HMCUK HYE IAO IHR INH ITC KQ8 M2M M48 OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSYQQ PUEGO RPM SUPJJ UKHRP WIN AAYXX CITATION AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. M~E PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4388-3577157de4d7eaa41214cc365244488f5c2c00bd06784e512b34b9af87faa7da3 |
| IEDL.DBID | UNPAY |
| ISSN | 2328-9503 |
| IngestDate | Sun Oct 26 04:12:52 EDT 2025 Tue Sep 30 15:08:29 EDT 2025 Thu Oct 02 08:03:44 EDT 2025 Tue Oct 07 06:16:25 EDT 2025 Wed Feb 19 02:30:43 EST 2025 Thu Apr 24 22:56:20 EDT 2025 Wed Oct 01 02:16:07 EDT 2025 Sun Sep 21 06:12:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4388-3577157de4d7eaa41214cc365244488f5c2c00bd06784e512b34b9af87faa7da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This study was partially supported by the National Key Research and Development Programme of China (2016YFC1300603) and the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No.: CUHK 471911), Technology and Business Development Fund (TBF) of the Chinese University of Hong Kong (No. TBF15MED005), and Innovation and Technology Fund (ITF) (No. MRP/037/17X). |
| ORCID | 0000-0002-5933-9290 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acn3.688 |
| PMID | 30656187 |
| PQID | 2166860220 |
| PQPubID | 2034580 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1002_acn3_688 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6331948 proquest_miscellaneous_2179366354 proquest_journals_2166860220 pubmed_primary_30656187 crossref_citationtrail_10_1002_acn3_688 crossref_primary_10_1002_acn3_688 wiley_primary_10_1002_acn3_688_ACN3688 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Bognor Regis – name: Hoboken |
| PublicationTitle | Annals of clinical and translational neurology |
| PublicationTitleAlternate | Ann Clin Transl Neurol |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | 2016; 4 2015; 46 2017; 6 2007; 18 2016; 6 1998; 17 2013; 3 2017; 26 2013; 44 2017; 88 2017; 11 2017; 13 2017; 57 2010; 341 2003; 13 2017; 390 2013; 213 2018; 71 2018; 31 2016; 24 2010; 9 2017; 129 2001; 32 e_1_2_9_20_1 e_1_2_9_11_1 e_1_2_9_22_1 e_1_2_9_10_1 e_1_2_9_21_1 e_1_2_9_13_1 e_1_2_9_24_1 e_1_2_9_12_1 Zee B (e_1_2_9_15_1) 2016; 24 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_14_1 e_1_2_9_25_1 McGrory S (e_1_2_9_7_1) 2017; 6 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 Chan VT (e_1_2_9_9_1) 2017; 129 e_1_2_9_18_1 |
| References_xml | – volume: 71 start-page: e127 year: 2018 end-page: e248 article-title: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines publication-title: J Am Coll Cardiol – volume: 11 start-page: 414 year: 2017 article-title: Using large‐scale statistical chinese brain template (Chinese 2020) in popular neuroimage analysis toolkits publication-title: Front Hum Neurosci – volume: 3 start-page: e233 year: 2013 article-title: Retinal vascular biomarkers for early detection and monitoring of Alzheimer's disease publication-title: Transl Psychiatry – volume: 4 start-page: 169 year: 2016 end-page: 178 article-title: Nonvascular retinal imaging markers of preclinical Alzheimer's disease publication-title: Alzheimer's Dement – volume: 57 start-page: 89 year: 2017 end-page: 107 article-title: Imaging retina to study dementia and stroke publication-title: Prog Retin Eye Res – volume: 390 start-page: 2614 year: 2017 end-page: 2615 article-title: Prevention and management of dementia: a priority for public health publication-title: Lancet – volume: 13 start-page: 255 year: 2003 end-page: 258 article-title: Variability and validity of a simple visual rating scale in grading white matter changes on magnetic resonance imaging publication-title: J Neuroimaging – volume: 9 start-page: 689 year: 2010 end-page: 701 article-title: Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges publication-title: Lancet Neurol – volume: 31 start-page: 36 year: 2018 end-page: 43 article-title: New insights into cerebral small vessel disease and vascular cognitive impairment from MRI publication-title: Curr Opin Neurol – volume: 390 start-page: 2673 year: 2017 end-page: 2734 article-title: Dementia prevention, intervention, and care publication-title: Lancet – volume: 129 start-page: e56137 year: 2017 article-title: Using retinal imaging to study dementia publication-title: J Vis Exp – volume: 32 start-page: 1318 year: 2001 end-page: 1322 article-title: A new rating scale for age‐related white matter changes applicable to MRI and CT publication-title: Stroke – volume: 24 start-page: 114 year: 2016 end-page: 124 article-title: Stroke risk assessment for the community by automatic retinal image analysis using fundus photograph publication-title: Qual Primary Care – volume: 17 start-page: 857 year: 1998 end-page: 872 article-title: Two‐sided confidence intervals for the single proportion: comparison of seven methods publication-title: Stat Med – volume: 13 start-page: 148 year: 2017 end-page: 159 article-title: Early‐onset and delayed‐onset poststroke dementia ‐ revisiting the mechanisms publication-title: Nat Rev Neurol – volume: 18 start-page: 14 year: 2007 end-page: 27 article-title: Backpropagation algorithms for a broad class of dynamic networks publication-title: IEEE Trans Neural Netw – volume: 341 start-page: c3666 year: 2010 article-title: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta‐analysis publication-title: BMJ – volume: 44 start-page: 2338 year: 2013 end-page: 2342 article-title: Research priority setting: a summary of the 2012 NINDS Stroke Planning Meeting Report publication-title: Stroke – volume: 88 start-page: 669 year: 2017 end-page: 674 article-title: Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries publication-title: J Neurol Neurosurg Psychiatry – volume: 213 start-page: 138 year: 2013 end-page: 146 article-title: Automated quantification of white matter lesion in magnetic resonance imaging of patients with acute infarction publication-title: J Neurosci Methods – volume: 46 start-page: 3547 year: 2015 end-page: 3550 article-title: Montreal cognitive assessment one cutoff never fits all publication-title: Stroke – volume: 6 start-page: 19053 year: 2016 article-title: Retinal information is independently associated with cardiovascular disease in patients with type 2 diabetes publication-title: Sci Rep – volume: 6 start-page: 91 year: 2017 end-page: 107 article-title: The application of retinal fundus camera imaging in dementia: a systematic review publication-title: Alzheimer's Dement – volume: 26 start-page: 679 year: 2017 end-page: 685 article-title: Prediction factors of recurrent stroke among chinese adults using retinal vasculature characteristics publication-title: J Stroke Cerebrovasc Dis – ident: e_1_2_9_2_1 doi: 10.1016/S0140-6736(17)31363-6 – ident: e_1_2_9_8_1 doi: 10.1016/j.preteyeres.2017.01.001 – volume: 129 start-page: e56137 year: 2017 ident: e_1_2_9_9_1 article-title: Using retinal imaging to study dementia publication-title: J Vis Exp – ident: e_1_2_9_25_1 doi: 10.1161/STROKEAHA.113.001196 – ident: e_1_2_9_16_1 doi: 10.1016/j.jstrokecerebrovasdis.2017.01.020 – volume: 6 start-page: 91 year: 2017 ident: e_1_2_9_7_1 article-title: The application of retinal fundus camera imaging in dementia: a systematic review publication-title: Alzheimer's Dement doi: 10.1016/j.dadm.2016.11.001 – ident: e_1_2_9_20_1 doi: 10.1038/tp.2012.150 – ident: e_1_2_9_11_1 doi: 10.1161/STROKEAHA.115.011226 – ident: e_1_2_9_13_1 doi: 10.1111/j.1552-6569.2003.tb00187.x – ident: e_1_2_9_10_1 doi: 10.1136/jnnp-2016-315324 – volume: 24 start-page: 114 year: 2016 ident: e_1_2_9_15_1 article-title: Stroke risk assessment for the community by automatic retinal image analysis using fundus photograph publication-title: Qual Primary Care – ident: e_1_2_9_12_1 doi: 10.1161/01.STR.32.6.1318 – ident: e_1_2_9_18_1 doi: 10.1109/TNN.2006.882371 – ident: e_1_2_9_19_1 doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E – ident: e_1_2_9_5_1 doi: 10.1136/bmj.c3666 – ident: e_1_2_9_23_1 doi: 10.3389/fnhum.2017.00414 – ident: e_1_2_9_21_1 doi: 10.1016/j.jacc.2017.11.006 – ident: e_1_2_9_22_1 doi: 10.1097/WCO.0000000000000513 – ident: e_1_2_9_3_1 doi: 10.1038/nrneurol.2017.16 – ident: e_1_2_9_14_1 doi: 10.1016/j.jneumeth.2012.12.014 – ident: e_1_2_9_17_1 doi: 10.1038/srep19053 – ident: e_1_2_9_6_1 doi: 10.1016/j.dadm.2016.09.001 – ident: e_1_2_9_24_1 doi: 10.1016/S0140-6736(17)31756-7 – ident: e_1_2_9_4_1 doi: 10.1016/S1474-4422(10)70104-6 |
| SSID | ssj0001125372 |
| Score | 2.226721 |
| Snippet | Objective
We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults... We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring... ObjectiveWe investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 98 |
| SubjectTerms | Aged Artificial intelligence Brain - diagnostic imaging Brain - pathology Cross-Sectional Studies Diagnostic Techniques, Ophthalmological Female Humans Image Interpretation, Computer-Assisted - methods Machine Learning Magnetic Resonance Imaging Male Retina Retina - diagnostic imaging Retina - pathology White Matter - diagnostic imaging White Matter - pathology |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RIFEuFYUCaaEyCNHTQmJ77ewBVRSBEBIBRSBxW3ltr4iUbNImEcq_78y-aBTKaQ-efdie8Xw7Y38DcGSUU9qHMkB3pwKZqijoRKkKXMKVdjrR1ua7Lbrq-lHePIVPK9CtzsLQtspqTcwXajeyFCM_5W2lqF4Sb_0c_w6oahRlV6sSGqYsreDOcoqxD7DKiRmrAau_Lrv3vdeoC_pzoXnFQtvip8Zm4qQovPKPX1oCm8t7Jj_OsrGZv5jBYBHX5o7pagM-lYiSnRcq8BlWfLYJa7dlznwL7np0qhkl-kNcO5ghFhLiZmbOUwJhwl4ok8CGOdEme54T9XGxr524Vlk_Y8VZyTnLuTomX-Dx6vLh4jooyygEVgq0AxFq3Q6189Jpb4zEgZHWChWiZ0fzTUPLbauVOPJb0iMASIRMIpN2dGqMdkZsQyMbZX4XGIILr2Rk0a-nkiKIXIh26iIn2qHFO5rwoxrE2JYc41TqYhAX7Mg8puGOcbibcFBLjgtejTdk9qp5iEvLmsSveoCPqJvRJijRYTI_mpEMrjoEpWQTdoppq1-Cv0gIGTu6CXphQmsB4ttebMn6zznvtsLORhI_67Ce-ne-_TjXif8KxOcXXYHXr-938husI0SLiqDPHjSmf2Z-H2HQNPle6vZfhiEI1A priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58gHoR364vooieqtsmTdqDiIgiggrigreSJikurHV1XXT_vTN94eLj1EOmaTOTZL5kkm8A9rW0UrlQeOjupCcyGXtRnEnPpoFUVqXKmOK0xa286ojrx_BxAmp6gkqBg1-XdpRPqvPWO_p8HZ3igD-pCESPtcn5kYyig_6rR-mkKOxa5daYhGl0WTHldLipcH-x-YJunaugJqP9Vse4e_qBOX8enZwd5n09-tC93ji8LfzT5QLMV8CSnZU9YREmXL4EMzdV6HwZ7u7pcjNKdJ9xCmGayEiIoplZR3GEAfuggAJ7Lvg22dOIGJDL4-1Eucq6OSuvTI5YQdkxWIHO5cXD-ZVXZVPwjOA4HHiolB8q64RVTmvhB74whssQHTyO4iw0gWm3U0vuSzjEASkXaayzSGVaK6v5KkzlL7lbB4YYw0kRG3TvmaCNxIBzP7Ox5X5o8I0WHNZKTExFNU4ZL3pJSZIcJKTuBNXdgt1Gsl_Sa_wis1XbIan7RxL4UlL6rKCNVTTFODQo3qFz9zIkGZx8CFGJFqyVZms-gislRI6RaoEaM2gjQLTb4yV596mg35bY2Fjgb-01pv_n3w-KPvGnQHJ2fsvxufF_IzdhDpFaXO79bMHU-9vQbSMaek93ip79BW3vC2M priority: 102 providerName: Scholars Portal – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66gnoR366uEkX0VG2TNGmPIi4i-EAUvJU0SXFhreK6LPvvnUm7lcUHnnrIpI_MTObrJPmGkEMtrVQuFgGEOxmIQqZBkhYysDmTyqpcGeN3W9zIy0dx9RQ_1bsq8SxMxQ_RJNzQM_x8jQ6u88HpF2moNiU_kUkyS-YigDFo3UzcfeVXIHJzX7sJMAP4dBzyCfdsyE4nnaej0TeI-X2n5MKwfNPjke73p9GsD0fdZbJU40h6Vil-hcy4cpXMX9cr5Wvk9h7PMoNE7wVmDKqRewQZmal1uGwwoCNcP6Avnl6TPo-R8LjazY4Mq7RX0uqE5Jh6ho7BOnnsXjycXwZ18YTACA7Wz2OlolhZJ6xyWouIRcIYLmOI5-C0RWyYCcPcYrQSDsJ-zkWe6iJRhdbKar5BWuVr6bYIBUjhpEgNRPNCYN6QcR4VNrU8ig30aJPjySBmpmYWxwIX_aziRGYZDncGw90m-43kW8Wm8YNMZ6KHrPanQcYiKbFaFgvhFk0zeAIub-jSvQ5RBuYaBFCiTTYrtTUPgR8jAIqJahM1pdBGAFm2p1vK3rNn25bwsamA1zpoVP_Hux95m_hVIDs7v-Fw3f6v4A5ZBIiWVkmfDml9vA_dLsCgj3zP2_snhAwDow priority: 102 providerName: Wiley-Blackwell |
| Title | Retinal image analytics detects white matter hyperintensities in healthy adults |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facn3.688 https://www.ncbi.nlm.nih.gov/pubmed/30656187 https://www.proquest.com/docview/2166860220 https://www.proquest.com/docview/2179366354 https://pubmed.ncbi.nlm.nih.gov/PMC6331948 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acn3.688 |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2328-9503 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125372 issn: 2328-9503 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2328-9503 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125372 issn: 2328-9503 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2328-9503 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125372 issn: 2328-9503 databaseCode: ABDBF dateStart: 20140501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals at publisher websites customDbUrl: eissn: 2328-9503 dateEnd: 20231105 omitProxy: true ssIdentifier: ssj0001125372 issn: 2328-9503 databaseCode: DIK dateStart: 20140101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2328-9503 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125372 issn: 2328-9503 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2328-9503 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125372 issn: 2328-9503 databaseCode: 7X7 dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2328-9503 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125372 issn: 2328-9503 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2328-9503 dateEnd: 20250630 omitProxy: true ssIdentifier: ssj0001125372 issn: 2328-9503 databaseCode: M48 dateStart: 20140101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2328-9503 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125372 issn: 2328-9503 databaseCode: AVUZU dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2328-9503 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001125372 issn: 2328-9503 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xVgJe-P4ojMogBE_pGtuxk8cybZqQVqqJSuMpcmxHq-iyiraayl_PXZxGlAFCvCQPuSS2c3f-5e78M8Bbo5zSPpERTncqkqXKojQrVeQKrrTThba2rrYYq5Op_HienDcBN1oLE_gh2oAbWUbtr8nAF64Mfr7J7vMDYysxUGm6B12VIBbvQHc6noy-1DvKcbTkZCi2jLM_ie_OQTeA5c36yDvramE212Y-38Ww9SR0fB_ybfND7cnXwXpVDOz3X5gd_79_D-Beg0_ZKCjUQ7jlq0dw-7TJwD-GT2e0RholZpfoiZghThNiembOUzpiya4pL8Eua9pOdrEhIuVQJU_MrWxWsbDycsNq5o_lE5geH30-PImaTRkiKwValUi0jhPtvHTaGyNjHktrhUoQJ6AzKBPL7XBYOJoFpUc4UQhZZKZMdWmMdkY8hU51VfnnwBCqeCUziyihlBSP5ELEpcuciBOLd_Tg_fYz5bZhLKeNM-Z54FrmOY1PjuPTg9et5CKwdPxGZn_7pfPGTpc5j5WiXbj4EB_RXkYLo7SJqfzVmmTQhxEwkz14FhSjfQn-cCEATXUP9I7KtALE3r17pZpd1CzeCjubSWzWm1a5_tL2d7Wq_FEgHx2OBZ5f_MvTXsJdhH1ZCCTtQ2f1be1fIbRaFX3Y43KCR32u-9D9cDSenPXrMAUeT2Xab-zrB23BKtc |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RkAqXqk8Ihdat-jhtydpeO3tAFaWgUCCtEEjctl7bKyKFTdoQRflz_W3M7ItGtNw47WFnH_aMZz577G8A3hnllPaRDDDcqUBmKg46caYCl3KlnU61tcVui57qnslv59H5Avypz8LQtsraJxaO2g0trZFv8VApqpfE259HvwKqGkXZ1bqEhqlKK7jtgmKsOthx6GdTnMKNtw--or7fc76_d7rbDaoqA4GVAs1ERFqHkXZeOu2NkSEPpbVCRRj40LqzyHLbbqeO3Lr0GB9TIdPYZB2dGaOdEfjeB7AkhYxx8rf0Za_34-RmlQfxg9C8Zr1t8y1jc_GpLPTyVxy8BW5v79FcnuQjM5uawWAeRxeBcP8xPKoQLNspTe4JLPj8KTw8rnL0z-D7CZ2iRon-JfoqZoj1hLigmfOUsBizKWUu2GVB7MkuZkS1XO6jJ25X1s9ZeTZzxgpukPFzOLuXDn0Bi_kw92vAEMx4JWOLOCKTtGLJhQgzFzsRRhafaMHHuhMTW3GaU2mNQVKyMfOEujvB7m7Bm0ZyVPJ4_ENmo9ZDUo3kcXJjd_iK5jaOQUqsmNwPJySDXo6gm2zBaqm25iM4JUOI2tEt0HMKbQSI33v-Tt6_KHi-FTY2lvhbbxvV3_HvHwqb-K9AsrPbE3hdv7uRr2G5e3p8lBwd9A5fwgrCw7hccNqAxavfE7-JEOwqfVXZOYOf9z20rgFO9kSw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQ1eEN8UBhjEx1NoYzt284DQtFFtDApCTOpb5tiOVqlLC11V9V_jr-MuTjKqwd72lIdcvnznu198598BvDLKKe0TGWG4U5EsVBr100JFLudKO51ra6tqi6HaP5KfRsloA343e2GorLLxiZWjdlNLa-RdHitF_ZJ4r1vUZRHf9gYfZj8j6iBFmdamnUYwkUO_WuLv2_z9wR7q-jXng48_dvejusNAZKVAExGJ1nGinZdOe2NkzGNprVAJBj207CKx3PZ6uSOXLj3GxlzIPDVFXxfGaGcE3vcaXNdCpFROqEf6fH0HkYPQvOG77fGusaV4F1q8_BUBL8Dai9WZNxblzKyWZjJZR9BVCBzchls1dmU7wdjuwIYv78LWlzo7fw--fqf90ygxPkUvxQzxnRALNHOeUhVztqScBTutKD3ZyYpIlkMFPbG6snHJwq7MFatYQeb34ehKhvMBbJbT0j8ChjDGK5laRBCFpLVKLkRcuNSJOLF4RQfeNoOY2ZrNnJpqTLLAw8wzGu4Mh7sDL1rJWWDw-IfMdqOHrJ7D8-zc4vAW7WmcfZRSMaWfLkgG_RuBNtmBh0Ft7UPwZwzBaV93QK8ptBUgZu_1M-X4pGL4VvixqcTXetmq_pJ3f1PZxH8Fsp3docDj48s_8jls4YTKPh8MD5_ATcSFaVhp2obNs18L_xSx11n-rDJyBsdXPav-AG_IQko |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9BJ8Fe-P4ojMkgBE8pjT-Tx2pimiZREKLSeIoc21EruqxaW03lr-cuTiPKACGe8uCL44-78y939s8Ar6322gQlE1zudCIrnSdZXunEl1wbb0rjXLPbYqxPJvL0TJ21ATc6CxP5IbqAG1lG46_JwBe-in6-ze7zd9bVYqCz7CbsaYVYvAd7k_Gn0dfmRjmOlqyGYss4-5P47hp0DVhe3x95e10v7ObKzue7GLZZhI7vQrFtftx78m2wXpUD9_0XZsf_7989uNPiUzaKCnUfboT6Adz60GbgH8LHz3RGGiVm5-iJmCVOE2J6Zj5QOmLJrigvwc4b2k423RCRctwlT8ytbFazePJywxrmj-UjmBy__3J0krSXMiROCrQqoYxJlfFBehOslSlPpXNCK8QJ6Awq5bgbDktPq6AMCCdKIcvcVpmprDXeisfQqy_q8BQYQpWgZe4QJVSS4pFciLTyuRepcvhGH95up6lwLWM5XZwxLyLXMi9ofAocnz687CQXkaXjNzIH25kuWjtdFjzVmm7h4kOsoitGC6O0ia3DxZpk0IcRMJN9eBIVo_sI_nAhAM1MH8yOynQCxN69W1LPpg2Lt8bO5hKb9apTrr-0_U2jKn8UKEZHY4HPZ_9S23PYR9iXx0DSAfRWl-vwAqHVqjxs7ecHdRIlsA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+image+analytics+detects+white+matter+hyperintensities+in+healthy+adults&rft.jtitle=Annals+of+clinical+and+translational+neurology&rft.au=Lau%2C+Alexander+Y&rft.au=Mok%2C+Vincent&rft.au=Lee%2C+Jack&rft.au=Fan%2C+Yuhua&rft.date=2019-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2328-9503&rft.volume=6&rft.issue=1&rft.spage=98&rft.epage=105&rft_id=info:doi/10.1002%2Facn3.688&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-9503&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-9503&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-9503&client=summon |