Retinal image analytics detects white matter hyperintensities in healthy adults

Objective We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard. Methods In this cross‐sectional study, we evaluated 180...

Full description

Saved in:
Bibliographic Details
Published inAnnals of clinical and translational neurology Vol. 6; no. 1; pp. 98 - 105
Main Authors Lau, Alexander Y., Mok, Vincent, Lee, Jack, Fan, Yuhua, Zeng, Jinsheng, Lam, Bonnie, Wong, Adrian, Kwok, Chloe, Lai, Maria, Zee, Benny
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.01.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN2328-9503
2328-9503
DOI10.1002/acn3.688

Cover

Abstract Objective We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard. Methods In this cross‐sectional study, we evaluated 180 community‐dwelling, stroke‐, and dementia‐free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age‐related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification. Results All 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log‐transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922). Interpretation We developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community‐based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease.
AbstractList ObjectiveWe investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard.MethodsIn this cross‐sectional study, we evaluated 180 community‐dwelling, stroke‐, and dementia‐free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age‐related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification.ResultsAll 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log‐transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922).InterpretationWe developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community‐based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease.
Objective We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard. Methods In this cross‐sectional study, we evaluated 180 community‐dwelling, stroke‐, and dementia‐free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age‐related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification. Results All 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log‐transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922). Interpretation We developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community‐based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease.
We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard. In this cross-sectional study, we evaluated 180 community-dwelling, stroke-, and dementia-free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age-related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification. All 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log-transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922). We developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community-based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease.
We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard.ObjectiveWe investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring high burden of white matter hyperintensities (WMH) using MRI as gold standard.In this cross-sectional study, we evaluated 180 community-dwelling, stroke-, and dementia-free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age-related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification.MethodsIn this cross-sectional study, we evaluated 180 community-dwelling, stroke-, and dementia-free healthy subjects and performed ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome was the diagnostic performance of ARIA in detecting significant WMH on MRI brain, defined as age-related white matter changes (ARWMC) grade ≥2. We analyzed both clinical variables and retinal characteristics using logistic regression analysis. We developed a machine learning network model with ARIA to estimate WMH and its classification.All 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log-transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922).ResultsAll 180 subjects completed MRI and ARIA. The mean age was 70.3 ± 4.5 years, 70 (39%) were male. Risk factor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%) hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56 (31%) subjects. The performance for detecting severe WMH with sensitivity (SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI from 0.937 to 0.997) was excellent. There was a good correlation between WMH volume (log-transformed) obtained from MRI versus those estimated from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI from 0.864 to 0.922).We developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community-based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease.InterpretationWe developed a robust algorithm to automatically evaluate retinal fundus image that can identify subjects with high WMH burden. Further community-based prospective studies should be performed for early screening of population at risk of cerebral small vessel disease.
Author Wong, Adrian
Lai, Maria
Mok, Vincent
Zeng, Jinsheng
Lam, Bonnie
Lau, Alexander Y.
Lee, Jack
Kwok, Chloe
Fan, Yuhua
Zee, Benny
AuthorAffiliation 1 Division of Neurology Department of Medicine and Therapeutics Faculty of Medicine The Chinese University of Hong Kong Shatin NT Hong Kong
5 Department of Neurology First Affiliated Hospital of Sun Yat‐Sen University Guangzhou Guangdong China
2 Therese Pei Fong Chow Research Centre for Prevention of Dementia and Gerald Choa Neuroscience Centre Faculty of Medicine The Chinese University of Hong Kong Shatin NT Hong Kong
6 Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases National Key Clinical Department National Key Discipline Guangzhou 510080 China
4 Division of Biostatistics Jockey Club School of Public Health and Primary Care Faculty of Medicine The Chinese University of Hong Kong New Territories Hong Kong
3 Clinical Trials and Biostatistics Lab CUHK Shenzhen Research Institute Shenzhen China
AuthorAffiliation_xml – name: 4 Division of Biostatistics Jockey Club School of Public Health and Primary Care Faculty of Medicine The Chinese University of Hong Kong New Territories Hong Kong
– name: 6 Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases National Key Clinical Department National Key Discipline Guangzhou 510080 China
– name: 3 Clinical Trials and Biostatistics Lab CUHK Shenzhen Research Institute Shenzhen China
– name: 1 Division of Neurology Department of Medicine and Therapeutics Faculty of Medicine The Chinese University of Hong Kong Shatin NT Hong Kong
– name: 5 Department of Neurology First Affiliated Hospital of Sun Yat‐Sen University Guangzhou Guangdong China
– name: 2 Therese Pei Fong Chow Research Centre for Prevention of Dementia and Gerald Choa Neuroscience Centre Faculty of Medicine The Chinese University of Hong Kong Shatin NT Hong Kong
Author_xml – sequence: 1
  givenname: Alexander Y.
  orcidid: 0000-0002-5933-9290
  surname: Lau
  fullname: Lau, Alexander Y.
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Vincent
  surname: Mok
  fullname: Mok, Vincent
  organization: The Chinese University of Hong Kong
– sequence: 3
  givenname: Jack
  surname: Lee
  fullname: Lee, Jack
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Yuhua
  surname: Fan
  fullname: Fan, Yuhua
  organization: National Key Discipline
– sequence: 5
  givenname: Jinsheng
  surname: Zeng
  fullname: Zeng, Jinsheng
  organization: National Key Discipline
– sequence: 6
  givenname: Bonnie
  surname: Lam
  fullname: Lam, Bonnie
  organization: The Chinese University of Hong Kong
– sequence: 7
  givenname: Adrian
  surname: Wong
  fullname: Wong, Adrian
  organization: The Chinese University of Hong Kong
– sequence: 8
  givenname: Chloe
  surname: Kwok
  fullname: Kwok, Chloe
  organization: The Chinese University of Hong Kong
– sequence: 9
  givenname: Maria
  surname: Lai
  fullname: Lai, Maria
  organization: The Chinese University of Hong Kong
– sequence: 10
  givenname: Benny
  surname: Zee
  fullname: Zee, Benny
  email: bzee@cuhk.edu.hk
  organization: The Chinese University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30656187$$D View this record in MEDLINE/PubMed
BookMark eNp90Utr3DAQB3BREppHA_0ExdBLcvBWL0vaSyEsfQRCA6U9i1l5HCto5a0ld_G3r80mbRLanjSgn4aZv07IQewiEvKa0QWjlL8DF8VCGfOCHHPBTbmsqDh4VB-Rs5TuKKWM8Upo_pIcCaoqxYw-JjdfMfsIofAbuMUCpnLM3qWixowup2LX-ozFBnLGvmjHLfY-ZozJZ4-p8LFoEUJuxwLqIeT0ihw2EBKe3Z-n5PvHD99Wn8vrm09Xq8vr0klhTCkqrVmla5S1RgDJOJPOCVVxKaUxTeW4o3RdU6WNxIrxtZDrJTRGNwC6BnFKLvZ9h7iFcQch2G0_7dCPllE752LnXOyUy2Tf7-12WG-wdhhzD398B94-vYm-tbfdT6uEYEs5Nzi_b9B3PwZM2W58chgCROyGZDnTS6GUqORE3z6jd93QT6nOSimjKOd0Um8eT_R7lId_mcBiD1zfpdRjY53PkH03D-jD33Y8f_bgP3GUe7rzAcd_Onu5-iJm_wtMbbx4
CitedBy_id crossref_primary_10_1016_j_procbio_2024_05_024
crossref_primary_10_3390_diagnostics12071714
crossref_primary_10_1016_j_eclinm_2020_100588
crossref_primary_10_1097_APO_0000000000000515
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108070
crossref_primary_10_1002_jmri_27479
crossref_primary_10_1016_j_cmpb_2023_107904
crossref_primary_10_1186_s12889_020_09726_x
crossref_primary_10_1038_s41433_023_02724_4
crossref_primary_10_1161_JAHA_124_036140
crossref_primary_10_3390_diagnostics12112865
crossref_primary_10_4103_kjo_kjo_54_19
crossref_primary_10_3390_ijerph20043530
crossref_primary_10_1016_j_cmpb_2024_108368
crossref_primary_10_3390_jcm11102687
crossref_primary_10_1097_CM9_0000000000001320
crossref_primary_10_1136_bmjdrc_2022_002914
crossref_primary_10_1063_5_0011697
crossref_primary_10_3390_jcm11123309
crossref_primary_10_34133_research_0633
crossref_primary_10_4103_bc_bc_8_23
crossref_primary_10_1186_s12886_021_02143_7
crossref_primary_10_3390_jpm14010045
crossref_primary_10_1097_WCO_0000000000000779
crossref_primary_10_1159_000505157
crossref_primary_10_3389_fneur_2023_1168836
crossref_primary_10_1186_s12938_023_01110_1
crossref_primary_10_3389_fneur_2022_916966
crossref_primary_10_3390_diagnostics11060937
crossref_primary_10_1007_s42979_020_0099_4
crossref_primary_10_1093_braincomms_fcab124
Cites_doi 10.1016/S0140-6736(17)31363-6
10.1016/j.preteyeres.2017.01.001
10.1161/STROKEAHA.113.001196
10.1016/j.jstrokecerebrovasdis.2017.01.020
10.1016/j.dadm.2016.11.001
10.1038/tp.2012.150
10.1161/STROKEAHA.115.011226
10.1111/j.1552-6569.2003.tb00187.x
10.1136/jnnp-2016-315324
10.1161/01.STR.32.6.1318
10.1109/TNN.2006.882371
10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
10.1136/bmj.c3666
10.3389/fnhum.2017.00414
10.1016/j.jacc.2017.11.006
10.1097/WCO.0000000000000513
10.1038/nrneurol.2017.16
10.1016/j.jneumeth.2012.12.014
10.1038/srep19053
10.1016/j.dadm.2016.09.001
10.1016/S0140-6736(17)31756-7
10.1016/S1474-4422(10)70104-6
ContentType Journal Article
Copyright 2018 The Authors. published by Wiley Periodicals, Inc on behalf of American Neurological Association.
2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 The Authors. published by Wiley Periodicals, Inc on behalf of American Neurological Association.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88G
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
K9.
M0S
M2M
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/acn3.688
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Psychology Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Psychology Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate A. Y. Lau et al
EISSN 2328-9503
EndPage 105
ExternalDocumentID 10.1002/acn3.688
PMC6331948
30656187
10_1002_acn3_688
ACN3688
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Hong Kong China
China
GeographicLocations_xml – name: Hong Kong China
– name: China
GrantInformation_xml – fundername: Research Grants Council of the Hong Kong Special Administrative Region, China
  funderid: CUHK 471911
– fundername: Technology and Business Development Fund (TBF) of the Chinese University of Hong Kong
  funderid: TBF15MED005
– fundername: National Key Research and Development Programme of China
  funderid: 2016YFC1300603
– fundername: Innovation and Technology Fund
  funderid: MRP/037/17X
– fundername: Research Grants Council of the Hong Kong Special Administrative Region, China
  grantid: CUHK 471911
– fundername: National Key Research and Development Programme of China
  grantid: 2016YFC1300603
– fundername: Innovation and Technology Fund
  grantid: MRP/037/17X
– fundername: Technology and Business Development Fund (TBF) of the Chinese University of Hong Kong
  grantid: TBF15MED005
GroupedDBID 0R~
1OC
24P
53G
5VS
7X7
8FI
8FJ
AAMMB
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
DIK
DWQXO
EBS
EJD
FYUFA
GNUQQ
GODZA
GROUPED_DOAJ
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
M2M
M48
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSYQQ
PUEGO
RPM
SUPJJ
UKHRP
WIN
AAYXX
CITATION
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
M~E
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4388-3577157de4d7eaa41214cc365244488f5c2c00bd06784e512b34b9af87faa7da3
IEDL.DBID UNPAY
ISSN 2328-9503
IngestDate Sun Oct 26 04:12:52 EDT 2025
Tue Sep 30 15:08:29 EDT 2025
Thu Oct 02 08:03:44 EDT 2025
Tue Oct 07 06:16:25 EDT 2025
Wed Feb 19 02:30:43 EST 2025
Thu Apr 24 22:56:20 EDT 2025
Wed Oct 01 02:16:07 EDT 2025
Sun Sep 21 06:12:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4388-3577157de4d7eaa41214cc365244488f5c2c00bd06784e512b34b9af87faa7da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This study was partially supported by the National Key Research and Development Programme of China (2016YFC1300603) and the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No.: CUHK 471911), Technology and Business Development Fund (TBF) of the Chinese University of Hong Kong (No. TBF15MED005), and Innovation and Technology Fund (ITF) (No. MRP/037/17X).
ORCID 0000-0002-5933-9290
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acn3.688
PMID 30656187
PQID 2166860220
PQPubID 2034580
PageCount 8
ParticipantIDs unpaywall_primary_10_1002_acn3_688
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6331948
proquest_miscellaneous_2179366354
proquest_journals_2166860220
pubmed_primary_30656187
crossref_citationtrail_10_1002_acn3_688
crossref_primary_10_1002_acn3_688
wiley_primary_10_1002_acn3_688_ACN3688
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bognor Regis
– name: Hoboken
PublicationTitle Annals of clinical and translational neurology
PublicationTitleAlternate Ann Clin Transl Neurol
PublicationYear 2019
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2016; 4
2015; 46
2017; 6
2007; 18
2016; 6
1998; 17
2013; 3
2017; 26
2013; 44
2017; 88
2017; 11
2017; 13
2017; 57
2010; 341
2003; 13
2017; 390
2013; 213
2018; 71
2018; 31
2016; 24
2010; 9
2017; 129
2001; 32
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_22_1
e_1_2_9_10_1
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_24_1
e_1_2_9_12_1
Zee B (e_1_2_9_15_1) 2016; 24
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_14_1
e_1_2_9_25_1
McGrory S (e_1_2_9_7_1) 2017; 6
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
Chan VT (e_1_2_9_9_1) 2017; 129
e_1_2_9_18_1
References_xml – volume: 71
  start-page: e127
  year: 2018
  end-page: e248
  article-title: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines
  publication-title: J Am Coll Cardiol
– volume: 11
  start-page: 414
  year: 2017
  article-title: Using large‐scale statistical chinese brain template (Chinese 2020) in popular neuroimage analysis toolkits
  publication-title: Front Hum Neurosci
– volume: 3
  start-page: e233
  year: 2013
  article-title: Retinal vascular biomarkers for early detection and monitoring of Alzheimer's disease
  publication-title: Transl Psychiatry
– volume: 4
  start-page: 169
  year: 2016
  end-page: 178
  article-title: Nonvascular retinal imaging markers of preclinical Alzheimer's disease
  publication-title: Alzheimer's Dement
– volume: 57
  start-page: 89
  year: 2017
  end-page: 107
  article-title: Imaging retina to study dementia and stroke
  publication-title: Prog Retin Eye Res
– volume: 390
  start-page: 2614
  year: 2017
  end-page: 2615
  article-title: Prevention and management of dementia: a priority for public health
  publication-title: Lancet
– volume: 13
  start-page: 255
  year: 2003
  end-page: 258
  article-title: Variability and validity of a simple visual rating scale in grading white matter changes on magnetic resonance imaging
  publication-title: J Neuroimaging
– volume: 9
  start-page: 689
  year: 2010
  end-page: 701
  article-title: Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges
  publication-title: Lancet Neurol
– volume: 31
  start-page: 36
  year: 2018
  end-page: 43
  article-title: New insights into cerebral small vessel disease and vascular cognitive impairment from MRI
  publication-title: Curr Opin Neurol
– volume: 390
  start-page: 2673
  year: 2017
  end-page: 2734
  article-title: Dementia prevention, intervention, and care
  publication-title: Lancet
– volume: 129
  start-page: e56137
  year: 2017
  article-title: Using retinal imaging to study dementia
  publication-title: J Vis Exp
– volume: 32
  start-page: 1318
  year: 2001
  end-page: 1322
  article-title: A new rating scale for age‐related white matter changes applicable to MRI and CT
  publication-title: Stroke
– volume: 24
  start-page: 114
  year: 2016
  end-page: 124
  article-title: Stroke risk assessment for the community by automatic retinal image analysis using fundus photograph
  publication-title: Qual Primary Care
– volume: 17
  start-page: 857
  year: 1998
  end-page: 872
  article-title: Two‐sided confidence intervals for the single proportion: comparison of seven methods
  publication-title: Stat Med
– volume: 13
  start-page: 148
  year: 2017
  end-page: 159
  article-title: Early‐onset and delayed‐onset poststroke dementia ‐ revisiting the mechanisms
  publication-title: Nat Rev Neurol
– volume: 18
  start-page: 14
  year: 2007
  end-page: 27
  article-title: Backpropagation algorithms for a broad class of dynamic networks
  publication-title: IEEE Trans Neural Netw
– volume: 341
  start-page: c3666
  year: 2010
  article-title: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta‐analysis
  publication-title: BMJ
– volume: 44
  start-page: 2338
  year: 2013
  end-page: 2342
  article-title: Research priority setting: a summary of the 2012 NINDS Stroke Planning Meeting Report
  publication-title: Stroke
– volume: 88
  start-page: 669
  year: 2017
  end-page: 674
  article-title: Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 213
  start-page: 138
  year: 2013
  end-page: 146
  article-title: Automated quantification of white matter lesion in magnetic resonance imaging of patients with acute infarction
  publication-title: J Neurosci Methods
– volume: 46
  start-page: 3547
  year: 2015
  end-page: 3550
  article-title: Montreal cognitive assessment one cutoff never fits all
  publication-title: Stroke
– volume: 6
  start-page: 19053
  year: 2016
  article-title: Retinal information is independently associated with cardiovascular disease in patients with type 2 diabetes
  publication-title: Sci Rep
– volume: 6
  start-page: 91
  year: 2017
  end-page: 107
  article-title: The application of retinal fundus camera imaging in dementia: a systematic review
  publication-title: Alzheimer's Dement
– volume: 26
  start-page: 679
  year: 2017
  end-page: 685
  article-title: Prediction factors of recurrent stroke among chinese adults using retinal vasculature characteristics
  publication-title: J Stroke Cerebrovasc Dis
– ident: e_1_2_9_2_1
  doi: 10.1016/S0140-6736(17)31363-6
– ident: e_1_2_9_8_1
  doi: 10.1016/j.preteyeres.2017.01.001
– volume: 129
  start-page: e56137
  year: 2017
  ident: e_1_2_9_9_1
  article-title: Using retinal imaging to study dementia
  publication-title: J Vis Exp
– ident: e_1_2_9_25_1
  doi: 10.1161/STROKEAHA.113.001196
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jstrokecerebrovasdis.2017.01.020
– volume: 6
  start-page: 91
  year: 2017
  ident: e_1_2_9_7_1
  article-title: The application of retinal fundus camera imaging in dementia: a systematic review
  publication-title: Alzheimer's Dement
  doi: 10.1016/j.dadm.2016.11.001
– ident: e_1_2_9_20_1
  doi: 10.1038/tp.2012.150
– ident: e_1_2_9_11_1
  doi: 10.1161/STROKEAHA.115.011226
– ident: e_1_2_9_13_1
  doi: 10.1111/j.1552-6569.2003.tb00187.x
– ident: e_1_2_9_10_1
  doi: 10.1136/jnnp-2016-315324
– volume: 24
  start-page: 114
  year: 2016
  ident: e_1_2_9_15_1
  article-title: Stroke risk assessment for the community by automatic retinal image analysis using fundus photograph
  publication-title: Qual Primary Care
– ident: e_1_2_9_12_1
  doi: 10.1161/01.STR.32.6.1318
– ident: e_1_2_9_18_1
  doi: 10.1109/TNN.2006.882371
– ident: e_1_2_9_19_1
  doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
– ident: e_1_2_9_5_1
  doi: 10.1136/bmj.c3666
– ident: e_1_2_9_23_1
  doi: 10.3389/fnhum.2017.00414
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jacc.2017.11.006
– ident: e_1_2_9_22_1
  doi: 10.1097/WCO.0000000000000513
– ident: e_1_2_9_3_1
  doi: 10.1038/nrneurol.2017.16
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jneumeth.2012.12.014
– ident: e_1_2_9_17_1
  doi: 10.1038/srep19053
– ident: e_1_2_9_6_1
  doi: 10.1016/j.dadm.2016.09.001
– ident: e_1_2_9_24_1
  doi: 10.1016/S0140-6736(17)31756-7
– ident: e_1_2_9_4_1
  doi: 10.1016/S1474-4422(10)70104-6
SSID ssj0001125372
Score 2.226721
Snippet Objective We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults...
We investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults harboring...
ObjectiveWe investigated whether an automatic retinal image analysis (ARIA) incorporating machine learning approach can identify asymptomatic older adults...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 98
SubjectTerms Aged
Artificial intelligence
Brain - diagnostic imaging
Brain - pathology
Cross-Sectional Studies
Diagnostic Techniques, Ophthalmological
Female
Humans
Image Interpretation, Computer-Assisted - methods
Machine Learning
Magnetic Resonance Imaging
Male
Retina
Retina - diagnostic imaging
Retina - pathology
White Matter - diagnostic imaging
White Matter - pathology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RIFEuFYUCaaEyCNHTQmJ77ewBVRSBEBIBRSBxW3ltr4iUbNImEcq_78y-aBTKaQ-efdie8Xw7Y38DcGSUU9qHMkB3pwKZqijoRKkKXMKVdjrR1ua7Lbrq-lHePIVPK9CtzsLQtspqTcwXajeyFCM_5W2lqF4Sb_0c_w6oahRlV6sSGqYsreDOcoqxD7DKiRmrAau_Lrv3vdeoC_pzoXnFQtvip8Zm4qQovPKPX1oCm8t7Jj_OsrGZv5jBYBHX5o7pagM-lYiSnRcq8BlWfLYJa7dlznwL7np0qhkl-kNcO5ghFhLiZmbOUwJhwl4ok8CGOdEme54T9XGxr524Vlk_Y8VZyTnLuTomX-Dx6vLh4jooyygEVgq0AxFq3Q6189Jpb4zEgZHWChWiZ0fzTUPLbauVOPJb0iMASIRMIpN2dGqMdkZsQyMbZX4XGIILr2Rk0a-nkiKIXIh26iIn2qHFO5rwoxrE2JYc41TqYhAX7Mg8puGOcbibcFBLjgtejTdk9qp5iEvLmsSveoCPqJvRJijRYTI_mpEMrjoEpWQTdoppq1-Cv0gIGTu6CXphQmsB4ttebMn6zznvtsLORhI_67Ce-ne-_TjXif8KxOcXXYHXr-938husI0SLiqDPHjSmf2Z-H2HQNPle6vZfhiEI1A
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58gHoR364vooieqtsmTdqDiIgiggrigreSJikurHV1XXT_vTN94eLj1EOmaTOTZL5kkm8A9rW0UrlQeOjupCcyGXtRnEnPpoFUVqXKmOK0xa286ojrx_BxAmp6gkqBg1-XdpRPqvPWO_p8HZ3igD-pCESPtcn5kYyig_6rR-mkKOxa5daYhGl0WTHldLipcH-x-YJunaugJqP9Vse4e_qBOX8enZwd5n09-tC93ji8LfzT5QLMV8CSnZU9YREmXL4EMzdV6HwZ7u7pcjNKdJ9xCmGayEiIoplZR3GEAfuggAJ7Lvg22dOIGJDL4-1Eucq6OSuvTI5YQdkxWIHO5cXD-ZVXZVPwjOA4HHiolB8q64RVTmvhB74whssQHTyO4iw0gWm3U0vuSzjEASkXaayzSGVaK6v5KkzlL7lbB4YYw0kRG3TvmaCNxIBzP7Ox5X5o8I0WHNZKTExFNU4ZL3pJSZIcJKTuBNXdgt1Gsl_Sa_wis1XbIan7RxL4UlL6rKCNVTTFODQo3qFz9zIkGZx8CFGJFqyVZms-gislRI6RaoEaM2gjQLTb4yV596mg35bY2Fjgb-01pv_n3w-KPvGnQHJ2fsvxufF_IzdhDpFaXO79bMHU-9vQbSMaek93ip79BW3vC2M
  priority: 102
  providerName: Scholars Portal
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66gnoR366uEkX0VG2TNGmPIi4i-EAUvJU0SXFhreK6LPvvnUm7lcUHnnrIpI_MTObrJPmGkEMtrVQuFgGEOxmIQqZBkhYysDmTyqpcGeN3W9zIy0dx9RQ_1bsq8SxMxQ_RJNzQM_x8jQ6u88HpF2moNiU_kUkyS-YigDFo3UzcfeVXIHJzX7sJMAP4dBzyCfdsyE4nnaej0TeI-X2n5MKwfNPjke73p9GsD0fdZbJU40h6Vil-hcy4cpXMX9cr5Wvk9h7PMoNE7wVmDKqRewQZmal1uGwwoCNcP6Avnl6TPo-R8LjazY4Mq7RX0uqE5Jh6ho7BOnnsXjycXwZ18YTACA7Wz2OlolhZJ6xyWouIRcIYLmOI5-C0RWyYCcPcYrQSDsJ-zkWe6iJRhdbKar5BWuVr6bYIBUjhpEgNRPNCYN6QcR4VNrU8ig30aJPjySBmpmYWxwIX_aziRGYZDncGw90m-43kW8Wm8YNMZ6KHrPanQcYiKbFaFgvhFk0zeAIub-jSvQ5RBuYaBFCiTTYrtTUPgR8jAIqJahM1pdBGAFm2p1vK3rNn25bwsamA1zpoVP_Hux95m_hVIDs7v-Fw3f6v4A5ZBIiWVkmfDml9vA_dLsCgj3zP2_snhAwDow
  priority: 102
  providerName: Wiley-Blackwell
Title Retinal image analytics detects white matter hyperintensities in healthy adults
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facn3.688
https://www.ncbi.nlm.nih.gov/pubmed/30656187
https://www.proquest.com/docview/2166860220
https://www.proquest.com/docview/2179366354
https://pubmed.ncbi.nlm.nih.gov/PMC6331948
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acn3.688
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2328-9503
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125372
  issn: 2328-9503
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2328-9503
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125372
  issn: 2328-9503
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2328-9503
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125372
  issn: 2328-9503
  databaseCode: ABDBF
  dateStart: 20140501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals at publisher websites
  customDbUrl:
  eissn: 2328-9503
  dateEnd: 20231105
  omitProxy: true
  ssIdentifier: ssj0001125372
  issn: 2328-9503
  databaseCode: DIK
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2328-9503
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125372
  issn: 2328-9503
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2328-9503
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125372
  issn: 2328-9503
  databaseCode: 7X7
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2328-9503
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125372
  issn: 2328-9503
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2328-9503
  dateEnd: 20250630
  omitProxy: true
  ssIdentifier: ssj0001125372
  issn: 2328-9503
  databaseCode: M48
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2328-9503
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125372
  issn: 2328-9503
  databaseCode: AVUZU
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2328-9503
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001125372
  issn: 2328-9503
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xVgJe-P4ojMogBE_pGtuxk8cybZqQVqqJSuMpcmxHq-iyiraayl_PXZxGlAFCvCQPuSS2c3f-5e78M8Bbo5zSPpERTncqkqXKojQrVeQKrrTThba2rrYYq5Op_HienDcBN1oLE_gh2oAbWUbtr8nAF64Mfr7J7vMDYysxUGm6B12VIBbvQHc6noy-1DvKcbTkZCi2jLM_ie_OQTeA5c36yDvramE212Y-38Ww9SR0fB_ybfND7cnXwXpVDOz3X5gd_79_D-Beg0_ZKCjUQ7jlq0dw-7TJwD-GT2e0RholZpfoiZghThNiembOUzpiya4pL8Eua9pOdrEhIuVQJU_MrWxWsbDycsNq5o_lE5geH30-PImaTRkiKwValUi0jhPtvHTaGyNjHktrhUoQJ6AzKBPL7XBYOJoFpUc4UQhZZKZMdWmMdkY8hU51VfnnwBCqeCUziyihlBSP5ELEpcuciBOLd_Tg_fYz5bZhLKeNM-Z54FrmOY1PjuPTg9et5CKwdPxGZn_7pfPGTpc5j5WiXbj4EB_RXkYLo7SJqfzVmmTQhxEwkz14FhSjfQn-cCEATXUP9I7KtALE3r17pZpd1CzeCjubSWzWm1a5_tL2d7Wq_FEgHx2OBZ5f_MvTXsJdhH1ZCCTtQ2f1be1fIbRaFX3Y43KCR32u-9D9cDSenPXrMAUeT2Xab-zrB23BKtc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RkAqXqk8Ihdat-jhtydpeO3tAFaWgUCCtEEjctl7bKyKFTdoQRflz_W3M7ItGtNw47WFnH_aMZz577G8A3hnllPaRDDDcqUBmKg46caYCl3KlnU61tcVui57qnslv59H5Avypz8LQtsraJxaO2g0trZFv8VApqpfE259HvwKqGkXZ1bqEhqlKK7jtgmKsOthx6GdTnMKNtw--or7fc76_d7rbDaoqA4GVAs1ERFqHkXZeOu2NkSEPpbVCRRj40LqzyHLbbqeO3Lr0GB9TIdPYZB2dGaOdEfjeB7AkhYxx8rf0Za_34-RmlQfxg9C8Zr1t8y1jc_GpLPTyVxy8BW5v79FcnuQjM5uawWAeRxeBcP8xPKoQLNspTe4JLPj8KTw8rnL0z-D7CZ2iRon-JfoqZoj1hLigmfOUsBizKWUu2GVB7MkuZkS1XO6jJ25X1s9ZeTZzxgpukPFzOLuXDn0Bi_kw92vAEMx4JWOLOCKTtGLJhQgzFzsRRhafaMHHuhMTW3GaU2mNQVKyMfOEujvB7m7Bm0ZyVPJ4_ENmo9ZDUo3kcXJjd_iK5jaOQUqsmNwPJySDXo6gm2zBaqm25iM4JUOI2tEt0HMKbQSI33v-Tt6_KHi-FTY2lvhbbxvV3_HvHwqb-K9AsrPbE3hdv7uRr2G5e3p8lBwd9A5fwgrCw7hccNqAxavfE7-JEOwqfVXZOYOf9z20rgFO9kSw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQ1eEN8UBhjEx1NoYzt284DQtFFtDApCTOpb5tiOVqlLC11V9V_jr-MuTjKqwd72lIdcvnznu198598BvDLKKe0TGWG4U5EsVBr100JFLudKO51ra6tqi6HaP5KfRsloA343e2GorLLxiZWjdlNLa-RdHitF_ZJ4r1vUZRHf9gYfZj8j6iBFmdamnUYwkUO_WuLv2_z9wR7q-jXng48_dvejusNAZKVAExGJ1nGinZdOe2NkzGNprVAJBj207CKx3PZ6uSOXLj3GxlzIPDVFXxfGaGcE3vcaXNdCpFROqEf6fH0HkYPQvOG77fGusaV4F1q8_BUBL8Dai9WZNxblzKyWZjJZR9BVCBzchls1dmU7wdjuwIYv78LWlzo7fw--fqf90ygxPkUvxQzxnRALNHOeUhVztqScBTutKD3ZyYpIlkMFPbG6snHJwq7MFatYQeb34ehKhvMBbJbT0j8ChjDGK5laRBCFpLVKLkRcuNSJOLF4RQfeNoOY2ZrNnJpqTLLAw8wzGu4Mh7sDL1rJWWDw-IfMdqOHrJ7D8-zc4vAW7WmcfZRSMaWfLkgG_RuBNtmBh0Ft7UPwZwzBaV93QK8ptBUgZu_1M-X4pGL4VvixqcTXetmq_pJ3f1PZxH8Fsp3docDj48s_8jls4YTKPh8MD5_ATcSFaVhp2obNs18L_xSx11n-rDJyBsdXPav-AG_IQko
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9BJ8Fe-P4ojMkgBE8pjT-Tx2pimiZREKLSeIoc21EruqxaW03lr-cuTiPKACGe8uCL44-78y939s8Ar6322gQlE1zudCIrnSdZXunEl1wbb0rjXLPbYqxPJvL0TJ21ATc6CxP5IbqAG1lG46_JwBe-in6-ze7zd9bVYqCz7CbsaYVYvAd7k_Gn0dfmRjmOlqyGYss4-5P47hp0DVhe3x95e10v7ObKzue7GLZZhI7vQrFtftx78m2wXpUD9_0XZsf_7989uNPiUzaKCnUfboT6Adz60GbgH8LHz3RGGiVm5-iJmCVOE2J6Zj5QOmLJrigvwc4b2k423RCRctwlT8ytbFazePJywxrmj-UjmBy__3J0krSXMiROCrQqoYxJlfFBehOslSlPpXNCK8QJ6Awq5bgbDktPq6AMCCdKIcvcVpmprDXeisfQqy_q8BQYQpWgZe4QJVSS4pFciLTyuRepcvhGH95up6lwLWM5XZwxLyLXMi9ofAocnz687CQXkaXjNzIH25kuWjtdFjzVmm7h4kOsoitGC6O0ia3DxZpk0IcRMJN9eBIVo_sI_nAhAM1MH8yOynQCxN69W1LPpg2Lt8bO5hKb9apTrr-0_U2jKn8UKEZHY4HPZ_9S23PYR9iXx0DSAfRWl-vwAqHVqjxs7ecHdRIlsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+image+analytics+detects+white+matter+hyperintensities+in+healthy+adults&rft.jtitle=Annals+of+clinical+and+translational+neurology&rft.au=Lau%2C+Alexander+Y&rft.au=Mok%2C+Vincent&rft.au=Lee%2C+Jack&rft.au=Fan%2C+Yuhua&rft.date=2019-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2328-9503&rft.volume=6&rft.issue=1&rft.spage=98&rft.epage=105&rft_id=info:doi/10.1002%2Facn3.688&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-9503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-9503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-9503&client=summon