Multiway continuous hidden Markov model-based approach for fault detection and diagnosis

A fault detection and classification scheme that uses probabilistic inference based on multiway continuous hidden Markov models (MCHMM) which is capable of capturing complex system dynamics and uncertainty is proposed. A set of observations from normal and faulty runs of the system was collected and...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 60; no. 6; pp. 2035 - 2047
Main Authors Sen, Deepthi, Raihan, Dilshad, Chidambaram, M.
Format Journal Article
LanguageEnglish
Published New York Blackwell Publishing Ltd 01.06.2014
American Institute of Chemical Engineers
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
DOI10.1002/aic.14386

Cover

Abstract A fault detection and classification scheme that uses probabilistic inference based on multiway continuous hidden Markov models (MCHMM) which is capable of capturing complex system dynamics and uncertainty is proposed. A set of observations from normal and faulty runs of the system was collected and used to generate the training dataset. The training data is assumed to follow a finite Gaussian mixture model. The number of mixture components and associated parameters for the optimal Gaussian mixture fit of the observed data was computed subsequently by clustering using the Figueiredo–Jain algorithm for unsupervised learning. The segmental k‐means algorithm was used to compute the HMM parameters. The applicability of the proposed scheme is investigated for the case of an inverted pendulum system and a fluidized catalytic cracker. The monitoring results for the above cases with the proposed scheme was found to be superior to the multiway discrete hidden Markov model (MDHMM) based scheme in terms of the accuracy of fault detection, especially in case of noisy observations. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2035–2047, 2014
AbstractList A fault detection and classification scheme that uses probabilistic inference based on multiway continuous hidden Markov models (MCHMM) which is capable of capturing complex system dynamics and uncertainty is proposed. A set of observations from normal and faulty runs of the system was collected and used to generate the training dataset. The training data is assumed to follow a finite Gaussian mixture model. The number of mixture components and associated parameters for the optimal Gaussian mixture fit of the observed data was computed subsequently by clustering using the Figueiredo-Jain algorithm for unsupervised learning. The segmental k-means algorithm was used to compute the HMM parameters. The applicability of the proposed scheme is investigated for the case of an inverted pendulum system and a fluidized catalytic cracker. The monitoring results for the above cases with the proposed scheme was found to be superior to the multiway discrete hidden Markov model (MDHMM) based scheme in terms of the accuracy of fault detection, especially in case of noisy observations. copyright 2014 American Institute of Chemical Engineers AIChE J, 60: 2035-2047, 2014
A fault detection and classification scheme that uses probabilistic inference based on multiway continuous hidden Markov models (MCHMM) which is capable of capturing complex system dynamics and uncertainty is proposed. A set of observations from normal and faulty runs of the system was collected and used to generate the training dataset. The training data is assumed to follow a finite Gaussian mixture model. The number of mixture components and associated parameters for the optimal Gaussian mixture fit of the observed data was computed subsequently by clustering using the Figueiredo–Jain algorithm for unsupervised learning. The segmental k‐means algorithm was used to compute the HMM parameters. The applicability of the proposed scheme is investigated for the case of an inverted pendulum system and a fluidized catalytic cracker. The monitoring results for the above cases with the proposed scheme was found to be superior to the multiway discrete hidden Markov model (MDHMM) based scheme in terms of the accuracy of fault detection, especially in case of noisy observations. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2035–2047, 2014
A fault detection and classification scheme that uses probabilistic inference based on multiway continuous hidden Markov models (MCHMM) which is capable of capturing complex system dynamics and uncertainty is proposed. A set of observations from normal and faulty runs of the system was collected and used to generate the training dataset. The training data is assumed to follow a finite Gaussian mixture model. The number of mixture components and associated parameters for the optimal Gaussian mixture fit of the observed data was computed subsequently by clustering using the Figueiredo-Jain algorithm for unsupervised learning. The segmental k-means algorithm was used to compute the HMM parameters. The applicability of the proposed scheme is investigated for the case of an inverted pendulum system and a fluidized catalytic cracker. The monitoring results for the above cases with the proposed scheme was found to be superior to the multiway discrete hidden Markov model (MDHMM) based scheme in terms of the accuracy of fault detection, especially in case of noisy observations. [PUBLICATION ABSTRACT]
Author Raihan, Dilshad
Sen, Deepthi
Chidambaram, M.
Author_xml – sequence: 1
  givenname: Deepthi
  surname: Sen
  fullname: Sen, Deepthi
  organization: Dept. of Chemical Engineering, Indian Institute of Technology Madras, Tamil Nadu, 600036, Chennai, India
– sequence: 2
  givenname: Dilshad
  surname: Raihan
  fullname: Raihan, Dilshad
  organization: Dept. of Mechanical Engineering, Indian Institute of Technology Madras, Tamil Nadu, 600036, Chennai, India
– sequence: 3
  givenname: M.
  surname: Chidambaram
  fullname: Chidambaram, M.
  email: chidam@iitm.ac.in
  organization: Dept. of Chemical Engineering, Indian Institute of Technology Madras, Tamil Nadu, 600036, Chennai, India
BookMark eNqFkUFv1DAQhS1UJLaFA__AEhc4pPU4cZwcq4WWSrstElTtzXLsCXXJ2ls7oey_r7cLHCpRTqMZfe9pZt4-2fPBIyFvgR0CY_xIO3MIVdnUL8gMRCUL0TKxR2aMMSjyAF6R_ZRuc8dlw2fkejkNo7vXG2qCH52fwpTojbMWPV3q-CP8pKtgcSg6ndBSvV7HoM0N7UOkvc5aanFEM7rgqfaWWqe_-5Bcek1e9npI-OZ3PSCXJ5--zT8Xi4vTs_nxojDbLQte1QhgwAoUuW9q1Bz6rgPd1p0RwggmbNdUwvay62UmjLGsMQJt31rLywPyfuebF7ubMI1q5ZLBYdAe8y0KZMkAhGzh_2h-T8Vk07QZffcEvQ1T9PmQTPGKi4rD1vDDjjIxpBSxV-voVjpuFDC1jUPlONRjHJk9esIaN-rt38ao3fCc4t4NuPm3tTo-m_9RFDuFSyP--qvIMapallKoq_NT9UV8XVx_XJ6o8_IBHtKszg
CODEN AICEAC
CitedBy_id crossref_primary_10_1088_1361_6501_ac8275
crossref_primary_10_1016_j_chemolab_2015_08_025
crossref_primary_10_2118_209608_PA
crossref_primary_10_1021_acs_iecr_8b02913
crossref_primary_10_1016_j_coche_2016_07_009
crossref_primary_10_1016_j_jlp_2018_05_012
crossref_primary_10_1021_acs_iecr_5b04777
crossref_primary_10_2139_ssrn_4007910
crossref_primary_10_1002_aic_17297
crossref_primary_10_1021_acsomega_2c04005
crossref_primary_10_1016_j_fuel_2021_122600
crossref_primary_10_1080_00986445_2018_1550391
Cites_doi 10.1016/S0967-0661(98)00027-6
10.1016/0098-1354(93)80021-E
10.1007/978-3-642-21786-9_70
10.1109/PROC.1973.9030
10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-N
10.1002/aic.690400509
10.1002/cem.903
10.1109/ICASSP.1991.150631
10.1016/S0098-1354(02)00160-6
10.1109/CDC.2009.5399548
10.1002/aic.690400809
10.1016/j.patcog.2006.01.005
10.1016/S0009-2509(01)00366-9
10.1002/aic.12794
10.1109/5.18626
10.1016/S0169-7439(99)00061-1
10.1016/j.jprocont.2007.06.002
10.1016/j.compchemeng.2003.09.031
10.1016/S0098-1354(02)00162-X
10.1016/S0967-0661(99)00038-6
10.1111/j.2517-6161.1977.tb01600.x
10.1007/978-3-642-12767-0
10.1109/TCST.2009.2026285
10.1016/j.compchemeng.2003.10.002
10.1007/978-1-4471-0347-9
10.1016/S0031-3203(02)00026-2
10.1002/aic.11515
10.1021/ie980577d
ContentType Journal Article
Copyright 2014 American Institute of Chemical Engineers
Copyright American Institute of Chemical Engineers Jun 2014
Copyright_xml – notice: 2014 American Institute of Chemical Engineers
– notice: Copyright American Institute of Chemical Engineers Jun 2014
DBID BSCLL
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.14386
DatabaseName Istex
CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database

Solid State and Superconductivity Abstracts
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 2047
ExternalDocumentID 3302778381
10_1002_aic_14386
AIC14386
ark_67375_WNG_P5SLXDMF_N
Genre article
Feature
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PUEGO
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AFFHD
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c4386-246e11c1d5e538686ea21fbb1a96bc55c505db845df7bf7868ccd08c5edf9dd23
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Jul 11 08:28:57 EDT 2025
Fri Jul 11 12:11:34 EDT 2025
Fri Jul 25 11:17:28 EDT 2025
Thu Oct 09 00:43:23 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Tue Oct 28 04:16:41 EDT 2025
Sun Sep 21 06:19:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4386-246e11c1d5e538686ea21fbb1a96bc55c505db845df7bf7868ccd08c5edf9dd23
Notes ArticleID:AIC14386
ark:/67375/WNG-P5SLXDMF-N
istex:9B717B994E8F1110224091F1608A65C06AE0E7BE
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1524254211
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1730115791
proquest_miscellaneous_1541407889
proquest_journals_1524254211
crossref_primary_10_1002_aic_14386
crossref_citationtrail_10_1002_aic_14386
wiley_primary_10_1002_aic_14386_AIC14386
istex_primary_ark_67375_WNG_P5SLXDMF_N
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2014
Publisher Blackwell Publishing Ltd
American Institute of Chemical Engineers
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Institute of Chemical Engineers
References Chiang LH, Russell EL, Braatz RD. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom Intell Lab Syst. 2000;50:243-252.
Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K. A review of process fault detection and diagnosis. Part III: process history based methods. Comput Chem Eng. 2003;27:327-346.
Venkatasubramanian V, Rengaswamy R, Kavuri SN. A review of process fault detection and diagnosis. Part I: quantitative model-based methods. Comput Chem Eng. 2003;27:293-311.
Hwang DH, Han C. Real-time monitoring for a process with multiple operating modes. Control Eng Pract. 1999;7:891-902.
Bhowmik T, van Oosten J, Schomaker L. Segmental k-means learning with mixture distribution for HMM based handwriting recognition. Pattern Recognit Mach Intell. 2011;6744:432-439.
McFarlane RC, Reineman RC, Bartee JF, Georgakis C. Dynamic simulator for a model IV fluidized catalytic cracker unit. Comput Chem Eng. 1993;17:275-300.
Chen J, Liu K. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chem Eng Sci. 2002;57:63-75.
Rabiner L. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE. 1989;77:257-286.
Thissen U, Swierenga H, deWeijer AP, Wehrens R, Melssen WJ, Buydens LMC. Multivariate statistical process control using mixture modeling. J Chemom. 2005;19:23-31.
Yu J, Qin SJ. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008;54:1811-1829.
Figueiredo MAF, Jain AK. Unsupervised learning of finite mixture models. AIChE J. 2002;24:381-96.
Forney GD Jr. The Viterbi algorithm. Proc IEEE 1978;61:268-278.
Chen J, Liu K. Mixture principal component analysis models for process monitoring. Ind Eng Chem Res. 1999;38:1478-1488.
Chiang L, Kotanchek M, Kordon A. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput Chem Eng. 2004;28:1389-1401.
Chiang LH, Russell EL, Braatz RD. Fault Detection and Diagnosis in Industrial Systems. London: Springer, 2001.
Yu J. Multiway discrete hidden Markov model-based approach for dynamic batch process monitoring and fault classification. AIChE J. 2012;58:2714-2725.
Isermann R. Fault-Diagnosis Applications. Berlin Heidelberg: Springer-Verlag, 2011.
Hwang I, Kim S, Kim Y, Seah CE. A survey of fault detection, isolation, reconfiguration methods. IEEE Trans Control Syst Technol. 2010;18(3):636-653.
Yu J, Qin SJ. Statistical MIMO controller performance monitoring. J Process Control. 2008;18:277-296.
MacGregor JF, Jaeckle C, Kiparissides C, Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 1994;40:826-838.
Paalanen P, Kamarainen JK, Ilonen J, Kälviäinen H. Feature representation and discrimination based on Gaussian mixture model probability densities-practices and algorithms. Pattern Recognit. 2006;39:1346-1358.
Yeung DY, Ding Y. Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognit. 2003;36:229-243.
Qin SJ. Statistical process monitoring. Comput Chem Eng. 2003;17:480-502.
Wise BM, Gallagher NB, Butler SW, White DD, Barna GG. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. J Chemom. 1999;13:379-396.
Dunia R, Qin SJ. Joint diagnosis of process and sensor faults using principal component analysis. Control Eng Pract. 1998;67:457-469.
Nomikos P, MacGregor JF. Monitoring of batch processes using multi-way principal component analysis. AIChE J. 1994;40:1361-1375.
Choi SW, Park JH, Lee IB. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput Chem Eng. 2004;28:1377-1387.
Dempster AP, Laird NM, Rubin DB. Maximum likelihood of incomplete data via the EM algorithm. J R Stat Soc B. 1977;39:1-38.
2011; 6744
2011
2010; 18
2004; 28
2008; 18
2002; 57
2006; 39
2000; 50
2009
2003; 36
2008
1995
2003; 17
2008; 54
1991
2012; 58
1999; 7
1998; 67
1994; 40
2005; 19
1989; 77
1993; 17
2001
1977; 39
1999; 38
2002; 24
1978; 61
1999; 13
2003; 27
2011; 24
2013
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
Allahverdyan A (e_1_2_7_28_1) 2011
e_1_2_7_10_1
Ding SX (e_1_2_7_33_1) 2008
Dempster AP (e_1_2_7_29_1) 1977; 39
e_1_2_7_27_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
Figueiredo MAF (e_1_2_7_20_1) 2002; 24
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
Elliot RJ (e_1_2_7_26_1) 1995
Qin SJ (e_1_2_7_6_1) 2003; 17
References_xml – reference: Yeung DY, Ding Y. Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognit. 2003;36:229-243.
– reference: Wise BM, Gallagher NB, Butler SW, White DD, Barna GG. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. J Chemom. 1999;13:379-396.
– reference: Yu J, Qin SJ. Statistical MIMO controller performance monitoring. J Process Control. 2008;18:277-296.
– reference: Thissen U, Swierenga H, deWeijer AP, Wehrens R, Melssen WJ, Buydens LMC. Multivariate statistical process control using mixture modeling. J Chemom. 2005;19:23-31.
– reference: Dempster AP, Laird NM, Rubin DB. Maximum likelihood of incomplete data via the EM algorithm. J R Stat Soc B. 1977;39:1-38.
– reference: Chen J, Liu K. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chem Eng Sci. 2002;57:63-75.
– reference: Hwang I, Kim S, Kim Y, Seah CE. A survey of fault detection, isolation, reconfiguration methods. IEEE Trans Control Syst Technol. 2010;18(3):636-653.
– reference: Hwang DH, Han C. Real-time monitoring for a process with multiple operating modes. Control Eng Pract. 1999;7:891-902.
– reference: Chiang L, Kotanchek M, Kordon A. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput Chem Eng. 2004;28:1389-1401.
– reference: Rabiner L. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE. 1989;77:257-286.
– reference: Nomikos P, MacGregor JF. Monitoring of batch processes using multi-way principal component analysis. AIChE J. 1994;40:1361-1375.
– reference: Figueiredo MAF, Jain AK. Unsupervised learning of finite mixture models. AIChE J. 2002;24:381-96.
– reference: Venkatasubramanian V, Rengaswamy R, Kavuri SN. A review of process fault detection and diagnosis. Part I: quantitative model-based methods. Comput Chem Eng. 2003;27:293-311.
– reference: Isermann R. Fault-Diagnosis Applications. Berlin Heidelberg: Springer-Verlag, 2011.
– reference: Dunia R, Qin SJ. Joint diagnosis of process and sensor faults using principal component analysis. Control Eng Pract. 1998;67:457-469.
– reference: McFarlane RC, Reineman RC, Bartee JF, Georgakis C. Dynamic simulator for a model IV fluidized catalytic cracker unit. Comput Chem Eng. 1993;17:275-300.
– reference: Paalanen P, Kamarainen JK, Ilonen J, Kälviäinen H. Feature representation and discrimination based on Gaussian mixture model probability densities-practices and algorithms. Pattern Recognit. 2006;39:1346-1358.
– reference: Qin SJ. Statistical process monitoring. Comput Chem Eng. 2003;17:480-502.
– reference: Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K. A review of process fault detection and diagnosis. Part III: process history based methods. Comput Chem Eng. 2003;27:327-346.
– reference: Chen J, Liu K. Mixture principal component analysis models for process monitoring. Ind Eng Chem Res. 1999;38:1478-1488.
– reference: MacGregor JF, Jaeckle C, Kiparissides C, Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 1994;40:826-838.
– reference: Yu J. Multiway discrete hidden Markov model-based approach for dynamic batch process monitoring and fault classification. AIChE J. 2012;58:2714-2725.
– reference: Bhowmik T, van Oosten J, Schomaker L. Segmental k-means learning with mixture distribution for HMM based handwriting recognition. Pattern Recognit Mach Intell. 2011;6744:432-439.
– reference: Forney GD Jr. The Viterbi algorithm. Proc IEEE 1978;61:268-278.
– reference: Choi SW, Park JH, Lee IB. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput Chem Eng. 2004;28:1377-1387.
– reference: Chiang LH, Russell EL, Braatz RD. Fault Detection and Diagnosis in Industrial Systems. London: Springer, 2001.
– reference: Yu J, Qin SJ. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008;54:1811-1829.
– reference: Chiang LH, Russell EL, Braatz RD. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom Intell Lab Syst. 2000;50:243-252.
– year: 2011
– start-page: 1697
  year: 1991
  end-page: 1700
– volume: 24
  start-page: 381
  year: 2002
  end-page: 96
  article-title: Unsupervised learning of finite mixture models
  publication-title: AIChE J.
– volume: 38
  start-page: 1478
  year: 1999
  end-page: 1488
  article-title: Mixture principal component analysis models for process monitoring
  publication-title: Ind Eng Chem Res.
– volume: 40
  start-page: 826
  year: 1994
  end-page: 838
  article-title: Process monitoring and diagnosis by multiblock PLS methods
  publication-title: AIChE J.
– volume: 19
  start-page: 23
  year: 2005
  end-page: 31
  article-title: Multivariate statistical process control using mixture modeling
  publication-title: J Chemom.
– volume: 28
  start-page: 1377
  year: 2004
  end-page: 1387
  article-title: Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
  publication-title: Comput Chem Eng.
– start-page: 8482
  year: 2009
  end-page: 8487
– volume: 27
  start-page: 327
  year: 2003
  end-page: 346
  article-title: A review of process fault detection and diagnosis. Part III: process history based methods
  publication-title: Comput Chem Eng.
– volume: 28
  start-page: 1389
  year: 2004
  end-page: 1401
  article-title: Fault diagnosis based on Fisher discriminant analysis and support vector machines
  publication-title: Comput Chem Eng.
– volume: 18
  start-page: 277
  year: 2008
  end-page: 296
  article-title: Statistical MIMO controller performance monitoring
  publication-title: J Process Control.
– volume: 17
  start-page: 480
  year: 2003
  end-page: 502
  article-title: Statistical process monitoring
  publication-title: Comput Chem Eng.
– volume: 13
  start-page: 379
  year: 1999
  end-page: 396
  article-title: A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
  publication-title: J Chemom.
– volume: 58
  start-page: 2714
  year: 2012
  end-page: 2725
  article-title: Multiway discrete hidden Markov model‐based approach for dynamic batch process monitoring and fault classification
  publication-title: AIChE J.
– year: 2001
– start-page: 21
  year: 2008
  end-page: 49
– volume: 54
  start-page: 1811
  year: 2008
  end-page: 1829
  article-title: Multimode process monitoring with Bayesian inference‐based finite Gaussian mixture models
  publication-title: AIChE J.
– volume: 6744
  start-page: 432
  year: 2011
  end-page: 439
  article-title: Segmental k‐means learning with mixture distribution for HMM based handwriting recognition
  publication-title: Pattern Recognit Mach Intell
– volume: 18
  start-page: 636
  issue: 3
  year: 2010
  end-page: 653
  article-title: A survey of fault detection, isolation, reconfiguration methods
  publication-title: IEEE Trans Control Syst Technol.
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc IEEE.
– volume: 27
  start-page: 293
  year: 2003
  end-page: 311
  article-title: A review of process fault detection and diagnosis. Part I: quantitative model‐based methods
  publication-title: Comput Chem Eng.
– volume: 36
  start-page: 229
  year: 2003
  end-page: 243
  article-title: Host‐based intrusion detection using dynamic and static behavioral models
  publication-title: Pattern Recognit.
– volume: 61
  start-page: 268
  year: 1978
  end-page: 278
  article-title: The Viterbi algorithm
  publication-title: Proc IEEE
– volume: 24
  start-page: 1674
  year: 2011
  end-page: 1682
– volume: 57
  start-page: 63
  year: 2002
  end-page: 75
  article-title: On‐line batch process monitoring using dynamic PCA and dynamic PLS models
  publication-title: Chem Eng Sci.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood of incomplete data via the EM algorithm
  publication-title: J R Stat Soc B
– volume: 40
  start-page: 1361
  year: 1994
  end-page: 1375
  article-title: Monitoring of batch processes using multi‐way principal component analysis
  publication-title: AIChE J.
– volume: 67
  start-page: 457
  year: 1998
  end-page: 469
  article-title: Joint diagnosis of process and sensor faults using principal component analysis
  publication-title: Control Eng Pract.
– volume: 7
  start-page: 891
  year: 1999
  end-page: 902
  article-title: Real‐time monitoring for a process with multiple operating modes
  publication-title: Control Eng Pract.
– year: 1995
– volume: 17
  start-page: 275
  year: 1993
  end-page: 300
  article-title: Dynamic simulator for a model IV fluidized catalytic cracker unit
  publication-title: Comput Chem Eng.
– volume: 50
  start-page: 243
  year: 2000
  end-page: 252
  article-title: Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
  publication-title: Chemom Intell Lab Syst.
– volume: 39
  start-page: 1346
  year: 2006
  end-page: 1358
  article-title: Feature representation and discrimination based on Gaussian mixture model probability densities—practices and algorithms
  publication-title: Pattern Recognit.
– year: 2013
– ident: e_1_2_7_9_1
  doi: 10.1016/S0967-0661(98)00027-6
– ident: e_1_2_7_35_1
  doi: 10.1016/0098-1354(93)80021-E
– ident: e_1_2_7_27_1
  doi: 10.1007/978-3-642-21786-9_70
– ident: e_1_2_7_32_1
  doi: 10.1109/PROC.1973.9030
– ident: e_1_2_7_12_1
  doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-N
– ident: e_1_2_7_10_1
  doi: 10.1002/aic.690400509
– ident: e_1_2_7_18_1
  doi: 10.1002/cem.903
– ident: e_1_2_7_24_1
  doi: 10.1109/ICASSP.1991.150631
– ident: e_1_2_7_7_1
  doi: 10.1016/S0098-1354(02)00160-6
– ident: e_1_2_7_34_1
  doi: 10.1109/CDC.2009.5399548
– ident: e_1_2_7_13_1
  doi: 10.1002/aic.690400809
– ident: e_1_2_7_21_1
  doi: 10.1016/j.patcog.2006.01.005
– ident: e_1_2_7_36_1
– ident: e_1_2_7_14_1
  doi: 10.1016/S0009-2509(01)00366-9
– ident: e_1_2_7_25_1
  doi: 10.1002/aic.12794
– ident: e_1_2_7_31_1
  doi: 10.1109/5.18626
– ident: e_1_2_7_11_1
  doi: 10.1016/S0169-7439(99)00061-1
– start-page: 1674
  volume-title: Advances in Neural Information Processing Systems
  year: 2011
  ident: e_1_2_7_28_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jprocont.2007.06.002
– ident: e_1_2_7_17_1
  doi: 10.1016/j.compchemeng.2003.09.031
– ident: e_1_2_7_30_1
– ident: e_1_2_7_8_1
  doi: 10.1016/S0098-1354(02)00162-X
– ident: e_1_2_7_15_1
  doi: 10.1016/S0967-0661(99)00038-6
– start-page: 21
  volume-title: Model Based Fault Diagnosis Techniques
  year: 2008
  ident: e_1_2_7_33_1
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_7_29_1
  article-title: Maximum likelihood of incomplete data via the EM algorithm
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_7_4_1
  doi: 10.1007/978-3-642-12767-0
– ident: e_1_2_7_3_1
  doi: 10.1109/TCST.2009.2026285
– ident: e_1_2_7_22_1
  doi: 10.1016/j.compchemeng.2003.10.002
– ident: e_1_2_7_2_1
  doi: 10.1007/978-1-4471-0347-9
– volume: 17
  start-page: 480
  year: 2003
  ident: e_1_2_7_6_1
  article-title: Statistical process monitoring
  publication-title: Comput Chem Eng.
– volume: 24
  start-page: 381
  year: 2002
  ident: e_1_2_7_20_1
  article-title: Unsupervised learning of finite mixture models
  publication-title: AIChE J.
– ident: e_1_2_7_23_1
  doi: 10.1016/S0031-3203(02)00026-2
– ident: e_1_2_7_19_1
  doi: 10.1002/aic.11515
– volume-title: Hidden Markov Models Estimation and Control
  year: 1995
  ident: e_1_2_7_26_1
– ident: e_1_2_7_16_1
  doi: 10.1021/ie980577d
SSID ssj0012782
Score 2.214754
Snippet A fault detection and classification scheme that uses probabilistic inference based on multiway continuous hidden Markov models (MCHMM) which is capable of...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2035
SubjectTerms Algorithms
Chemical engineering
Dynamical systems
Dynamics
Fault detection
fault detection and classification
Fault diagnosis
Figueiredo-Jain algorithm
finite Gaussian mixture models
fluidized catalytic cracker
Gaussian
hidden Markov models
inverted pendulum
Markov analysis
Markov chains
Mathematical models
Probabilistic inference
Process engineering
segmental k-means algorithm
Training
Title Multiway continuous hidden Markov model-based approach for fault detection and diagnosis
URI https://api.istex.fr/ark:/67375/WNG-P5SLXDMF-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.14386
https://www.proquest.com/docview/1524254211
https://www.proquest.com/docview/1541407889
https://www.proquest.com/docview/1730115791
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: ADMLS
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0001-1541
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcikHCgXEloJchFAv2cZJ7CTiVBW2LaIrBFSsEJJlexx1Bcoidpf-nHgEnpEnYcbZpC0ChLhFyiRyxp6Zz_HMN4w9RoRcGZWnUSXiNMpyBZGNfRl5KCtHMTExVI18OFT7R9mLkRwtsadtLUzDD9H9cCPLCP6aDNzY6fYFaagZuz717ia6bZGqsJ163VFHiSQvGqZw3C4jTBAtq1CcbHdPXolF10itp1eA5mW4GuLNYJV9aEfapJl87M9ntu_OfyFx_M9PucluLHAo32kWzi225Os1dv0SO-Ft9j4U556YM0757ON6PplP-TFRjtScSnwmX3noo_Pj23eKhcBbfnKOQJhXBp_m4Gch16vmpgYOTV7feHqHHQ2ev93djxatGCJH44qSTHkhnADp0UOqQnmTiMpaYUplnZQOgRTYIpNQ5bbKUcI5iAsnPVQlQJLeZcv1pPb3GAcEWQaMLSgVFFJjjRUCLEIRZa3M4x7baidFuwVPObXL-KQbhuVEo7p0UFePPepEPzfkHL8TehJmtpNABVE2Wy71u-GefiXfvBw9OxzoYY9ttFOvF4Y81Qhv0KtluE3usc3uNpognauY2qPmNS0vOg4tyr_IBE8q8xLfsxXWwp9HrHcOdsPF-r-L3mcrCOWyJoltgy3Pvsz9A4RLM_sw2MVP9UYSBw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7QF44BtRGGAQQntJF6exk0i8TIPSQVsh2EQ1CVn-ilYNpYi2fD3xJ_A38pdw5zRhQ4AQb5Fyjpyz7-5n--5ngAeIkEsts15U8rgXpZl0kYl9EXlXlJZiYqKpGnk0loOD9NlETNbgUVMLU_NDtBtuZBnBX5OB04b09k_WUD21Xbq8W56BjVTiOoUg0cuWPIonWV5zheOCGYECb3iF4mS7bXoqGm2QYj-dgponAWuIOP2L8Kbpa51octxdLkzXfvmFxvF_f-YSXFhBUbZTz53LsOarK3D-BEHhVTgM9bkf9WdGKe3TajlbztkRsY5UjKp8Zh9YuErn-9dvFA4dayjKGWJhVmpszZxfhHSviunKMVen9k3n1-Cg_2R_dxCtbmOILPUrSlLpObfcCY9OUubS64SXxnBdSGOFsIilnMlT4crMlBlKWOvi3ArvysK5pHcd1qtZ5W8Ac4iztNMmp2xQ19NGG86dQTQijRFZ3IGtZlSUXVGV040Zb1VNspwoVJcK6urA_Vb0Xc3P8Tuhh2FoWwlUECW0ZUK9Hj9VL8Sr4eTxqK_GHdhsxl6tbHmuEOGgY0txpdyBe-1rtEI6WtGVR80rml90IpoXf5EJzlRkBX5nK0yGP_dY7ezthoeb_y56F84O9kdDNdwbP78F5xDZpXVO2yasL94v_W1ETwtzJxjJDxA6Fig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEB9qC6IP1r94tmoUkb7sdbO32T_gS-l5ttoeRS0eBQlJJsFD2SveXbU--RH8jH4SJ9nbtRUV8W1hJ0t2kpn57WbmNwCPCCE7leW9yPG4F6V5hpGObRlZLJ3xMTFRvhp5f5jtHKbPR2K0BE-aWpiaH6L94eYtI_hrb-D2GN3mT9ZQNTZd37w7uwArqSgLn9DXf9mSR_EkL2qucPpgJqDAG16hONlsh56LRitesZ_PQc2zgDVEnMEqvG3mWieavO_OZ7prvvxC4_i_L3MVriygKNuq9841WLLVdbh8hqDwBhyF-txP6pT5lPZxNZ_Mp-ydZx2pmK_ymZyw0Ern-9dvPhwiayjKGWFh5hSNZmhnId2rYqpChnVq33h6Ew4HT19v70SLbgyR8fOKkjSznBuOwpKTzIrMqoQ7rbkqM22EMISlUBepQJdrl5OEMRgXRlh0JWLSuwXL1aSyt4Eh4SyFShc-GxR7SivNOWpCI5nWIo87sNGsijQLqnLfMeODrEmWE0nqkkFdHXjYih7X_By_E3oclraVIAX5hLZcyDfDZ_JAvNob9fcHctiB9Wbt5cKWp5IQDjm2lL6UO_CgvU1W6I9WVGVJ89LvL38iWpR_kQnOVOQlPWcjbIY_z1hu7W6Hizv_LnofLh70B3Jvd_hiDS4RsEvrlLZ1WJ59nNu7BJ5m-l6wkR-amxWs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiway+continuous+hidden+Markov+model%E2%80%90based+approach+for+fault+detection+and+diagnosis&rft.jtitle=AIChE+journal&rft.au=Sen%2C+Deepthi&rft.au=Raihan%2C+Dilshad&rft.au=Chidambaram%2C+M.&rft.date=2014-06-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=60&rft.issue=6&rft.spage=2035&rft.epage=2047&rft_id=info:doi/10.1002%2Faic.14386&rft.externalDBID=10.1002%252Faic.14386&rft.externalDocID=AIC14386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon