Joint modeling of recurrent events and a terminal event adjusted for zero inflation and a matched design
In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health. Because of clinical interest, recurrent time‐to‐event data are captured during the follow‐up. Meanwhile, the terminal event of death is alwa...
Saved in:
| Published in | Statistics in medicine Vol. 37; no. 18; pp. 2771 - 2786 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
15.08.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0277-6715 1097-0258 1097-0258 |
| DOI | 10.1002/sim.7682 |
Cover
| Abstract | In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health. Because of clinical interest, recurrent time‐to‐event data are captured during the follow‐up. Meanwhile, the terminal event of death is always encountered, which should be taken into account for valid inference because of informative censoring. In some scenarios, a certain large portion of subjects may not have any recurrent events during the study period due to nonsusceptibility to events or censoring; thus, the zero‐inflated nature of data should be considered in analysis. In this paper, a joint frailty model with recurrent events and death is proposed to adjust for zero inflation and matched designs. We incorporate 2 frailties to measure the dependency between subjects within a matched pair and that among recurrent events within each individual. By sharing the random effects, 2 event processes of recurrent events and death are dependent with each other. The maximum likelihood based approach is applied for parameter estimation, where the Monte Carlo expectation‐maximization algorithm is adopted, and the corresponding R program is developed and available for public usage. In addition, alternative estimation methods such as Gaussian quadrature (PROC NLMIXED) and a Bayesian approach (PROC MCMC) are also considered for comparison to show our method's superiority. Extensive simulations are conducted, and a real data application on acute ischemic studies is provided in the end. |
|---|---|
| AbstractList | In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health. Because of clinical interest, recurrent time‐to‐event data are captured during the follow‐up. Meanwhile, the terminal event of death is always encountered, which should be taken into account for valid inference because of informative censoring. In some scenarios, a certain large portion of subjects may not have any recurrent events during the study period due to nonsusceptibility to events or censoring; thus, the zero‐inflated nature of data should be considered in analysis. In this paper, a joint frailty model with recurrent events and death is proposed to adjust for zero inflation and matched designs. We incorporate 2 frailties to measure the dependency between subjects within a matched pair and that among recurrent events within each individual. By sharing the random effects, 2 event processes of recurrent events and death are dependent with each other. The maximum likelihood based approach is applied for parameter estimation, where the Monte Carlo expectation‐maximization algorithm is adopted, and the corresponding R program is developed and available for public usage. In addition, alternative estimation methods such as Gaussian quadrature (PROC NLMIXED) and a Bayesian approach (PROC MCMC) are also considered for comparison to show our method's superiority. Extensive simulations are conducted, and a real data application on acute ischemic studies is provided in the end. In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health. Because of clinical interest, recurrent time-to-event data are captured during the follow-up. Meanwhile, the terminal event of death is always encountered, which should be taken into account for valid inference because of informative censoring. In some scenarios, a certain large portion of subjects may not have any recurrent events during the study period due to nonsusceptibility to events or censoring; thus, the zero-inflated nature of data should be considered in analysis. In this paper, a joint frailty model with recurrent events and death is proposed to adjust for zero inflation and matched designs. We incorporate 2 frailties to measure the dependency between subjects within a matched pair and that among recurrent events within each individual. By sharing the random effects, 2 event processes of recurrent events and death are dependent with each other. The maximum likelihood based approach is applied for parameter estimation, where the Monte Carlo expectation-maximization algorithm is adopted, and the corresponding R program is developed and available for public usage. In addition, alternative estimation methods such as Gaussian quadrature (PROC NLMIXED) and a Bayesian approach (PROC MCMC) are also considered for comparison to show our method's superiority. Extensive simulations are conducted, and a real data application on acute ischemic studies is provided in the end.In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health. Because of clinical interest, recurrent time-to-event data are captured during the follow-up. Meanwhile, the terminal event of death is always encountered, which should be taken into account for valid inference because of informative censoring. In some scenarios, a certain large portion of subjects may not have any recurrent events during the study period due to nonsusceptibility to events or censoring; thus, the zero-inflated nature of data should be considered in analysis. In this paper, a joint frailty model with recurrent events and death is proposed to adjust for zero inflation and matched designs. We incorporate 2 frailties to measure the dependency between subjects within a matched pair and that among recurrent events within each individual. By sharing the random effects, 2 event processes of recurrent events and death are dependent with each other. The maximum likelihood based approach is applied for parameter estimation, where the Monte Carlo expectation-maximization algorithm is adopted, and the corresponding R program is developed and available for public usage. In addition, alternative estimation methods such as Gaussian quadrature (PROC NLMIXED) and a Bayesian approach (PROC MCMC) are also considered for comparison to show our method's superiority. Extensive simulations are conducted, and a real data application on acute ischemic studies is provided in the end. |
| Author | Chinchilli, Vernon M. Xu, Cong Wang, Ming |
| Author_xml | – sequence: 1 givenname: Cong surname: Xu fullname: Xu, Cong organization: Pennsylvania State Hershey Medical Center – sequence: 2 givenname: Vernon M. surname: Chinchilli fullname: Chinchilli, Vernon M. organization: Pennsylvania State Hershey Medical Center – sequence: 3 givenname: Ming orcidid: 0000-0002-9977-7041 surname: Wang fullname: Wang, Ming email: mwang@phs.psu.edu organization: Pennsylvania State Hershey Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29682772$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcFu1DAQhi1URLctEk-ALHGhhyyOk6ydC1JVUSgq4tD2bDn2eNcrx17spNXy9DjdhUIF-GBL42_-mfnnCB344AGhVyWZl4TQd8n2c7bg9BmalaRlBaENP0AzQhkrFqxsDtFRSmtCyrKh7AU6pG2GGaMztPocrB9wHzQ465c4GBxBjTFCjsJdvhOWXmOJB4i99dLtoljq9ZgG0NiEiL9DDNh64-Rgg98n9HJQqwxoSHbpT9BzI12Cl_v3GN1efLg5_1Rcff14eX52Vai64rRoG8NZ26rpaA1dR2owHWlMZSrJFx1rGWesI4xrQoziFKThjSm50qSRvK2O0elOd_Qbub2XzolNtL2MW1ESMbklslticiuz73fsZux60CrPFeUjH6QVf_54uxLLcCcYrdu6Ylng7V4ghm8jpEH0NilwTnoIYxKUZKdrypoJffMEXYcxZj8nalE1POtNHb3-vaNfrfxc2GNFFUNKEcz_pps_QZUdHhaUZ7HubwnFLuHeOtj-U1hcX3554H8AHfHGAw |
| CitedBy_id | crossref_primary_10_3389_fepid_2022_924783 crossref_primary_10_1002_sim_9081 crossref_primary_10_29220_CSAM_2023_30_4_355 crossref_primary_10_1093_jrsssc_qlae003 |
| Cites_doi | 10.1111/j.1541-0420.2008.01126.x 10.1002/sim.2059 10.1093/biostatistics/5.1.129 10.1002/sim.7030 10.1093/biomet/asq066 10.1161/CIR.0000000000000366 10.1007/s12561-012-9061-x 10.1002/sim.2510 10.1186/1471-2369-11-22 10.1093/biomet/79.3.531 10.1007/s00362-016-0840-1 10.1111/biom.12490 10.1002/sim.5717 10.1191/1471082X05st090oa 10.1002/sim.3077 10.1161/01.STR.0000133129.58126.67 10.1002/sim.4098 10.1111/j.2517-6161.1982.tb01203.x 10.1161/01.STR.29.8.1602 10.1214/10-AOAS390 10.1002/1097-0258(20001230)19:24<3309::AID-SIM825>3.0.CO;2-9 10.1111/j.0006-341X.2004.00225.x 10.2307/2529885 10.1093/biomet/88.4.907 10.1111/j.0006-341X.2002.00510.x 10.1002/cjs.11289 10.1111/j.1747-4949.2008.00204.x 10.1080/10543406.2013.860159 10.1080/02664763.2013.834296 10.1080/01621459.1997.10473994 10.1111/j.0006-341X.2001.00096.x 10.2307/2532345 10.1177/0962280210395521 10.1111/j.0006-341X.2000.00227.x 10.1212/WNL.0b013e3181cff776 10.1111/biom.12376 10.1002/(SICI)1097-0258(19970430)16:8<911::AID-SIM544>3.0.CO;2-I 10.1080/01621459.1998.10474086 |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/sim.7682 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Public Health |
| EISSN | 1097-0258 |
| EndPage | 2786 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7249437 PMC7249437 29682772 10_1002_sim_7682 SIM7682 |
| Genre | article Journal Article Comparative Study Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: The National Center for Advancing Translational Sciences funderid: KL2 TR002015; UL1 TR002014 – fundername: The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. – fundername: The National Institute of Digestive, Diabetes and Kidney Diseases (NIDDK) funderid: U01 DK082183 – fundername: NIDDK NIH HHS grantid: U01 DK082183 – fundername: NCATS NIH HHS grantid: UL1 TR002014 – fundername: NCATS NIH HHS grantid: KL2 TR002015 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AMVHM CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM .Y3 31~ 53G AANHP ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO ADTOC AFFNX AGQPQ AIQQE ASPBG AVWKF AZFZN BDRZF DUUFO EX3 FEDTE HF~ HVGLF M67 RIWAO RJQFR SAMSI UNPAY WOW YHZ ZGI ZXP |
| ID | FETCH-LOGICAL-c4382-95f8799cccccddebb04efb05f3f3a86b797877b078d00fc82eaf85f18cd05a893 |
| IEDL.DBID | UNPAY |
| ISSN | 0277-6715 1097-0258 |
| IngestDate | Sun Oct 26 03:13:24 EDT 2025 Thu Aug 21 18:09:32 EDT 2025 Thu Oct 02 10:17:58 EDT 2025 Tue Oct 07 05:13:31 EDT 2025 Mon Jul 21 05:54:59 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Wed Oct 01 04:09:04 EDT 2025 Wed Jan 22 16:35:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | joint modeling recurrent events death Monte Carlo expectation-maximization algorithm frailty models zero inflation |
| Language | English |
| License | Copyright © 2018 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4382-95f8799cccccddebb04efb05f3f3a86b797877b078d00fc82eaf85f18cd05a893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0002-9977-7041 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7249437 |
| PMID | 29682772 |
| PQID | 2063584372 |
| PQPubID | 48361 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1002_sim_7682 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7249437 proquest_miscellaneous_2029642757 proquest_journals_2063584372 pubmed_primary_29682772 crossref_primary_10_1002_sim_7682 crossref_citationtrail_10_1002_sim_7682 wiley_primary_10_1002_sim_7682_SIM7682 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 15 August 2018 |
| PublicationDateYYYYMMDD | 2018-08-15 |
| PublicationDate_xml | – month: 08 year: 2018 text: 15 August 2018 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: New York |
| PublicationTitle | Statistics in medicine |
| PublicationTitleAlternate | Stat Med |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 11 2002; 58 1998; 29 1982; 38 2009; 65 2004; 60 2013; 22 2002; 12 2011; 30 2004; 5 2014; 24 2011; 98 2016; 72 1992; 79 2008; 3 2001; 88 2014; 41 2011; 5 2016; 35 2005; 24 2000; 19 1997; 92 1990 2013; 32 2000; 56 2004; 14 2006; 25 2008; 27 1982; 44 2004; 35 2005; 5 2016; 133 1997; 16 2016 1992; 48 2014 1998; 93 2001; 57 2012; 4 2010; 74 2016; 44 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 Ibrahim JG (e_1_2_8_27_1) 2004; 14 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Louis TA (e_1_2_8_34_1) 1982; 44 Ghosh D (e_1_2_8_6_1) 2002; 12 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 60 start-page: 747 issue: 3 year: 2004 end-page: 756 article-title: Shared frailty models for recurrent events and a terminal event publication-title: Biometrics – volume: 30 start-page: 211 issue: 3 year: 2011 end-page: 223 article-title: Mixture cure model with random effects for the analysis of a multi‐center tonsil cancer study publication-title: Stat Med – volume: 57 start-page: 96 issue: 1 year: 2001 end-page: 102 article-title: Multilevel models for survival analysis with random effects publication-title: Biometrics – volume: 133 start-page: 447 issue: 4 year: 2016 article-title: Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. publication-title: Circ – volume: 58 start-page: 510 issue: 3 year: 2002 end-page: 520 article-title: A frailty model for informative censoring publication-title: Biometrics – volume: 27 start-page: 2665 issue: 14 year: 2008 end-page: 2683 article-title: The use of gaussian quadrature for estimation in frailty proportional hazards models publication-title: Stat Med – volume: 41 start-page: 127 issue: 1 year: 2014 end-page: 141 article-title: Analyzing propensity matched zero‐inflated count outcomes in observational studies publication-title: J Appl Stat – volume: 25 start-page: 4036 issue: 23 year: 2006 end-page: 4052 article-title: Nested frailty models using maximum penalized likelihood estimation publication-title: Stat Med – volume: 93 start-page: 46 issue: 441 year: 1998 end-page: 53 article-title: Panel data with survival: hospitalization of hiv‐positive patients publication-title: J Am Stat Assoc – volume: 5 start-page: 449 issue: 1 year: 2011 article-title: A generalized linear mixed model for longitudinal binary data with a marginal logit link function publication-title: Ann Appl Stat – volume: 35 start-page: 1925 issue: 8 year: 2004 end-page: 1929 article-title: Underestimation of the early risk of recurrent stroke evidence of the need for a standard definition publication-title: Stroke – volume: 72 start-page: 204 issue: 1 year: 2016 end-page: 214 article-title: Joint frailty models for zero‐inflated recurrent events in the presence of a terminal event publication-title: Biometrics – volume: 3 start-page: 158 issue: 3 year: 2008 end-page: 164 article-title: Patterns of stroke recurrence according to subtype of first stroke event: the North East Melbourne Stroke Incidence Study (NEMESIS) publication-title: Int J Stroke – volume: 79 start-page: 531 issue: 3 year: 1992 end-page: 541 article-title: A mixture model combining logistic regression with proportional hazards regression publication-title: Biometrika – year: 2016 article-title: A marginalized multilevel model for bivariate longitudinal binary data publication-title: Stat Pap – volume: 88 start-page: 907 issue: 4 year: 2001 end-page: 919 article-title: On semi‐competing risks data publication-title: Biometrika – volume: 44 start-page: 226 issue: 2 year: 1982 end-page: 233 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J R Stat Soc Ser B Methodol – year: 1990 – volume: 98 start-page: 147 issue: 1 year: 2011 end-page: 162 article-title: Estimation of covariate effects in generalized linear mixed models with informative cluster sizes publication-title: Biometrika – volume: 56 start-page: 227 issue: 1 year: 2000 end-page: 236 article-title: Estimation in a Cox proportional hazards cure model publication-title: Biometrics – volume: 32 start-page: 2629 issue: 15 year: 2013 end-page: 2642 article-title: Bayesian analysis of recurrent event with dependent termination: an application to a heart transplant study publication-title: Stat Med – year: 2014 – volume: 65 start-page: 746 issue: 3 year: 2009 end-page: 752 article-title: Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events publication-title: Biometrics – volume: 22 start-page: 243 issue: 3 year: 2013 end-page: 260 article-title: Cure frailty models for survival data: application to recurrences for breast cancer and to hospital readmissions for colorectal cancer publication-title: Stat Methods Med Res – volume: 11 start-page: 1 issue: 1 year: 2010 article-title: The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS‐AKI) study: design and methods publication-title: BMC Nephrol – volume: 44 start-page: 361 issue: 3 year: 2016 end-page: 374 article-title: Flexible association modelling and prediction with semi‐competing risks data publication-title: Can J Stat – volume: 12 start-page: 663 year: 2002 end-page: 688 article-title: Marginal regression models for recurrent and terminal events publication-title: Stat Sin – volume: 74 start-page: 588 issue: 7 year: 2010 end-page: 593 article-title: Risk of recurrent stroke, myocardial infarction, or death in hospitalized stroke patients publication-title: Neurology – volume: 35 start-page: 4794 issue: 26 year: 2016 end-page: 4812 article-title: A bayesian multivariate joint frailty model for disease recurrences and survival publication-title: Stat Med – volume: 24 start-page: 429 issue: 2 year: 2014 end-page: 442 article-title: Multivariate recurrent events in the presence of multivariate informative censoring with applications to bleeding and transfusion events in myelodysplastic syndrome publication-title: J Biopharm Stat – volume: 29 start-page: 1602 issue: 8 year: 1998 end-page: 1604 article-title: Accuracy of ICD‐9‐CM coding for the identification of patients with acute ischemic stroke effect of modifier codes publication-title: Stroke – volume: 38 start-page: 1041 issue: 4 year: 1982 end-page: 1046 article-title: The use of mixture models for the analysis of survival data with long‐term survivors publication-title: Biometrics – volume: 5 start-page: 21 issue: 1 year: 2005 end-page: 37 article-title: Two‐component mixtures of generalized linear mixed effects models for cluster correlated data publication-title: Stat Model – volume: 4 start-page: 262 issue: 2 year: 2012 end-page: 281 article-title: Joint models of longitudinal data and recurrent events with informative terminal event publication-title: Stat Biosci – volume: 92 start-page: 426 issue: 438 year: 1997 end-page: 435 article-title: A nested frailty model for survival data, with an application to the study of child survival in northeast Brazil publication-title: J Am Stat Assoc – volume: 16 start-page: 911 issue: 8 year: 1997 end-page: 924 article-title: Marginal analysis of recurrent events and a terminating event publication-title: Stat Med – volume: 24 start-page: 1713 issue: 11 year: 2005 end-page: 1723 article-title: Generating survival times to simulate Cox proportional hazards models publication-title: Stat Med – volume: 14 start-page: 863 year: 2004 end-page: 883 article-title: Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials publication-title: Stat Sin – volume: 72 start-page: 907 issue: 3 year: 2016 end-page: 916 article-title: Joint model for left‐censored longitudinal data, recurrent events and terminal event: predictive abilities of tumor burden for cancer evolution with application to the FFCD 2000‐05 trial publication-title: Biometrics – volume: 48 start-page: 795 year: 1992 end-page: 806 article-title: Semiparametric estimation of random effects using the Cox model based on the EM algorithm publication-title: Biometrics – volume: 19 start-page: 3309 issue: 24 year: 2000 end-page: 3324 article-title: Proportional hazards model with random effects publication-title: Stat Med – volume: 5 start-page: 129 issue: 1 year: 2004 end-page: 143 article-title: Tests for multivariate recurrent events in the presence of a terminal event publication-title: Biostatistics – ident: e_1_2_8_10_1 doi: 10.1111/j.1541-0420.2008.01126.x – ident: e_1_2_8_42_1 doi: 10.1002/sim.2059 – ident: e_1_2_8_4_1 doi: 10.1093/biostatistics/5.1.129 – ident: e_1_2_8_29_1 doi: 10.1002/sim.7030 – ident: e_1_2_8_40_1 doi: 10.1093/biomet/asq066 – ident: e_1_2_8_14_1 – ident: e_1_2_8_11_1 doi: 10.1161/CIR.0000000000000366 – ident: e_1_2_8_30_1 doi: 10.1007/s12561-012-9061-x – ident: e_1_2_8_24_1 doi: 10.1002/sim.2510 – ident: e_1_2_8_43_1 – volume: 12 start-page: 663 year: 2002 ident: e_1_2_8_6_1 article-title: Marginal regression models for recurrent and terminal events publication-title: Stat Sin – ident: e_1_2_8_23_1 doi: 10.1186/1471-2369-11-22 – ident: e_1_2_8_18_1 doi: 10.1093/biomet/79.3.531 – ident: e_1_2_8_39_1 doi: 10.1007/s00362-016-0840-1 – ident: e_1_2_8_33_1 doi: 10.1111/biom.12490 – ident: e_1_2_8_28_1 doi: 10.1002/sim.5717 – ident: e_1_2_8_38_1 doi: 10.1191/1471082X05st090oa – ident: e_1_2_8_26_1 doi: 10.1002/sim.3077 – ident: e_1_2_8_36_1 doi: 10.1161/01.STR.0000133129.58126.67 – ident: e_1_2_8_19_1 doi: 10.1002/sim.4098 – volume: 44 start-page: 226 issue: 2 year: 1982 ident: e_1_2_8_34_1 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1982.tb01203.x – ident: e_1_2_8_35_1 doi: 10.1161/01.STR.29.8.1602 – ident: e_1_2_8_41_1 doi: 10.1214/10-AOAS390 – volume: 14 start-page: 863 year: 2004 ident: e_1_2_8_27_1 article-title: Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials publication-title: Stat Sin – ident: e_1_2_8_32_1 doi: 10.1002/1097-0258(20001230)19:24<3309::AID-SIM825>3.0.CO;2-9 – ident: e_1_2_8_7_1 doi: 10.1111/j.0006-341X.2004.00225.x – ident: e_1_2_8_17_1 doi: 10.2307/2529885 – ident: e_1_2_8_2_1 doi: 10.1093/biomet/88.4.907 – ident: e_1_2_8_9_1 doi: 10.1111/j.0006-341X.2002.00510.x – ident: e_1_2_8_8_1 doi: 10.1002/cjs.11289 – ident: e_1_2_8_12_1 doi: 10.1111/j.1747-4949.2008.00204.x – ident: e_1_2_8_37_1 doi: 10.1080/10543406.2013.860159 – ident: e_1_2_8_15_1 doi: 10.1080/02664763.2013.834296 – ident: e_1_2_8_22_1 doi: 10.1080/01621459.1997.10473994 – ident: e_1_2_8_25_1 doi: 10.1111/j.0006-341X.2001.00096.x – ident: e_1_2_8_31_1 doi: 10.2307/2532345 – ident: e_1_2_8_21_1 doi: 10.1177/0962280210395521 – ident: e_1_2_8_20_1 doi: 10.1111/j.0006-341X.2000.00227.x – ident: e_1_2_8_13_1 doi: 10.1212/WNL.0b013e3181cff776 – ident: e_1_2_8_16_1 doi: 10.1111/biom.12376 – ident: e_1_2_8_5_1 doi: 10.1002/(SICI)1097-0258(19970430)16:8<911::AID-SIM544>3.0.CO;2-I – ident: e_1_2_8_3_1 doi: 10.1080/01621459.1998.10474086 |
| SSID | ssj0011527 |
| Score | 2.2776423 |
| Snippet | In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health.... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2771 |
| SubjectTerms | Algorithms Bayesian analysis Biometry - methods Computer Simulation Death frailty models Humans joint modeling Likelihood Functions Longitudinal Studies Monte Carlo expectation‐maximization algorithm Monte Carlo Method Parameter estimation recurrent events Regression Analysis zero inflation |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxNBEB-kD1qQVuNHU6usIvp06X1t9vIoYqmF-GAtFHw49pNG411JcpT2r3dm9-4kbS1iXgLZ2Vxu85vd3-zM_RbgrcTYnyuTRyoreJRPtI6KTGPMk1iFsZjOnU_FTL-MD0_yo1N-2lZV0rMwQR-i33Ajz_DzNTm4VMv9P6Khy9mvEXJlmn6TbOyjqa-9clTSndZKGcqxSHinOxun-13H9ZXoBr28WSX5oKnO5eWFnM_Xmaxfig624Xt3E6EC5eeoWamRvrqm7_h_d_kItlqGyj4ESD2Ge7YawP1pm4MfwMOw08fCA0wD2CS-GuSen8DZUT2rVsyfr4OLIqsdW9COPmlAMS8WtWSyMkyytgpnHj5l0vxoaOeVIYlmV3ZRM4R-qNNrOyC1RoAZZnzNyVM4Ofj07eNh1B7mEGnKNUYT7goxQSzgC6dUpeLcOhVzl7lMFmMlMJwVQiFjMXHsdJFa6QrukkKbmEtkVc9go6oruwPMcGtclluO6MtxnBTOUopEfrgwVrh4CO-7P7bUrdI5HbgxL4NGc1riqJY0qkN43VueB3WPW2z2OmyUrX8vyxSZHVK3TNBX9M3omZRukZWtG7KhlHYquBjC8wCl_iLYUiA0sbdYA1lvQKrf6y3V7MyrfwsMmPHCQ3jTw_GO3_7Og-uvBuXx5ym97_6r4QvYRMpIouZRwvdgY7Vo7EukZSv1yjvgb5rBNyM priority: 102 providerName: Wiley-Blackwell |
| Title | Joint modeling of recurrent events and a terminal event adjusted for zero inflation and a matched design |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7682 https://www.ncbi.nlm.nih.gov/pubmed/29682772 https://www.proquest.com/docview/2063584372 https://www.proquest.com/docview/2029642757 https://pubmed.ncbi.nlm.nih.gov/PMC7249437 https://www.ncbi.nlm.nih.gov/pmc/articles/7249437 |
| UnpaywallVersion | submittedVersion |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1097-0258 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0011527 issn: 1097-0258 databaseCode: AMVHM dateStart: 20120220 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0258 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD7ULWhBvKxtXa1lFNGnZLNJZif7WMRSC1ukulCfwlzpajZZdjeI_fWemUkCa1U0L4HMyY3zTeY7c06-AXjNMfanQqWBSDIapBMpgyyRGPOMtMBYTKbGpWKmF-OzWXp-Ra92YNT-C-OK9qWYh2WxCMv5tautXC7ksK0TGzIMGNKE3YHdMUX63YPd2cXHky9uLoWxYMzcqgU2sRrgeJ61grNRPFzPFyGy63h7CLrFK2-XR96ryyX_8Z0XxTaFdWPQ6UO4bJ_el558C-uNCOXNL8KO__V6j-BBw0jJiW96DDu67MPdaZNz78N9P7NH_A9Lfdiz_NTLOz-B6_NqXm6IW08HB0FSGbKyM_hW84k4cag14aUinDRVN4U_Srj6WtuZVoKkmdzoVUUQ6r4urzkBqTQCShHlakz2YXb6_vO7s6BZvCGQNrcYTKjJ2AR9jxt-QoWIUm1ERE1iEp6NBcPwlTGBDEVFkZFZrLnJqBllUkWUI4s6gF5ZlfopEEW1MkmqKaItRU8K_CoJK-pDmdLMRAN42_ozl42yuV1go8i9JnOco-dz6_kBvOwsl17N4zc2Ry0k8qY_r_MYmRxStYTZS3TN2BNteoWXuqqtjU1hx4yyARx6BHU3wZYM0Ylnsy1sdQZW5Xu7BdHh1L4bQAzgVYfCvzz7GwfPPxrknz5M7f7Zv1ztOewhPbQC5sGIHkFvs6r1C6RgG3GMwcdlfNx0vZ_9RjPD |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD6UCrYgVqPV2KqjiD5turfJbOhTEUtamz5oC30QlrnSaNwtSRaxv95zdnZXYlXEvAQyZ7LZyTcz37nsNwCvJPr-XJk0UEnGg3SkdZAlGn2eyCr0xXTq6lTM5HQ4Pk-PL_jFGuy3z8J4fYgu4EYzo16vaYJTQHrvp2roYvp1gGQZ199b6RDdFGJEHzrtqKg9r5VylEMR8VZ5Noz32p6re9ENgnmzTnKjKq7k929yNlvlsvVmdLgFn9rb8DUoXwbVUg309S8Kj_95n_fgbkNS2YFH1X1Ys0UPbk-aNHwP7vhgH_PPMPVgkyirV3x-AJfH5bRYsvqIHdwXWenYnIL6JAPFar2oBZOFYZI1hTgz_ymT5nNFwVeGPJpd23nJEP2-VK_pgOwaMWaYqctOHsL54buzt-OgOc8h0JRuDEbcZWKEcMAXrqpKhal1KuQucYnMhkqgRyuEQtJiwtDpLLbSZdxFmTYhl0istmG9KAv7GJjh1rgktRwBmOI4KVyoFOn8cGGscGEf3rT_bK4bsXM6c2OWe5nmOMdRzWlU-_Cis7zyAh-_sdltwZE3U3yRx0jukL0lgr6ia8bJSRkXWdiyIhvKaseCiz488ljqLoItGWITe4sVlHUGJPy92lJML2sBcIE-M164Dy87PP7lt7-u0fVHg_zj0YTen_yr4XPYGJ9NTvKTo9P3O7CJDJI0zoOI78L6cl7Zp8jSlupZPRt_AOzbO0Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD6UCrUgXuItWnUU0adN9zaZDT6JNbTVFFELfRCWudK0cTckWcT-es_Z2V2JVRHzEsicyWYn35n5zpyz3wA8lxj7c2XSQCUZD9KR1kGWaIx5IqswFtOpq1Mxk6Ph_nF6eMJPNuBV-yyM14foNtzIM-r5mhzczo3b_akaupx-HSBZxvn3SspHGdXz7X3stKOi9rxWylEORcRb5dkw3m17rq9Flwjm5TrJq1Uxl9-_ydlsncvWi9H4Bnxpb8PXoJwPqpUa6ItfFB7_8z5vwvWGpLLXHlW3YMMWPdiaNGn4Hlzzm33MP8PUg22irF7x-TacHpbTYsXqI3ZwXWSlYwva1CcZKFbrRS2ZLAyTrCnEmflPmTRnFW2-MuTR7MIuSobo96V6TQdk14gxw0xddnIHjsdvP7_ZD5rzHAJN6cZgxF0mRggHfOGsqlSYWqdC7hKXyGyoBEa0QigkLSYMnc5iK13GXZRpE3KJxOoubBZlYe8DM9wal6SWIwBTHCeFE5UinR8ujBUu7MPL9p_NdSN2TmduzHIv0xznOKo5jWofnnaWcy_w8RubnRYceePiyzxGcofsLRH0FV0zOidlXGRhy4psKKsdCy76cM9jqbsItmSITewt1lDWGZDw93pLMT2tBcAFxsx44T486_D4l9_-okbXHw3yTwcTen_wr4ZPYOvD3jh_f3D07iFsI4EkifMg4juwuVpU9hGStJV6XDvjD0deOsg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD7ULWhBvKxVt1YZRfQp2WyS2ck-lmKphS2iLtSnMFe6mk2W3Q1if33PzCSBbVU0L4HMyY3zTeY7c06-AXjLMfanQqWBSDIapBMpgyyRGPOMtMBYTKbGpWKm5-PTWXp2QS92YNT-C-OK9qWYh2WxCMv5pautXC7ksK0TGzIMGNKE3YHdMUX63YPd2fmno29uLoWxYMzcqgU2sRrgeJ61grNRPFzPFyGy63h7CLrFK2-XR96ryyX_9ZMXxTaFdWPQyUP43D69Lz35EdYbEcqrG8KO__V6j-BBw0jJkW96DDu67MPdaZNz78N9P7NH_A9Lfdiz_NTLOz-By7NqXm6IW08HB0FSGbKyM_hW84k4cag14aUinDRVN4U_Srj6XtuZVoKkmVzpVUUQ6r4urzkBqTQCShHlakz2YXby4evxadAs3hBIm1sMJtRkbIK-xw0_oUJEqTYioiYxCc_GgmH4yphAhqKiyMgs1txk1IwyqSLKkUU9hV5Zlfo5EEW1MkmqKaItRU8K_CoJK-pDmdLMRAN43_ozl42yuV1go8i9JnOco-dz6_kBvO4sl17N4zc2hy0k8qY_r_MYmRxStYTZS3TN2BNteoWXuqqtjU1hx4yyATzzCOpugi0ZohPPZlvY6gysyvd2C6LDqX03gBjAmw6Ff3n2dw6efzTIv3yc2v3Bv1ztBewhPbQC5sGIHkJvs6r1S6RgG_Gq6XTXzJEy2g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+modeling+of+recurrent+events+and+a+terminal+event+adjusted+for+zero+inflation+and+a+matched+design&rft.jtitle=Statistics+in+medicine&rft.au=Xu%2C+Cong&rft.au=Chinchilli%2C+Vernon+M&rft.au=Wang%2C+Ming&rft.date=2018-08-15&rft.eissn=1097-0258&rft.volume=37&rft.issue=18&rft.spage=2771&rft_id=info:doi/10.1002%2Fsim.7682&rft_id=info%3Apmid%2F29682772&rft.externalDocID=29682772 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |