Joint modeling of recurrent events and a terminal event adjusted for zero inflation and a matched design

In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health. Because of clinical interest, recurrent time‐to‐event data are captured during the follow‐up. Meanwhile, the terminal event of death is alwa...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 37; no. 18; pp. 2771 - 2786
Main Authors Xu, Cong, Chinchilli, Vernon M., Wang, Ming
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 15.08.2018
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.7682

Cover

Abstract In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health. Because of clinical interest, recurrent time‐to‐event data are captured during the follow‐up. Meanwhile, the terminal event of death is always encountered, which should be taken into account for valid inference because of informative censoring. In some scenarios, a certain large portion of subjects may not have any recurrent events during the study period due to nonsusceptibility to events or censoring; thus, the zero‐inflated nature of data should be considered in analysis. In this paper, a joint frailty model with recurrent events and death is proposed to adjust for zero inflation and matched designs. We incorporate 2 frailties to measure the dependency between subjects within a matched pair and that among recurrent events within each individual. By sharing the random effects, 2 event processes of recurrent events and death are dependent with each other. The maximum likelihood based approach is applied for parameter estimation, where the Monte Carlo expectation‐maximization algorithm is adopted, and the corresponding R program is developed and available for public usage. In addition, alternative estimation methods such as Gaussian quadrature (PROC NLMIXED) and a Bayesian approach (PROC MCMC) are also considered for comparison to show our method's superiority. Extensive simulations are conducted, and a real data application on acute ischemic studies is provided in the end.
AbstractList In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health. Because of clinical interest, recurrent time‐to‐event data are captured during the follow‐up. Meanwhile, the terminal event of death is always encountered, which should be taken into account for valid inference because of informative censoring. In some scenarios, a certain large portion of subjects may not have any recurrent events during the study period due to nonsusceptibility to events or censoring; thus, the zero‐inflated nature of data should be considered in analysis. In this paper, a joint frailty model with recurrent events and death is proposed to adjust for zero inflation and matched designs. We incorporate 2 frailties to measure the dependency between subjects within a matched pair and that among recurrent events within each individual. By sharing the random effects, 2 event processes of recurrent events and death are dependent with each other. The maximum likelihood based approach is applied for parameter estimation, where the Monte Carlo expectation‐maximization algorithm is adopted, and the corresponding R program is developed and available for public usage. In addition, alternative estimation methods such as Gaussian quadrature (PROC NLMIXED) and a Bayesian approach (PROC MCMC) are also considered for comparison to show our method's superiority. Extensive simulations are conducted, and a real data application on acute ischemic studies is provided in the end.
In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health. Because of clinical interest, recurrent time-to-event data are captured during the follow-up. Meanwhile, the terminal event of death is always encountered, which should be taken into account for valid inference because of informative censoring. In some scenarios, a certain large portion of subjects may not have any recurrent events during the study period due to nonsusceptibility to events or censoring; thus, the zero-inflated nature of data should be considered in analysis. In this paper, a joint frailty model with recurrent events and death is proposed to adjust for zero inflation and matched designs. We incorporate 2 frailties to measure the dependency between subjects within a matched pair and that among recurrent events within each individual. By sharing the random effects, 2 event processes of recurrent events and death are dependent with each other. The maximum likelihood based approach is applied for parameter estimation, where the Monte Carlo expectation-maximization algorithm is adopted, and the corresponding R program is developed and available for public usage. In addition, alternative estimation methods such as Gaussian quadrature (PROC NLMIXED) and a Bayesian approach (PROC MCMC) are also considered for comparison to show our method's superiority. Extensive simulations are conducted, and a real data application on acute ischemic studies is provided in the end.In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health. Because of clinical interest, recurrent time-to-event data are captured during the follow-up. Meanwhile, the terminal event of death is always encountered, which should be taken into account for valid inference because of informative censoring. In some scenarios, a certain large portion of subjects may not have any recurrent events during the study period due to nonsusceptibility to events or censoring; thus, the zero-inflated nature of data should be considered in analysis. In this paper, a joint frailty model with recurrent events and death is proposed to adjust for zero inflation and matched designs. We incorporate 2 frailties to measure the dependency between subjects within a matched pair and that among recurrent events within each individual. By sharing the random effects, 2 event processes of recurrent events and death are dependent with each other. The maximum likelihood based approach is applied for parameter estimation, where the Monte Carlo expectation-maximization algorithm is adopted, and the corresponding R program is developed and available for public usage. In addition, alternative estimation methods such as Gaussian quadrature (PROC NLMIXED) and a Bayesian approach (PROC MCMC) are also considered for comparison to show our method's superiority. Extensive simulations are conducted, and a real data application on acute ischemic studies is provided in the end.
Author Chinchilli, Vernon M.
Xu, Cong
Wang, Ming
Author_xml – sequence: 1
  givenname: Cong
  surname: Xu
  fullname: Xu, Cong
  organization: Pennsylvania State Hershey Medical Center
– sequence: 2
  givenname: Vernon M.
  surname: Chinchilli
  fullname: Chinchilli, Vernon M.
  organization: Pennsylvania State Hershey Medical Center
– sequence: 3
  givenname: Ming
  orcidid: 0000-0002-9977-7041
  surname: Wang
  fullname: Wang, Ming
  email: mwang@phs.psu.edu
  organization: Pennsylvania State Hershey Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29682772$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAQhi1URLctEk-ALHGhhyyOk6ydC1JVUSgq4tD2bDn2eNcrx17spNXy9DjdhUIF-GBL42_-mfnnCB344AGhVyWZl4TQd8n2c7bg9BmalaRlBaENP0AzQhkrFqxsDtFRSmtCyrKh7AU6pG2GGaMztPocrB9wHzQ465c4GBxBjTFCjsJdvhOWXmOJB4i99dLtoljq9ZgG0NiEiL9DDNh64-Rgg98n9HJQqwxoSHbpT9BzI12Cl_v3GN1efLg5_1Rcff14eX52Vai64rRoG8NZ26rpaA1dR2owHWlMZSrJFx1rGWesI4xrQoziFKThjSm50qSRvK2O0elOd_Qbub2XzolNtL2MW1ESMbklslticiuz73fsZux60CrPFeUjH6QVf_54uxLLcCcYrdu6Ylng7V4ghm8jpEH0NilwTnoIYxKUZKdrypoJffMEXYcxZj8nalE1POtNHb3-vaNfrfxc2GNFFUNKEcz_pps_QZUdHhaUZ7HubwnFLuHeOtj-U1hcX3554H8AHfHGAw
CitedBy_id crossref_primary_10_3389_fepid_2022_924783
crossref_primary_10_1002_sim_9081
crossref_primary_10_29220_CSAM_2023_30_4_355
crossref_primary_10_1093_jrsssc_qlae003
Cites_doi 10.1111/j.1541-0420.2008.01126.x
10.1002/sim.2059
10.1093/biostatistics/5.1.129
10.1002/sim.7030
10.1093/biomet/asq066
10.1161/CIR.0000000000000366
10.1007/s12561-012-9061-x
10.1002/sim.2510
10.1186/1471-2369-11-22
10.1093/biomet/79.3.531
10.1007/s00362-016-0840-1
10.1111/biom.12490
10.1002/sim.5717
10.1191/1471082X05st090oa
10.1002/sim.3077
10.1161/01.STR.0000133129.58126.67
10.1002/sim.4098
10.1111/j.2517-6161.1982.tb01203.x
10.1161/01.STR.29.8.1602
10.1214/10-AOAS390
10.1002/1097-0258(20001230)19:24<3309::AID-SIM825>3.0.CO;2-9
10.1111/j.0006-341X.2004.00225.x
10.2307/2529885
10.1093/biomet/88.4.907
10.1111/j.0006-341X.2002.00510.x
10.1002/cjs.11289
10.1111/j.1747-4949.2008.00204.x
10.1080/10543406.2013.860159
10.1080/02664763.2013.834296
10.1080/01621459.1997.10473994
10.1111/j.0006-341X.2001.00096.x
10.2307/2532345
10.1177/0962280210395521
10.1111/j.0006-341X.2000.00227.x
10.1212/WNL.0b013e3181cff776
10.1111/biom.12376
10.1002/(SICI)1097-0258(19970430)16:8<911::AID-SIM544>3.0.CO;2-I
10.1080/01621459.1998.10474086
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/sim.7682
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2786
ExternalDocumentID oai:pubmedcentral.nih.gov:7249437
PMC7249437
29682772
10_1002_sim_7682
SIM7682
Genre article
Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: The National Center for Advancing Translational Sciences
  funderid: KL2 TR002015; UL1 TR002014
– fundername: The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
– fundername: The National Institute of Digestive, Diabetes and Kidney Diseases (NIDDK)
  funderid: U01 DK082183
– fundername: NIDDK NIH HHS
  grantid: U01 DK082183
– fundername: NCATS NIH HHS
  grantid: UL1 TR002014
– fundername: NCATS NIH HHS
  grantid: KL2 TR002015
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
.Y3
31~
53G
AANHP
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
ADTOC
AFFNX
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
BDRZF
DUUFO
EX3
FEDTE
HF~
HVGLF
M67
RIWAO
RJQFR
SAMSI
UNPAY
WOW
YHZ
ZGI
ZXP
ID FETCH-LOGICAL-c4382-95f8799cccccddebb04efb05f3f3a86b797877b078d00fc82eaf85f18cd05a893
IEDL.DBID UNPAY
ISSN 0277-6715
1097-0258
IngestDate Sun Oct 26 03:13:24 EDT 2025
Thu Aug 21 18:09:32 EDT 2025
Thu Oct 02 10:17:58 EDT 2025
Tue Oct 07 05:13:31 EDT 2025
Mon Jul 21 05:54:59 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Wed Oct 01 04:09:04 EDT 2025
Wed Jan 22 16:35:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords joint modeling
recurrent events
death
Monte Carlo expectation-maximization algorithm
frailty models
zero inflation
Language English
License Copyright © 2018 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4382-95f8799cccccddebb04efb05f3f3a86b797877b078d00fc82eaf85f18cd05a893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-9977-7041
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7249437
PMID 29682772
PQID 2063584372
PQPubID 48361
PageCount 16
ParticipantIDs unpaywall_primary_10_1002_sim_7682
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7249437
proquest_miscellaneous_2029642757
proquest_journals_2063584372
pubmed_primary_29682772
crossref_primary_10_1002_sim_7682
crossref_citationtrail_10_1002_sim_7682
wiley_primary_10_1002_sim_7682_SIM7682
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 August 2018
PublicationDateYYYYMMDD 2018-08-15
PublicationDate_xml – month: 08
  year: 2018
  text: 15 August 2018
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2002; 58
1998; 29
1982; 38
2009; 65
2004; 60
2013; 22
2002; 12
2011; 30
2004; 5
2014; 24
2011; 98
2016; 72
1992; 79
2008; 3
2001; 88
2014; 41
2011; 5
2016; 35
2005; 24
2000; 19
1997; 92
1990
2013; 32
2000; 56
2004; 14
2006; 25
2008; 27
1982; 44
2004; 35
2005; 5
2016; 133
1997; 16
2016
1992; 48
2014
1998; 93
2001; 57
2012; 4
2010; 74
2016; 44
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
Ibrahim JG (e_1_2_8_27_1) 2004; 14
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Louis TA (e_1_2_8_34_1) 1982; 44
Ghosh D (e_1_2_8_6_1) 2002; 12
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 60
  start-page: 747
  issue: 3
  year: 2004
  end-page: 756
  article-title: Shared frailty models for recurrent events and a terminal event
  publication-title: Biometrics
– volume: 30
  start-page: 211
  issue: 3
  year: 2011
  end-page: 223
  article-title: Mixture cure model with random effects for the analysis of a multi‐center tonsil cancer study
  publication-title: Stat Med
– volume: 57
  start-page: 96
  issue: 1
  year: 2001
  end-page: 102
  article-title: Multilevel models for survival analysis with random effects
  publication-title: Biometrics
– volume: 133
  start-page: 447
  issue: 4
  year: 2016
  article-title: Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association.
  publication-title: Circ
– volume: 58
  start-page: 510
  issue: 3
  year: 2002
  end-page: 520
  article-title: A frailty model for informative censoring
  publication-title: Biometrics
– volume: 27
  start-page: 2665
  issue: 14
  year: 2008
  end-page: 2683
  article-title: The use of gaussian quadrature for estimation in frailty proportional hazards models
  publication-title: Stat Med
– volume: 41
  start-page: 127
  issue: 1
  year: 2014
  end-page: 141
  article-title: Analyzing propensity matched zero‐inflated count outcomes in observational studies
  publication-title: J Appl Stat
– volume: 25
  start-page: 4036
  issue: 23
  year: 2006
  end-page: 4052
  article-title: Nested frailty models using maximum penalized likelihood estimation
  publication-title: Stat Med
– volume: 93
  start-page: 46
  issue: 441
  year: 1998
  end-page: 53
  article-title: Panel data with survival: hospitalization of hiv‐positive patients
  publication-title: J Am Stat Assoc
– volume: 5
  start-page: 449
  issue: 1
  year: 2011
  article-title: A generalized linear mixed model for longitudinal binary data with a marginal logit link function
  publication-title: Ann Appl Stat
– volume: 35
  start-page: 1925
  issue: 8
  year: 2004
  end-page: 1929
  article-title: Underestimation of the early risk of recurrent stroke evidence of the need for a standard definition
  publication-title: Stroke
– volume: 72
  start-page: 204
  issue: 1
  year: 2016
  end-page: 214
  article-title: Joint frailty models for zero‐inflated recurrent events in the presence of a terminal event
  publication-title: Biometrics
– volume: 3
  start-page: 158
  issue: 3
  year: 2008
  end-page: 164
  article-title: Patterns of stroke recurrence according to subtype of first stroke event: the North East Melbourne Stroke Incidence Study (NEMESIS)
  publication-title: Int J Stroke
– volume: 79
  start-page: 531
  issue: 3
  year: 1992
  end-page: 541
  article-title: A mixture model combining logistic regression with proportional hazards regression
  publication-title: Biometrika
– year: 2016
  article-title: A marginalized multilevel model for bivariate longitudinal binary data
  publication-title: Stat Pap
– volume: 88
  start-page: 907
  issue: 4
  year: 2001
  end-page: 919
  article-title: On semi‐competing risks data
  publication-title: Biometrika
– volume: 44
  start-page: 226
  issue: 2
  year: 1982
  end-page: 233
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J R Stat Soc Ser B Methodol
– year: 1990
– volume: 98
  start-page: 147
  issue: 1
  year: 2011
  end-page: 162
  article-title: Estimation of covariate effects in generalized linear mixed models with informative cluster sizes
  publication-title: Biometrika
– volume: 56
  start-page: 227
  issue: 1
  year: 2000
  end-page: 236
  article-title: Estimation in a Cox proportional hazards cure model
  publication-title: Biometrics
– volume: 32
  start-page: 2629
  issue: 15
  year: 2013
  end-page: 2642
  article-title: Bayesian analysis of recurrent event with dependent termination: an application to a heart transplant study
  publication-title: Stat Med
– year: 2014
– volume: 65
  start-page: 746
  issue: 3
  year: 2009
  end-page: 752
  article-title: Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events
  publication-title: Biometrics
– volume: 22
  start-page: 243
  issue: 3
  year: 2013
  end-page: 260
  article-title: Cure frailty models for survival data: application to recurrences for breast cancer and to hospital readmissions for colorectal cancer
  publication-title: Stat Methods Med Res
– volume: 11
  start-page: 1
  issue: 1
  year: 2010
  article-title: The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS‐AKI) study: design and methods
  publication-title: BMC Nephrol
– volume: 44
  start-page: 361
  issue: 3
  year: 2016
  end-page: 374
  article-title: Flexible association modelling and prediction with semi‐competing risks data
  publication-title: Can J Stat
– volume: 12
  start-page: 663
  year: 2002
  end-page: 688
  article-title: Marginal regression models for recurrent and terminal events
  publication-title: Stat Sin
– volume: 74
  start-page: 588
  issue: 7
  year: 2010
  end-page: 593
  article-title: Risk of recurrent stroke, myocardial infarction, or death in hospitalized stroke patients
  publication-title: Neurology
– volume: 35
  start-page: 4794
  issue: 26
  year: 2016
  end-page: 4812
  article-title: A bayesian multivariate joint frailty model for disease recurrences and survival
  publication-title: Stat Med
– volume: 24
  start-page: 429
  issue: 2
  year: 2014
  end-page: 442
  article-title: Multivariate recurrent events in the presence of multivariate informative censoring with applications to bleeding and transfusion events in myelodysplastic syndrome
  publication-title: J Biopharm Stat
– volume: 29
  start-page: 1602
  issue: 8
  year: 1998
  end-page: 1604
  article-title: Accuracy of ICD‐9‐CM coding for the identification of patients with acute ischemic stroke effect of modifier codes
  publication-title: Stroke
– volume: 38
  start-page: 1041
  issue: 4
  year: 1982
  end-page: 1046
  article-title: The use of mixture models for the analysis of survival data with long‐term survivors
  publication-title: Biometrics
– volume: 5
  start-page: 21
  issue: 1
  year: 2005
  end-page: 37
  article-title: Two‐component mixtures of generalized linear mixed effects models for cluster correlated data
  publication-title: Stat Model
– volume: 4
  start-page: 262
  issue: 2
  year: 2012
  end-page: 281
  article-title: Joint models of longitudinal data and recurrent events with informative terminal event
  publication-title: Stat Biosci
– volume: 92
  start-page: 426
  issue: 438
  year: 1997
  end-page: 435
  article-title: A nested frailty model for survival data, with an application to the study of child survival in northeast Brazil
  publication-title: J Am Stat Assoc
– volume: 16
  start-page: 911
  issue: 8
  year: 1997
  end-page: 924
  article-title: Marginal analysis of recurrent events and a terminating event
  publication-title: Stat Med
– volume: 24
  start-page: 1713
  issue: 11
  year: 2005
  end-page: 1723
  article-title: Generating survival times to simulate Cox proportional hazards models
  publication-title: Stat Med
– volume: 14
  start-page: 863
  year: 2004
  end-page: 883
  article-title: Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials
  publication-title: Stat Sin
– volume: 72
  start-page: 907
  issue: 3
  year: 2016
  end-page: 916
  article-title: Joint model for left‐censored longitudinal data, recurrent events and terminal event: predictive abilities of tumor burden for cancer evolution with application to the FFCD 2000‐05 trial
  publication-title: Biometrics
– volume: 48
  start-page: 795
  year: 1992
  end-page: 806
  article-title: Semiparametric estimation of random effects using the Cox model based on the EM algorithm
  publication-title: Biometrics
– volume: 19
  start-page: 3309
  issue: 24
  year: 2000
  end-page: 3324
  article-title: Proportional hazards model with random effects
  publication-title: Stat Med
– volume: 5
  start-page: 129
  issue: 1
  year: 2004
  end-page: 143
  article-title: Tests for multivariate recurrent events in the presence of a terminal event
  publication-title: Biostatistics
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1541-0420.2008.01126.x
– ident: e_1_2_8_42_1
  doi: 10.1002/sim.2059
– ident: e_1_2_8_4_1
  doi: 10.1093/biostatistics/5.1.129
– ident: e_1_2_8_29_1
  doi: 10.1002/sim.7030
– ident: e_1_2_8_40_1
  doi: 10.1093/biomet/asq066
– ident: e_1_2_8_14_1
– ident: e_1_2_8_11_1
  doi: 10.1161/CIR.0000000000000366
– ident: e_1_2_8_30_1
  doi: 10.1007/s12561-012-9061-x
– ident: e_1_2_8_24_1
  doi: 10.1002/sim.2510
– ident: e_1_2_8_43_1
– volume: 12
  start-page: 663
  year: 2002
  ident: e_1_2_8_6_1
  article-title: Marginal regression models for recurrent and terminal events
  publication-title: Stat Sin
– ident: e_1_2_8_23_1
  doi: 10.1186/1471-2369-11-22
– ident: e_1_2_8_18_1
  doi: 10.1093/biomet/79.3.531
– ident: e_1_2_8_39_1
  doi: 10.1007/s00362-016-0840-1
– ident: e_1_2_8_33_1
  doi: 10.1111/biom.12490
– ident: e_1_2_8_28_1
  doi: 10.1002/sim.5717
– ident: e_1_2_8_38_1
  doi: 10.1191/1471082X05st090oa
– ident: e_1_2_8_26_1
  doi: 10.1002/sim.3077
– ident: e_1_2_8_36_1
  doi: 10.1161/01.STR.0000133129.58126.67
– ident: e_1_2_8_19_1
  doi: 10.1002/sim.4098
– volume: 44
  start-page: 226
  issue: 2
  year: 1982
  ident: e_1_2_8_34_1
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– ident: e_1_2_8_35_1
  doi: 10.1161/01.STR.29.8.1602
– ident: e_1_2_8_41_1
  doi: 10.1214/10-AOAS390
– volume: 14
  start-page: 863
  year: 2004
  ident: e_1_2_8_27_1
  article-title: Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials
  publication-title: Stat Sin
– ident: e_1_2_8_32_1
  doi: 10.1002/1097-0258(20001230)19:24<3309::AID-SIM825>3.0.CO;2-9
– ident: e_1_2_8_7_1
  doi: 10.1111/j.0006-341X.2004.00225.x
– ident: e_1_2_8_17_1
  doi: 10.2307/2529885
– ident: e_1_2_8_2_1
  doi: 10.1093/biomet/88.4.907
– ident: e_1_2_8_9_1
  doi: 10.1111/j.0006-341X.2002.00510.x
– ident: e_1_2_8_8_1
  doi: 10.1002/cjs.11289
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1747-4949.2008.00204.x
– ident: e_1_2_8_37_1
  doi: 10.1080/10543406.2013.860159
– ident: e_1_2_8_15_1
  doi: 10.1080/02664763.2013.834296
– ident: e_1_2_8_22_1
  doi: 10.1080/01621459.1997.10473994
– ident: e_1_2_8_25_1
  doi: 10.1111/j.0006-341X.2001.00096.x
– ident: e_1_2_8_31_1
  doi: 10.2307/2532345
– ident: e_1_2_8_21_1
  doi: 10.1177/0962280210395521
– ident: e_1_2_8_20_1
  doi: 10.1111/j.0006-341X.2000.00227.x
– ident: e_1_2_8_13_1
  doi: 10.1212/WNL.0b013e3181cff776
– ident: e_1_2_8_16_1
  doi: 10.1111/biom.12376
– ident: e_1_2_8_5_1
  doi: 10.1002/(SICI)1097-0258(19970430)16:8<911::AID-SIM544>3.0.CO;2-I
– ident: e_1_2_8_3_1
  doi: 10.1080/01621459.1998.10474086
SSID ssj0011527
Score 2.2776423
Snippet In longitudinal studies, matched designs are often employed to control the potential confounding effects in the field of biomedical research and public health....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2771
SubjectTerms Algorithms
Bayesian analysis
Biometry - methods
Computer Simulation
Death
frailty models
Humans
joint modeling
Likelihood Functions
Longitudinal Studies
Monte Carlo expectation‐maximization algorithm
Monte Carlo Method
Parameter estimation
recurrent events
Regression Analysis
zero inflation
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxNBEB-kD1qQVuNHU6usIvp06X1t9vIoYqmF-GAtFHw49pNG411JcpT2r3dm9-4kbS1iXgLZ2Vxu85vd3-zM_RbgrcTYnyuTRyoreJRPtI6KTGPMk1iFsZjOnU_FTL-MD0_yo1N-2lZV0rMwQR-i33Ajz_DzNTm4VMv9P6Khy9mvEXJlmn6TbOyjqa-9clTSndZKGcqxSHinOxun-13H9ZXoBr28WSX5oKnO5eWFnM_Xmaxfig624Xt3E6EC5eeoWamRvrqm7_h_d_kItlqGyj4ESD2Ge7YawP1pm4MfwMOw08fCA0wD2CS-GuSen8DZUT2rVsyfr4OLIqsdW9COPmlAMS8WtWSyMkyytgpnHj5l0vxoaOeVIYlmV3ZRM4R-qNNrOyC1RoAZZnzNyVM4Ofj07eNh1B7mEGnKNUYT7goxQSzgC6dUpeLcOhVzl7lMFmMlMJwVQiFjMXHsdJFa6QrukkKbmEtkVc9go6oruwPMcGtclluO6MtxnBTOUopEfrgwVrh4CO-7P7bUrdI5HbgxL4NGc1riqJY0qkN43VueB3WPW2z2OmyUrX8vyxSZHVK3TNBX9M3omZRukZWtG7KhlHYquBjC8wCl_iLYUiA0sbdYA1lvQKrf6y3V7MyrfwsMmPHCQ3jTw_GO3_7Og-uvBuXx5ym97_6r4QvYRMpIouZRwvdgY7Vo7EukZSv1yjvgb5rBNyM
  priority: 102
  providerName: Wiley-Blackwell
Title Joint modeling of recurrent events and a terminal event adjusted for zero inflation and a matched design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7682
https://www.ncbi.nlm.nih.gov/pubmed/29682772
https://www.proquest.com/docview/2063584372
https://www.proquest.com/docview/2029642757
https://pubmed.ncbi.nlm.nih.gov/PMC7249437
https://www.ncbi.nlm.nih.gov/pmc/articles/7249437
UnpaywallVersion submittedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 1097-0258
  databaseCode: AMVHM
  dateStart: 20120220
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0258
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD7ULWhBvKxtXa1lFNGnZLNJZif7WMRSC1ukulCfwlzpajZZdjeI_fWemUkCa1U0L4HMyY3zTeY7c06-AXjNMfanQqWBSDIapBMpgyyRGPOMtMBYTKbGpWKmF-OzWXp-Ra92YNT-C-OK9qWYh2WxCMv5tautXC7ksK0TGzIMGNKE3YHdMUX63YPd2cXHky9uLoWxYMzcqgU2sRrgeJ61grNRPFzPFyGy63h7CLrFK2-XR96ryyX_8Z0XxTaFdWPQ6UO4bJ_el558C-uNCOXNL8KO__V6j-BBw0jJiW96DDu67MPdaZNz78N9P7NH_A9Lfdiz_NTLOz-B6_NqXm6IW08HB0FSGbKyM_hW84k4cag14aUinDRVN4U_Srj6WtuZVoKkmdzoVUUQ6r4urzkBqTQCShHlakz2YXb6_vO7s6BZvCGQNrcYTKjJ2AR9jxt-QoWIUm1ERE1iEp6NBcPwlTGBDEVFkZFZrLnJqBllUkWUI4s6gF5ZlfopEEW1MkmqKaItRU8K_CoJK-pDmdLMRAN42_ozl42yuV1go8i9JnOco-dz6_kBvOwsl17N4zc2Ry0k8qY_r_MYmRxStYTZS3TN2BNteoWXuqqtjU1hx4yyARx6BHU3wZYM0Ylnsy1sdQZW5Xu7BdHh1L4bQAzgVYfCvzz7GwfPPxrknz5M7f7Zv1ztOewhPbQC5sGIHkFvs6r1C6RgG3GMwcdlfNx0vZ_9RjPD
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD6UCrYgVqPV2KqjiD5turfJbOhTEUtamz5oC30QlrnSaNwtSRaxv95zdnZXYlXEvAQyZ7LZyTcz37nsNwCvJPr-XJk0UEnGg3SkdZAlGn2eyCr0xXTq6lTM5HQ4Pk-PL_jFGuy3z8J4fYgu4EYzo16vaYJTQHrvp2roYvp1gGQZ199b6RDdFGJEHzrtqKg9r5VylEMR8VZ5Noz32p6re9ENgnmzTnKjKq7k929yNlvlsvVmdLgFn9rb8DUoXwbVUg309S8Kj_95n_fgbkNS2YFH1X1Ys0UPbk-aNHwP7vhgH_PPMPVgkyirV3x-AJfH5bRYsvqIHdwXWenYnIL6JAPFar2oBZOFYZI1hTgz_ymT5nNFwVeGPJpd23nJEP2-VK_pgOwaMWaYqctOHsL54buzt-OgOc8h0JRuDEbcZWKEcMAXrqpKhal1KuQucYnMhkqgRyuEQtJiwtDpLLbSZdxFmTYhl0istmG9KAv7GJjh1rgktRwBmOI4KVyoFOn8cGGscGEf3rT_bK4bsXM6c2OWe5nmOMdRzWlU-_Cis7zyAh-_sdltwZE3U3yRx0jukL0lgr6ia8bJSRkXWdiyIhvKaseCiz488ljqLoItGWITe4sVlHUGJPy92lJML2sBcIE-M164Dy87PP7lt7-u0fVHg_zj0YTen_yr4XPYGJ9NTvKTo9P3O7CJDJI0zoOI78L6cl7Zp8jSlupZPRt_AOzbO0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD6UCrUgXuItWnUU0adN9zaZDT6JNbTVFFELfRCWudK0cTckWcT-es_Z2V2JVRHzEsicyWYn35n5zpyz3wA8lxj7c2XSQCUZD9KR1kGWaIx5IqswFtOpq1Mxk6Ph_nF6eMJPNuBV-yyM14foNtzIM-r5mhzczo3b_akaupx-HSBZxvn3SspHGdXz7X3stKOi9rxWylEORcRb5dkw3m17rq9Flwjm5TrJq1Uxl9-_ydlsncvWi9H4Bnxpb8PXoJwPqpUa6ItfFB7_8z5vwvWGpLLXHlW3YMMWPdiaNGn4Hlzzm33MP8PUg22irF7x-TacHpbTYsXqI3ZwXWSlYwva1CcZKFbrRS2ZLAyTrCnEmflPmTRnFW2-MuTR7MIuSobo96V6TQdk14gxw0xddnIHjsdvP7_ZD5rzHAJN6cZgxF0mRggHfOGsqlSYWqdC7hKXyGyoBEa0QigkLSYMnc5iK13GXZRpE3KJxOoubBZlYe8DM9wal6SWIwBTHCeFE5UinR8ujBUu7MPL9p_NdSN2TmduzHIv0xznOKo5jWofnnaWcy_w8RubnRYceePiyzxGcofsLRH0FV0zOidlXGRhy4psKKsdCy76cM9jqbsItmSITewt1lDWGZDw93pLMT2tBcAFxsx44T486_D4l9_-okbXHw3yTwcTen_wr4ZPYOvD3jh_f3D07iFsI4EkifMg4juwuVpU9hGStJV6XDvjD0deOsg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD7ULWhBvKxVt1YZRfQp2WyS2ck-lmKphS2iLtSnMFe6mk2W3Q1if33PzCSBbVU0L4HMyY3zTeY7c06-AXjLMfanQqWBSDIapBMpgyyRGPOMtMBYTKbGpWKm5-PTWXp2QS92YNT-C-OK9qWYh2WxCMv5pautXC7ksK0TGzIMGNKE3YHdMUX63YPd2fmno29uLoWxYMzcqgU2sRrgeJ61grNRPFzPFyGy63h7CLrFK2-XR96ryyX_9ZMXxTaFdWPQyUP43D69Lz35EdYbEcqrG8KO__V6j-BBw0jJkW96DDu67MPdaZNz78N9P7NH_A9Lfdiz_NTLOz-By7NqXm6IW08HB0FSGbKyM_hW84k4cag14aUinDRVN4U_Srj6XtuZVoKkmVzpVUUQ6r4urzkBqTQCShHlakz2YXby4evxadAs3hBIm1sMJtRkbIK-xw0_oUJEqTYioiYxCc_GgmH4yphAhqKiyMgs1txk1IwyqSLKkUU9hV5Zlfo5EEW1MkmqKaItRU8K_CoJK-pDmdLMRAN43_ozl42yuV1go8i9JnOco-dz6_kBvO4sl17N4zc2hy0k8qY_r_MYmRxStYTZS3TN2BNteoWXuqqtjU1hx4yyATzzCOpugi0ZohPPZlvY6gysyvd2C6LDqX03gBjAmw6Ff3n2dw6efzTIv3yc2v3Bv1ztBewhPbQC5sGIHkJvs6r1S6RgG_Gq6XTXzJEy2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+modeling+of+recurrent+events+and+a+terminal+event+adjusted+for+zero+inflation+and+a+matched+design&rft.jtitle=Statistics+in+medicine&rft.au=Xu%2C+Cong&rft.au=Chinchilli%2C+Vernon+M&rft.au=Wang%2C+Ming&rft.date=2018-08-15&rft.eissn=1097-0258&rft.volume=37&rft.issue=18&rft.spage=2771&rft_id=info:doi/10.1002%2Fsim.7682&rft_id=info%3Apmid%2F29682772&rft.externalDocID=29682772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon