Identifying and classifying opioid‐related overdoses: A validation study

Purpose The study aims to develop and validate algorithms to identify and classify opioid overdoses using claims and other coded data, and clinical text extracted from electronic health records using natural language processing (NLP). Methods Primary data were derived from Kaiser Permanente Northwes...

Full description

Saved in:
Bibliographic Details
Published inPharmacoepidemiology and drug safety Vol. 28; no. 8; pp. 1127 - 1137
Main Authors Green, Carla A., Perrin, Nancy A., Hazlehurst, Brian, Janoff, Shannon L., DeVeaugh‐Geiss, Angela, Carrell, David S., Grijalva, Carlos G., Liang, Caihua, Enger, Cheryl L., Coplan, Paul M.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.08.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1053-8569
1099-1557
1099-1557
DOI10.1002/pds.4772

Cover

Abstract Purpose The study aims to develop and validate algorithms to identify and classify opioid overdoses using claims and other coded data, and clinical text extracted from electronic health records using natural language processing (NLP). Methods Primary data were derived from Kaiser Permanente Northwest (2008–2014), an integrated health care system (~n > 475 000 unique individuals per year). Data included International Classification of Diseases, Ninth Revision (ICD‐9) codes for nonfatal diagnoses, International Classification of Diseases, Tenth Revision (ICD‐10) codes for fatal events, clinical notes, and prescription medication records. We assessed sensitivity, specificity, positive predictive value, and negative predictive value for algorithms relative to medical chart review and conducted assessments of algorithm portability in Kaiser Permanente Washington, Tennessee State Medicaid, and Optum. Results Code‐based algorithm performance was excellent for opioid‐related overdoses (sensitivity = 97.2%, specificity = 84.6%) and classification of heroin‐involved overdoses (sensitivity = 91.8%, specificity = 99.0%). Performance was acceptable for code‐based suicide/suicide attempt classifications (sensitivity = 70.7%, specificity = 90.5%); sensitivity improved with NLP (sensitivity = 78.7%, specificity = 91.0%). Performance was acceptable for the code‐based substance abuse‐involved classification (sensitivity = 75.3%, specificity = 79.5%); sensitivity improved with the NLP‐enhanced algorithm (sensitivity = 80.5%, specificity = 76.3%). The opioid‐related overdose algorithm performed well across portability assessment sites, with sensitivity greater than 96% and specificity greater than 84%. Cross‐site sensitivity for heroin‐involved overdose was greater than 87%, specificity greater than or equal to 99%. Conclusions Code‐based algorithms developed to detect opioid‐related overdoses and classify them according to heroin involvement perform well. Algorithms for classifying suicides/attempts and abuse‐related opioid overdoses perform adequately for use for research, particularly given the complexity of classifying such overdoses. The NLP‐enhanced algorithms for suicides/suicide attempts and abuse‐related overdoses perform significantly better than code‐based algorithms and are appropriate for use in settings that have data and capacity to use NLP.
AbstractList PurposeThe study aims to develop and validate algorithms to identify and classify opioid overdoses using claims and other coded data, and clinical text extracted from electronic health records using natural language processing (NLP).MethodsPrimary data were derived from Kaiser Permanente Northwest (2008–2014), an integrated health care system (~n > 475 000 unique individuals per year). Data included International Classification of Diseases, Ninth Revision (ICD‐9) codes for nonfatal diagnoses, International Classification of Diseases, Tenth Revision (ICD‐10) codes for fatal events, clinical notes, and prescription medication records. We assessed sensitivity, specificity, positive predictive value, and negative predictive value for algorithms relative to medical chart review and conducted assessments of algorithm portability in Kaiser Permanente Washington, Tennessee State Medicaid, and Optum.ResultsCode‐based algorithm performance was excellent for opioid‐related overdoses (sensitivity = 97.2%, specificity = 84.6%) and classification of heroin‐involved overdoses (sensitivity = 91.8%, specificity = 99.0%). Performance was acceptable for code‐based suicide/suicide attempt classifications (sensitivity = 70.7%, specificity = 90.5%); sensitivity improved with NLP (sensitivity = 78.7%, specificity = 91.0%). Performance was acceptable for the code‐based substance abuse‐involved classification (sensitivity = 75.3%, specificity = 79.5%); sensitivity improved with the NLP‐enhanced algorithm (sensitivity = 80.5%, specificity = 76.3%). The opioid‐related overdose algorithm performed well across portability assessment sites, with sensitivity greater than 96% and specificity greater than 84%. Cross‐site sensitivity for heroin‐involved overdose was greater than 87%, specificity greater than or equal to 99%.ConclusionsCode‐based algorithms developed to detect opioid‐related overdoses and classify them according to heroin involvement perform well. Algorithms for classifying suicides/attempts and abuse‐related opioid overdoses perform adequately for use for research, particularly given the complexity of classifying such overdoses. The NLP‐enhanced algorithms for suicides/suicide attempts and abuse‐related overdoses perform significantly better than code‐based algorithms and are appropriate for use in settings that have data and capacity to use NLP.
The study aims to develop and validate algorithms to identify and classify opioid overdoses using claims and other coded data, and clinical text extracted from electronic health records using natural language processing (NLP).PURPOSEThe study aims to develop and validate algorithms to identify and classify opioid overdoses using claims and other coded data, and clinical text extracted from electronic health records using natural language processing (NLP).Primary data were derived from Kaiser Permanente Northwest (2008-2014), an integrated health care system (~n > 475 000 unique individuals per year). Data included International Classification of Diseases, Ninth Revision (ICD-9) codes for nonfatal diagnoses, International Classification of Diseases, Tenth Revision (ICD-10) codes for fatal events, clinical notes, and prescription medication records. We assessed sensitivity, specificity, positive predictive value, and negative predictive value for algorithms relative to medical chart review and conducted assessments of algorithm portability in Kaiser Permanente Washington, Tennessee State Medicaid, and Optum.METHODSPrimary data were derived from Kaiser Permanente Northwest (2008-2014), an integrated health care system (~n > 475 000 unique individuals per year). Data included International Classification of Diseases, Ninth Revision (ICD-9) codes for nonfatal diagnoses, International Classification of Diseases, Tenth Revision (ICD-10) codes for fatal events, clinical notes, and prescription medication records. We assessed sensitivity, specificity, positive predictive value, and negative predictive value for algorithms relative to medical chart review and conducted assessments of algorithm portability in Kaiser Permanente Washington, Tennessee State Medicaid, and Optum.Code-based algorithm performance was excellent for opioid-related overdoses (sensitivity = 97.2%, specificity = 84.6%) and classification of heroin-involved overdoses (sensitivity = 91.8%, specificity = 99.0%). Performance was acceptable for code-based suicide/suicide attempt classifications (sensitivity = 70.7%, specificity = 90.5%); sensitivity improved with NLP (sensitivity = 78.7%, specificity = 91.0%). Performance was acceptable for the code-based substance abuse-involved classification (sensitivity = 75.3%, specificity = 79.5%); sensitivity improved with the NLP-enhanced algorithm (sensitivity = 80.5%, specificity = 76.3%). The opioid-related overdose algorithm performed well across portability assessment sites, with sensitivity greater than 96% and specificity greater than 84%. Cross-site sensitivity for heroin-involved overdose was greater than 87%, specificity greater than or equal to 99%.RESULTSCode-based algorithm performance was excellent for opioid-related overdoses (sensitivity = 97.2%, specificity = 84.6%) and classification of heroin-involved overdoses (sensitivity = 91.8%, specificity = 99.0%). Performance was acceptable for code-based suicide/suicide attempt classifications (sensitivity = 70.7%, specificity = 90.5%); sensitivity improved with NLP (sensitivity = 78.7%, specificity = 91.0%). Performance was acceptable for the code-based substance abuse-involved classification (sensitivity = 75.3%, specificity = 79.5%); sensitivity improved with the NLP-enhanced algorithm (sensitivity = 80.5%, specificity = 76.3%). The opioid-related overdose algorithm performed well across portability assessment sites, with sensitivity greater than 96% and specificity greater than 84%. Cross-site sensitivity for heroin-involved overdose was greater than 87%, specificity greater than or equal to 99%.Code-based algorithms developed to detect opioid-related overdoses and classify them according to heroin involvement perform well. Algorithms for classifying suicides/attempts and abuse-related opioid overdoses perform adequately for use for research, particularly given the complexity of classifying such overdoses. The NLP-enhanced algorithms for suicides/suicide attempts and abuse-related overdoses perform significantly better than code-based algorithms and are appropriate for use in settings that have data and capacity to use NLP.CONCLUSIONSCode-based algorithms developed to detect opioid-related overdoses and classify them according to heroin involvement perform well. Algorithms for classifying suicides/attempts and abuse-related opioid overdoses perform adequately for use for research, particularly given the complexity of classifying such overdoses. The NLP-enhanced algorithms for suicides/suicide attempts and abuse-related overdoses perform significantly better than code-based algorithms and are appropriate for use in settings that have data and capacity to use NLP.
Purpose The study aims to develop and validate algorithms to identify and classify opioid overdoses using claims and other coded data, and clinical text extracted from electronic health records using natural language processing (NLP). Methods Primary data were derived from Kaiser Permanente Northwest (2008–2014), an integrated health care system (~n > 475 000 unique individuals per year). Data included International Classification of Diseases, Ninth Revision (ICD‐9) codes for nonfatal diagnoses, International Classification of Diseases, Tenth Revision (ICD‐10) codes for fatal events, clinical notes, and prescription medication records. We assessed sensitivity, specificity, positive predictive value, and negative predictive value for algorithms relative to medical chart review and conducted assessments of algorithm portability in Kaiser Permanente Washington, Tennessee State Medicaid, and Optum. Results Code‐based algorithm performance was excellent for opioid‐related overdoses (sensitivity = 97.2%, specificity = 84.6%) and classification of heroin‐involved overdoses (sensitivity = 91.8%, specificity = 99.0%). Performance was acceptable for code‐based suicide/suicide attempt classifications (sensitivity = 70.7%, specificity = 90.5%); sensitivity improved with NLP (sensitivity = 78.7%, specificity = 91.0%). Performance was acceptable for the code‐based substance abuse‐involved classification (sensitivity = 75.3%, specificity = 79.5%); sensitivity improved with the NLP‐enhanced algorithm (sensitivity = 80.5%, specificity = 76.3%). The opioid‐related overdose algorithm performed well across portability assessment sites, with sensitivity greater than 96% and specificity greater than 84%. Cross‐site sensitivity for heroin‐involved overdose was greater than 87%, specificity greater than or equal to 99%. Conclusions Code‐based algorithms developed to detect opioid‐related overdoses and classify them according to heroin involvement perform well. Algorithms for classifying suicides/attempts and abuse‐related opioid overdoses perform adequately for use for research, particularly given the complexity of classifying such overdoses. The NLP‐enhanced algorithms for suicides/suicide attempts and abuse‐related overdoses perform significantly better than code‐based algorithms and are appropriate for use in settings that have data and capacity to use NLP.
The study aims to develop and validate algorithms to identify and classify opioid overdoses using claims and other coded data, and clinical text extracted from electronic health records using natural language processing (NLP). Primary data were derived from Kaiser Permanente Northwest (2008-2014), an integrated health care system (~n > 475 000 unique individuals per year). Data included International Classification of Diseases, Ninth Revision (ICD-9) codes for nonfatal diagnoses, International Classification of Diseases, Tenth Revision (ICD-10) codes for fatal events, clinical notes, and prescription medication records. We assessed sensitivity, specificity, positive predictive value, and negative predictive value for algorithms relative to medical chart review and conducted assessments of algorithm portability in Kaiser Permanente Washington, Tennessee State Medicaid, and Optum. Code-based algorithm performance was excellent for opioid-related overdoses (sensitivity = 97.2%, specificity = 84.6%) and classification of heroin-involved overdoses (sensitivity = 91.8%, specificity = 99.0%). Performance was acceptable for code-based suicide/suicide attempt classifications (sensitivity = 70.7%, specificity = 90.5%); sensitivity improved with NLP (sensitivity = 78.7%, specificity = 91.0%). Performance was acceptable for the code-based substance abuse-involved classification (sensitivity = 75.3%, specificity = 79.5%); sensitivity improved with the NLP-enhanced algorithm (sensitivity = 80.5%, specificity = 76.3%). The opioid-related overdose algorithm performed well across portability assessment sites, with sensitivity greater than 96% and specificity greater than 84%. Cross-site sensitivity for heroin-involved overdose was greater than 87%, specificity greater than or equal to 99%. Code-based algorithms developed to detect opioid-related overdoses and classify them according to heroin involvement perform well. Algorithms for classifying suicides/attempts and abuse-related opioid overdoses perform adequately for use for research, particularly given the complexity of classifying such overdoses. The NLP-enhanced algorithms for suicides/suicide attempts and abuse-related overdoses perform significantly better than code-based algorithms and are appropriate for use in settings that have data and capacity to use NLP.
Author Green, Carla A.
Perrin, Nancy A.
Liang, Caihua
Enger, Cheryl L.
Coplan, Paul M.
Hazlehurst, Brian
DeVeaugh‐Geiss, Angela
Grijalva, Carlos G.
Janoff, Shannon L.
Carrell, David S.
AuthorAffiliation 3 Epidemiology, Johnson & Johnson New Brunswick New Jersey
4 Health Research Institute, Kaiser Permanente Washington Seattle Washington
1 Center for Health Research, Kaiser Permanente Northwest Portland Oregon
7 Epidemiology Optum Ann Arbor Michigan
2 Indivior, Inc. North Chesterfield Virginia
8 Adjunct, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
6 Epidemiology Optum Boston Massachusetts
9 Johns Hopkins School of Nursing Johns Hopkins University Baltimore Maryland
5 Department of Health Policy Vanderbilt University Medical Center Nashville Tennessee
AuthorAffiliation_xml – name: 4 Health Research Institute, Kaiser Permanente Washington Seattle Washington
– name: 9 Johns Hopkins School of Nursing Johns Hopkins University Baltimore Maryland
– name: 5 Department of Health Policy Vanderbilt University Medical Center Nashville Tennessee
– name: 7 Epidemiology Optum Ann Arbor Michigan
– name: 8 Adjunct, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
– name: 2 Indivior, Inc. North Chesterfield Virginia
– name: 6 Epidemiology Optum Boston Massachusetts
– name: 3 Epidemiology, Johnson & Johnson New Brunswick New Jersey
– name: 1 Center for Health Research, Kaiser Permanente Northwest Portland Oregon
Author_xml – sequence: 1
  givenname: Carla A.
  orcidid: 0000-0002-0000-4381
  surname: Green
  fullname: Green, Carla A.
  organization: Center for Health Research, Kaiser Permanente Northwest
– sequence: 2
  givenname: Nancy A.
  surname: Perrin
  fullname: Perrin, Nancy A.
  organization: Johns Hopkins University
– sequence: 3
  givenname: Brian
  orcidid: 0000-0001-9365-3964
  surname: Hazlehurst
  fullname: Hazlehurst, Brian
  email: brian.hazlehurst@kpchr.org
  organization: Center for Health Research, Kaiser Permanente Northwest
– sequence: 4
  givenname: Shannon L.
  surname: Janoff
  fullname: Janoff, Shannon L.
  organization: Center for Health Research, Kaiser Permanente Northwest
– sequence: 5
  givenname: Angela
  surname: DeVeaugh‐Geiss
  fullname: DeVeaugh‐Geiss, Angela
– sequence: 6
  givenname: David S.
  orcidid: 0000-0002-8471-0928
  surname: Carrell
  fullname: Carrell, David S.
– sequence: 7
  givenname: Carlos G.
  surname: Grijalva
  fullname: Grijalva, Carlos G.
  organization: Vanderbilt University Medical Center
– sequence: 8
  givenname: Caihua
  orcidid: 0000-0001-6934-3587
  surname: Liang
  fullname: Liang, Caihua
  organization: Optum
– sequence: 9
  givenname: Cheryl L.
  surname: Enger
  fullname: Enger, Cheryl L.
  organization: Optum
– sequence: 10
  givenname: Paul M.
  surname: Coplan
  fullname: Coplan, Paul M.
  organization: University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31020755$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3CAUhVGVqpkklfoElaVu0oWngI0Zuqg0miZpokiN1HaNMOCUEQMO2BN510fIM-ZJgmcm_YnaigWg-3HuuYcDsOe80wC8QnCKIMTvWhWnJaX4GZggyFiOCKF745kU-YxUbB8cxLiEMNVY-QLsFwhiSAmZgItzpV1nmsG460w4lUkrYtzdfWu8Ufc_7oK2otMq82sdlI86vs_m2VpYo0RnvMti16vhCDxvhI365W4_BN9OT74uPuWXn8_OF_PLXJbFDOcMEgQrXDSkpKVgFYaMIAExRgTSmqKaCoQxQ0KxoqhnDDNCaS2lbMqqIZIWh-DtVrd3rRhuhbW8DWYlwsAR5GMePOXBxzwS-2HLtn290kqmWYP4xXth-J8VZ77za7_mFU0LVkngeCcQ_E2vY8dXJkptrXDa95FvbGNKqrHXmyfo0vfBpSgSldRmmBQj9fp3Rz-tPH5JAqZbQAYfY9ANl6bbxJwMGvu3GY-fPPhPHPkWvTVWD__k-NXHLxv-AQrFuaE
CitedBy_id crossref_primary_10_1016_j_japh_2020_03_009
crossref_primary_10_1136_bmjopen_2020_042299
crossref_primary_10_1186_s13722_022_00318_1
crossref_primary_10_1002_cpt_2717
crossref_primary_10_1016_j_amepre_2023_11_024
crossref_primary_10_1111_add_15571
crossref_primary_10_1016_j_drugalcdep_2022_109269
crossref_primary_10_1016_j_josat_2023_209218
crossref_primary_10_1038_s44184_024_00087_6
crossref_primary_10_1002_pds_5067
crossref_primary_10_1016_j_drugalcdep_2021_108537
crossref_primary_10_1002_pds_5581
crossref_primary_10_1371_journal_pmed_1003947
crossref_primary_10_1136_bmjinnov_2022_000972
crossref_primary_10_14712_18059694_2021_16
crossref_primary_10_1016_j_seizure_2020_11_011
crossref_primary_10_1002_pds_4810
crossref_primary_10_1186_s40352_020_00113_7
crossref_primary_10_1016_S2589_7500_21_00058_3
crossref_primary_10_1111_add_15959
crossref_primary_10_1007_s40264_024_01505_6
crossref_primary_10_1016_j_ajogmf_2020_100304
crossref_primary_10_1016_j_jsat_2021_108369
crossref_primary_10_1177_00220426241231720
crossref_primary_10_4018_IJRQEH_297088
crossref_primary_10_1007_s11606_020_06192_4
crossref_primary_10_1097_AJP_0000000000001034
crossref_primary_10_1016_j_drugalcdep_2020_108061
crossref_primary_10_1016_j_drugalcdep_2021_108583
crossref_primary_10_1136_bmjopen_2024_090608
crossref_primary_10_1111_ajad_13327
crossref_primary_10_1016_j_drugalcdep_2020_107890
crossref_primary_10_1016_j_josat_2023_208971
crossref_primary_10_1093_jamia_ocab170
crossref_primary_10_1016_j_ijmedinf_2022_104734
crossref_primary_10_1097_EDE_0000000000001564
crossref_primary_10_1093_jamiaopen_ooad081
crossref_primary_10_1080_21556660_2020_1750419
crossref_primary_10_1097_j_pain_0000000000002415
crossref_primary_10_1136_bmjsit_2021_000089
crossref_primary_10_17269_s41997_024_00915_4
crossref_primary_10_1002_pds_5618
crossref_primary_10_1016_j_focus_2024_100280
Cites_doi 10.1002/pds.3522
10.1111/j.2517-6161.1996.tb02080.x
10.7326/0003-4819-152-2-201001190-00006
10.15585/mmwr.rr6501e1
10.1176/appi.ajp.2018.17101167
10.15585/mmwr.mm655051e1
10.1016/j.jpain.2008.10.008
10.1186/s13104-015-1185-x
10.1016/j.jpain.2013.04.011
10.5055/jom.2014.0201
10.5811/westjem.2012.7.12936
10.1002/pds.4810
10.1002/pds.4797
10.18553/jmcp.2014.20.5.447
10.1016/j.amjmed.2005.09.019
10.1016/j.annemergmed.2013.05.025
10.1001/jama.2012.8165
10.1002/pds.4157
10.1111/acem.13121
10.1002/pds.3496
10.1016/j.jpain.2012.08.008
10.3810/psm.2012.11.1975
ContentType Journal Article
Copyright 2019 The Authors. Pharmacoepidemiology and Drug Safety Published by John Wiley & Sons Ltd.
2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 The Authors. Pharmacoepidemiology and Drug Safety Published by John Wiley & Sons Ltd.
– notice: 2019 John Wiley & Sons, Ltd.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/pds.4772
DatabaseName Wiley - Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley - Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Green et al
EISSN 1099-1557
EndPage 1137
ExternalDocumentID 10.1002/pds.4772
PMC6767606
31020755
10_1002_pds_4772
PDS4772
Genre article
Validation Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research Sponsors: This project was conducted as part of a Food and Drug Administration (FDA)‐required postmarketing study for extended‐release and long‐acting opioid analgesics and was funded by the Opioid Postmarketing Consortium (OPC) consisting of the following companies at the time of study conduct: Allergan; Assertio Therapeutics, Inc.; BioDelivery Sciences, Inc.; Collegium Pharmaceutical, Inc.; Daiichi Sankyo, Inc.; Egalet Corporation; Endo Pharmaceuticals, Inc.; Hikma Pharmaceuticals USA Inc.; Janssen Pharmaceutic
– fundername: Mallinckrodt Inc.; Pernix Therapeutics Holdings, Inc.; Pfizer, Inc.; Purdue Pharma, LP
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GWYGA
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWP
WXI
WXSBR
XG1
XV2
YCJ
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4382-90510623f5474a9620951a0221507b71b7a12291ad933b8929577bcccf46f5c73
IEDL.DBID UNPAY
ISSN 1053-8569
1099-1557
IngestDate Sun Oct 26 04:15:43 EDT 2025
Thu Aug 21 13:51:27 EDT 2025
Thu Oct 02 06:30:15 EDT 2025
Wed Oct 29 06:22:40 EDT 2025
Wed Feb 19 02:13:16 EST 2025
Thu Apr 24 22:56:00 EDT 2025
Wed Oct 01 05:03:26 EDT 2025
Wed Jan 22 16:39:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords algorithms
abuse
heroin
opioid overdose
methods
suicide
pharmacoepidemiology
Language English
License Attribution-NonCommercial-NoDerivs
2019 The Authors. Pharmacoepidemiology and Drug Safety Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4382-90510623f5474a9620951a0221507b71b7a12291ad933b8929577bcccf46f5c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Research sponsors: Member Companies of the Opioid PMR Consortium.
ORCID 0000-0001-9365-3964
0000-0002-8471-0928
0000-0002-0000-4381
0000-0001-6934-3587
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pds.4772
PMID 31020755
PQID 2267682532
PQPubID 105383
PageCount 11
ParticipantIDs unpaywall_primary_10_1002_pds_4772
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6767606
proquest_miscellaneous_2215027562
proquest_journals_2267682532
pubmed_primary_31020755
crossref_citationtrail_10_1002_pds_4772
crossref_primary_10_1002_pds_4772
wiley_primary_10_1002_pds_4772_PDS4772
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bethesda
– name: Hoboken
PublicationTitle Pharmacoepidemiology and drug safety
PublicationTitleAlternate Pharmacoepidemiol Drug Saf
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2018; 28
2006; 119
2013; 22
2017; 26
2011
2011; 60
2013; 62
2017; 24
2002; 32
2008
2014; 63
1996; 58
2012; 13
2015; 8
2014; 23
2014; 20
2012; 308
2018; 175
2013; 14
2009; 10
2016; 65
2016; 64
2010; 152
2009; 5
2013
2014; 10
2012; 40
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
Rudd RA (e_1_2_10_7_1) 2016; 64
Tibshirani R (e_1_2_10_31_1) 1996; 58
e_1_2_10_20_1
Green CA (e_1_2_10_35_1) 2018; 28
Porada S (e_1_2_10_18_1) 2011; 60
Mack KA (e_1_2_10_5_1) 2013; 62
e_1_2_10_2_1
Centers for Disease Control and Prevention (e_1_2_10_3_1) 2011; 60
e_1_2_10_16_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_15_1
Rudd RA (e_1_2_10_6_1) 2014; 63
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
Rokach L (e_1_2_10_32_1) 2008
Efron B (e_1_2_10_30_1) 2002; 32
Warner M (e_1_2_10_4_1) 2011
e_1_2_10_29_1
Sloan PA (e_1_2_10_19_1) 2009; 5
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 22
  start-page: 1274
  issue: 12
  year: 2013
  end-page: 1282
  article-title: Changes in oxycodone and heroin exposures in the National Poison Data System after introduction of extended‐release oxycodone with abuse‐deterrent characteristics
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 65
  start-page: 1
  issue: 1
  year: 2016
  end-page: 49
  article-title: CDC guideline for prescribing opioids for chronic pain—United States, 2016
  publication-title: MMWR Recomm Rep
– volume: 10
  start-page: 113
  issue: 2
  year: 2009
  end-page: 130
  article-title: Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain
  publication-title: J Pain
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Royal Stat Soc B
– volume: 119
  start-page: 292
  issue: 4
  year: 2006
  end-page: 296
  article-title: Opioid contracts in chronic nonmalignant pain management: objectives and uncertainties
  publication-title: Am J Med
– volume: 24
  start-page: 475
  issue: 4
  year: 2017
  end-page: 483
  article-title: Performance measures of diagnostic codes for detecting opioid overdose in the emergency department
  publication-title: Acad Emerg Med
– volume: 20
  start-page: 447
  issue: 5
  year: 2014
  end-page: 454
  article-title: Implementation of an opioid management initiative by a state Medicaid program
  publication-title: J Manag Care Pharm
– volume: 28
  start-page: 1143
  issue: 8
  year: 2018
  end-page: 1151
  article-title: Using natural language processing of clinical text to enhance the identification of opioid‐related overdoses in electronic health records data
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 40
  start-page: 12
  issue: 4
  year: 2012
  end-page: 20
  article-title: Evolution of opioid risk management and review of the classwide REMS for extended‐release/long‐acting opioids
  publication-title: Physician Sports Med
– volume: 62
  start-page: 161
  issue: Suppl 3
  year: 2013
  end-page: 163
  article-title: Drug‐induced deaths—United States, 1999–2010
  publication-title: MMWR Surveill Summ
– volume: 64
  start-page: 1
  issue: Early Release
  year: 2016
  end-page: 5
  article-title: Increases in drug and opioid overdose deaths—United States, 2000–2014
  publication-title: Morb Mortal Wkly Rep
– volume: 23
  start-page: 26
  issue: 1
  year: 2014
  end-page: 35
  article-title: Increasing trends in schedule II opioid use and doctor shopping during 1999‐2007 in California
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 14
  start-page: 1122
  issue: 10
  year: 2013
  end-page: 1130
  article-title: Reduced abuse, therapeutic errors, and diversion following reformulation of extended‐release oxycodone in 2010
  publication-title: J Pain
– volume: 26
  start-page: 509
  issue: 5
  year: 2017
  end-page: 517
  article-title: Assessing the accuracy of opioid overdose and poisoning codes in diagnostic information from electronic health records, claims data, and death records
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 10
  start-page: 119
  issue: 2
  year: 2014
  end-page: 134
  article-title: Preventing and managing aberrant drug‐related behavior in primary care: systematic review of outcomes evidence
  publication-title: J Opioid Manag
– volume: 14
  start-page: 351
  issue: 4
  year: 2013
  end-page: 358
  article-title: Abuse rates and routes of administration of reformulated extended‐release oxycodone: initial findings from a sentinel surveillance sample of individuals assessed for substance abuse treatment
  publication-title: J Pain
– volume: 152
  start-page: 85
  issue: 2
  year: 2010
  end-page: 92
  article-title: Opioid prescriptions for chronic pain and overdose: a cohort study
  publication-title: Ann Intern Med
– volume: 175
  start-page: 951
  issue: 10
  year: 2018
  end-page: 960
  article-title: Predicting suicide attempts and suicide deaths following outpatient visits using electronic health records
  publication-title: Am J Psychiatry
– volume: 65
  start-page: 1445
  issue: 5051
  year: 2016
  end-page: 1452
  article-title: Increases in drug and opioid‐involved overdose deaths—United States, 2010–2015
  publication-title: MMWR Morb Mortal Wkly Rep
– volume: 8
  start-page: 293
  issue: 1
  year: 2015
  article-title: Development of an algorithm to identify serious opioid toxicity in children
  publication-title: BMC Res Notes
– volume: 63
  start-page: 849
  issue: 39
  year: 2014
  end-page: 854
  article-title: Increases in heroin overdose deaths—28 states, 2010 to 2012
  publication-title: MMWR
– year: 2008
– volume: 5
  start-page: 131
  issue: 3
  year: 2009
  end-page: 133
  article-title: Opioid risk management: understanding FDA mandated risk evaluation and mitigation strategies (REMS)
  publication-title: J Opioid Manag
– volume: 28
  start-page: 1138
  issue: 8
  year: 2018
  end-page: 1142
  article-title: Development of an algorithm to identify inpatient opioid‐related overdoses and oversedation using electronic data
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 62
  start-page: 281
  issue: 4
  year: 2013
  end-page: 289
  article-title: Clinician impression versus prescription drug monitoring program criteria in the assessment of drug‐seeking behavior in the emergency department
  publication-title: Ann Emerg Med
– volume: 308
  start-page: 457
  issue: 5
  year: 2012
  end-page: 458
  article-title: Curbing the opioid epidemic in the United States: the risk evaluation and mitigation strategy (REMS)
  publication-title: JAMA
– volume: 32
  start-page: 407
  issue: 2
  year: 2002
  end-page: 499
  article-title: Least angle regression
  publication-title: Ann Stat
– start-page: 1
  issue: 81
  year: 2011
  end-page: 8
  article-title: Drug poisoning deaths in the United States, 1980‐2008
  publication-title: NCHS Data Brief
– volume: 60
  start-page: S55
  issue: 9 Suppl
  year: 2011
  end-page: S62
  article-title: REMS: red tape, or a remedy for opioid abuse?
  publication-title: J Fam Pract
– volume: 13
  start-page: 422
  issue: 5
  year: 2012
  end-page: 425
  article-title: Prescription drug monitoring programs and other interventions to combat prescription opioid abuse
  publication-title: West J Emerg Med
– year: 2013
– volume: 60
  start-page: 1487
  issue: 43
  year: 2011
  end-page: 1492
  article-title: Vital signs: overdoses of prescription opioid pain relievers—United States, 1999–2008
  publication-title: MMWR
– volume: 60
  start-page: S55
  issue: 9
  year: 2011
  ident: e_1_2_10_18_1
  article-title: REMS: red tape, or a remedy for opioid abuse?
  publication-title: J Fam Pract
– ident: e_1_2_10_14_1
  doi: 10.1002/pds.3522
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: e_1_2_10_31_1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Royal Stat Soc B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_10_26_1
  doi: 10.7326/0003-4819-152-2-201001190-00006
– ident: e_1_2_10_2_1
– volume: 60
  start-page: 1487
  issue: 43
  year: 2011
  ident: e_1_2_10_3_1
  article-title: Vital signs: overdoses of prescription opioid pain relievers—United States, 1999–2008
  publication-title: MMWR
– ident: e_1_2_10_10_1
  doi: 10.15585/mmwr.rr6501e1
– ident: e_1_2_10_33_1
  doi: 10.1176/appi.ajp.2018.17101167
– ident: e_1_2_10_8_1
  doi: 10.15585/mmwr.mm655051e1
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jpain.2008.10.008
– ident: e_1_2_10_29_1
  doi: 10.1186/s13104-015-1185-x
– volume: 32
  start-page: 407
  issue: 2
  year: 2002
  ident: e_1_2_10_30_1
  article-title: Least angle regression
  publication-title: Ann Stat
– ident: e_1_2_10_15_1
  doi: 10.1016/j.jpain.2013.04.011
– ident: e_1_2_10_12_1
  doi: 10.5055/jom.2014.0201
– ident: e_1_2_10_25_1
  doi: 10.5811/westjem.2012.7.12936
– ident: e_1_2_10_34_1
  doi: 10.1002/pds.4810
– volume: 28
  start-page: 1138
  issue: 8
  year: 2018
  ident: e_1_2_10_35_1
  article-title: Development of an algorithm to identify inpatient opioid‐related overdoses and oversedation using electronic data
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4797
– volume: 62
  start-page: 161
  issue: 3
  year: 2013
  ident: e_1_2_10_5_1
  article-title: Drug‐induced deaths—United States, 1999–2010
  publication-title: MMWR Surveill Summ
– ident: e_1_2_10_13_1
  doi: 10.18553/jmcp.2014.20.5.447
– ident: e_1_2_10_21_1
  doi: 10.1016/j.amjmed.2005.09.019
– ident: e_1_2_10_24_1
  doi: 10.1016/j.annemergmed.2013.05.025
– start-page: 1
  issue: 81
  year: 2011
  ident: e_1_2_10_4_1
  article-title: Drug poisoning deaths in the United States, 1980‐2008
  publication-title: NCHS Data Brief
– ident: e_1_2_10_9_1
– ident: e_1_2_10_17_1
  doi: 10.1001/jama.2012.8165
– ident: e_1_2_10_27_1
  doi: 10.1002/pds.4157
– ident: e_1_2_10_28_1
  doi: 10.1111/acem.13121
– volume-title: Data Mining with Decision Trees: Theory and Applications
  year: 2008
  ident: e_1_2_10_32_1
– ident: e_1_2_10_22_1
– volume: 63
  start-page: 849
  issue: 39
  year: 2014
  ident: e_1_2_10_6_1
  article-title: Increases in heroin overdose deaths—28 states, 2010 to 2012
  publication-title: MMWR
– ident: e_1_2_10_23_1
  doi: 10.1002/pds.3496
– volume: 5
  start-page: 131
  issue: 3
  year: 2009
  ident: e_1_2_10_19_1
  article-title: Opioid risk management: understanding FDA mandated risk evaluation and mitigation strategies (REMS)
  publication-title: J Opioid Manag
– volume: 64
  start-page: 1
  year: 2016
  ident: e_1_2_10_7_1
  article-title: Increases in drug and opioid overdose deaths—United States, 2000–2014
  publication-title: Morb Mortal Wkly Rep
– ident: e_1_2_10_16_1
  doi: 10.1016/j.jpain.2012.08.008
– ident: e_1_2_10_20_1
  doi: 10.3810/psm.2012.11.1975
SSID ssj0009994
Score 2.4694893
Snippet Purpose The study aims to develop and validate algorithms to identify and classify opioid overdoses using claims and other coded data, and clinical text...
The study aims to develop and validate algorithms to identify and classify opioid overdoses using claims and other coded data, and clinical text extracted from...
PurposeThe study aims to develop and validate algorithms to identify and classify opioid overdoses using claims and other coded data, and clinical text...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1127
SubjectTerms abuse
Algorithms
Analgesics, Opioid - poisoning
Classification
Drug abuse
Drug overdose
Drug Overdose - classification
Drug Overdose - epidemiology
Electronic Health Records - statistics & numerical data
Electronic medical records
Female
Heroin
Heroin - poisoning
Humans
Male
methods
Middle Aged
Narcotics
Natural Language Processing
opioid overdose
Opioid-Related Disorders - complications
Opioids
Original Report
Original Reports
Overdose
pharmacoepidemiology
Sensitivity and Specificity
Suicide
Suicide - statistics & numerical data
Suicide, Attempted - statistics & numerical data
Suicides & suicide attempts
SummonAdditionalLinks – databaseName: Wiley - Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1ba9RAFMeH2j7oi9h6W21lKrK-NHYzl2THt6ItpVBZsIW-hbnShSVZTBfZNz-Cn9FP4jkz2SxLVXwKYU6uZ07mN5k5_yHkndGlUCMXMs5tyIQeucx4V2SKuVwHa51RmO98-aU4vxYXN_Kmm1WJuTBJH6L_4YaREb_XGODatMdr0dC5az8IYMMHZCcHjMHazcRkLbir4iKIgA88G8tCrYRnR-x4deRmU3SPL-9Pk3y4qOd6-V3PZpsoG9uisyfkcQeR9CR5fZds-XqPDCdJhXp5RK_WSVXtER3SyVqfevmUXKTk3JjgRHXtqEWC7vab-bSZul8_fsYkF-8oTvF0Tevbj_SEQrWcpkWYaNSlfUauz06vPp1n3ZIKmcURvwzVuEZAPEGKUmhVMCQsDe04cqEpc1PqnDGVa6c4N2NgJ1mWxlobRBGkLflzsl03tX9JqFKskD6XNte5CEZqYQIPYmw5qob58YC8X73dynZ647jsxaxKSsmsAj9U6IcBOewt50lj4w82-ysHVV2UtRWgI_SWmOR4ir4Y4gMHPXTtmwXawKOhxj3YvEj-7C8CaMsAmeSAlBue7g1Qe3uzpJ7eRg1u1LmDvt-AvO3rxD_ufRgry18Nqsnnr7h99b-Gr8kjADeVJiLuk-27bwt_AHB0Z97EKPgN_goNsQ
  priority: 102
  providerName: Wiley-Blackwell
Title Identifying and classifying opioid‐related overdoses: A validation study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.4772
https://www.ncbi.nlm.nih.gov/pubmed/31020755
https://www.proquest.com/docview/2267682532
https://www.proquest.com/docview/2215027562
https://pubmed.ncbi.nlm.nih.gov/PMC6767606
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pds.4772
UnpaywallVersion publishedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1053-8569
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009994
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x3QNceD8Ky8ogVC6bqnHspOFWsaxWK7GKYCstp8iPWFtRJRVphcqJn8Bv5JcwE6dZygJCXBIlnjixM2N_9ng-A7zQKhHpyLogiowLhBrZQBc2DlJuQ-WMsTqleOe3p_HxVJycy_N2wo1iYTw_RDfhRpbRtNdk4AvrfDvfevc53qmHAvHhDuzGErF4D3anp9nkQ-PilFEwls2eduT9CbDjTDbssz89ut0fXQGZV9dKXl-VC7X-rObzbTzbdEhHtyDfFMWvQ_k4XC310Hz5heXx_8t6G262WJVNvHLdgWtFeRcGmSe7Xh-ws8vYrfqADVh2SYO9vgcnPga4iaNiqrTMEFBvr6vFrJrZ71-_NbE0hWW0ktRWdVG_YhOG2j_zez2xhv72PkyP3py9Pg7anRsCQ47FgEi_RgisnBSJUGnMCcgphAsEP3US6kSFnKehsmkU6TFCNJkk2hjjROykSaIH0CursngELE15LItQmlCFwmmphHaRE2MTETlZMe7Dy83_y01La067a8xzT8jMc6y4nCquD886yYWn8viNzN5GBfLWmOscESoOyriMKIsuGc2QfCuqLKoVyWDRiEofZR56jeleggiaIzKTfUi2dKkTIIrv7ZRydtFQfROdHg4x-_C807q_fPug0aE_CuTZ4Xs6P_6X3J7ADcSGqV_ruAe95adV8RTx11Lvww4XGR4P3_H91uB-AFCgM-g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LbtNAFIZHpSzKBlGuoS0MCIVN3cZzsTOwqoAqlLaKRCp1Z81VRIrsqG6Esusj9Bl5EubM2I6iAmJlWT6-njmefy7nG4TeKZkzMTAuoVS7hMmBSZQ1WSKISaXT2igB-c5n59nogp1c8ssN9LHNhYl8iK7DDSIj_K8hwKFD-nBFDZ2b-oB5cXgP3WdZmkHLi7DxirgrwiqIXj_QZMgz0ZJnB-SwPXO9LrojMO_Ok9xalHO5_Clns3UtGyqj40foYaMi8VF0-zbasOVj1B9HDPVyH09WWVX1Pu7j8QpQvXyCTmJ2bshwwrI0WIOEbvar-bSaml83tyHLxRoMczxNVdv6Az7CvlxO4ypMOIBpn6KL4y-TT6OkWVMh0TDklwCOa-Alj-MsZ1JkBCSW9BU5CEOVpyqXKSEilUZQqoZePPE8V1prxzLHdU6foc2yKu0LhIUgGbcp16lMmVNcMuWoY0NNARtmhz30vv26hW6A47DuxayIqGRSeD8U4IceetNZziNk4w82u62DiibM6sJrR99cIpzCJbrDPkBg1EOWtlqAjX81gNx7m-fRn91NvLYlXjPxHsrXPN0ZAHx7_Ug5_REg3AC6842_HnrblYl_PHs_FJa_GhTjz99h-_J_DV-jrdHk7LQ4_Xr-bQc98CpOxFmJu2jz-mph97xSulavQkT8BoIcER0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdHpUjAhfcjUGBBKFzqNLZ3bS-cKkJUClQRtFIPSNY-RURkRzgRCic-Ap-RT8KO13YUCghxsiyPH2vP2P_1zvwW4IkUKeVDbYM4VjagYqgDaXQS8EiHwiqlJcd657dHycEJPTxlp1vwvK2F8XyI7ocbRkb9vsYAN3Nt99bU0LmuBtSJw3NwnjKeYT7f6N2aHeWUTz2k7LwsyFjCW_LsMNpr99z8Fp0RmGfzJC8ui7lYfRGz2aaWrT9G4yvwoW2Gz0H5NFgu5EB9_YXw-J_tvAqXG5FK9r1XXYMtU1yH_sRTrle75HhdtFXtkj6ZrPnXqxtw6It_6wIqIgpNFCr0Zr2cT8up_vHte11EYzTBFFJdVqZ6RvaJc_upn-SJ1Nzbm3Ayfnn84iBopmwIFI4oBkj7GjpFZRlNqeBJhApOOJ2AulOmoUxFGEU8FJrHscycNmNpKpVSliaWqTS-BdtFWZg7QDiPEmZCpkIRUiuZoNLGlmYqRiqZyXrwtH14uWp45jitxiz3JOYodzcuxxvXg0ed5dwzPH5js9M-_7yJ4ip30tT1xiIW4yG6zS7-cFBFFKZcoo1rGjL0nc1t7y7dSZx0jpwkYz1INxypM0C29-aWYvqxZnwjR8_1LXvwuHO5v1x7v3agPxrkk9F7XN79V8OHcGEyGudvXh29vgeXnEbkPudxB7YXn5fmvtNhC_mgjrefBN0xLw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4AL70dhQQahctlUjWPHNbcKWK1WYlWJrbScIj9ibUWVVKQVKid-Ar-RX8KMnWYpCwhxihJPHnZm7M8ezzeEvDBacjVyPsky6xOuRy4xpcsTxVyqvbXOKIx3fneSH8348Zk4axfcMBYm8kN0C25oGaG_RgNfOh_7-da7z-BKM-SAD6-SvVwAFu-RvdnJdPIhuDhFloxFyGmH3p8EBk65ZZ_96dbd8egSyLy8V_LaulrqzWe9WOzi2TAgHd4kxbYqcR_Kx-F6ZYb2yy8sj_9f11vkRotV6SQq121ypazukME0kl1vDujpRexWc0AHdHpBg725S45jDHCIo6K6ctQiUG_P6-W8nrvvX7-FWJrSUdxJ6uqmbF7RCQXtn8dcTzTQ394js8O3p6-PkjZzQ2LRsZgg6dcIgJUXXHKtcoZATgNcQPhpZGqkThlTqXYqy8wYIJqQ0lhrPc-9sDK7T3pVXZUPCVWK5aJMhU11yr0RmhufeT62GZKTleM-ebn9f4Vtac0xu8aiiITMrICGK7Dh-uRZJ7mMVB6_kdnfqkDRGnNTAEKFSRkTGT6iKwYzRN-Krsp6jTJQNaTSB5kHUWO6lwCCZoDMRJ_IHV3qBJDie7ekmp8Hqm-k04MpZp8877TuL98-CDr0R4Fi-uY9Hh_9y9Mek-uADVXc67hPeqtP6_IJ4K-Vedoa2Q_zWTIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+and+classifying+opioid-related+overdoses%3A+A+validation+study&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=Green%2C+Carla+A&rft.au=Perrin%2C+Nancy+A&rft.au=Hazlehurst%2C+Brian&rft.au=Janoff%2C+Shannon+L&rft.date=2019-08-01&rft.issn=1099-1557&rft.eissn=1099-1557&rft.volume=28&rft.issue=8&rft.spage=1127&rft_id=info:doi/10.1002%2Fpds.4772&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon