A Path Following Algorithm for the Graph Matching Problem

We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different opti...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 31; no. 12; pp. 2227 - 2242
Main Authors Zaslavskiy, M., Bach, F., Vert, J.-P.
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.12.2009
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
1939-3539
DOI10.1109/TPAMI.2008.245

Cover

Abstract We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.
AbstractList The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices.
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.
Author Zaslavskiy, M.
Bach, F.
Vert, J.-P.
Author_xml – sequence: 1
  givenname: M.
  surname: Zaslavskiy
  fullname: Zaslavskiy, M.
  organization: Centre for Comput. Biol., Mines ParisTech, Fontainebleau, France
– sequence: 2
  givenname: F.
  surname: Bach
  fullname: Bach, F.
  organization: Lab. d'lnformatique, Ecole Normale Super., Paris, France
– sequence: 3
  givenname: J.-P.
  surname: Vert
  fullname: Vert, J.-P.
  organization: Centre for Comput. Biol., Mines ParisTech, Fontainebleau, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22157295$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19834143$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00433567$$DView record in HAL
BookMark eNqF0ktr3DAUBlBRUppJ2m03hWIKpXThqd6PpQl5wYTMIl0LWZZjBdmaSp6G_PvYnekUAiUrgTjf1ZWuTsDREAcHwEcElwhB9eNuXd1cLzGEcokpewMWSBFVEkbUEVhAxHEpJZbH4CTnBwgRZZC8A8dISUIRJQugqmJtxq64iCHERz_cF1W4j8mPXV-0MRVj54rLZDZdcWNG281gnWIdXP8evG1NyO7Dfj0FPy_O786uytXt5fVZtSotJWIsG8ohdxw3DFHKGgZrAR1yrrXWQClqrmoplUKotoY2AgsqLDKWQm6EVQaSU_B9V7czQW-S70160tF4fVWt9LwHISWEcfEbTfbbzm5S_LV1edS9z9aFYAYXt1lLriSVhMlXpSB06o7zueaXF_IhbtMwXVlLJuhE8Iw-79G27l1z6PPvQ0_g6x6YbE1okxmszweHMWICKza55c7ZFHNOrv1XCup54vrPxPU8cT1NfArQFwHrRzP6OIzJ-PD_2KddzDvnDmdQTqf_w8kzQPiysw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_neucom_2021_08_002
crossref_primary_10_1007_s00138_017_0847_1
crossref_primary_10_1007_s10208_022_09575_7
crossref_primary_10_1214_15_AOAS834
crossref_primary_10_1016_j_ins_2019_09_014
crossref_primary_10_1109_TPAMI_2014_2388235
crossref_primary_10_1137_130929886
crossref_primary_10_1162_netn_a_00287
crossref_primary_10_1109_TPAMI_2017_2716350
crossref_primary_10_1016_j_patcog_2016_12_006
crossref_primary_10_1016_j_patcog_2017_12_003
crossref_primary_10_1109_ACCESS_2019_2924034
crossref_primary_10_1016_j_procs_2021_08_099
crossref_primary_10_1007_s10844_011_0178_z
crossref_primary_10_1016_j_patcog_2013_08_024
crossref_primary_10_4304_jsw_9_10_2622_2627
crossref_primary_10_1109_ACCESS_2019_2904541
crossref_primary_10_1007_s10589_017_9968_8
crossref_primary_10_1007_s11263_014_0707_7
crossref_primary_10_1016_j_inffus_2021_02_012
crossref_primary_10_1109_TIP_2019_2925287
crossref_primary_10_1109_TIP_2014_2387386
crossref_primary_10_1109_TPAMI_2014_2343959
crossref_primary_10_1016_j_jisa_2023_103652
crossref_primary_10_1109_TITS_2024_3374281
crossref_primary_10_1155_2013_495653
crossref_primary_10_3389_fnins_2016_00554
crossref_primary_10_1109_TCNS_2017_2673540
crossref_primary_10_1007_s10994_018_5764_7
crossref_primary_10_12677_CSA_2022_124112
crossref_primary_10_1109_TPAMI_2011_110
crossref_primary_10_1371_journal_pone_0195993
crossref_primary_10_1016_j_neucom_2016_06_057
crossref_primary_10_1109_TKDE_2021_3124559
crossref_primary_10_1007_s00778_012_0292_8
crossref_primary_10_1007_s13319_015_0054_7
crossref_primary_10_1109_ACCESS_2018_2811721
crossref_primary_10_1142_S0218001414500013
crossref_primary_10_1016_j_patcog_2020_107418
crossref_primary_10_1145_2903719
crossref_primary_10_1109_TNET_2022_3180158
crossref_primary_10_1109_TPAMI_2016_2574706
crossref_primary_10_1109_TIFS_2025_3530692
crossref_primary_10_1177_1729881417738100
crossref_primary_10_1016_j_patrec_2020_12_012
crossref_primary_10_1049_ipr2_13285
crossref_primary_10_1109_ACCESS_2019_2908925
crossref_primary_10_1162_netn_a_00301
crossref_primary_10_1137_080731359
crossref_primary_10_1016_j_neucom_2013_06_031
crossref_primary_10_1016_j_compind_2019_01_005
crossref_primary_10_1007_s00371_024_03772_x
crossref_primary_10_1016_j_neucom_2012_12_065
crossref_primary_10_1109_TSMC_2014_2327058
crossref_primary_10_1016_j_dam_2012_01_019
crossref_primary_10_1016_j_parco_2015_03_004
crossref_primary_10_1016_j_patcog_2023_109597
crossref_primary_10_1137_15M1032454
crossref_primary_10_1109_TITS_2020_3011100
crossref_primary_10_1109_TSMC_2017_2693029
crossref_primary_10_1109_TIT_2018_2808999
crossref_primary_10_3390_a16050234
crossref_primary_10_1093_bioinformatics_btab594
crossref_primary_10_1109_TCC_2024_3430237
crossref_primary_10_1016_j_patcog_2019_03_021
crossref_primary_10_1109_TNNLS_2017_2712794
crossref_primary_10_1016_j_patcog_2016_07_015
crossref_primary_10_1287_opre_2022_2355
crossref_primary_10_1007_s11263_019_01231_y
crossref_primary_10_1016_j_patrec_2018_07_005
crossref_primary_10_1016_j_dsp_2020_102833
crossref_primary_10_1007_s11263_019_01185_1
crossref_primary_10_1109_TPAMI_2017_2767591
crossref_primary_10_1016_j_patcog_2021_108228
crossref_primary_10_1109_TPAMI_2016_2636200
crossref_primary_10_1145_3130800_3130826
crossref_primary_10_1093_bioinformatics_btx090
crossref_primary_10_1007_s41109_021_00398_z
crossref_primary_10_1016_j_cad_2018_10_001
crossref_primary_10_1109_TNET_2019_2962731
crossref_primary_10_3390_s21062175
crossref_primary_10_1007_s11263_011_0442_2
crossref_primary_10_1016_j_robot_2011_07_022
crossref_primary_10_1016_j_patcog_2016_07_021
crossref_primary_10_1016_j_image_2019_01_001
crossref_primary_10_1109_TPAMI_2015_2501802
crossref_primary_10_1109_TPAMI_2015_2409880
crossref_primary_10_1007_s11263_020_01359_2
crossref_primary_10_1016_j_cam_2024_116189
crossref_primary_10_1016_j_patrec_2016_10_004
crossref_primary_10_1016_j_patrec_2016_10_001
crossref_primary_10_1109_TCDS_2022_3188333
crossref_primary_10_1007_s10208_022_09570_y
crossref_primary_10_1016_j_patrec_2014_12_011
crossref_primary_10_1016_j_patrec_2022_09_016
crossref_primary_10_1137_19M1305045
crossref_primary_10_1371_journal_pone_0121002
crossref_primary_10_1002_sam_11454
crossref_primary_10_1016_j_neucom_2015_12_082
crossref_primary_10_1186_1471_2105_13_S3_S11
crossref_primary_10_1007_s10514_019_09872_1
crossref_primary_10_1109_OJSP_2021_3083479
crossref_primary_10_1093_jrsssb_qkae085
crossref_primary_10_1016_j_cose_2020_101775
crossref_primary_10_1109_TPAMI_2014_2343235
crossref_primary_10_1109_TMM_2019_2951466
crossref_primary_10_1109_TIP_2017_2695888
crossref_primary_10_1016_j_neucom_2016_12_096
crossref_primary_10_1109_TIP_2014_2362614
crossref_primary_10_1061__ASCE_CP_1943_5487_0000425
crossref_primary_10_1007_s11263_014_0766_9
crossref_primary_10_1145_3130800_3130801
crossref_primary_10_1186_s13640_019_0407_x
crossref_primary_10_1016_j_cviu_2019_03_003
crossref_primary_10_1109_TSP_2024_3458008
crossref_primary_10_1080_01691864_2012_703167
crossref_primary_10_1137_18M1196480
crossref_primary_10_1109_TPAMI_2019_2914651
crossref_primary_10_1007_s11042_017_5226_4
crossref_primary_10_1109_TKDE_2018_2833124
crossref_primary_10_1016_j_patcog_2018_09_014
crossref_primary_10_1109_TPAMI_2013_223
crossref_primary_10_1093_imaiai_iaz031
crossref_primary_10_1109_TVT_2022_3221447
crossref_primary_10_1016_j_patrec_2016_07_012
crossref_primary_10_1109_TKDE_2022_3221084
crossref_primary_10_1016_j_media_2018_02_007
crossref_primary_10_1109_TPAMI_2015_2424894
crossref_primary_10_1109_TCYB_2019_2912718
crossref_primary_10_1016_j_patrec_2018_09_024
crossref_primary_10_1109_TCSVT_2018_2852310
crossref_primary_10_1109_LSP_2015_2501546
crossref_primary_10_1109_TPAMI_2013_16
crossref_primary_10_1109_TPAMI_2019_2919308
crossref_primary_10_3724_SP_J_1004_2012_00725
crossref_primary_10_1016_j_swevo_2014_10_006
crossref_primary_10_1109_TCYB_2019_2936176
crossref_primary_10_1109_TPAMI_2012_45
crossref_primary_10_1109_TSP_2024_3458015
crossref_primary_10_1145_3609334
crossref_primary_10_1007_s41109_022_00464_0
crossref_primary_10_1002_hbm_26296
crossref_primary_10_1137_15M1048021
crossref_primary_10_1016_j_jvcir_2018_10_012
crossref_primary_10_1016_j_imavis_2014_11_001
crossref_primary_10_1186_s12864_018_5027_9
crossref_primary_10_1109_TPAMI_2019_2903483
crossref_primary_10_1016_j_patcog_2015_09_029
crossref_primary_10_1371_journal_pone_0277343
crossref_primary_10_1093_imaiai_iav002
crossref_primary_10_1016_j_patcog_2019_06_008
crossref_primary_10_1049_el_2015_1441
crossref_primary_10_1016_j_ins_2015_12_033
crossref_primary_10_1137_18M1209180
crossref_primary_10_1109_TCYB_2017_2697968
crossref_primary_10_1109_TNSE_2021_3056329
crossref_primary_10_1016_j_patcog_2016_06_022
crossref_primary_10_1103_PhysRevResearch_5_033129
crossref_primary_10_1007_s41109_019_0219_z
crossref_primary_10_1016_j_patcog_2016_06_023
crossref_primary_10_1137_17M1132264
Cites_doi 10.1515/9781400873173
10.7551/mitpress/7132.001.0001
10.1109/34.211474
10.1093/nar/gki107
10.1007/978-3-642-61257-2
10.1007/PL00011402
10.1016/S0031-3203(02)00054-7
10.1007/978-3-540-71681-5_2
10.1002/nav.3800020109
10.1145/321958.321963
10.1109/34.993558
10.1103/PhysRevE.64.026118
10.1109/KES.1999.820179
10.1016/j.patcog.2005.05.013
10.1109/TPAMI.2004.1265866
10.1109/IEMBS.2004.1403843
10.1109/34.24792
10.1090/cbms/092
10.1145/2020408.2020410
10.1287/opre.31.2.277
10.1002/nav.3800030109
10.1109/34.6778
10.1007/978-1-4757-9859-3
10.1109/ICDAR.1995.602033
10.1109/iciap.1999.797762
10.1109/34.491619
10.1142/S0218001404003228
10.1007/11585978_12
10.1074/mcp.T200001-MCP200
10.1145/321921.321925
10.1007/3-540-44522-6_24
10.1016/0262-8856(92)90043-3
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
1XC
DOI 10.1109/TPAMI.2008.245
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Mathematics
Applied Sciences
EISSN 1939-3539
EndPage 2242
ExternalDocumentID oai:HAL:hal-00433567v1
2295185551
19834143
22157295
10_1109_TPAMI_2008_245
4641936
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
1XC
ID FETCH-LOGICAL-c437t-d4606e62d51445d50b70e1eefcca087b69b889911bca4d72747c1ac406a7c9a03
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Tue Oct 28 06:35:41 EDT 2025
Mon Sep 29 03:40:31 EDT 2025
Wed Oct 01 14:03:51 EDT 2025
Sun Sep 07 03:17:48 EDT 2025
Mon Jul 21 06:00:37 EDT 2025
Mon Jul 21 09:14:18 EDT 2025
Wed Oct 01 06:43:27 EDT 2025
Thu Apr 24 22:51:59 EDT 2025
Wed Aug 27 02:47:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Gradient methods
Artificial Intelligence
Computing Methodologies
Object recognition
Convex programming
Optimization
Discrete Mathematics
Constrained optimization
Learning
Scene Analysis
Pattern Recognition
Graph Theory
Mathematics of Computing
Numerical Analysis
Machine learning
Image Processing and Computer Vision
Graph algorithms
Quadratic programming methods
Image processing
Combinatorial problem
Competitiveness
Path following
Retina
Combinatorial optimization
Least squares method
Graph transformation
Classification
Pattern analysis
Gradient method
gradient methods
Mathematical programming
Linear interpolation
Probabilistic approach
Permutation
Rewriting
Graph theory
machine learning
Weighted graph
Search algorithm
Ideogram
Graph method
Manuscript character
Artificial intelligence
Graph matching
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-d4606e62d51445d50b70e1eefcca087b69b889911bca4d72747c1ac406a7c9a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ORCID 0000-0001-9510-8441
0000-0001-8644-1058
PMID 19834143
PQID 857466121
PQPubID 85458
PageCount 16
ParticipantIDs proquest_journals_857466121
pascalfrancis_primary_22157295
proquest_miscellaneous_734087661
hal_primary_oai_HAL_hal_00433567v1
crossref_primary_10_1109_TPAMI_2008_245
proquest_miscellaneous_869848358
pubmed_primary_19834143
crossref_citationtrail_10_1109_TPAMI_2008_245
ieee_primary_4641936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2009
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
Milnor (ref35) 1969
ref16
ref19
Bertsekas (ref36) 1999
ref24
ref23
ref25
Saito (ref41) 1985; 68
ref20
ref22
Cela (ref38) 2007
Cremers (ref18); 2191
ref28
ref27
Walter (ref39) 2003; 13
ref29
ref8
ref7
ref9
Golub (ref26) 1996
ref4
ref3
ref6
ref5
ref40
Garey (ref21) 1979
References_xml – ident: ref31
  doi: 10.1515/9781400873173
– ident: ref33
  doi: 10.7551/mitpress/7132.001.0001
– ident: ref16
  doi: 10.1109/34.211474
– ident: ref20
  doi: 10.1093/nar/gki107
– ident: ref34
  doi: 10.1007/978-3-642-61257-2
– volume-title: Nonlinear Programming
  year: 1999
  ident: ref36
– volume-title: Matrix Computations
  year: 1996
  ident: ref26
– ident: ref32
  doi: 10.1007/PL00011402
– ident: ref5
  doi: 10.1016/S0031-3203(02)00054-7
– volume: 13
  issue: 2
  year: 2003
  ident: ref39
  article-title: Detection of the Median Axis of Vessels in Retinal Images
  publication-title: European J. Ophthalmology
– ident: ref7
  doi: 10.1007/978-3-540-71681-5_2
– ident: ref28
  doi: 10.1002/nav.3800020109
– ident: ref10
  doi: 10.1145/321958.321963
– ident: ref19
  doi: 10.1109/34.993558
– ident: ref37
  doi: 10.1103/PhysRevE.64.026118
– year: 2007
  ident: ref38
  article-title: Quadratic Assignment Problem Library
– ident: ref1
  doi: 10.1109/KES.1999.820179
– ident: ref3
  doi: 10.1016/j.patcog.2005.05.013
– ident: ref15
  doi: 10.1109/TPAMI.2004.1265866
– ident: ref8
  doi: 10.1109/IEMBS.2004.1403843
– ident: ref40
  doi: 10.1109/34.24792
– ident: ref30
  doi: 10.1090/cbms/092
– ident: ref23
  doi: 10.1145/2020408.2020410
– ident: ref27
  doi: 10.1287/opre.31.2.277
– ident: ref29
  doi: 10.1002/nav.3800030109
– volume-title: Computer and Intractability: A Guide to the Theory of NP-Completeness
  year: 1979
  ident: ref21
– ident: ref13
  doi: 10.1109/34.6778
– ident: ref22
  doi: 10.1007/978-1-4757-9859-3
– volume: 68
  start-page: 757
  issue: 4
  year: 1985
  ident: ref41
  article-title: On the Data Base etl9b of Handprinted Characters in jis Chinese Characters and Its Analysis
  publication-title: IEICE Trans.
– ident: ref2
  doi: 10.1109/ICDAR.1995.602033
– ident: ref12
  doi: 10.1109/iciap.1999.797762
– ident: ref17
  doi: 10.1109/34.491619
– ident: ref25
  doi: 10.1142/S0218001404003228
– ident: ref6
  doi: 10.1007/11585978_12
– ident: ref9
  doi: 10.1074/mcp.T200001-MCP200
– volume: 2191
  volume-title: Proc. 23rd DAGM-Symp. Pattern Recognition
  ident: ref18
  article-title: Evaluation of Convex Optimization Techniques for the Weighted Graph-Matching Problem in Computer Vision
– ident: ref11
  doi: 10.1145/321921.321925
– volume-title: Topology from the Differentiable Viewpoint
  year: 1969
  ident: ref35
– ident: ref4
  doi: 10.1007/3-540-44522-6_24
– ident: ref14
  doi: 10.1016/0262-8856(92)90043-3
– ident: ref24
  doi: 10.1287/opre.31.2.277
SSID ssj0014503
Score 2.504033
Snippet We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by...
The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2227
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial Intelligence
Bioinformatics
classification
Combinatorial analysis
Combinatorics
Combinatorics. Ordered structures
Computer Science
Computer science; control theory; systems
convex programming
Data Structures and Algorithms
Exact sciences and technology
Gradient methods
Graph algorithms
Graph matching
Graph theory
Humans
Image Processing
Image Processing, Computer-Assisted
Information retrieval. Graph
Interpolation
Life Sciences
Machine Learning
Machine learning algorithms
Mathematical analysis
Mathematics
Matrices
Optimization
Optimization methods
Pattern Recognition, Automated - statistics & numerical data
Pattern recognition. Digital image processing. Computational geometry
Programming
Proteins
Quadratic programming
Quantitative Methods
Retina
Retinal Vessels - anatomy & histology
Sciences and techniques of general use
Stochastic processes
Studies
Theoretical computing
Title A Path Following Algorithm for the Graph Matching Problem
URI https://ieeexplore.ieee.org/document/4641936
https://www.ncbi.nlm.nih.gov/pubmed/19834143
https://www.proquest.com/docview/857466121
https://www.proquest.com/docview/734087661
https://www.proquest.com/docview/869848358
https://hal.science/hal-00433567
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb5RQEJ50e9KDra1abG1ejIkX2fJj3g-OxLhdjWv20Ca9EXjMWmO7mC6riX-98x4sWmMbbwQmBJgZ3jfM8H0Ar3gNc3FRhnWsTIiIZVipaBFqKslEREi-XTD7pKbn-OFCXmzBm-FfGCLyw2c0dpu-l183du0-lZ2gQsYbagQjbVT3r9bQMUDpVZAZwXCGcxnREzTGUXZyNs9n77uxyQS9VE1m-OWN6a21aHTpJiG9xIobkCxX_IwWnbjF3ejTr0KTHZhtrr8bPvk6XrfV2P78i9rxf29wFx71cFTkXfw8hi1a7sHORupB9Jm_Bw__4C3chywXc0aOYsJB1PzgXSK_-tzcfGkvrwWDYMGgUpw6Jmwx4ze9-8Yl5p1wzRM4n7w7ezsNew2G0GKq27BGrnBIJTUDK5S1jCodUUy0YM9HRlcqqwyXbHFc2RJr7WpcG5eWYUKpbVZG6VPYXjZLOgDhepBVnWRKW4kJUYWL1GrJwSDTDK0MINx4o7A9QbnTybgqfKESZYV3ZCecyY4M4PVg_62j5rjT8iU7dzByjNrT_GPh9rlOaCqV_h4HsO8cMlj1vgjg-FYsDMcTBktcmfDJDzfBUfT5vyqM1KgcOVsAYjjKieu6MeWSmvWq0Ck6OkB1j4lRmUGGyCaAZ13U_b7RPoSf__uqD-FB0gtdRPERbLc3a3rB6Kmtjn3a_AIyxxDa
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB215QAcKLR8hEKxEBIXss3H2E6OEWLZwqbaw1bqLUqc2RZRNqibBYlfz9jJBooo4hYloyjOjO03mcl7AK94D7NxUfp1qBIfEUu_UsHC11RSEhAhuXJBfqImp_jhTJ5twZvhXxgics1nNLKHrpZfN2ZtP5UdoULGG2obbkm-q-z-1hpqBiidDjJjGJ7jnEj0FI1hkB7NZ1l-3DVORujEatKEl2-Mr-1G2xe2F9KJrNgWyXLFb2nRyVvcjD_dPjTehXwzgq795PNo3VYj8-MPcsf_HeJ9uNcDUpF1EfQAtmi5B7sbsQfRz_09uPsbc-E-pJmYMXYUYw6j5jufEtnleXP1qb34IhgGC4aV4r3lwhY5r_X2K5eYddI1D-F0_G7-duL3Kgy-wVi3fo2c45CKaoZWKGsZVDqgkGjBvg8SXam0SjhpC8PKlFhrm-WasDQMFEpt0jKIH8HOslnSExC2ClnVUaq0kRgRVbiIjZYcDjJO0UgP_I03CtNTlFuljMvCpSpBWjhHdtKZ7EgPXg_2XztyjhstX7JzByPLqT3JpoU9Z2uhsVT6W-jBvnXIYNX7woPDa7EwXI8YLnFuwjc_2ARH0a8AqyKRGpWlZ_NADFd56tp6TLmkZr0qdIyWEFD9wyRRaYIMkhMPHndR92ugfQg__ftTv4Dbk3k-LabHJx8P4E7Uy14E4TPYaa_W9JyxVFsduin0E5yxFCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Path+Following+Algorithm+for+the+Graph+Matching+Problem&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zaslavskiy%2C+M&rft.au=Bach%2C+F&rft.au=Vert%2C+J-P&rft.date=2009-12-01&rft.issn=0162-8828&rft.volume=31&rft.issue=12&rft_id=info:doi/10.1109%2FTPAMI.2008.245&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon