A Path Following Algorithm for the Graph Matching Problem
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different opti...
        Saved in:
      
    
          | Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 31; no. 12; pp. 2227 - 2242 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Los Alamitos, CA
          IEEE
    
        01.12.2009
     IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0162-8828 1939-3539 1939-3539  | 
| DOI | 10.1109/TPAMI.2008.245 | 
Cover
| Abstract | We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art. | 
    
|---|---|
| AbstractList | The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art. We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.  | 
    
| Author | Zaslavskiy, M. Bach, F. Vert, J.-P.  | 
    
| Author_xml | – sequence: 1 givenname: M. surname: Zaslavskiy fullname: Zaslavskiy, M. organization: Centre for Comput. Biol., Mines ParisTech, Fontainebleau, France – sequence: 2 givenname: F. surname: Bach fullname: Bach, F. organization: Lab. d'lnformatique, Ecole Normale Super., Paris, France – sequence: 3 givenname: J.-P. surname: Vert fullname: Vert, J.-P. organization: Centre for Comput. Biol., Mines ParisTech, Fontainebleau, France  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22157295$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19834143$$D View this record in MEDLINE/PubMed https://hal.science/hal-00433567$$DView record in HAL  | 
    
| BookMark | eNqF0ktr3DAUBlBRUppJ2m03hWIKpXThqd6PpQl5wYTMIl0LWZZjBdmaSp6G_PvYnekUAiUrgTjf1ZWuTsDREAcHwEcElwhB9eNuXd1cLzGEcokpewMWSBFVEkbUEVhAxHEpJZbH4CTnBwgRZZC8A8dISUIRJQugqmJtxq64iCHERz_cF1W4j8mPXV-0MRVj54rLZDZdcWNG281gnWIdXP8evG1NyO7Dfj0FPy_O786uytXt5fVZtSotJWIsG8ohdxw3DFHKGgZrAR1yrrXWQClqrmoplUKotoY2AgsqLDKWQm6EVQaSU_B9V7czQW-S70160tF4fVWt9LwHISWEcfEbTfbbzm5S_LV1edS9z9aFYAYXt1lLriSVhMlXpSB06o7zueaXF_IhbtMwXVlLJuhE8Iw-79G27l1z6PPvQ0_g6x6YbE1okxmszweHMWICKza55c7ZFHNOrv1XCup54vrPxPU8cT1NfArQFwHrRzP6OIzJ-PD_2KddzDvnDmdQTqf_w8kzQPiysw | 
    
| CODEN | ITPIDJ | 
    
| CitedBy_id | crossref_primary_10_1016_j_neucom_2021_08_002 crossref_primary_10_1007_s00138_017_0847_1 crossref_primary_10_1007_s10208_022_09575_7 crossref_primary_10_1214_15_AOAS834 crossref_primary_10_1016_j_ins_2019_09_014 crossref_primary_10_1109_TPAMI_2014_2388235 crossref_primary_10_1137_130929886 crossref_primary_10_1162_netn_a_00287 crossref_primary_10_1109_TPAMI_2017_2716350 crossref_primary_10_1016_j_patcog_2016_12_006 crossref_primary_10_1016_j_patcog_2017_12_003 crossref_primary_10_1109_ACCESS_2019_2924034 crossref_primary_10_1016_j_procs_2021_08_099 crossref_primary_10_1007_s10844_011_0178_z crossref_primary_10_1016_j_patcog_2013_08_024 crossref_primary_10_4304_jsw_9_10_2622_2627 crossref_primary_10_1109_ACCESS_2019_2904541 crossref_primary_10_1007_s10589_017_9968_8 crossref_primary_10_1007_s11263_014_0707_7 crossref_primary_10_1016_j_inffus_2021_02_012 crossref_primary_10_1109_TIP_2019_2925287 crossref_primary_10_1109_TIP_2014_2387386 crossref_primary_10_1109_TPAMI_2014_2343959 crossref_primary_10_1016_j_jisa_2023_103652 crossref_primary_10_1109_TITS_2024_3374281 crossref_primary_10_1155_2013_495653 crossref_primary_10_3389_fnins_2016_00554 crossref_primary_10_1109_TCNS_2017_2673540 crossref_primary_10_1007_s10994_018_5764_7 crossref_primary_10_12677_CSA_2022_124112 crossref_primary_10_1109_TPAMI_2011_110 crossref_primary_10_1371_journal_pone_0195993 crossref_primary_10_1016_j_neucom_2016_06_057 crossref_primary_10_1109_TKDE_2021_3124559 crossref_primary_10_1007_s00778_012_0292_8 crossref_primary_10_1007_s13319_015_0054_7 crossref_primary_10_1109_ACCESS_2018_2811721 crossref_primary_10_1142_S0218001414500013 crossref_primary_10_1016_j_patcog_2020_107418 crossref_primary_10_1145_2903719 crossref_primary_10_1109_TNET_2022_3180158 crossref_primary_10_1109_TPAMI_2016_2574706 crossref_primary_10_1109_TIFS_2025_3530692 crossref_primary_10_1177_1729881417738100 crossref_primary_10_1016_j_patrec_2020_12_012 crossref_primary_10_1049_ipr2_13285 crossref_primary_10_1109_ACCESS_2019_2908925 crossref_primary_10_1162_netn_a_00301 crossref_primary_10_1137_080731359 crossref_primary_10_1016_j_neucom_2013_06_031 crossref_primary_10_1016_j_compind_2019_01_005 crossref_primary_10_1007_s00371_024_03772_x crossref_primary_10_1016_j_neucom_2012_12_065 crossref_primary_10_1109_TSMC_2014_2327058 crossref_primary_10_1016_j_dam_2012_01_019 crossref_primary_10_1016_j_parco_2015_03_004 crossref_primary_10_1016_j_patcog_2023_109597 crossref_primary_10_1137_15M1032454 crossref_primary_10_1109_TITS_2020_3011100 crossref_primary_10_1109_TSMC_2017_2693029 crossref_primary_10_1109_TIT_2018_2808999 crossref_primary_10_3390_a16050234 crossref_primary_10_1093_bioinformatics_btab594 crossref_primary_10_1109_TCC_2024_3430237 crossref_primary_10_1016_j_patcog_2019_03_021 crossref_primary_10_1109_TNNLS_2017_2712794 crossref_primary_10_1016_j_patcog_2016_07_015 crossref_primary_10_1287_opre_2022_2355 crossref_primary_10_1007_s11263_019_01231_y crossref_primary_10_1016_j_patrec_2018_07_005 crossref_primary_10_1016_j_dsp_2020_102833 crossref_primary_10_1007_s11263_019_01185_1 crossref_primary_10_1109_TPAMI_2017_2767591 crossref_primary_10_1016_j_patcog_2021_108228 crossref_primary_10_1109_TPAMI_2016_2636200 crossref_primary_10_1145_3130800_3130826 crossref_primary_10_1093_bioinformatics_btx090 crossref_primary_10_1007_s41109_021_00398_z crossref_primary_10_1016_j_cad_2018_10_001 crossref_primary_10_1109_TNET_2019_2962731 crossref_primary_10_3390_s21062175 crossref_primary_10_1007_s11263_011_0442_2 crossref_primary_10_1016_j_robot_2011_07_022 crossref_primary_10_1016_j_patcog_2016_07_021 crossref_primary_10_1016_j_image_2019_01_001 crossref_primary_10_1109_TPAMI_2015_2501802 crossref_primary_10_1109_TPAMI_2015_2409880 crossref_primary_10_1007_s11263_020_01359_2 crossref_primary_10_1016_j_cam_2024_116189 crossref_primary_10_1016_j_patrec_2016_10_004 crossref_primary_10_1016_j_patrec_2016_10_001 crossref_primary_10_1109_TCDS_2022_3188333 crossref_primary_10_1007_s10208_022_09570_y crossref_primary_10_1016_j_patrec_2014_12_011 crossref_primary_10_1016_j_patrec_2022_09_016 crossref_primary_10_1137_19M1305045 crossref_primary_10_1371_journal_pone_0121002 crossref_primary_10_1002_sam_11454 crossref_primary_10_1016_j_neucom_2015_12_082 crossref_primary_10_1186_1471_2105_13_S3_S11 crossref_primary_10_1007_s10514_019_09872_1 crossref_primary_10_1109_OJSP_2021_3083479 crossref_primary_10_1093_jrsssb_qkae085 crossref_primary_10_1016_j_cose_2020_101775 crossref_primary_10_1109_TPAMI_2014_2343235 crossref_primary_10_1109_TMM_2019_2951466 crossref_primary_10_1109_TIP_2017_2695888 crossref_primary_10_1016_j_neucom_2016_12_096 crossref_primary_10_1109_TIP_2014_2362614 crossref_primary_10_1061__ASCE_CP_1943_5487_0000425 crossref_primary_10_1007_s11263_014_0766_9 crossref_primary_10_1145_3130800_3130801 crossref_primary_10_1186_s13640_019_0407_x crossref_primary_10_1016_j_cviu_2019_03_003 crossref_primary_10_1109_TSP_2024_3458008 crossref_primary_10_1080_01691864_2012_703167 crossref_primary_10_1137_18M1196480 crossref_primary_10_1109_TPAMI_2019_2914651 crossref_primary_10_1007_s11042_017_5226_4 crossref_primary_10_1109_TKDE_2018_2833124 crossref_primary_10_1016_j_patcog_2018_09_014 crossref_primary_10_1109_TPAMI_2013_223 crossref_primary_10_1093_imaiai_iaz031 crossref_primary_10_1109_TVT_2022_3221447 crossref_primary_10_1016_j_patrec_2016_07_012 crossref_primary_10_1109_TKDE_2022_3221084 crossref_primary_10_1016_j_media_2018_02_007 crossref_primary_10_1109_TPAMI_2015_2424894 crossref_primary_10_1109_TCYB_2019_2912718 crossref_primary_10_1016_j_patrec_2018_09_024 crossref_primary_10_1109_TCSVT_2018_2852310 crossref_primary_10_1109_LSP_2015_2501546 crossref_primary_10_1109_TPAMI_2013_16 crossref_primary_10_1109_TPAMI_2019_2919308 crossref_primary_10_3724_SP_J_1004_2012_00725 crossref_primary_10_1016_j_swevo_2014_10_006 crossref_primary_10_1109_TCYB_2019_2936176 crossref_primary_10_1109_TPAMI_2012_45 crossref_primary_10_1109_TSP_2024_3458015 crossref_primary_10_1145_3609334 crossref_primary_10_1007_s41109_022_00464_0 crossref_primary_10_1002_hbm_26296 crossref_primary_10_1137_15M1048021 crossref_primary_10_1016_j_jvcir_2018_10_012 crossref_primary_10_1016_j_imavis_2014_11_001 crossref_primary_10_1186_s12864_018_5027_9 crossref_primary_10_1109_TPAMI_2019_2903483 crossref_primary_10_1016_j_patcog_2015_09_029 crossref_primary_10_1371_journal_pone_0277343 crossref_primary_10_1093_imaiai_iav002 crossref_primary_10_1016_j_patcog_2019_06_008 crossref_primary_10_1049_el_2015_1441 crossref_primary_10_1016_j_ins_2015_12_033 crossref_primary_10_1137_18M1209180 crossref_primary_10_1109_TCYB_2017_2697968 crossref_primary_10_1109_TNSE_2021_3056329 crossref_primary_10_1016_j_patcog_2016_06_022 crossref_primary_10_1103_PhysRevResearch_5_033129 crossref_primary_10_1007_s41109_019_0219_z crossref_primary_10_1016_j_patcog_2016_06_023 crossref_primary_10_1137_17M1132264  | 
    
| Cites_doi | 10.1515/9781400873173 10.7551/mitpress/7132.001.0001 10.1109/34.211474 10.1093/nar/gki107 10.1007/978-3-642-61257-2 10.1007/PL00011402 10.1016/S0031-3203(02)00054-7 10.1007/978-3-540-71681-5_2 10.1002/nav.3800020109 10.1145/321958.321963 10.1109/34.993558 10.1103/PhysRevE.64.026118 10.1109/KES.1999.820179 10.1016/j.patcog.2005.05.013 10.1109/TPAMI.2004.1265866 10.1109/IEMBS.2004.1403843 10.1109/34.24792 10.1090/cbms/092 10.1145/2020408.2020410 10.1287/opre.31.2.277 10.1002/nav.3800030109 10.1109/34.6778 10.1007/978-1-4757-9859-3 10.1109/ICDAR.1995.602033 10.1109/iciap.1999.797762 10.1109/34.491619 10.1142/S0218001404003228 10.1007/11585978_12 10.1074/mcp.T200001-MCP200 10.1145/321921.321925 10.1007/3-540-44522-6_24 10.1016/0262-8856(92)90043-3  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 1XC  | 
    
| DOI | 10.1109/TPAMI.2008.245 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database Hyper Article en Ligne (HAL)  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | Technology Research Database Technology Research Database MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science Mathematics Applied Sciences  | 
    
| EISSN | 1939-3539 | 
    
| EndPage | 2242 | 
    
| ExternalDocumentID | oai:HAL:hal-00433567v1 2295185551 19834143 22157295 10_1109_TPAMI_2008_245 4641936  | 
    
| Genre | orig-research Journal Article  | 
    
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 1XC  | 
    
| ID | FETCH-LOGICAL-c437t-d4606e62d51445d50b70e1eefcca087b69b889911bca4d72747c1ac406a7c9a03 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0162-8828 1939-3539  | 
    
| IngestDate | Tue Oct 28 06:35:41 EDT 2025 Mon Sep 29 03:40:31 EDT 2025 Wed Oct 01 14:03:51 EDT 2025 Sun Sep 07 03:17:48 EDT 2025 Mon Jul 21 06:00:37 EDT 2025 Mon Jul 21 09:14:18 EDT 2025 Wed Oct 01 06:43:27 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 Wed Aug 27 02:47:49 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Keywords | Gradient methods Artificial Intelligence Computing Methodologies Object recognition Convex programming Optimization Discrete Mathematics Constrained optimization Learning Scene Analysis Pattern Recognition Graph Theory Mathematics of Computing Numerical Analysis Machine learning Image Processing and Computer Vision Graph algorithms Quadratic programming methods Image processing Combinatorial problem Competitiveness Path following Retina Combinatorial optimization Least squares method Graph transformation Classification Pattern analysis Gradient method gradient methods Mathematical programming Linear interpolation Probabilistic approach Permutation Rewriting Graph theory machine learning Weighted graph Search algorithm Ideogram Graph method Manuscript character Artificial intelligence Graph matching  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c437t-d4606e62d51445d50b70e1eefcca087b69b889911bca4d72747c1ac406a7c9a03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1  | 
    
| ORCID | 0000-0001-9510-8441 0000-0001-8644-1058  | 
    
| PMID | 19834143 | 
    
| PQID | 857466121 | 
    
| PQPubID | 85458 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_857466121 pascalfrancis_primary_22157295 proquest_miscellaneous_734087661 hal_primary_oai_HAL_hal_00433567v1 crossref_primary_10_1109_TPAMI_2008_245 proquest_miscellaneous_869848358 pubmed_primary_19834143 crossref_citationtrail_10_1109_TPAMI_2008_245 ieee_primary_4641936  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-12-01 | 
    
| PublicationDateYYYYMMDD | 2009-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Los Alamitos, CA | 
    
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence | 
    
| PublicationTitleAbbrev | TPAMI | 
    
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell | 
    
| PublicationYear | 2009 | 
    
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers  | 
    
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers  | 
    
| References | ref13 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 Milnor (ref35) 1969 ref16 ref19 Bertsekas (ref36) 1999 ref24 ref23 ref25 Saito (ref41) 1985; 68 ref20 ref22 Cela (ref38) 2007 Cremers (ref18); 2191 ref28 ref27 Walter (ref39) 2003; 13 ref29 ref8 ref7 ref9 Golub (ref26) 1996 ref4 ref3 ref6 ref5 ref40 Garey (ref21) 1979  | 
    
| References_xml | – ident: ref31 doi: 10.1515/9781400873173 – ident: ref33 doi: 10.7551/mitpress/7132.001.0001 – ident: ref16 doi: 10.1109/34.211474 – ident: ref20 doi: 10.1093/nar/gki107 – ident: ref34 doi: 10.1007/978-3-642-61257-2 – volume-title: Nonlinear Programming year: 1999 ident: ref36 – volume-title: Matrix Computations year: 1996 ident: ref26 – ident: ref32 doi: 10.1007/PL00011402 – ident: ref5 doi: 10.1016/S0031-3203(02)00054-7 – volume: 13 issue: 2 year: 2003 ident: ref39 article-title: Detection of the Median Axis of Vessels in Retinal Images publication-title: European J. Ophthalmology – ident: ref7 doi: 10.1007/978-3-540-71681-5_2 – ident: ref28 doi: 10.1002/nav.3800020109 – ident: ref10 doi: 10.1145/321958.321963 – ident: ref19 doi: 10.1109/34.993558 – ident: ref37 doi: 10.1103/PhysRevE.64.026118 – year: 2007 ident: ref38 article-title: Quadratic Assignment Problem Library – ident: ref1 doi: 10.1109/KES.1999.820179 – ident: ref3 doi: 10.1016/j.patcog.2005.05.013 – ident: ref15 doi: 10.1109/TPAMI.2004.1265866 – ident: ref8 doi: 10.1109/IEMBS.2004.1403843 – ident: ref40 doi: 10.1109/34.24792 – ident: ref30 doi: 10.1090/cbms/092 – ident: ref23 doi: 10.1145/2020408.2020410 – ident: ref27 doi: 10.1287/opre.31.2.277 – ident: ref29 doi: 10.1002/nav.3800030109 – volume-title: Computer and Intractability: A Guide to the Theory of NP-Completeness year: 1979 ident: ref21 – ident: ref13 doi: 10.1109/34.6778 – ident: ref22 doi: 10.1007/978-1-4757-9859-3 – volume: 68 start-page: 757 issue: 4 year: 1985 ident: ref41 article-title: On the Data Base etl9b of Handprinted Characters in jis Chinese Characters and Its Analysis publication-title: IEICE Trans. – ident: ref2 doi: 10.1109/ICDAR.1995.602033 – ident: ref12 doi: 10.1109/iciap.1999.797762 – ident: ref17 doi: 10.1109/34.491619 – ident: ref25 doi: 10.1142/S0218001404003228 – ident: ref6 doi: 10.1007/11585978_12 – ident: ref9 doi: 10.1074/mcp.T200001-MCP200 – volume: 2191 volume-title: Proc. 23rd DAGM-Symp. Pattern Recognition ident: ref18 article-title: Evaluation of Convex Optimization Techniques for the Weighted Graph-Matching Problem in Computer Vision – ident: ref11 doi: 10.1145/321921.321925 – volume-title: Topology from the Differentiable Viewpoint year: 1969 ident: ref35 – ident: ref4 doi: 10.1007/3-540-44522-6_24 – ident: ref14 doi: 10.1016/0262-8856(92)90043-3 – ident: ref24 doi: 10.1287/opre.31.2.277  | 
    
| SSID | ssj0014503 | 
    
| Score | 2.504033 | 
    
| Snippet | We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by... The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation...  | 
    
| SourceID | hal proquest pubmed pascalfrancis crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2227 | 
    
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial Intelligence Bioinformatics classification Combinatorial analysis Combinatorics Combinatorics. Ordered structures Computer Science Computer science; control theory; systems convex programming Data Structures and Algorithms Exact sciences and technology Gradient methods Graph algorithms Graph matching Graph theory Humans Image Processing Image Processing, Computer-Assisted Information retrieval. Graph Interpolation Life Sciences Machine Learning Machine learning algorithms Mathematical analysis Mathematics Matrices Optimization Optimization methods Pattern Recognition, Automated - statistics & numerical data Pattern recognition. Digital image processing. Computational geometry Programming Proteins Quadratic programming Quantitative Methods Retina Retinal Vessels - anatomy & histology Sciences and techniques of general use Stochastic processes Studies Theoretical computing  | 
    
| Title | A Path Following Algorithm for the Graph Matching Problem | 
    
| URI | https://ieeexplore.ieee.org/document/4641936 https://www.ncbi.nlm.nih.gov/pubmed/19834143 https://www.proquest.com/docview/857466121 https://www.proquest.com/docview/734087661 https://www.proquest.com/docview/869848358 https://hal.science/hal-00433567  | 
    
| Volume | 31 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1939-3539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb5RQEJ50e9KDra1abG1ejIkX2fJj3g-OxLhdjWv20Ca9EXjMWmO7mC6riX-98x4sWmMbbwQmBJgZ3jfM8H0Ar3gNc3FRhnWsTIiIZVipaBFqKslEREi-XTD7pKbn-OFCXmzBm-FfGCLyw2c0dpu-l183du0-lZ2gQsYbagQjbVT3r9bQMUDpVZAZwXCGcxnREzTGUXZyNs9n77uxyQS9VE1m-OWN6a21aHTpJiG9xIobkCxX_IwWnbjF3ejTr0KTHZhtrr8bPvk6XrfV2P78i9rxf29wFx71cFTkXfw8hi1a7sHORupB9Jm_Bw__4C3chywXc0aOYsJB1PzgXSK_-tzcfGkvrwWDYMGgUpw6Jmwx4ze9-8Yl5p1wzRM4n7w7ezsNew2G0GKq27BGrnBIJTUDK5S1jCodUUy0YM9HRlcqqwyXbHFc2RJr7WpcG5eWYUKpbVZG6VPYXjZLOgDhepBVnWRKW4kJUYWL1GrJwSDTDK0MINx4o7A9QbnTybgqfKESZYV3ZCecyY4M4PVg_62j5rjT8iU7dzByjNrT_GPh9rlOaCqV_h4HsO8cMlj1vgjg-FYsDMcTBktcmfDJDzfBUfT5vyqM1KgcOVsAYjjKieu6MeWSmvWq0Ck6OkB1j4lRmUGGyCaAZ13U_b7RPoSf__uqD-FB0gtdRPERbLc3a3rB6Kmtjn3a_AIyxxDa | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB215QAcKLR8hEKxEBIXss3H2E6OEWLZwqbaw1bqLUqc2RZRNqibBYlfz9jJBooo4hYloyjOjO03mcl7AK94D7NxUfp1qBIfEUu_UsHC11RSEhAhuXJBfqImp_jhTJ5twZvhXxgics1nNLKHrpZfN2ZtP5UdoULGG2obbkm-q-z-1hpqBiidDjJjGJ7jnEj0FI1hkB7NZ1l-3DVORujEatKEl2-Mr-1G2xe2F9KJrNgWyXLFb2nRyVvcjD_dPjTehXwzgq795PNo3VYj8-MPcsf_HeJ9uNcDUpF1EfQAtmi5B7sbsQfRz_09uPsbc-E-pJmYMXYUYw6j5jufEtnleXP1qb34IhgGC4aV4r3lwhY5r_X2K5eYddI1D-F0_G7-duL3Kgy-wVi3fo2c45CKaoZWKGsZVDqgkGjBvg8SXam0SjhpC8PKlFhrm-WasDQMFEpt0jKIH8HOslnSExC2ClnVUaq0kRgRVbiIjZYcDjJO0UgP_I03CtNTlFuljMvCpSpBWjhHdtKZ7EgPXg_2XztyjhstX7JzByPLqT3JpoU9Z2uhsVT6W-jBvnXIYNX7woPDa7EwXI8YLnFuwjc_2ARH0a8AqyKRGpWlZ_NADFd56tp6TLmkZr0qdIyWEFD9wyRRaYIMkhMPHndR92ugfQg__ftTv4Dbk3k-LabHJx8P4E7Uy14E4TPYaa_W9JyxVFsduin0E5yxFCc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Path+Following+Algorithm+for+the+Graph+Matching+Problem&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zaslavskiy%2C+M&rft.au=Bach%2C+F&rft.au=Vert%2C+J-P&rft.date=2009-12-01&rft.issn=0162-8828&rft.volume=31&rft.issue=12&rft_id=info:doi/10.1109%2FTPAMI.2008.245&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |