Weightbearing Computed Tomography (WBCT) Analysis of Subtalar Joint Dynamics in Hindfoot Valgus Malalignment
Background/Objectives: Hindfoot valgus malalignment, characterized by the lateral deviation of the calcaneus and medial tilting of the talus, disrupts hindfoot biomechanics and increases strain on subtalar joint. This study evaluates weightbearing and non-weightbearing imaging modalities to identify...
Saved in:
Published in | Journal of clinical medicine Vol. 14; no. 8; p. 2587 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
09.04.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2077-0383 2077-0383 |
DOI | 10.3390/jcm14082587 |
Cover
Summary: | Background/Objectives: Hindfoot valgus malalignment, characterized by the lateral deviation of the calcaneus and medial tilting of the talus, disrupts hindfoot biomechanics and increases strain on subtalar joint. This study evaluates weightbearing and non-weightbearing imaging modalities to identify dynamic alignment changes and their diagnostic implications. This study aims to (1) quantify changes in subtalar joint parameters between non-weightbearing computed tomography (NWBCT) and weightbearing computed tomography (WBCT) in patients with hindfoot valgus; (2) evaluate correlations between WBCT and standard radiographic parameters; and (3) identify radiographic predictors of subtalar joint status during weightbearing. Methods: We reviewed 70 patients with confirmed hindfoot valgus malalignment (hindfoot valgus angle >5°), identified through radiographic measurements. Of these, 32 underwent both NWBCT and WBCT, while 38 underwent WBCT alone. Hindfoot alignment angle (HAA) and hindfoot alignment ratio (HAR) were measured on hindfoot alignment radiographs, while heel valgus angle (HVA), talocalcaneal distance (TCD), subtalar joint subluxation (SL) and calcaneofibular distance (CF) were assessed on CT. Results: WBCT revealed significant increases in HVA and SL (both, p < 0.001) and decreases in TCD and CF (p < 0.001 and p = 0.002, respectively) compared to NWBCT, reflecting dynamic subtalar joint changes under weightbearing conditions. Receiver operating characteristic (ROC) analysis identified hindfoot alignment angle (HAA) as the most reliable predictor of talocalcaneal osseous contact, with a cutoff value of >9.25° based on Youden’s index, yielding a sensitivity of 73% and specificity of 81.8%. Inter- and intra-observer reliabilities for all parameters were excellent (ICC > 0.81). Conclusions: WBCT provides critical insights into subtalar joint dynamics under physiological loads, surpassing NWBCT in assessing weightbearing-induced alignment changes. Although standard radiographic parameters, particularly HAA, can serve as reliable, cost-effective predictors of subtalar joint pathology in resource-limited settings, WBCT should still be preferred when available, especially in patients with significant malalignment or when detailed dynamic evaluation is needed to guide clinical decision-making. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2077-0383 2077-0383 |
DOI: | 10.3390/jcm14082587 |