A regional GNSS-VTEC model over Nigeria using neural networks: A novel approach

A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) param...

Full description

Saved in:
Bibliographic Details
Published inGeodesy and Geodynamics Vol. 7; no. 1; pp. 19 - 31
Main Authors Okoh, Daniel, Owolabi, Oluwafisayo, Ekechukwu, Christopher, Folarin, Olanike, Arhiwo, Gila, Agbo, Joseph, Bolaji, Segun, Rabiu, Babatunde
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2016
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text
ISSN1674-9847
2589-0573
2589-0573
DOI10.1016/j.geog.2016.03.003

Cover

Abstract A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like distur- bance storm time (DST) and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET) were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial per- formances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model.
AbstractList A neural network model of the Global Navigation Satellite System – vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like disturbance storm time (DST) and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET) were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial performances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model.
A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like distur- bance storm time (DST) and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET) were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial per- formances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model.
Author Daniel Okoh Oluwafisavo Owolabi Christovher Ekechukwu Olanike Folarin Gila Arhiwo Joseph Agbo Segun Bolaji Babatunde Rabiu
AuthorAffiliation NASRDA Center for Atmospheric Research, Kogi State University, Anyigba Campus, Nigeria Ionospheric & Space Physics Laboratory, Department of Physics, University of Lagos, Nigeria Department of Physics, University of Calabar, Nigeria Department of Physics, Federal University of Agriculture, Makurdi, Nigeria Department of Surveying & Geo-informatics, Nnamdi Azikiwe University, Awka, Nigeria
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0001-8816-092X
  surname: Okoh
  fullname: Okoh, Daniel
  email: okodan2003@gmail.com
  organization: NASRDA Center for Atmospheric Research, Kogi State University, Anyigba Campus, Nigeria
– sequence: 2
  givenname: Oluwafisayo
  surname: Owolabi
  fullname: Owolabi, Oluwafisayo
  organization: Ionospheric & Space Physics Laboratory, Department of Physics, University of Lagos, Nigeria
– sequence: 3
  givenname: Christopher
  surname: Ekechukwu
  fullname: Ekechukwu, Christopher
  organization: Department of Physics, University of Calabar, Nigeria
– sequence: 4
  givenname: Olanike
  surname: Folarin
  fullname: Folarin, Olanike
  organization: Ionospheric & Space Physics Laboratory, Department of Physics, University of Lagos, Nigeria
– sequence: 5
  givenname: Gila
  surname: Arhiwo
  fullname: Arhiwo, Gila
  organization: Department of Physics, Federal University of Agriculture, Makurdi, Nigeria
– sequence: 6
  givenname: Joseph
  surname: Agbo
  fullname: Agbo, Joseph
  organization: Department of Surveying & Geo-informatics, Nnamdi Azikiwe University, Awka, Nigeria
– sequence: 7
  givenname: Segun
  surname: Bolaji
  fullname: Bolaji, Segun
  organization: Ionospheric & Space Physics Laboratory, Department of Physics, University of Lagos, Nigeria
– sequence: 8
  givenname: Babatunde
  surname: Rabiu
  fullname: Rabiu, Babatunde
  organization: NASRDA Center for Atmospheric Research, Kogi State University, Anyigba Campus, Nigeria
BookMark eNqNkcFO3DAQhq2KSt1SXoCT1XtSO3bsROKyWlGKhKgqKFdrYk-Cl2BvnSyIV-mz9J36CvV2EYceUA-WLWu-b-x_3pODEAMScsxZyRlXn9blgHEoq3wumSgZE2_IoqqbtmC1FgdkwZWWRdtI_Y4cTZPvGNdSK835gnxb0oSDjwFGenZ5dVXcXJ-u6H10ONL4gIle-gGTB7qdfBhowG3KlQHnx5jupt-_ftIlDblwpLDZpAj29gN528M44dHzfki-fz69Xn0pLr6ena-WF4WVQs9Fy3tQwGynUHAndSdk1bSdq6GvHFcMGiZEjb3jjW6RO9XrVlUWoFdMdejEITnfe12Etdkkfw_pyUTw5u9FTIOBNHs7omHMOWu57ICjzAvqVtSs67m2fdc1KrvE3rUNG3h6hHF8EXJmdiGbtdmFbHYhGyayUmSq2lM2xWlK2P8f1PwDWT_DnCcwJ_Dj6-jJHsUc64PHZCbrMVh0PqGd87_96_jH5863MQw_8jhf3qtUy7luZCX-AFKqtyM
CitedBy_id crossref_primary_10_1007_s11069_022_05356_1
crossref_primary_10_1029_2019JA027065
crossref_primary_10_5194_angeo_38_1203_2020
crossref_primary_10_1029_2017RS006499
crossref_primary_10_1007_s11600_021_00679_2
crossref_primary_10_3390_s20082290
crossref_primary_10_1016_j_asr_2022_04_066
crossref_primary_10_1016_j_asr_2020_02_005
crossref_primary_10_1007_s00190_017_1054_6
crossref_primary_10_1109_TAES_2022_3219366
crossref_primary_10_5194_angeo_37_77_2019
crossref_primary_10_1016_j_geog_2022_07_004
crossref_primary_10_3390_rs13010151
crossref_primary_10_1016_j_asr_2022_10_052
crossref_primary_10_1029_2020SW002525
crossref_primary_10_1016_j_asr_2024_05_031
crossref_primary_10_1029_2022SW003357
crossref_primary_10_1029_2020SW002706
crossref_primary_10_1088_1755_1315_1418_1_012028
crossref_primary_10_1016_j_jastp_2025_106477
crossref_primary_10_1016_j_mex_2021_101533
crossref_primary_10_1029_2019SW002257
crossref_primary_10_11648_j_ijass_20241203_11
crossref_primary_10_33012_navi_577
crossref_primary_10_1007_s12572_022_00322_3
crossref_primary_10_1029_2018JA025455
crossref_primary_10_1016_j_asr_2024_08_067
crossref_primary_10_1016_j_jastp_2018_02_006
crossref_primary_10_1007_s10509_023_04237_8
crossref_primary_10_1029_2018SW001907
crossref_primary_10_1016_j_ejrs_2024_03_006
crossref_primary_10_1109_TIM_2023_3279464
crossref_primary_10_1016_j_asr_2019_01_027
crossref_primary_10_1016_j_asr_2017_06_001
crossref_primary_10_1029_2023SW003821
crossref_primary_10_1016_j_geog_2021_09_003
crossref_primary_10_1007_s10509_022_04041_w
crossref_primary_10_1016_j_jastp_2020_105338
crossref_primary_10_1016_j_asr_2021_05_027
crossref_primary_10_1016_j_asr_2023_12_051
crossref_primary_10_1109_JSTARS_2019_2956968
crossref_primary_10_1016_j_actaastro_2020_04_048
crossref_primary_10_1016_j_asr_2024_05_022
crossref_primary_10_1016_j_sciaf_2024_e02492
crossref_primary_10_1029_2022SW003103
crossref_primary_10_1038_s41598_024_69738_0
Cites_doi 10.1029/97RS00431
10.1090/qam/10666
10.1016/j.earscirev.2015.05.003
10.1016/j.asr.2012.11.013
10.1016/j.asr.2007.07.048
10.1007/s11200-007-0015-6
10.1029/2007RS003719
10.5194/angeo-24-3279-2006
10.3724/SP.J.1246.2010.00023
ContentType Journal Article
Copyright 2016 Institute of Seismology, China Earthquake Administration
Copyright_xml – notice: 2016 Institute of Seismology, China Earthquake Administration
DBID 2RA
92L
CQIGP
W94
~WA
6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.geog.2016.03.003
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate A regional GNSS-VTEC model over Nigeria using neural networks: A novel approach
EISSN 2589-0573
EndPage 31
ExternalDocumentID oai_doaj_org_article_00ddcc14ba1e4a1ea59350bf17cfbb86
10.1016/j.geog.2016.03.003
10_1016_j_geog_2016_03_003
S1674984716300052
669117842
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W94
~WA
6I.
AAFTH
AAYXX
CITATION
-01
-0A
-SA
-S~
0R~
4.4
457
5VR
92E
92I
92M
9D9
9DA
AAEDW
AAFWJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADCNI
ADEZE
ADTOC
ADVLN
AEUPX
AEXQZ
AFPKN
AFPUW
AFTJW
AFUIB
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
AMRAJ
CAJEA
CCEZO
CCVFK
CHBEP
CW9
EBS
EJD
FDB
FRP
GROUPED_DOAJ
IPNFZ
JUIAU
KQ8
M41
O9-
OK1
Q--
Q-0
RIG
ROL
RT1
S..
SSZ
T8Q
TCJ
TGP
U1F
U1G
U5A
U5K
UNPAY
~LF
~LJ
ID FETCH-LOGICAL-c437t-91fa6a0cb6e31d47b34289bd5af2d160a80335efd1879e1d6f7962caaf606bed3
IEDL.DBID DOA
ISSN 1674-9847
2589-0573
IngestDate Fri Oct 03 12:27:43 EDT 2025
Tue Aug 19 21:41:53 EDT 2025
Wed Oct 29 21:25:21 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Thu Jul 20 19:57:00 EDT 2023
Wed Feb 14 10:18:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Total electron content (TEC)
Global Navigation Satellite System (GNSS) ionosphere
Neural network
Nigerian permanent GNSS network (NIGNET)
International reference ionosphere (IRI)
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-91fa6a0cb6e31d47b34289bd5af2d160a80335efd1879e1d6f7962caaf606bed3
Notes A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like distur- bance storm time (DST) and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET) were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial per- formances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model.
Global Navigation Satellite System(GNSS) ionosphereTotal electron content (TEC)Nigerian permanent GNSS network(NIGNET)Neural networkInternational reference ionosphere(IRI)
42-1806/P
ORCID 0000-0001-8816-092X
OpenAccessLink https://doaj.org/article/00ddcc14ba1e4a1ea59350bf17cfbb86
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_00ddcc14ba1e4a1ea59350bf17cfbb86
unpaywall_primary_10_1016_j_geog_2016_03_003
crossref_primary_10_1016_j_geog_2016_03_003
crossref_citationtrail_10_1016_j_geog_2016_03_003
elsevier_sciencedirect_doi_10_1016_j_geog_2016_03_003
chongqing_primary_669117842
PublicationCentury 2000
PublicationDate 2016
January 2016
2016-01-00
2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle Geodesy and Geodynamics
PublicationTitleAlternate Geodesy and Geodynamics
PublicationYear 2016
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Kisi, Uncuoglu (bib16) 2005; 12
Klobuchar (bib9) 1996; vol. 2
Senalp, Tulunay, Tulunay (bib5) 2008; 43
Bilitza, McKinnell (bib17) 2011
Rao, Gopi, Niranjan, Prasad (bib10) 2006; 24
Demuth, Beale (bib15) 2002
Mark (bib7) 2002
Hernandez-Pajares, Juan, Sanz (bib3) 1997; 32
Habarulema (bib6) 2010
Bilitza, Reinisch (bib18) 2008; 42
Okoh, McKinnell, Cilliers, Okeke (bib20) 2013; 52
Mannucci, Wilson, Edwards (bib13) 1993
Baboo, Shereef (bib8) 2010; 1
Tulunay, Senalp, Cander, Tulunay, Bilge, Mizrahi (bib4) 2004; 47
Jin, Occhipinti, Jin (bib11) 2015; 147
Levenberg (bib14) 1944; 2
Ng (bib19) 2012
Hofmann-Wellenhof, Lichteneeger, Collins (bib2) 2001
Leandro, Santos (bib1) 2007; 51
Zhu, Wu, Lin, Zhou (bib12) 2010; 1
Hernandez-Pajares (10.1016/j.geog.2016.03.003_bib3) 1997; 32
Ng (10.1016/j.geog.2016.03.003_bib19) 2012
Mannucci (10.1016/j.geog.2016.03.003_bib13) 1993
Rao (10.1016/j.geog.2016.03.003_bib10) 2006; 24
Kisi (10.1016/j.geog.2016.03.003_bib16) 2005; 12
Leandro (10.1016/j.geog.2016.03.003_bib1) 2007; 51
Senalp (10.1016/j.geog.2016.03.003_bib5) 2008; 43
Baboo (10.1016/j.geog.2016.03.003_bib8) 2010; 1
Habarulema (10.1016/j.geog.2016.03.003_bib6) 2010
Zhu (10.1016/j.geog.2016.03.003_bib12) 2010; 1
Tulunay (10.1016/j.geog.2016.03.003_bib4) 2004; 47
Demuth (10.1016/j.geog.2016.03.003_bib15) 2002
Bilitza (10.1016/j.geog.2016.03.003_bib17) 2011
Okoh (10.1016/j.geog.2016.03.003_bib20) 2013; 52
Mark (10.1016/j.geog.2016.03.003_bib7) 2002
Hofmann-Wellenhof (10.1016/j.geog.2016.03.003_bib2) 2001
Levenberg (10.1016/j.geog.2016.03.003_bib14) 1944; 2
Klobuchar (10.1016/j.geog.2016.03.003_bib9) 1996; vol. 2
Jin (10.1016/j.geog.2016.03.003_bib11) 2015; 147
Bilitza (10.1016/j.geog.2016.03.003_bib18) 2008; 42
References_xml – year: 2001
  ident: bib2
  article-title: Global positioning system: theory and practice
– year: 2010
  ident: bib6
  article-title: A contribution to TEC modelling over Southern Africa using GPS data
– year: 2002
  ident: bib15
  article-title: Neural network toolbox for use with MATLAB
– volume: 147
  start-page: 54
  year: 2015
  end-page: 64
  ident: bib11
  article-title: GNSS ionospheric seismology: recent observation evidences and characteristics
  publication-title: Earth-Sci Rev
– volume: 42
  start-page: 599
  year: 2008
  end-page: 609
  ident: bib18
  article-title: International reference ionosphere 2007: improvements and new parameters
  publication-title: Adv Space Res
– year: 2002
  ident: bib7
  article-title: Neural network toolbox for use with MATLAB
– volume: 52
  start-page: 1791
  year: 2013
  end-page: 1797
  ident: bib20
  article-title: Using GPS-TEC to calibrate VTEC computed with the IRI model over Nigeria
  publication-title: Adv Space Res
– volume: 51
  start-page: 279
  year: 2007
  end-page: 292
  ident: bib1
  article-title: A neural network approach for regional vertical total electron content modeling
  publication-title: Studia Geophysica et Geodaetica
– volume: 1
  year: 2010
  ident: bib8
  article-title: An efficient weather forecasting system using artificial neural network
  publication-title: Int J Environ Sci Dev
– volume: 47
  start-page: 1201
  year: 2004
  end-page: 1214
  ident: bib4
  article-title: Development of algorithms and software for forecasting, nowcasting and variability of TEC
  publication-title: Ann Geophys
– start-page: 1323
  year: 1993
  end-page: 1332
  ident: bib13
  article-title: A new method for monitoring the earth's ionospheric total electron content using the GPS global network, Proc. of ION GPS-93
  publication-title: Inst Navigation
– volume: 24
  start-page: 3279
  year: 2006
  end-page: 3292
  ident: bib10
  article-title: Temporal and spatial variations in TEC using simultaneous measurements from the Indian network of receivers during the low solar activity period of 2004–2005
  publication-title: Ann Geophys
– year: 2011
  ident: bib17
  article-title: International reference ionosphere, IRI-2011
  publication-title: IRI 2011 Workshop Presentation, SANSA space science, 10–14 October, Hermanus, South Africa
– volume: vol. 2
  start-page: 164
  year: 1996
  ident: bib9
  article-title: Ionospheric effects on GPS
  publication-title: Global positioning system: theory and applications
– year: 2012
  ident: bib19
  article-title: Coursera video lecture on machine learning
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  ident: bib14
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q Appl Math
– volume: 12
  start-page: 434
  year: 2005
  end-page: 442
  ident: bib16
  article-title: Comparison of three back-propagation training algorithms for two case studies
  publication-title: Indian J Eng Mater Sci
– volume: 1
  start-page: 23
  year: 2010
  end-page: 28
  ident: bib12
  article-title: Temporal and spatial characteristics of VTEC anomalies before Wenchuan Ms8.0 earthquake
  publication-title: Geod Geodyn
– volume: 32
  start-page: 1081
  year: 1997
  end-page: 1090
  ident: bib3
  article-title: Neural network modeling of the ionospheric electron content at global scale using GPS
  publication-title: Radio Sci
– volume: 43
  start-page: RS4016
  year: 2008
  ident: bib5
  article-title: Total electron content (TEC) forecasting by Cascade modeling, a possible alternative to the IRI-2001
  publication-title: Radio Sci
– volume: 32
  start-page: 1081
  year: 1997
  ident: 10.1016/j.geog.2016.03.003_bib3
  article-title: Neural network modeling of the ionospheric electron content at global scale using GPS
  publication-title: Radio Sci
  doi: 10.1029/97RS00431
– year: 2002
  ident: 10.1016/j.geog.2016.03.003_bib7
– volume: 2
  start-page: 164
  year: 1944
  ident: 10.1016/j.geog.2016.03.003_bib14
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q Appl Math
  doi: 10.1090/qam/10666
– volume: vol. 2
  start-page: 164
  year: 1996
  ident: 10.1016/j.geog.2016.03.003_bib9
  article-title: Ionospheric effects on GPS
– volume: 1
  issue: 4
  year: 2010
  ident: 10.1016/j.geog.2016.03.003_bib8
  article-title: An efficient weather forecasting system using artificial neural network
  publication-title: Int J Environ Sci Dev
– volume: 147
  start-page: 54
  year: 2015
  ident: 10.1016/j.geog.2016.03.003_bib11
  article-title: GNSS ionospheric seismology: recent observation evidences and characteristics
  publication-title: Earth-Sci Rev
  doi: 10.1016/j.earscirev.2015.05.003
– year: 2011
  ident: 10.1016/j.geog.2016.03.003_bib17
  article-title: International reference ionosphere, IRI-2011
– year: 2002
  ident: 10.1016/j.geog.2016.03.003_bib15
– year: 2012
  ident: 10.1016/j.geog.2016.03.003_bib19
– volume: 52
  start-page: 1791
  year: 2013
  ident: 10.1016/j.geog.2016.03.003_bib20
  article-title: Using GPS-TEC to calibrate VTEC computed with the IRI model over Nigeria
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2012.11.013
– year: 2010
  ident: 10.1016/j.geog.2016.03.003_bib6
– volume: 42
  start-page: 599
  issue: 4
  year: 2008
  ident: 10.1016/j.geog.2016.03.003_bib18
  article-title: International reference ionosphere 2007: improvements and new parameters
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2007.07.048
– volume: 51
  start-page: 279
  year: 2007
  ident: 10.1016/j.geog.2016.03.003_bib1
  article-title: A neural network approach for regional vertical total electron content modeling
  publication-title: Studia Geophysica et Geodaetica
  doi: 10.1007/s11200-007-0015-6
– volume: 43
  start-page: RS4016
  year: 2008
  ident: 10.1016/j.geog.2016.03.003_bib5
  article-title: Total electron content (TEC) forecasting by Cascade modeling, a possible alternative to the IRI-2001
  publication-title: Radio Sci
  doi: 10.1029/2007RS003719
– volume: 24
  start-page: 3279
  year: 2006
  ident: 10.1016/j.geog.2016.03.003_bib10
  article-title: Temporal and spatial variations in TEC using simultaneous measurements from the Indian network of receivers during the low solar activity period of 2004–2005
  publication-title: Ann Geophys
  doi: 10.5194/angeo-24-3279-2006
– volume: 1
  start-page: 23
  issue: 1
  year: 2010
  ident: 10.1016/j.geog.2016.03.003_bib12
  article-title: Temporal and spatial characteristics of VTEC anomalies before Wenchuan Ms8.0 earthquake
  publication-title: Geod Geodyn
  doi: 10.3724/SP.J.1246.2010.00023
– volume: 12
  start-page: 434
  year: 2005
  ident: 10.1016/j.geog.2016.03.003_bib16
  article-title: Comparison of three back-propagation training algorithms for two case studies
  publication-title: Indian J Eng Mater Sci
– volume: 47
  start-page: 1201
  year: 2004
  ident: 10.1016/j.geog.2016.03.003_bib4
  article-title: Development of algorithms and software for forecasting, nowcasting and variability of TEC
  publication-title: Ann Geophys
– start-page: 1323
  year: 1993
  ident: 10.1016/j.geog.2016.03.003_bib13
  article-title: A new method for monitoring the earth's ionospheric total electron content using the GPS global network, Proc. of ION GPS-93
  publication-title: Inst Navigation
– year: 2001
  ident: 10.1016/j.geog.2016.03.003_bib2
SSID ssib017476711
ssib022561437
ssib038075010
ssib051367622
ssib007891408
ssib011451138
ssib044737589
Score 2.1900737
Snippet A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that...
A neural network model of the Global Navigation Satellite System – vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that...
SourceID doaj
unpaywall
crossref
elsevier
chongqing
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms Global Navigation Satellite System (GNSS) ionosphere
GNSS
International reference ionosphere (IRI)
Neural network
Nigerian permanent GNSS network (NIGNET)
Total electron content (TEC)
vtec模型
全球导航卫星系统
太阳黑子数
尼日利亚
测试网络
神经网络模型
等离子体频率
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELXKcuAEVC1iW6h86K0NiuPY3vS2ICiq1G0lWAQny5-BdpWFsisEv56ZfKy6FUL0kEs0cRx77JlRnt8j5KNUzMpYxCTA5p_kAWVeQjBQpRibOZ_5BlX5fSSPx_m3c3He0uTgWZil__c1DqsM0xIhWLIhI-UrZFUKyLt7ZHU8-jm8wIpKqjwpBrWaWCYQAyQUb0_IPN0IMilcTqvyBuLDUkSqifuXAtPavLo293dmMvkr8BxtNApGtzVfIeJNfu_NZ3bPPfzD5viyb9ok623-SYeNw7wmr0L1hvwYUhRowKScfh2dnCRnp4cHtBbJoQjxpKOrEj2VIkq-pMiBCZZVgyC__UKHtAKzCe0Iyt-S8dHh6cFx0iotJC7nagY7XjTSpM7KwJnPleVQlRTWCxMzz2RqBinnIkSP2uSBeRlVITNnTIT6xwbPt0ivmlZhm9CA9DbOQqZYQPFVMMMFV3jAFYnVRFB98n4x8vq6YdTQUsKeqwZ51iesmwvtWpJy1MqY6A6N9kvj4GkcPJ1ypDbtk0-LZ7oGn7PexyleWCK9dn0DZki3qxXsvHeO5dawkMNlsO-pjUy5aO1A9onoHES3mUqTgUBTV8--_PPCm17Q13f_Z75DerM_87ALWdLMfmiXxyNgFgpg
  priority: 102
  providerName: Unpaywall
Title A regional GNSS-VTEC model over Nigeria using neural networks: A novel approach
URI http://lib.cqvip.com/qk/71049X/201601/669117842.html
https://dx.doi.org/10.1016/j.geog.2016.03.003
https://doi.org/10.1016/j.geog.2016.03.003
https://doaj.org/article/00ddcc14ba1e4a1ea59350bf17cfbb86
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2589-0573
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044737589
  issn: 1674-9847
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQOMAFgQBRBpMP3CDCjmMn2a2bOiakFaStaJws_wxDVTqg08RlfzvvxUnaXQYHDukhcp3o84vfe-nX7yPkjSq5VbGOWYDNPysC2ryEYKBLMTZ3PveJVXkyV8eL4uO5PN-y-kJOWJIHTsC9Z8x753hhDQ8FHEbWQjIbeemitVUnts2qequZwkgqqxo6hzGyOPrR8k2kQRBDWtokZlRdl2yTCIuiFFBIj4ledsJm3U8SyNrPatjT-3_gJLJYE1YN8sRUUkwVqNTwbdU2PyD_3Mp4nTHArcT34Kq9NL-vzXK5ldiOHpNHfUVKpwmJJ-ReaJ-ST1OKlg1YptMP89PT7MvZ7JB2tjkUSZ90ftFg7FLkzTcUVTFhZJs45b_26ZS2MGxJB8nyZ2RxNDs7PM5674XMAS5r2AOjUYY5q4LgviitgD6ltl6amHuumKmYEDJEj27lgXsVy1rlzpgIHZENXjwnO-2qDS8IDSh44wBUCWsC5agREsCFOgSl1mQoJ2R3xEpfJo0NrRTswmVV5BPCB_S062XL0T1jqQd-2neN6GtEXzOBYqcT8nb8zjDhXaMPcFHGkSi43Z2AMNR9GOq_heGEyGFJdV-7pJoEprq48-LvxvX_h3t9-T_udZc8xCnTi6RXZGf98yq8htJqbfe6pwg-T25me-T-Yv55-vUPKQIYUg
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELXKcuAEVC1iW6h86K0NiuPY3vS2ICiq1G0lWAQny5-BdpWFsisEv56ZfKy6FUL0kEs0cRx77JlRnt8j5KNUzMpYxCTA5p_kAWVeQjBQpRibOZ_5BlX5fSSPx_m3c3He0uTgWZil__c1DqsM0xIhWLIhI-UrZFUKyLt7ZHU8-jm8wIpKqjwpBrWaWCYQAyQUb0_IPN0IMilcTqvyBuLDUkSqifuXAtPavLo293dmMvkr8BxtNApGtzVfIeJNfu_NZ3bPPfzD5viyb9ok623-SYeNw7wmr0L1hvwYUhRowKScfh2dnCRnp4cHtBbJoQjxpKOrEj2VIkq-pMiBCZZVgyC__UKHtAKzCe0Iyt-S8dHh6cFx0iotJC7nagY7XjTSpM7KwJnPleVQlRTWCxMzz2RqBinnIkSP2uSBeRlVITNnTIT6xwbPt0ivmlZhm9CA9DbOQqZYQPFVMMMFV3jAFYnVRFB98n4x8vq6YdTQUsKeqwZ51iesmwvtWpJy1MqY6A6N9kvj4GkcPJ1ypDbtk0-LZ7oGn7PexyleWCK9dn0DZki3qxXsvHeO5dawkMNlsO-pjUy5aO1A9onoHES3mUqTgUBTV8--_PPCm17Q13f_Z75DerM_87ALWdLMfmiXxyNgFgpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+regional+GNSS-VTEC+model+over+Nigeria+using+neural+networks%EF%BC%9A+A+novel+approach&rft.jtitle=%E5%A4%A7%E5%9C%B0%E6%B5%8B%E9%87%8F%E4%B8%8E%E5%9C%B0%E7%90%83%E5%8A%A8%E5%8A%9B%E5%AD%A6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Daniel+Okoh+Oluwafisavo+Owolabi+Christovher+Ekechukwu+Olanike+Folarin+Gila+Arhiwo+Joseph+Agbo+Segun+Bolaji+Babatunde+Rabiu&rft.date=2016&rft.issn=1674-9847&rft.issue=1&rft.spage=19&rft.epage=31&rft_id=info:doi/10.1016%2Fj.geog.2016.03.003&rft.externalDocID=669117842
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71049X%2F71049X.jpg