A regional GNSS-VTEC model over Nigeria using neural networks: A novel approach
A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) param...
Saved in:
| Published in | Geodesy and Geodynamics Vol. 7; no. 1; pp. 19 - 31 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
2016
KeAi Communications Co., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-9847 2589-0573 2589-0573 |
| DOI | 10.1016/j.geog.2016.03.003 |
Cover
| Abstract | A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like distur- bance storm time (DST) and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET) were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial per- formances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model. |
|---|---|
| AbstractList | A neural network model of the Global Navigation Satellite System – vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like disturbance storm time (DST) and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET) were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial performances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model. A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like distur- bance storm time (DST) and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET) were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial per- formances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model. |
| Author | Daniel Okoh Oluwafisavo Owolabi Christovher Ekechukwu Olanike Folarin Gila Arhiwo Joseph Agbo Segun Bolaji Babatunde Rabiu |
| AuthorAffiliation | NASRDA Center for Atmospheric Research, Kogi State University, Anyigba Campus, Nigeria Ionospheric & Space Physics Laboratory, Department of Physics, University of Lagos, Nigeria Department of Physics, University of Calabar, Nigeria Department of Physics, Federal University of Agriculture, Makurdi, Nigeria Department of Surveying & Geo-informatics, Nnamdi Azikiwe University, Awka, Nigeria |
| Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0001-8816-092X surname: Okoh fullname: Okoh, Daniel email: okodan2003@gmail.com organization: NASRDA Center for Atmospheric Research, Kogi State University, Anyigba Campus, Nigeria – sequence: 2 givenname: Oluwafisayo surname: Owolabi fullname: Owolabi, Oluwafisayo organization: Ionospheric & Space Physics Laboratory, Department of Physics, University of Lagos, Nigeria – sequence: 3 givenname: Christopher surname: Ekechukwu fullname: Ekechukwu, Christopher organization: Department of Physics, University of Calabar, Nigeria – sequence: 4 givenname: Olanike surname: Folarin fullname: Folarin, Olanike organization: Ionospheric & Space Physics Laboratory, Department of Physics, University of Lagos, Nigeria – sequence: 5 givenname: Gila surname: Arhiwo fullname: Arhiwo, Gila organization: Department of Physics, Federal University of Agriculture, Makurdi, Nigeria – sequence: 6 givenname: Joseph surname: Agbo fullname: Agbo, Joseph organization: Department of Surveying & Geo-informatics, Nnamdi Azikiwe University, Awka, Nigeria – sequence: 7 givenname: Segun surname: Bolaji fullname: Bolaji, Segun organization: Ionospheric & Space Physics Laboratory, Department of Physics, University of Lagos, Nigeria – sequence: 8 givenname: Babatunde surname: Rabiu fullname: Rabiu, Babatunde organization: NASRDA Center for Atmospheric Research, Kogi State University, Anyigba Campus, Nigeria |
| BookMark | eNqNkcFO3DAQhq2KSt1SXoCT1XtSO3bsROKyWlGKhKgqKFdrYk-Cl2BvnSyIV-mz9J36CvV2EYceUA-WLWu-b-x_3pODEAMScsxZyRlXn9blgHEoq3wumSgZE2_IoqqbtmC1FgdkwZWWRdtI_Y4cTZPvGNdSK835gnxb0oSDjwFGenZ5dVXcXJ-u6H10ONL4gIle-gGTB7qdfBhowG3KlQHnx5jupt-_ftIlDblwpLDZpAj29gN528M44dHzfki-fz69Xn0pLr6ena-WF4WVQs9Fy3tQwGynUHAndSdk1bSdq6GvHFcMGiZEjb3jjW6RO9XrVlUWoFdMdejEITnfe12Etdkkfw_pyUTw5u9FTIOBNHs7omHMOWu57ICjzAvqVtSs67m2fdc1KrvE3rUNG3h6hHF8EXJmdiGbtdmFbHYhGyayUmSq2lM2xWlK2P8f1PwDWT_DnCcwJ_Dj6-jJHsUc64PHZCbrMVh0PqGd87_96_jH5863MQw_8jhf3qtUy7luZCX-AFKqtyM |
| CitedBy_id | crossref_primary_10_1007_s11069_022_05356_1 crossref_primary_10_1029_2019JA027065 crossref_primary_10_5194_angeo_38_1203_2020 crossref_primary_10_1029_2017RS006499 crossref_primary_10_1007_s11600_021_00679_2 crossref_primary_10_3390_s20082290 crossref_primary_10_1016_j_asr_2022_04_066 crossref_primary_10_1016_j_asr_2020_02_005 crossref_primary_10_1007_s00190_017_1054_6 crossref_primary_10_1109_TAES_2022_3219366 crossref_primary_10_5194_angeo_37_77_2019 crossref_primary_10_1016_j_geog_2022_07_004 crossref_primary_10_3390_rs13010151 crossref_primary_10_1016_j_asr_2022_10_052 crossref_primary_10_1029_2020SW002525 crossref_primary_10_1016_j_asr_2024_05_031 crossref_primary_10_1029_2022SW003357 crossref_primary_10_1029_2020SW002706 crossref_primary_10_1088_1755_1315_1418_1_012028 crossref_primary_10_1016_j_jastp_2025_106477 crossref_primary_10_1016_j_mex_2021_101533 crossref_primary_10_1029_2019SW002257 crossref_primary_10_11648_j_ijass_20241203_11 crossref_primary_10_33012_navi_577 crossref_primary_10_1007_s12572_022_00322_3 crossref_primary_10_1029_2018JA025455 crossref_primary_10_1016_j_asr_2024_08_067 crossref_primary_10_1016_j_jastp_2018_02_006 crossref_primary_10_1007_s10509_023_04237_8 crossref_primary_10_1029_2018SW001907 crossref_primary_10_1016_j_ejrs_2024_03_006 crossref_primary_10_1109_TIM_2023_3279464 crossref_primary_10_1016_j_asr_2019_01_027 crossref_primary_10_1016_j_asr_2017_06_001 crossref_primary_10_1029_2023SW003821 crossref_primary_10_1016_j_geog_2021_09_003 crossref_primary_10_1007_s10509_022_04041_w crossref_primary_10_1016_j_jastp_2020_105338 crossref_primary_10_1016_j_asr_2021_05_027 crossref_primary_10_1016_j_asr_2023_12_051 crossref_primary_10_1109_JSTARS_2019_2956968 crossref_primary_10_1016_j_actaastro_2020_04_048 crossref_primary_10_1016_j_asr_2024_05_022 crossref_primary_10_1016_j_sciaf_2024_e02492 crossref_primary_10_1029_2022SW003103 crossref_primary_10_1038_s41598_024_69738_0 |
| Cites_doi | 10.1029/97RS00431 10.1090/qam/10666 10.1016/j.earscirev.2015.05.003 10.1016/j.asr.2012.11.013 10.1016/j.asr.2007.07.048 10.1007/s11200-007-0015-6 10.1029/2007RS003719 10.5194/angeo-24-3279-2006 10.3724/SP.J.1246.2010.00023 |
| ContentType | Journal Article |
| Copyright | 2016 Institute of Seismology, China Earthquake Administration |
| Copyright_xml | – notice: 2016 Institute of Seismology, China Earthquake Administration |
| DBID | 2RA 92L CQIGP W94 ~WA 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.geog.2016.03.003 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | A regional GNSS-VTEC model over Nigeria using neural networks: A novel approach |
| EISSN | 2589-0573 |
| EndPage | 31 |
| ExternalDocumentID | oai_doaj_org_article_00ddcc14ba1e4a1ea59350bf17cfbb86 10.1016/j.geog.2016.03.003 10_1016_j_geog_2016_03_003 S1674984716300052 669117842 |
| GroupedDBID | 2RA 92L ALMA_UNASSIGNED_HOLDINGS CDYEO CQIGP W94 ~WA 6I. AAFTH AAYXX CITATION -01 -0A -SA -S~ 0R~ 4.4 457 5VR 92E 92I 92M 9D9 9DA AAEDW AAFWJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADCNI ADEZE ADTOC ADVLN AEUPX AEXQZ AFPKN AFPUW AFTJW AFUIB AGHFR AIGII AITUG AKBMS AKRWK AKYEP AMRAJ CAJEA CCEZO CCVFK CHBEP CW9 EBS EJD FDB FRP GROUPED_DOAJ IPNFZ JUIAU KQ8 M41 O9- OK1 Q-- Q-0 RIG ROL RT1 S.. SSZ T8Q TCJ TGP U1F U1G U5A U5K UNPAY ~LF ~LJ |
| ID | FETCH-LOGICAL-c437t-91fa6a0cb6e31d47b34289bd5af2d160a80335efd1879e1d6f7962caaf606bed3 |
| IEDL.DBID | DOA |
| ISSN | 1674-9847 2589-0573 |
| IngestDate | Fri Oct 03 12:27:43 EDT 2025 Tue Aug 19 21:41:53 EDT 2025 Wed Oct 29 21:25:21 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Thu Jul 20 19:57:00 EDT 2023 Wed Feb 14 10:18:51 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Total electron content (TEC) Global Navigation Satellite System (GNSS) ionosphere Neural network Nigerian permanent GNSS network (NIGNET) International reference ionosphere (IRI) |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c437t-91fa6a0cb6e31d47b34289bd5af2d160a80335efd1879e1d6f7962caaf606bed3 |
| Notes | A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's) critical plasma frequency (foF2) parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like distur- bance storm time (DST) and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET) were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial per- formances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model. Global Navigation Satellite System(GNSS) ionosphereTotal electron content (TEC)Nigerian permanent GNSS network(NIGNET)Neural networkInternational reference ionosphere(IRI) 42-1806/P |
| ORCID | 0000-0001-8816-092X |
| OpenAccessLink | https://doaj.org/article/00ddcc14ba1e4a1ea59350bf17cfbb86 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_00ddcc14ba1e4a1ea59350bf17cfbb86 unpaywall_primary_10_1016_j_geog_2016_03_003 crossref_primary_10_1016_j_geog_2016_03_003 crossref_citationtrail_10_1016_j_geog_2016_03_003 elsevier_sciencedirect_doi_10_1016_j_geog_2016_03_003 chongqing_primary_669117842 |
| PublicationCentury | 2000 |
| PublicationDate | 2016 January 2016 2016-01-00 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – year: 2016 text: 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Geodesy and Geodynamics |
| PublicationTitleAlternate | Geodesy and Geodynamics |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V KeAi Communications Co., Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
| References | Kisi, Uncuoglu (bib16) 2005; 12 Klobuchar (bib9) 1996; vol. 2 Senalp, Tulunay, Tulunay (bib5) 2008; 43 Bilitza, McKinnell (bib17) 2011 Rao, Gopi, Niranjan, Prasad (bib10) 2006; 24 Demuth, Beale (bib15) 2002 Mark (bib7) 2002 Hernandez-Pajares, Juan, Sanz (bib3) 1997; 32 Habarulema (bib6) 2010 Bilitza, Reinisch (bib18) 2008; 42 Okoh, McKinnell, Cilliers, Okeke (bib20) 2013; 52 Mannucci, Wilson, Edwards (bib13) 1993 Baboo, Shereef (bib8) 2010; 1 Tulunay, Senalp, Cander, Tulunay, Bilge, Mizrahi (bib4) 2004; 47 Jin, Occhipinti, Jin (bib11) 2015; 147 Levenberg (bib14) 1944; 2 Ng (bib19) 2012 Hofmann-Wellenhof, Lichteneeger, Collins (bib2) 2001 Leandro, Santos (bib1) 2007; 51 Zhu, Wu, Lin, Zhou (bib12) 2010; 1 Hernandez-Pajares (10.1016/j.geog.2016.03.003_bib3) 1997; 32 Ng (10.1016/j.geog.2016.03.003_bib19) 2012 Mannucci (10.1016/j.geog.2016.03.003_bib13) 1993 Rao (10.1016/j.geog.2016.03.003_bib10) 2006; 24 Kisi (10.1016/j.geog.2016.03.003_bib16) 2005; 12 Leandro (10.1016/j.geog.2016.03.003_bib1) 2007; 51 Senalp (10.1016/j.geog.2016.03.003_bib5) 2008; 43 Baboo (10.1016/j.geog.2016.03.003_bib8) 2010; 1 Habarulema (10.1016/j.geog.2016.03.003_bib6) 2010 Zhu (10.1016/j.geog.2016.03.003_bib12) 2010; 1 Tulunay (10.1016/j.geog.2016.03.003_bib4) 2004; 47 Demuth (10.1016/j.geog.2016.03.003_bib15) 2002 Bilitza (10.1016/j.geog.2016.03.003_bib17) 2011 Okoh (10.1016/j.geog.2016.03.003_bib20) 2013; 52 Mark (10.1016/j.geog.2016.03.003_bib7) 2002 Hofmann-Wellenhof (10.1016/j.geog.2016.03.003_bib2) 2001 Levenberg (10.1016/j.geog.2016.03.003_bib14) 1944; 2 Klobuchar (10.1016/j.geog.2016.03.003_bib9) 1996; vol. 2 Jin (10.1016/j.geog.2016.03.003_bib11) 2015; 147 Bilitza (10.1016/j.geog.2016.03.003_bib18) 2008; 42 |
| References_xml | – year: 2001 ident: bib2 article-title: Global positioning system: theory and practice – year: 2010 ident: bib6 article-title: A contribution to TEC modelling over Southern Africa using GPS data – year: 2002 ident: bib15 article-title: Neural network toolbox for use with MATLAB – volume: 147 start-page: 54 year: 2015 end-page: 64 ident: bib11 article-title: GNSS ionospheric seismology: recent observation evidences and characteristics publication-title: Earth-Sci Rev – volume: 42 start-page: 599 year: 2008 end-page: 609 ident: bib18 article-title: International reference ionosphere 2007: improvements and new parameters publication-title: Adv Space Res – year: 2002 ident: bib7 article-title: Neural network toolbox for use with MATLAB – volume: 52 start-page: 1791 year: 2013 end-page: 1797 ident: bib20 article-title: Using GPS-TEC to calibrate VTEC computed with the IRI model over Nigeria publication-title: Adv Space Res – volume: 51 start-page: 279 year: 2007 end-page: 292 ident: bib1 article-title: A neural network approach for regional vertical total electron content modeling publication-title: Studia Geophysica et Geodaetica – volume: 1 year: 2010 ident: bib8 article-title: An efficient weather forecasting system using artificial neural network publication-title: Int J Environ Sci Dev – volume: 47 start-page: 1201 year: 2004 end-page: 1214 ident: bib4 article-title: Development of algorithms and software for forecasting, nowcasting and variability of TEC publication-title: Ann Geophys – start-page: 1323 year: 1993 end-page: 1332 ident: bib13 article-title: A new method for monitoring the earth's ionospheric total electron content using the GPS global network, Proc. of ION GPS-93 publication-title: Inst Navigation – volume: 24 start-page: 3279 year: 2006 end-page: 3292 ident: bib10 article-title: Temporal and spatial variations in TEC using simultaneous measurements from the Indian network of receivers during the low solar activity period of 2004–2005 publication-title: Ann Geophys – year: 2011 ident: bib17 article-title: International reference ionosphere, IRI-2011 publication-title: IRI 2011 Workshop Presentation, SANSA space science, 10–14 October, Hermanus, South Africa – volume: vol. 2 start-page: 164 year: 1996 ident: bib9 article-title: Ionospheric effects on GPS publication-title: Global positioning system: theory and applications – year: 2012 ident: bib19 article-title: Coursera video lecture on machine learning – volume: 2 start-page: 164 year: 1944 end-page: 168 ident: bib14 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q Appl Math – volume: 12 start-page: 434 year: 2005 end-page: 442 ident: bib16 article-title: Comparison of three back-propagation training algorithms for two case studies publication-title: Indian J Eng Mater Sci – volume: 1 start-page: 23 year: 2010 end-page: 28 ident: bib12 article-title: Temporal and spatial characteristics of VTEC anomalies before Wenchuan Ms8.0 earthquake publication-title: Geod Geodyn – volume: 32 start-page: 1081 year: 1997 end-page: 1090 ident: bib3 article-title: Neural network modeling of the ionospheric electron content at global scale using GPS publication-title: Radio Sci – volume: 43 start-page: RS4016 year: 2008 ident: bib5 article-title: Total electron content (TEC) forecasting by Cascade modeling, a possible alternative to the IRI-2001 publication-title: Radio Sci – volume: 32 start-page: 1081 year: 1997 ident: 10.1016/j.geog.2016.03.003_bib3 article-title: Neural network modeling of the ionospheric electron content at global scale using GPS publication-title: Radio Sci doi: 10.1029/97RS00431 – year: 2002 ident: 10.1016/j.geog.2016.03.003_bib7 – volume: 2 start-page: 164 year: 1944 ident: 10.1016/j.geog.2016.03.003_bib14 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q Appl Math doi: 10.1090/qam/10666 – volume: vol. 2 start-page: 164 year: 1996 ident: 10.1016/j.geog.2016.03.003_bib9 article-title: Ionospheric effects on GPS – volume: 1 issue: 4 year: 2010 ident: 10.1016/j.geog.2016.03.003_bib8 article-title: An efficient weather forecasting system using artificial neural network publication-title: Int J Environ Sci Dev – volume: 147 start-page: 54 year: 2015 ident: 10.1016/j.geog.2016.03.003_bib11 article-title: GNSS ionospheric seismology: recent observation evidences and characteristics publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2015.05.003 – year: 2011 ident: 10.1016/j.geog.2016.03.003_bib17 article-title: International reference ionosphere, IRI-2011 – year: 2002 ident: 10.1016/j.geog.2016.03.003_bib15 – year: 2012 ident: 10.1016/j.geog.2016.03.003_bib19 – volume: 52 start-page: 1791 year: 2013 ident: 10.1016/j.geog.2016.03.003_bib20 article-title: Using GPS-TEC to calibrate VTEC computed with the IRI model over Nigeria publication-title: Adv Space Res doi: 10.1016/j.asr.2012.11.013 – year: 2010 ident: 10.1016/j.geog.2016.03.003_bib6 – volume: 42 start-page: 599 issue: 4 year: 2008 ident: 10.1016/j.geog.2016.03.003_bib18 article-title: International reference ionosphere 2007: improvements and new parameters publication-title: Adv Space Res doi: 10.1016/j.asr.2007.07.048 – volume: 51 start-page: 279 year: 2007 ident: 10.1016/j.geog.2016.03.003_bib1 article-title: A neural network approach for regional vertical total electron content modeling publication-title: Studia Geophysica et Geodaetica doi: 10.1007/s11200-007-0015-6 – volume: 43 start-page: RS4016 year: 2008 ident: 10.1016/j.geog.2016.03.003_bib5 article-title: Total electron content (TEC) forecasting by Cascade modeling, a possible alternative to the IRI-2001 publication-title: Radio Sci doi: 10.1029/2007RS003719 – volume: 24 start-page: 3279 year: 2006 ident: 10.1016/j.geog.2016.03.003_bib10 article-title: Temporal and spatial variations in TEC using simultaneous measurements from the Indian network of receivers during the low solar activity period of 2004–2005 publication-title: Ann Geophys doi: 10.5194/angeo-24-3279-2006 – volume: 1 start-page: 23 issue: 1 year: 2010 ident: 10.1016/j.geog.2016.03.003_bib12 article-title: Temporal and spatial characteristics of VTEC anomalies before Wenchuan Ms8.0 earthquake publication-title: Geod Geodyn doi: 10.3724/SP.J.1246.2010.00023 – volume: 12 start-page: 434 year: 2005 ident: 10.1016/j.geog.2016.03.003_bib16 article-title: Comparison of three back-propagation training algorithms for two case studies publication-title: Indian J Eng Mater Sci – volume: 47 start-page: 1201 year: 2004 ident: 10.1016/j.geog.2016.03.003_bib4 article-title: Development of algorithms and software for forecasting, nowcasting and variability of TEC publication-title: Ann Geophys – start-page: 1323 year: 1993 ident: 10.1016/j.geog.2016.03.003_bib13 article-title: A new method for monitoring the earth's ionospheric total electron content using the GPS global network, Proc. of ION GPS-93 publication-title: Inst Navigation – year: 2001 ident: 10.1016/j.geog.2016.03.003_bib2 |
| SSID | ssib017476711 ssib022561437 ssib038075010 ssib051367622 ssib007891408 ssib011451138 ssib044737589 |
| Score | 2.1900737 |
| Snippet | A neural network model of the Global Navigation Satellite System - vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that... A neural network model of the Global Navigation Satellite System – vertical total electron content (GNSS-VTEC) over Nigeria is developed. A new approach that... |
| SourceID | doaj unpaywall crossref elsevier chongqing |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 19 |
| SubjectTerms | Global Navigation Satellite System (GNSS) ionosphere GNSS International reference ionosphere (IRI) Neural network Nigerian permanent GNSS network (NIGNET) Total electron content (TEC) vtec模型 全球导航卫星系统 太阳黑子数 尼日利亚 测试网络 神经网络模型 等离子体频率 |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELXKcuAEVC1iW6h86K0NiuPY3vS2ICiq1G0lWAQny5-BdpWFsisEv56ZfKy6FUL0kEs0cRx77JlRnt8j5KNUzMpYxCTA5p_kAWVeQjBQpRibOZ_5BlX5fSSPx_m3c3He0uTgWZil__c1DqsM0xIhWLIhI-UrZFUKyLt7ZHU8-jm8wIpKqjwpBrWaWCYQAyQUb0_IPN0IMilcTqvyBuLDUkSqifuXAtPavLo293dmMvkr8BxtNApGtzVfIeJNfu_NZ3bPPfzD5viyb9ok623-SYeNw7wmr0L1hvwYUhRowKScfh2dnCRnp4cHtBbJoQjxpKOrEj2VIkq-pMiBCZZVgyC__UKHtAKzCe0Iyt-S8dHh6cFx0iotJC7nagY7XjTSpM7KwJnPleVQlRTWCxMzz2RqBinnIkSP2uSBeRlVITNnTIT6xwbPt0ivmlZhm9CA9DbOQqZYQPFVMMMFV3jAFYnVRFB98n4x8vq6YdTQUsKeqwZ51iesmwvtWpJy1MqY6A6N9kvj4GkcPJ1ypDbtk0-LZ7oGn7PexyleWCK9dn0DZki3qxXsvHeO5dawkMNlsO-pjUy5aO1A9onoHES3mUqTgUBTV8--_PPCm17Q13f_Z75DerM_87ALWdLMfmiXxyNgFgpg priority: 102 providerName: Unpaywall |
| Title | A regional GNSS-VTEC model over Nigeria using neural networks: A novel approach |
| URI | http://lib.cqvip.com/qk/71049X/201601/669117842.html https://dx.doi.org/10.1016/j.geog.2016.03.003 https://doi.org/10.1016/j.geog.2016.03.003 https://doaj.org/article/00ddcc14ba1e4a1ea59350bf17cfbb86 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2589-0573 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044737589 issn: 1674-9847 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQOMAFgQBRBpMP3CDCjmMn2a2bOiakFaStaJws_wxDVTqg08RlfzvvxUnaXQYHDukhcp3o84vfe-nX7yPkjSq5VbGOWYDNPysC2ryEYKBLMTZ3PveJVXkyV8eL4uO5PN-y-kJOWJIHTsC9Z8x753hhDQ8FHEbWQjIbeemitVUnts2qequZwkgqqxo6hzGyOPrR8k2kQRBDWtokZlRdl2yTCIuiFFBIj4ledsJm3U8SyNrPatjT-3_gJLJYE1YN8sRUUkwVqNTwbdU2PyD_3Mp4nTHArcT34Kq9NL-vzXK5ldiOHpNHfUVKpwmJJ-ReaJ-ST1OKlg1YptMP89PT7MvZ7JB2tjkUSZ90ftFg7FLkzTcUVTFhZJs45b_26ZS2MGxJB8nyZ2RxNDs7PM5674XMAS5r2AOjUYY5q4LgviitgD6ltl6amHuumKmYEDJEj27lgXsVy1rlzpgIHZENXjwnO-2qDS8IDSh44wBUCWsC5agREsCFOgSl1mQoJ2R3xEpfJo0NrRTswmVV5BPCB_S062XL0T1jqQd-2neN6GtEXzOBYqcT8nb8zjDhXaMPcFHGkSi43Z2AMNR9GOq_heGEyGFJdV-7pJoEprq48-LvxvX_h3t9-T_udZc8xCnTi6RXZGf98yq8htJqbfe6pwg-T25me-T-Yv55-vUPKQIYUg |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELXKcuAEVC1iW6h86K0NiuPY3vS2ICiq1G0lWAQny5-BdpWFsisEv56ZfKy6FUL0kEs0cRx77JlRnt8j5KNUzMpYxCTA5p_kAWVeQjBQpRibOZ_5BlX5fSSPx_m3c3He0uTgWZil__c1DqsM0xIhWLIhI-UrZFUKyLt7ZHU8-jm8wIpKqjwpBrWaWCYQAyQUb0_IPN0IMilcTqvyBuLDUkSqifuXAtPavLo293dmMvkr8BxtNApGtzVfIeJNfu_NZ3bPPfzD5viyb9ok623-SYeNw7wmr0L1hvwYUhRowKScfh2dnCRnp4cHtBbJoQjxpKOrEj2VIkq-pMiBCZZVgyC__UKHtAKzCe0Iyt-S8dHh6cFx0iotJC7nagY7XjTSpM7KwJnPleVQlRTWCxMzz2RqBinnIkSP2uSBeRlVITNnTIT6xwbPt0ivmlZhm9CA9DbOQqZYQPFVMMMFV3jAFYnVRFB98n4x8vq6YdTQUsKeqwZ51iesmwvtWpJy1MqY6A6N9kvj4GkcPJ1ypDbtk0-LZ7oGn7PexyleWCK9dn0DZki3qxXsvHeO5dawkMNlsO-pjUy5aO1A9onoHES3mUqTgUBTV8--_PPCm17Q13f_Z75DerM_87ALWdLMfmiXxyNgFgpg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+regional+GNSS-VTEC+model+over+Nigeria+using+neural+networks%EF%BC%9A+A+novel+approach&rft.jtitle=%E5%A4%A7%E5%9C%B0%E6%B5%8B%E9%87%8F%E4%B8%8E%E5%9C%B0%E7%90%83%E5%8A%A8%E5%8A%9B%E5%AD%A6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Daniel+Okoh+Oluwafisavo+Owolabi+Christovher+Ekechukwu+Olanike+Folarin+Gila+Arhiwo+Joseph+Agbo+Segun+Bolaji+Babatunde+Rabiu&rft.date=2016&rft.issn=1674-9847&rft.issue=1&rft.spage=19&rft.epage=31&rft_id=info:doi/10.1016%2Fj.geog.2016.03.003&rft.externalDocID=669117842 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71049X%2F71049X.jpg |