The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates
We propose two numerical algorithms in the fully nonconvex setting for the minimization of the sum of a smooth function and the composition of a nonsmooth function with a linear operator. The iterative schemes are formulated in the spirit of the proximal alternating direction method of multipliers a...
Saved in:
Published in | Mathematics of operations research Vol. 45; no. 2; pp. 682 - 712 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Linthicum
INFORMS
01.05.2020
Institute for Operations Research and the Management Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0364-765X 1526-5471 |
DOI | 10.1287/moor.2019.1008 |
Cover
Abstract | We propose two numerical algorithms in the fully nonconvex setting for the minimization of the sum of a smooth function and the composition of a nonsmooth function with a linear operator. The iterative schemes are formulated in the spirit of the proximal alternating direction method of multipliers and its linearized variant, respectively. The proximal terms are introduced via variable metrics, a fact that allows us to derive new proximal splitting algorithms for nonconvex structured optimization problems, as particular instances of the general schemes. Under mild conditions on the sequence of variable metrics and by assuming that a regularization of the associated augmented Lagrangian has the Kurdyka–Łojasiewicz property, we prove that the iterates converge to a Karush–Kuhn–Tucker point of the objective function. By assuming that the augmented Lagrangian has the Łojasiewicz property, we also derive convergence rates for both the augmented Lagrangian and the iterates. |
---|---|
AbstractList | We propose two numerical algorithms in the fully nonconvex setting for the minimization of the sum of a smooth function and the composition of a nonsmooth function with a linear operator. The iterative schemes are formulated in the spirit of the proximal alternating direction method of multipliers and its linearized variant, respectively. The proximal terms are introduced via variable metrics, a fact that allows us to derive new proximal splitting algorithms for nonconvex structured optimization problems, as particular instances of the general schemes. Under mild conditions on the sequence of variable metrics and by assuming that a regularization of the associated augmented Lagrangian has the Kurdyka–Łojasiewicz property, we prove that the iterates converge to a Karush–Kuhn–Tucker point of the objective function. By assuming that the augmented Lagrangian has the Łojasiewicz property, we also derive convergence rates for both the augmented Lagrangian and the iterates. |
Audience | Academic |
Author | Boţ, Radu Ioan Nguyen, Dang-Khoa |
Author_xml | – sequence: 1 givenname: Radu Ioan orcidid: 0000-0002-4469-314X surname: Boţ fullname: Boţ, Radu Ioan organization: Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria;, Faculty of Mathematics and Computer Sciences, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania – sequence: 2 givenname: Dang-Khoa surname: Nguyen fullname: Nguyen, Dang-Khoa organization: Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria |
BookMark | eNqFkctrGzEQxkVJIY7Ta86CnnJYV6-VdnszzhOStOQBuQlZO-soyJIjycH577OLeyqUnoaB7zcz33xH6CDEAAidUDKjrFE_1jGmGSO0nVFCmi9oQmsmq1ooeoAmhEtRKVk_H6KjnF8JobWiYoLeHl8A_05x59bG47kvkIIpLqzwmUtgi4sB30J5iR2OPb7d-uI23kHK2AVcBvYuBhvDO-zwA5QR_IkXY59WECzgeTD-I7uMTejwvSmQj9HX3vgM3_7UKXq6OH9cXFU3vy6vF_ObygquSsWZbYTqCBOKLVvec9HXDR1uJsslp8q0rQUrwXa1NEpBWzecQWeXYBkVTav4FH3fz92k-LaFXPRr3A7mfNZMECkFrwkZVKd71cp40G70UmBXVmabs75-uNdzySQRrBn0UzTba22KOSfo9SYNb0sfmhI9RqDHCPQYgR4jGADxF2BdMeNPSzLO_xur9pgLfUzr_L81n7q_nGo |
CitedBy_id | crossref_primary_10_1007_s10957_021_01929_5 crossref_primary_10_1007_s40305_023_00535_8 crossref_primary_10_1007_s10957_021_01880_5 crossref_primary_10_1007_s10589_021_00286_3 crossref_primary_10_1007_s12190_021_01590_1 crossref_primary_10_1016_j_cam_2024_115972 crossref_primary_10_1007_s10898_024_01382_4 crossref_primary_10_1007_s10898_024_01384_2 crossref_primary_10_1088_1402_4896_acf3a8 crossref_primary_10_1186_s13660_024_03197_z crossref_primary_10_1287_moor_2021_0320 crossref_primary_10_1007_s10589_023_00467_2 crossref_primary_10_1007_s12532_022_00218_0 crossref_primary_10_1002_nla_2391 crossref_primary_10_1007_s10589_022_00394_8 crossref_primary_10_1007_s10915_024_02550_0 crossref_primary_10_1109_JAS_2023_123474 crossref_primary_10_1002_nla_70009 crossref_primary_10_3389_fdata_2024_1382144 crossref_primary_10_1016_j_eswa_2025_126939 crossref_primary_10_3934_jimo_2024178 crossref_primary_10_1007_s10898_023_01348_y crossref_primary_10_1016_j_orl_2023_04_006 crossref_primary_10_1137_19M1284336 crossref_primary_10_1287_moor_2022_1342 crossref_primary_10_1007_s10589_022_00364_0 crossref_primary_10_1109_ACCESS_2024_3381620 crossref_primary_10_1109_LGRS_2023_3309331 crossref_primary_10_1007_s10589_024_00643_y crossref_primary_10_1007_s11590_024_02132_x crossref_primary_10_1109_TPAMI_2021_3092177 crossref_primary_10_1186_s13660_024_03206_1 crossref_primary_10_1007_s10957_022_02120_0 crossref_primary_10_1016_j_cam_2022_114821 crossref_primary_10_1016_j_dsp_2022_103692 crossref_primary_10_1186_s13660_024_03141_1 crossref_primary_10_1007_s10957_023_02204_5 crossref_primary_10_1016_j_amc_2021_126387 crossref_primary_10_1007_s00211_022_01335_7 crossref_primary_10_1007_s11075_024_01965_y crossref_primary_10_1007_s10898_022_01174_8 crossref_primary_10_1016_j_cam_2021_113384 crossref_primary_10_1007_s10957_024_02383_9 crossref_primary_10_1137_21M1468048 crossref_primary_10_1007_s10479_023_05524_x crossref_primary_10_1515_dema_2024_0036 crossref_primary_10_1088_1361_6420_ac0966 crossref_primary_10_1109_TSP_2023_3310890 crossref_primary_10_1109_TSP_2023_3315385 |
Cites_doi | 10.1007/s10444-018-9619-3 10.1007/s10957-014-0642-3 10.1007/s10589-016-9828-y 10.1137/15M1027528 10.1137/1.9781611974997 10.5802/aif.1638 10.1016/S0168-2024(08)70028-6 10.1137/110853996 10.1007/s10107-007-0124-6 10.1287/moor.2017.0900 10.1007/s10994-014-5469-5 10.1137/050644641 10.1137/060670080 10.1137/14095697X 10.1007/978-3-642-02431-3 10.1137/140990309 10.1007/s10107-011-0484-9 10.1007/s10444-011-9254-8 10.1007/s10107-013-0701-9 10.1007/s10107-016-1034-2 10.1007/3-540-31247-1 10.1007/s11263-013-0611-6 10.1007/s10851-010-0251-1 10.1007/s10957-016-0877-2 10.1080/00207160.2016.1227432 10.1137/140964357 10.1007/s10107-007-0133-5 10.1016/S0168-2024(08)70034-1 10.1137/140998135 10.1561/2200000016 10.1137/130910774 10.1007/s10957-011-9876-5 10.1007/s10957-015-0730-z 10.1137/12088255X 10.1016/j.na.2012.09.008 10.1007/s10957-012-0245-9 10.1007/s10915-018-0757-z 10.1007/s13675-015-0045-8 10.1090/S0025-5718-2012-02598-1 10.1090/S0002-9947-09-05048-X 10.1287/moor.1070.0291 10.1016/0898-1221(76)90003-1 10.1137/050626090 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences May 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences May 2020 |
DBID | AAYXX CITATION ISR JQ2 |
DOI | 10.1287/moor.2019.1008 |
DatabaseName | CrossRef Gale In Context: Science ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business |
EISSN | 1526-5471 |
EndPage | 712 |
ExternalDocumentID | A626042864 10_1287_moor_2019_1008 moor20191008 |
Genre | Research Articles |
GroupedDBID | 08R 1AW 1OL 29M 3V. 4.4 4S 5GY 7WY 85S 8AL 8AO 8FE 8FG 8FL 8G5 8H 8VB AAKYL AAPBV ABBHK ABEFU ABFLS ABJCF ABPPZ ABUWG ACIWK ACNCT ACYGS ADCOW ADGDI ADMHP ADODI AEILP AELPN AENEX AEUPB AFKRA AFXKK AKVCP ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BDTQF BENPR BES BEZIV BGLVJ BHOJU BKOMP BPHCQ CBXGM CHNMF CS3 CWXUR CZBKB DQDLB DSRWC DWQXO EBA EBE EBO EBR EBS EBU ECEWR ECR ECS EDO EFSUC EJD EMK EPL F20 FEDTE FRNLG GIFXF GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HECYW HGD HQ6 HVGLF H~9 IAO ICW IEA IGG IOF ISR ITC JAA JBU JMS JPL JSODD JST K6 K60 K6V K7- L6V M0C M0N M2O M7S MBDVC MV1 N95 NIEAY P-O P2P P62 PADUT PQEST PQQKQ PQUKI PRG PRINS PROAC PTHSS QWB RNS RPU RXW SA0 TAE TH9 TN5 TUS U5U WH7 X XFK XHC XI7 Y99 ZL0 ZY4 -~X .DC 18M 2AX 8H~ AAOAC AAWIL AAWTO AAYXX ABAWQ ABDNZ ABFAN ABKVW ABQDR ABXSQ ABYRZ ABYWD ABYYQ ACDIW ACGFO ACHJO ACMTB ACTMH ACUHF ACVFL ACXJH ADULT AEGXH AELLO AEMOZ AFVYC AGLNM AHAJD AHQJS AIAGR AIHAF AKBRZ ALRMG AMVHM APTMU ASMEE BAAKF CCPQU CITATION IPSME JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ PHGZM PHGZT PQBIZ PQBZA WHG XOL JQ2 |
ID | FETCH-LOGICAL-c437t-32c847d02472b93f34f5817140bb317a99cec6ecd56a77e95832edcbec2148973 |
ISSN | 0364-765X |
IngestDate | Sat Aug 16 12:11:34 EDT 2025 Fri Jun 27 05:14:19 EDT 2025 Thu Apr 24 23:08:50 EDT 2025 Tue Jul 01 02:11:01 EDT 2025 Wed Jan 06 02:47:50 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c437t-32c847d02472b93f34f5817140bb317a99cec6ecd56a77e95832edcbec2148973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4469-314X |
PQID | 2406643500 |
PQPubID | 37790 |
PageCount | 31 |
ParticipantIDs | gale_incontextgauss_ISR_A626042864 crossref_primary_10_1287_moor_2019_1008 informs_primary_10_1287_moor_2019_1008 crossref_citationtrail_10_1287_moor_2019_1008 proquest_journals_2406643500 |
ProviderPackageCode | Y99 RPU NIEAY CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Linthicum |
PublicationPlace_xml | – name: Linthicum |
PublicationTitle | Mathematics of operations research |
PublicationYear | 2020 |
Publisher | INFORMS Institute for Operations Research and the Management Sciences |
Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 Boţ RI (B12) 2016; 1 Moreau JJ (B39) 1962; 255 |
References_xml | – ident: B12 – ident: B35 – ident: B3 – ident: B41 – ident: B45 – ident: B7 – ident: B29 – ident: B25 – ident: B50 – ident: B21 – ident: B16 – ident: B31 – ident: B39 – ident: B13 – ident: B2 – ident: B40 – ident: B28 – ident: B44 – ident: B49 – ident: B6 – ident: B24 – ident: B48 – ident: B17 – ident: B30 – ident: B34 – ident: B38 – ident: B9 – ident: B14 – ident: B10 – ident: B43 – ident: B20 – ident: B1 – ident: B27 – ident: B5 – ident: B47 – ident: B23 – ident: B18 – ident: B33 – ident: B37 – ident: B8 – ident: B36 – ident: B11 – ident: B42 – ident: B26 – ident: B4 – ident: B46 – ident: B22 – ident: B32 – ident: B15 – ident: B19 – ident: B14 doi: 10.1007/s10444-018-9619-3 – ident: B25 doi: 10.1007/s10957-014-0642-3 – ident: B1 doi: 10.1007/s10589-016-9828-y – ident: B50 doi: 10.1137/15M1027528 – ident: B6 doi: 10.1137/1.9781611974997 – ident: B32 doi: 10.5802/aif.1638 – ident: B24 doi: 10.1016/S0168-2024(08)70028-6 – ident: B23 doi: 10.1137/110853996 – volume: 255 start-page: 2897 year: 1962 ident: B39 publication-title: Ser. A – ident: B29 doi: 10.1007/s10107-007-0124-6 – ident: B9 doi: 10.1287/moor.2017.0900 – ident: B35 doi: 10.1007/s10994-014-5469-5 – ident: B7 doi: 10.1137/050644641 – ident: B10 doi: 10.1137/060670080 – ident: B40 doi: 10.1137/14095697X – ident: B42 doi: 10.1007/978-3-642-02431-3 – ident: B31 doi: 10.1137/140990309 – ident: B3 doi: 10.1007/s10107-011-0484-9 – ident: B45 doi: 10.1007/s10444-011-9254-8 – ident: B8 doi: 10.1007/s10107-013-0701-9 – ident: B30 doi: 10.1007/s10107-016-1034-2 – ident: B38 doi: 10.1007/3-540-31247-1 – ident: B41 doi: 10.1007/s11263-013-0611-6 – ident: B18 doi: 10.1007/s10851-010-0251-1 – ident: B22 doi: 10.1007/s10957-016-0877-2 – ident: B28 doi: 10.1080/00207160.2016.1227432 – ident: B44 doi: 10.1137/140964357 – ident: B2 doi: 10.1007/s10107-007-0133-5 – ident: B26 doi: 10.1016/S0168-2024(08)70034-1 – ident: B34 doi: 10.1137/140998135 – ident: B17 doi: 10.1561/2200000016 – ident: B43 doi: 10.1137/130910774 – ident: B48 doi: 10.1007/s10957-011-9876-5 – ident: B13 doi: 10.1007/s10957-015-0730-z – volume: 1 start-page: 29 issue: 1 year: 2016 ident: B12 publication-title: Minimax Theory Appl. – ident: B15 doi: 10.1137/12088255X – ident: B19 doi: 10.1016/j.na.2012.09.008 – ident: B21 doi: 10.1007/s10957-012-0245-9 – ident: B47 doi: 10.1007/s10915-018-0757-z – ident: B16 doi: 10.1007/s13675-015-0045-8 – ident: B49 doi: 10.1090/S0025-5718-2012-02598-1 – ident: B11 doi: 10.1090/S0002-9947-09-05048-X – ident: B33 doi: 10.1287/moor.1070.0291 – ident: B27 doi: 10.1016/0898-1221(76)90003-1 – ident: B20 doi: 10.1137/050626090 |
SSID | ssj0015714 |
Score | 2.5412157 |
Snippet | We propose two numerical algorithms in the fully nonconvex setting for the minimization of the sum of a smooth function and the composition of a nonsmooth... |
SourceID | proquest gale crossref informs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 682 |
SubjectTerms | Algorithms alternating direction method of multipliers Analysis Convergence convergence analysis convergence rates Convex analysis Iterative methods Kurdyka–Łojasiewicz property Linear operators Linear programming Mathematical analysis Mathematical functions Methods Multipliers nonconvex complexly structured optimization problems Numerical analysis Operations research Optimization Primary: 47H05, 65K05, 90C26 Primary: Mathematics: functions, matrices, sets proximal splitting algorithms Regularization secondary: programming: algorithms variable metric Łojasiewicz exponent |
Title | The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates |
URI | https://www.proquest.com/docview/2406643500 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFB1ki6IPfqyKq1UGEX0aTSaTmY1vy2KpypZiW9m3ITOZaKFN6m4KxV_vvZlJNqWK1ZewZMMk5Jzcj-Tecwl5laBXBbfMRJlBgmJNzIyRjnExLYAOLoty7EZe7MndI_FpmS43gy7b7pLGvLU_f9tX8j-owj7AFbtk_wHZflHYAb8BX9gCwrC9Nsb7q_ri-BRv9El4twe5fzBkNX6IwQnRbaGLLx3E0dd9cWNdtVXnF2Aymq71eY57Vl6js5csadsYMSwdBrOLXvK1rQepz9wqFNYFCaHvw3cKPNpU8Pk8cw8y0MXBwBQlUjAl06X3GsFUcslS4QeodLbUS0MGzvCBYZR-xFDwscqXTl8x3xxfgOyc1jUqtcYZlnBMN46qLx_EA_D_uG3z3uIKwqYR2Zp9_jrf7z8hpSoO2mH-0oNiJ5zi3eUTXIpIgl--6WVr11c8dBt2HN4nd0O-QGce_AfkhqvG5FbXrjAm97qxHDRY6TG5M9CYfEh-AEloRxI6IAntSUI9SWhd0gFJ6HFFAV_ak4QGkrynA4rQjiIUKEJbijwiRzsfDue7LMzZYFYkqmEJtxCjFBCtKW6ypExEmU5jVHI0BsLLPMuss9LZIpW5Ui5LwQu4wsLTzyGZzlTymIyqunJPCOVRAfl-bnhUSpHDujLPuIksJBaJgdR2Qlh3r7UNIvQ4C-VEYzIK2GjERiM2qKY9nZA3_fFnXn7lj0e-ROg0appUWDT1LT9fr_XHgy96hkk7pNlSTMjrAOxfV9vucNfhgV9rDH4hgE-j6Ol113lGbm-er20yalbn7jlEsY15Efj6C7S5ngI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Proximal+Alternating+Direction+Method+of+Multipliers+in+the+Nonconvex+Setting%3A+Convergence+Analysis+and+Rates&rft.jtitle=Mathematics+of+operations+research&rft.date=2020-05-01&rft.pub=INFORMS&rft.issn=0364-765X&rft.eissn=1526-5471&rft.volume=45&rft.issue=2&rft.spage=682&rft.epage=712&rft_id=info:doi/10.1287%2Fmoor.2019.1008&rft.externalDocID=moor20191008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon |