The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates

We propose two numerical algorithms in the fully nonconvex setting for the minimization of the sum of a smooth function and the composition of a nonsmooth function with a linear operator. The iterative schemes are formulated in the spirit of the proximal alternating direction method of multipliers a...

Full description

Saved in:
Bibliographic Details
Published inMathematics of operations research Vol. 45; no. 2; pp. 682 - 712
Main Authors Boţ, Radu Ioan, Nguyen, Dang-Khoa
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 01.05.2020
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text
ISSN0364-765X
1526-5471
DOI10.1287/moor.2019.1008

Cover

Abstract We propose two numerical algorithms in the fully nonconvex setting for the minimization of the sum of a smooth function and the composition of a nonsmooth function with a linear operator. The iterative schemes are formulated in the spirit of the proximal alternating direction method of multipliers and its linearized variant, respectively. The proximal terms are introduced via variable metrics, a fact that allows us to derive new proximal splitting algorithms for nonconvex structured optimization problems, as particular instances of the general schemes. Under mild conditions on the sequence of variable metrics and by assuming that a regularization of the associated augmented Lagrangian has the Kurdyka–Łojasiewicz property, we prove that the iterates converge to a Karush–Kuhn–Tucker point of the objective function. By assuming that the augmented Lagrangian has the Łojasiewicz property, we also derive convergence rates for both the augmented Lagrangian and the iterates.
AbstractList We propose two numerical algorithms in the fully nonconvex setting for the minimization of the sum of a smooth function and the composition of a nonsmooth function with a linear operator. The iterative schemes are formulated in the spirit of the proximal alternating direction method of multipliers and its linearized variant, respectively. The proximal terms are introduced via variable metrics, a fact that allows us to derive new proximal splitting algorithms for nonconvex structured optimization problems, as particular instances of the general schemes. Under mild conditions on the sequence of variable metrics and by assuming that a regularization of the associated augmented Lagrangian has the Kurdyka–Łojasiewicz property, we prove that the iterates converge to a Karush–Kuhn–Tucker point of the objective function. By assuming that the augmented Lagrangian has the Łojasiewicz property, we also derive convergence rates for both the augmented Lagrangian and the iterates.
Audience Academic
Author Boţ, Radu Ioan
Nguyen, Dang-Khoa
Author_xml – sequence: 1
  givenname: Radu Ioan
  orcidid: 0000-0002-4469-314X
  surname: Boţ
  fullname: Boţ, Radu Ioan
  organization: Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria;, Faculty of Mathematics and Computer Sciences, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
– sequence: 2
  givenname: Dang-Khoa
  surname: Nguyen
  fullname: Nguyen, Dang-Khoa
  organization: Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria
BookMark eNqFkctrGzEQxkVJIY7Ta86CnnJYV6-VdnszzhOStOQBuQlZO-soyJIjycH577OLeyqUnoaB7zcz33xH6CDEAAidUDKjrFE_1jGmGSO0nVFCmi9oQmsmq1ooeoAmhEtRKVk_H6KjnF8JobWiYoLeHl8A_05x59bG47kvkIIpLqzwmUtgi4sB30J5iR2OPb7d-uI23kHK2AVcBvYuBhvDO-zwA5QR_IkXY59WECzgeTD-I7uMTejwvSmQj9HX3vgM3_7UKXq6OH9cXFU3vy6vF_ObygquSsWZbYTqCBOKLVvec9HXDR1uJsslp8q0rQUrwXa1NEpBWzecQWeXYBkVTav4FH3fz92k-LaFXPRr3A7mfNZMECkFrwkZVKd71cp40G70UmBXVmabs75-uNdzySQRrBn0UzTba22KOSfo9SYNb0sfmhI9RqDHCPQYgR4jGADxF2BdMeNPSzLO_xur9pgLfUzr_L81n7q_nGo
CitedBy_id crossref_primary_10_1007_s10957_021_01929_5
crossref_primary_10_1007_s40305_023_00535_8
crossref_primary_10_1007_s10957_021_01880_5
crossref_primary_10_1007_s10589_021_00286_3
crossref_primary_10_1007_s12190_021_01590_1
crossref_primary_10_1016_j_cam_2024_115972
crossref_primary_10_1007_s10898_024_01382_4
crossref_primary_10_1007_s10898_024_01384_2
crossref_primary_10_1088_1402_4896_acf3a8
crossref_primary_10_1186_s13660_024_03197_z
crossref_primary_10_1287_moor_2021_0320
crossref_primary_10_1007_s10589_023_00467_2
crossref_primary_10_1007_s12532_022_00218_0
crossref_primary_10_1002_nla_2391
crossref_primary_10_1007_s10589_022_00394_8
crossref_primary_10_1007_s10915_024_02550_0
crossref_primary_10_1109_JAS_2023_123474
crossref_primary_10_1002_nla_70009
crossref_primary_10_3389_fdata_2024_1382144
crossref_primary_10_1016_j_eswa_2025_126939
crossref_primary_10_3934_jimo_2024178
crossref_primary_10_1007_s10898_023_01348_y
crossref_primary_10_1016_j_orl_2023_04_006
crossref_primary_10_1137_19M1284336
crossref_primary_10_1287_moor_2022_1342
crossref_primary_10_1007_s10589_022_00364_0
crossref_primary_10_1109_ACCESS_2024_3381620
crossref_primary_10_1109_LGRS_2023_3309331
crossref_primary_10_1007_s10589_024_00643_y
crossref_primary_10_1007_s11590_024_02132_x
crossref_primary_10_1109_TPAMI_2021_3092177
crossref_primary_10_1186_s13660_024_03206_1
crossref_primary_10_1007_s10957_022_02120_0
crossref_primary_10_1016_j_cam_2022_114821
crossref_primary_10_1016_j_dsp_2022_103692
crossref_primary_10_1186_s13660_024_03141_1
crossref_primary_10_1007_s10957_023_02204_5
crossref_primary_10_1016_j_amc_2021_126387
crossref_primary_10_1007_s00211_022_01335_7
crossref_primary_10_1007_s11075_024_01965_y
crossref_primary_10_1007_s10898_022_01174_8
crossref_primary_10_1016_j_cam_2021_113384
crossref_primary_10_1007_s10957_024_02383_9
crossref_primary_10_1137_21M1468048
crossref_primary_10_1007_s10479_023_05524_x
crossref_primary_10_1515_dema_2024_0036
crossref_primary_10_1088_1361_6420_ac0966
crossref_primary_10_1109_TSP_2023_3310890
crossref_primary_10_1109_TSP_2023_3315385
Cites_doi 10.1007/s10444-018-9619-3
10.1007/s10957-014-0642-3
10.1007/s10589-016-9828-y
10.1137/15M1027528
10.1137/1.9781611974997
10.5802/aif.1638
10.1016/S0168-2024(08)70028-6
10.1137/110853996
10.1007/s10107-007-0124-6
10.1287/moor.2017.0900
10.1007/s10994-014-5469-5
10.1137/050644641
10.1137/060670080
10.1137/14095697X
10.1007/978-3-642-02431-3
10.1137/140990309
10.1007/s10107-011-0484-9
10.1007/s10444-011-9254-8
10.1007/s10107-013-0701-9
10.1007/s10107-016-1034-2
10.1007/3-540-31247-1
10.1007/s11263-013-0611-6
10.1007/s10851-010-0251-1
10.1007/s10957-016-0877-2
10.1080/00207160.2016.1227432
10.1137/140964357
10.1007/s10107-007-0133-5
10.1016/S0168-2024(08)70034-1
10.1137/140998135
10.1561/2200000016
10.1137/130910774
10.1007/s10957-011-9876-5
10.1007/s10957-015-0730-z
10.1137/12088255X
10.1016/j.na.2012.09.008
10.1007/s10957-012-0245-9
10.1007/s10915-018-0757-z
10.1007/s13675-015-0045-8
10.1090/S0025-5718-2012-02598-1
10.1090/S0002-9947-09-05048-X
10.1287/moor.1070.0291
10.1016/0898-1221(76)90003-1
10.1137/050626090
ContentType Journal Article
Copyright COPYRIGHT 2020 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences May 2020
Copyright_xml – notice: COPYRIGHT 2020 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences May 2020
DBID AAYXX
CITATION
ISR
JQ2
DOI 10.1287/moor.2019.1008
DatabaseName CrossRef
Gale In Context: Science
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1526-5471
EndPage 712
ExternalDocumentID A626042864
10_1287_moor_2019_1008
moor20191008
Genre Research Articles
GroupedDBID 08R
1AW
1OL
29M
3V.
4.4
4S
5GY
7WY
85S
8AL
8AO
8FE
8FG
8FL
8G5
8H
8VB
AAKYL
AAPBV
ABBHK
ABEFU
ABFLS
ABJCF
ABPPZ
ABUWG
ACIWK
ACNCT
ACYGS
ADCOW
ADGDI
ADMHP
ADODI
AEILP
AELPN
AENEX
AEUPB
AFKRA
AFXKK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BDTQF
BENPR
BES
BEZIV
BGLVJ
BHOJU
BKOMP
BPHCQ
CBXGM
CHNMF
CS3
CWXUR
CZBKB
DQDLB
DSRWC
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECEWR
ECR
ECS
EDO
EFSUC
EJD
EMK
EPL
F20
FEDTE
FRNLG
GIFXF
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HECYW
HGD
HQ6
HVGLF
H~9
IAO
ICW
IEA
IGG
IOF
ISR
ITC
JAA
JBU
JMS
JPL
JSODD
JST
K6
K60
K6V
K7-
L6V
M0C
M0N
M2O
M7S
MBDVC
MV1
N95
NIEAY
P-O
P2P
P62
PADUT
PQEST
PQQKQ
PQUKI
PRG
PRINS
PROAC
PTHSS
QWB
RNS
RPU
RXW
SA0
TAE
TH9
TN5
TUS
U5U
WH7
X
XFK
XHC
XI7
Y99
ZL0
ZY4
-~X
.DC
18M
2AX
8H~
AAOAC
AAWIL
AAWTO
AAYXX
ABAWQ
ABDNZ
ABFAN
ABKVW
ABQDR
ABXSQ
ABYRZ
ABYWD
ABYYQ
ACDIW
ACGFO
ACHJO
ACMTB
ACTMH
ACUHF
ACVFL
ACXJH
ADULT
AEGXH
AELLO
AEMOZ
AFVYC
AGLNM
AHAJD
AHQJS
AIAGR
AIHAF
AKBRZ
ALRMG
AMVHM
APTMU
ASMEE
BAAKF
CCPQU
CITATION
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
WHG
XOL
JQ2
ID FETCH-LOGICAL-c437t-32c847d02472b93f34f5817140bb317a99cec6ecd56a77e95832edcbec2148973
ISSN 0364-765X
IngestDate Sat Aug 16 12:11:34 EDT 2025
Fri Jun 27 05:14:19 EDT 2025
Thu Apr 24 23:08:50 EDT 2025
Tue Jul 01 02:11:01 EDT 2025
Wed Jan 06 02:47:50 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-32c847d02472b93f34f5817140bb317a99cec6ecd56a77e95832edcbec2148973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4469-314X
PQID 2406643500
PQPubID 37790
PageCount 31
ParticipantIDs gale_incontextgauss_ISR_A626042864
crossref_primary_10_1287_moor_2019_1008
informs_primary_10_1287_moor_2019_1008
crossref_citationtrail_10_1287_moor_2019_1008
proquest_journals_2406643500
ProviderPackageCode Y99
RPU
NIEAY
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Mathematics of operations research
PublicationYear 2020
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
Boţ RI (B12) 2016; 1
Moreau JJ (B39) 1962; 255
References_xml – ident: B12
– ident: B35
– ident: B3
– ident: B41
– ident: B45
– ident: B7
– ident: B29
– ident: B25
– ident: B50
– ident: B21
– ident: B16
– ident: B31
– ident: B39
– ident: B13
– ident: B2
– ident: B40
– ident: B28
– ident: B44
– ident: B49
– ident: B6
– ident: B24
– ident: B48
– ident: B17
– ident: B30
– ident: B34
– ident: B38
– ident: B9
– ident: B14
– ident: B10
– ident: B43
– ident: B20
– ident: B1
– ident: B27
– ident: B5
– ident: B47
– ident: B23
– ident: B18
– ident: B33
– ident: B37
– ident: B8
– ident: B36
– ident: B11
– ident: B42
– ident: B26
– ident: B4
– ident: B46
– ident: B22
– ident: B32
– ident: B15
– ident: B19
– ident: B14
  doi: 10.1007/s10444-018-9619-3
– ident: B25
  doi: 10.1007/s10957-014-0642-3
– ident: B1
  doi: 10.1007/s10589-016-9828-y
– ident: B50
  doi: 10.1137/15M1027528
– ident: B6
  doi: 10.1137/1.9781611974997
– ident: B32
  doi: 10.5802/aif.1638
– ident: B24
  doi: 10.1016/S0168-2024(08)70028-6
– ident: B23
  doi: 10.1137/110853996
– volume: 255
  start-page: 2897
  year: 1962
  ident: B39
  publication-title: Ser. A
– ident: B29
  doi: 10.1007/s10107-007-0124-6
– ident: B9
  doi: 10.1287/moor.2017.0900
– ident: B35
  doi: 10.1007/s10994-014-5469-5
– ident: B7
  doi: 10.1137/050644641
– ident: B10
  doi: 10.1137/060670080
– ident: B40
  doi: 10.1137/14095697X
– ident: B42
  doi: 10.1007/978-3-642-02431-3
– ident: B31
  doi: 10.1137/140990309
– ident: B3
  doi: 10.1007/s10107-011-0484-9
– ident: B45
  doi: 10.1007/s10444-011-9254-8
– ident: B8
  doi: 10.1007/s10107-013-0701-9
– ident: B30
  doi: 10.1007/s10107-016-1034-2
– ident: B38
  doi: 10.1007/3-540-31247-1
– ident: B41
  doi: 10.1007/s11263-013-0611-6
– ident: B18
  doi: 10.1007/s10851-010-0251-1
– ident: B22
  doi: 10.1007/s10957-016-0877-2
– ident: B28
  doi: 10.1080/00207160.2016.1227432
– ident: B44
  doi: 10.1137/140964357
– ident: B2
  doi: 10.1007/s10107-007-0133-5
– ident: B26
  doi: 10.1016/S0168-2024(08)70034-1
– ident: B34
  doi: 10.1137/140998135
– ident: B17
  doi: 10.1561/2200000016
– ident: B43
  doi: 10.1137/130910774
– ident: B48
  doi: 10.1007/s10957-011-9876-5
– ident: B13
  doi: 10.1007/s10957-015-0730-z
– volume: 1
  start-page: 29
  issue: 1
  year: 2016
  ident: B12
  publication-title: Minimax Theory Appl.
– ident: B15
  doi: 10.1137/12088255X
– ident: B19
  doi: 10.1016/j.na.2012.09.008
– ident: B21
  doi: 10.1007/s10957-012-0245-9
– ident: B47
  doi: 10.1007/s10915-018-0757-z
– ident: B16
  doi: 10.1007/s13675-015-0045-8
– ident: B49
  doi: 10.1090/S0025-5718-2012-02598-1
– ident: B11
  doi: 10.1090/S0002-9947-09-05048-X
– ident: B33
  doi: 10.1287/moor.1070.0291
– ident: B27
  doi: 10.1016/0898-1221(76)90003-1
– ident: B20
  doi: 10.1137/050626090
SSID ssj0015714
Score 2.5412157
Snippet We propose two numerical algorithms in the fully nonconvex setting for the minimization of the sum of a smooth function and the composition of a nonsmooth...
SourceID proquest
gale
crossref
informs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 682
SubjectTerms Algorithms
alternating direction method of multipliers
Analysis
Convergence
convergence analysis
convergence rates
Convex analysis
Iterative methods
Kurdyka–Łojasiewicz property
Linear operators
Linear programming
Mathematical analysis
Mathematical functions
Methods
Multipliers
nonconvex complexly structured optimization problems
Numerical analysis
Operations research
Optimization
Primary: 47H05, 65K05, 90C26
Primary: Mathematics: functions, matrices, sets
proximal splitting algorithms
Regularization
secondary: programming: algorithms
variable metric
Łojasiewicz exponent
Title The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates
URI https://www.proquest.com/docview/2406643500
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFB1ki6IPfqyKq1UGEX0aTSaTmY1vy2KpypZiW9m3ITOZaKFN6m4KxV_vvZlJNqWK1ZewZMMk5Jzcj-Tecwl5laBXBbfMRJlBgmJNzIyRjnExLYAOLoty7EZe7MndI_FpmS43gy7b7pLGvLU_f9tX8j-owj7AFbtk_wHZflHYAb8BX9gCwrC9Nsb7q_ri-BRv9El4twe5fzBkNX6IwQnRbaGLLx3E0dd9cWNdtVXnF2Aymq71eY57Vl6js5csadsYMSwdBrOLXvK1rQepz9wqFNYFCaHvw3cKPNpU8Pk8cw8y0MXBwBQlUjAl06X3GsFUcslS4QeodLbUS0MGzvCBYZR-xFDwscqXTl8x3xxfgOyc1jUqtcYZlnBMN46qLx_EA_D_uG3z3uIKwqYR2Zp9_jrf7z8hpSoO2mH-0oNiJ5zi3eUTXIpIgl--6WVr11c8dBt2HN4nd0O-QGce_AfkhqvG5FbXrjAm97qxHDRY6TG5M9CYfEh-AEloRxI6IAntSUI9SWhd0gFJ6HFFAV_ak4QGkrynA4rQjiIUKEJbijwiRzsfDue7LMzZYFYkqmEJtxCjFBCtKW6ypExEmU5jVHI0BsLLPMuss9LZIpW5Ui5LwQu4wsLTzyGZzlTymIyqunJPCOVRAfl-bnhUSpHDujLPuIksJBaJgdR2Qlh3r7UNIvQ4C-VEYzIK2GjERiM2qKY9nZA3_fFnXn7lj0e-ROg0appUWDT1LT9fr_XHgy96hkk7pNlSTMjrAOxfV9vucNfhgV9rDH4hgE-j6Ol113lGbm-er20yalbn7jlEsY15Efj6C7S5ngI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Proximal+Alternating+Direction+Method+of+Multipliers+in+the+Nonconvex+Setting%3A+Convergence+Analysis+and+Rates&rft.jtitle=Mathematics+of+operations+research&rft.date=2020-05-01&rft.pub=INFORMS&rft.issn=0364-765X&rft.eissn=1526-5471&rft.volume=45&rft.issue=2&rft.spage=682&rft.epage=712&rft_id=info:doi/10.1287%2Fmoor.2019.1008&rft.externalDocID=moor20191008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon