Toward Noncooperative Iris Recognition: A Classification Approach Using Multiple Signatures
This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, o...
Saved in:
| Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 29; no. 4; pp. 607 - 612 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-8828 1939-3539 |
| DOI | 10.1109/TPAMI.2007.1016 |
Cover
| Abstract | This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images |
|---|---|
| AbstractList | This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images.This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images. This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images. This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing [abstract truncated by publisher]. |
| Author | Proenca, H. Alexandre, L.A. |
| Author_xml | – sequence: 1 givenname: H. surname: Proenca fullname: Proenca, H. organization: Departamento de Inf., Universidade da Beira Interior, Covilha – sequence: 2 givenname: L.A. surname: Alexandre fullname: Alexandre, L.A. organization: Departamento de Inf., Universidade da Beira Interior, Covilha |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17299218$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktv1DAUhS1URKeFNQskZLGAVaZ-P7objXiM1AKC6YqF5TjO4CoTBzsB8e9xOqWLStDVla6-c3R1zzkBR33sPQDPMVpijPTZ9vPqcrMkCMklRlg8Agusqa4op_oILMqGVEoRdQxOcr5GCDOO6BNwjCXRmmC1AN-28ZdNDfwYexfj4JMdw08PNylk-MW7uOvDGGJ_Dldw3dmcQxucnTdwNQwpWvcdXuXQ7-Dl1I1h6Dz8Gna9Hafk81PwuLVd9s9u5ym4evd2u_5QXXx6v1mvLirHqBwr7IUgiDS4QaSlziomG1mTVjeUe-9r1VrXYCd042wrdK25V6iuKdXSNa1U9BS8OfiWg35MPo9mH7LzXWd7H6dsNKKCFRo9SCqFBC-fYYV8_V9SaIQ4xfRBkDKmCGGz46t74HWcUl8eY5RgGEuO5wNf3kJTvfeNGVLY2_Tb_A2sAPwAuBRzTr41Low3gYzJhs5gZOZimJtimLkYZi5G0Z3d091Z_1Px4qAIJYQ7mmEkueD0D3Grwns |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2012_08_068 crossref_primary_10_1007_s11760_013_0468_8 crossref_primary_10_1117_1_3549886 crossref_primary_10_1186_1687_6180_2014_95 crossref_primary_10_1109_TIFS_2009_2033759 crossref_primary_10_1016_j_optlaseng_2010_09_011 crossref_primary_10_1117_1_2977528 crossref_primary_10_1007_s10462_016_9474_x crossref_primary_10_1007_s10044_011_0229_7 crossref_primary_10_1016_j_bbe_2014_05_003 crossref_primary_10_1049_iet_ipr_2012_0452 crossref_primary_10_1109_TSMCB_2008_922059 crossref_primary_10_1142_S0218001415560145 crossref_primary_10_1007_s12652_012_0161_8 crossref_primary_10_1016_j_patrec_2011_06_017 crossref_primary_10_1016_j_neucom_2009_09_016 crossref_primary_10_1016_j_patrec_2011_06_018 crossref_primary_10_1007_s11192_014_1336_1 crossref_primary_10_1049_iet_bmt_2015_0091 crossref_primary_10_1109_TIM_2009_2037996 crossref_primary_10_1007_s00138_011_0370_8 crossref_primary_10_1109_TPAMI_2014_2343959 crossref_primary_10_1007_s42979_022_01113_0 crossref_primary_10_1142_S0218001413560041 crossref_primary_10_1111_j_1468_0394_2009_00534_x crossref_primary_10_1007_s10044_018_0764_6 crossref_primary_10_1016_j_patcog_2017_05_021 crossref_primary_10_1016_j_optlastec_2015_03_003 crossref_primary_10_1007_s11042_021_11746_7 crossref_primary_10_1109_TPAMI_2011_159 crossref_primary_10_1007_s11227_019_03007_0 crossref_primary_10_1155_2010_415307 crossref_primary_10_1109_TIFS_2011_2166069 crossref_primary_10_1109_TSMCB_2007_904831 crossref_primary_10_1109_TSMCB_2012_2227722 crossref_primary_10_1016_j_patrec_2015_11_001 crossref_primary_10_1016_j_neucom_2011_09_025 crossref_primary_10_1109_TIFS_2014_2328869 crossref_primary_10_1016_j_knosys_2015_10_024 crossref_primary_10_1007_s11760_011_0237_5 crossref_primary_10_1007_s10044_013_0334_x crossref_primary_10_1016_j_optlastec_2018_03_002 crossref_primary_10_1016_j_imavis_2009_04_017 crossref_primary_10_1109_TIE_2009_2024653 crossref_primary_10_1109_TSMCA_2010_2041658 crossref_primary_10_1109_TSMC_2015_2505649 crossref_primary_10_1016_j_ins_2012_09_021 crossref_primary_10_1007_s11042_017_4965_6 crossref_primary_10_1142_S0218001415560169 crossref_primary_10_1016_S1672_6529_14_60060_3 crossref_primary_10_1016_j_cviu_2007_08_005 crossref_primary_10_1016_j_compeleceng_2015_12_017 crossref_primary_10_1007_s11042_017_4668_z crossref_primary_10_1007_s11265_013_0861_0 crossref_primary_10_1109_TPAMI_2010_227 crossref_primary_10_1016_j_optlastec_2019_105701 crossref_primary_10_1007_s11334_015_0251_9 crossref_primary_10_1109_ACCESS_2019_2911056 crossref_primary_10_1142_S0218001412560113 crossref_primary_10_1109_TIP_2012_2227770 crossref_primary_10_1109_LSP_2017_2719282 crossref_primary_10_1016_j_patrec_2011_08_014 crossref_primary_10_1109_TIFS_2018_2869342 crossref_primary_10_1016_j_patrec_2011_08_016 crossref_primary_10_1016_j_sigpro_2016_11_007 crossref_primary_10_1049_iet_cvi_2010_0165 crossref_primary_10_1016_j_neucom_2017_12_053 crossref_primary_10_1109_TSMCA_2011_2170416 crossref_primary_10_1007_s42452_019_0777_9 crossref_primary_10_1155_2014_161932 crossref_primary_10_1155_2010_936512 crossref_primary_10_1007_s11760_010_0193_5 crossref_primary_10_1016_j_patcog_2009_08_016 crossref_primary_10_1109_TSMCB_2010_2045371 |
| Cites_doi | 10.1109/ICPR.2002.1044732 10.1016/j.patcog.2004.02.001 10.1109/34.244676 10.1109/icip.2005.1530384 10.1109/ICPR.2002.1048327 10.1109/78.668573 10.1049/ip-vis:20050213 10.1109/5.628669 10.1109/ICMLC.2002.1176794 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| DOI | 10.1109/TPAMI.2007.1016 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1939-3539 |
| EndPage | 612 |
| ExternalDocumentID | 2333973681 17299218 10_1109_TPAMI_2007_1016 4107565 |
| Genre | orig-research Evaluation Studies Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| ID | FETCH-LOGICAL-c437t-1e66202d1d02f3ca847d7b2f9d35eeeb8facd1c69dcaf69b95e80bb3397cdf783 |
| IEDL.DBID | RIE |
| ISSN | 0162-8828 |
| IngestDate | Sun Sep 28 07:17:13 EDT 2025 Thu Oct 02 13:19:40 EDT 2025 Sat Sep 27 20:29:36 EDT 2025 Thu Oct 02 10:58:02 EDT 2025 Sun Jun 29 16:02:21 EDT 2025 Mon Jul 21 05:51:27 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Oct 01 06:43:54 EDT 2025 Tue Aug 26 16:41:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c437t-1e66202d1d02f3ca847d7b2f9d35eeeb8facd1c69dcaf69b95e80bb3397cdf783 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Undefined-1 ObjectType-Feature-3 |
| PMID | 17299218 |
| PQID | 864117510 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | crossref_primary_10_1109_TPAMI_2007_1016 proquest_miscellaneous_903643970 proquest_journals_864117510 proquest_miscellaneous_69005313 ieee_primary_4107565 crossref_citationtrail_10_1109_TPAMI_2007_1016 proquest_miscellaneous_880659924 pubmed_primary_17299218 proquest_miscellaneous_34482244 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2007-04-01 |
| PublicationDateYYYYMMDD | 2007-04-01 |
| PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2007 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 (ref14) 2004 Ross (ref19) (ref15) 2004 ref11 (ref5) 2005 ref10 Proença (ref20) ref2 Kalka (ref13); 6202 Flom (ref1) 1987 Dobes (ref17) 2004 ref8 Vatsa (ref4) 2005; 2 ref7 ref9 (ref18) 2006 ref3 ref6 (ref16) 2004 |
| References_xml | – ident: ref7 doi: 10.1109/ICPR.2002.1044732 – ident: ref3 doi: 10.1016/j.patcog.2004.02.001 – year: 2004 ident: ref17 article-title: UPOL Iris Image Database – ident: ref6 doi: 10.1109/34.244676 – volume-title: Proc. 2004 Biometric Consortium Conf. ident: ref19 article-title: A Centralized Web-Enabled Multimodal Biometric Database – start-page: 970 volume-title: Proc. 13th Int’l Conf. Image Analysis and Processing ident: ref20 article-title: UBIRIS: A Noisy Iris Image Database – volume: 2 start-page: 66 issue: 1 year: 2005 ident: ref4 article-title: Reducing the False Rejection Rate of Iris Recognition Using Textural and Topological Features publication-title: Int’l J. Signal Processing – ident: ref12 doi: 10.1109/icip.2005.1530384 – ident: ref11 doi: 10.1109/ICPR.2002.1048327 – ident: ref9 doi: 10.1109/78.668573 – year: 2004 ident: ref14 article-title: CASIA Iris Image Database – ident: ref8 doi: 10.1049/ip-vis:20050213 – ident: ref2 doi: 10.1109/5.628669 – year: 2006 ident: ref18 article-title: Iris Challenge Evaluation – year: 2004 ident: ref16 article-title: University of Bath Iris Image Database – volume: 6202 start-page: 263 volume-title: Proc. SPIE Conf. Biometric Technology for Human Identification III ident: ref13 article-title: Image Quality Accessment for Iris Biometric – year: 1987 ident: ref1 article-title: Iris Recognition System – year: 2004 ident: ref15 article-title: MMU Iris Image Database – year: 2005 ident: ref5 article-title: Independent Test of Iris Recognition Technology – ident: ref10 doi: 10.1109/ICMLC.2002.1176794 |
| SSID | ssj0014503 |
| Score | 2.3174038 |
| Snippet | This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 607 |
| SubjectTerms | Acoustic reflection Active control Algorithms Artificial Intelligence biometrics Biometry - methods Brightness Classification Cluster Analysis Error analysis Feature extraction Focusing Humans Image contrast Image Interpretation, Computer-Assisted - methods Image recognition Image segmentation Intelligence Iris - anatomy & histology Iris classification Iris recognition Lighting Lighting control noncooperative iris recognition Optical reflection Pattern Recognition, Automated - methods Recognition Reproducibility of Results Sensitivity and Specificity Signatures Subtraction Technique |
| Title | Toward Noncooperative Iris Recognition: A Classification Approach Using Multiple Signatures |
| URI | https://ieeexplore.ieee.org/document/4107565 https://www.ncbi.nlm.nih.gov/pubmed/17299218 https://www.proquest.com/docview/864117510 https://www.proquest.com/docview/34482244 https://www.proquest.com/docview/69005313 https://www.proquest.com/docview/880659924 https://www.proquest.com/docview/903643970 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjlBYfOHAg2zwcJ-a2qqgK0lao3UqVOER-VlVRUrG7F34940dChYjUW6SdSHHGszOT-fx9AB-MtQLTsEopkzSlKqcprzRNMVuJWlmVq8odcF6cs7Mr-u26ut6CT-NZGGOMB5-Zmbv0s3zdq437VHZMsVfBAmQbtuuGhbNa48SAVl4FGSsYjHBsIyKNT57x4-X3-eJrYCt0varjCcWSkhdO6ONBMvLqKtOFpk84p7uwGB414EzuZpu1nKnf_7A4PnYtz-FZrDzJPGyVF7Bluj3YHVQdSAzyPXj6gKJwH34sPa6WnPed6vt7E4jCiROmJxcD-KjvPpM58fqaDnnknU3mka2ceFQCWUTkIrm8vQlsoquXcHX6ZXlylkZBhlTRsl6nuWGsyAqd66ywpRKY2XQtC8t1WeECZWOF0rliXCthGZe8Mk0mZYk1j9K2bspXsNP1nXkDRAuTYakgRSFKym0mma6w2eTC8e0p0yQwGzzTqshW7kQzfra-a8l4673qVDRrD1NL4ON4w30g6pg23Xf-GM2iKxI4GFzfxkBetQ2jjsw0zxJ4P_6KEejGKqIz_WbVltjhYiFEpy0Y9_91ZQJkwqLx823shadNuJsY45vEJ3kd9uXfdcbt_Pb_CzuAJ-GLtMMbvYOd9a-NOcRSai2PfAz9AQPxGqw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOFFpaQoH6wIED2ebDdmJuK0S1hWaFYCtV4hD5KwgVJRW7e-HXM3acUCEicYu0EynOeHZmMs_vAbyyTSMxDeuYckVjqlMaC2ZojNlKFrrRqWbugHO15ItL-uGKXe3Am_EsjLXWg8_szF36Wb7p9NZ9Kjul2KtgAXIH7jJKKetPa40zA8q8DjLWMBjj2EgEIp80EaerT_PqvOcrdN2qYwrFolJkTurjVjry-irTpaZPOWd7UA0P2yNNrmfbjZrpX3_xOP7vah7Bw1B7knm_WR7Djm33YW_QdSAhzPfhwS2SwgP4uvLIWrLsWt11N7anCidOmp58HuBHXfuWzIlX2HTYI-9uMg985cTjEkgVsIvky_dvPZ_o-glcnr1fvVvEQZIh1jQvNnFqOc-SzKQmyZpcS8xtplBZI0zOcIGqbKQ2qebCaNlwoQSzZaJUjlWPNk1R5oew23atfQrESJtgsaBkJnMqmkRxw7DdFNIx7mlbRjAbPFPrwFfuZDN-1L5vSUTtvep0NAsPVIvg9XjDTU_VMW164PwxmgVXRHA8uL4OobyuS04dnWmaRHAy_oox6AYrsrXddl3n2ONiKUSnLbjw_3Z5BGTCovQTbuyGp02Emxnjm8QnOer35Z91hu387N8LO4F7i1V1UV-cLz8ew_3--7RDHz2H3c3PrX2BhdVGvfTx9Bvpvh35 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Noncooperative+Iris+Recognition%3A+A+Classification+Approach+Using+Multiple+Signatures&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Proenca%2C+H&rft.au=Alexandre%2C+L+A&rft.date=2007-04-01&rft.issn=0162-8828&rft.volume=29&rft.issue=4&rft.spage=607&rft.epage=612&rft_id=info:doi/10.1109%2FTPAMI.2007.1016&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |