Toward Noncooperative Iris Recognition: A Classification Approach Using Multiple Signatures

This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 29; no. 4; pp. 607 - 612
Main Authors Proenca, H., Alexandre, L.A.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
DOI10.1109/TPAMI.2007.1016

Cover

Abstract This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images
AbstractList This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images.This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images.
This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images
This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images.
This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing [abstract truncated by publisher].
Author Proenca, H.
Alexandre, L.A.
Author_xml – sequence: 1
  givenname: H.
  surname: Proenca
  fullname: Proenca, H.
  organization: Departamento de Inf., Universidade da Beira Interior, Covilha
– sequence: 2
  givenname: L.A.
  surname: Alexandre
  fullname: Alexandre, L.A.
  organization: Departamento de Inf., Universidade da Beira Interior, Covilha
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17299218$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKeFNQskZLGAVaZ-P7objXiM1AKC6YqF5TjO4CoTBzsB8e9xOqWLStDVla6-c3R1zzkBR33sPQDPMVpijPTZ9vPqcrMkCMklRlg8Agusqa4op_oILMqGVEoRdQxOcr5GCDOO6BNwjCXRmmC1AN-28ZdNDfwYexfj4JMdw08PNylk-MW7uOvDGGJ_Dldw3dmcQxucnTdwNQwpWvcdXuXQ7-Dl1I1h6Dz8Gna9Hafk81PwuLVd9s9u5ym4evd2u_5QXXx6v1mvLirHqBwr7IUgiDS4QaSlziomG1mTVjeUe-9r1VrXYCd042wrdK25V6iuKdXSNa1U9BS8OfiWg35MPo9mH7LzXWd7H6dsNKKCFRo9SCqFBC-fYYV8_V9SaIQ4xfRBkDKmCGGz46t74HWcUl8eY5RgGEuO5wNf3kJTvfeNGVLY2_Tb_A2sAPwAuBRzTr41Low3gYzJhs5gZOZimJtimLkYZi5G0Z3d091Z_1Px4qAIJYQ7mmEkueD0D3Grwns
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_neucom_2012_08_068
crossref_primary_10_1007_s11760_013_0468_8
crossref_primary_10_1117_1_3549886
crossref_primary_10_1186_1687_6180_2014_95
crossref_primary_10_1109_TIFS_2009_2033759
crossref_primary_10_1016_j_optlaseng_2010_09_011
crossref_primary_10_1117_1_2977528
crossref_primary_10_1007_s10462_016_9474_x
crossref_primary_10_1007_s10044_011_0229_7
crossref_primary_10_1016_j_bbe_2014_05_003
crossref_primary_10_1049_iet_ipr_2012_0452
crossref_primary_10_1109_TSMCB_2008_922059
crossref_primary_10_1142_S0218001415560145
crossref_primary_10_1007_s12652_012_0161_8
crossref_primary_10_1016_j_patrec_2011_06_017
crossref_primary_10_1016_j_neucom_2009_09_016
crossref_primary_10_1016_j_patrec_2011_06_018
crossref_primary_10_1007_s11192_014_1336_1
crossref_primary_10_1049_iet_bmt_2015_0091
crossref_primary_10_1109_TIM_2009_2037996
crossref_primary_10_1007_s00138_011_0370_8
crossref_primary_10_1109_TPAMI_2014_2343959
crossref_primary_10_1007_s42979_022_01113_0
crossref_primary_10_1142_S0218001413560041
crossref_primary_10_1111_j_1468_0394_2009_00534_x
crossref_primary_10_1007_s10044_018_0764_6
crossref_primary_10_1016_j_patcog_2017_05_021
crossref_primary_10_1016_j_optlastec_2015_03_003
crossref_primary_10_1007_s11042_021_11746_7
crossref_primary_10_1109_TPAMI_2011_159
crossref_primary_10_1007_s11227_019_03007_0
crossref_primary_10_1155_2010_415307
crossref_primary_10_1109_TIFS_2011_2166069
crossref_primary_10_1109_TSMCB_2007_904831
crossref_primary_10_1109_TSMCB_2012_2227722
crossref_primary_10_1016_j_patrec_2015_11_001
crossref_primary_10_1016_j_neucom_2011_09_025
crossref_primary_10_1109_TIFS_2014_2328869
crossref_primary_10_1016_j_knosys_2015_10_024
crossref_primary_10_1007_s11760_011_0237_5
crossref_primary_10_1007_s10044_013_0334_x
crossref_primary_10_1016_j_optlastec_2018_03_002
crossref_primary_10_1016_j_imavis_2009_04_017
crossref_primary_10_1109_TIE_2009_2024653
crossref_primary_10_1109_TSMCA_2010_2041658
crossref_primary_10_1109_TSMC_2015_2505649
crossref_primary_10_1016_j_ins_2012_09_021
crossref_primary_10_1007_s11042_017_4965_6
crossref_primary_10_1142_S0218001415560169
crossref_primary_10_1016_S1672_6529_14_60060_3
crossref_primary_10_1016_j_cviu_2007_08_005
crossref_primary_10_1016_j_compeleceng_2015_12_017
crossref_primary_10_1007_s11042_017_4668_z
crossref_primary_10_1007_s11265_013_0861_0
crossref_primary_10_1109_TPAMI_2010_227
crossref_primary_10_1016_j_optlastec_2019_105701
crossref_primary_10_1007_s11334_015_0251_9
crossref_primary_10_1109_ACCESS_2019_2911056
crossref_primary_10_1142_S0218001412560113
crossref_primary_10_1109_TIP_2012_2227770
crossref_primary_10_1109_LSP_2017_2719282
crossref_primary_10_1016_j_patrec_2011_08_014
crossref_primary_10_1109_TIFS_2018_2869342
crossref_primary_10_1016_j_patrec_2011_08_016
crossref_primary_10_1016_j_sigpro_2016_11_007
crossref_primary_10_1049_iet_cvi_2010_0165
crossref_primary_10_1016_j_neucom_2017_12_053
crossref_primary_10_1109_TSMCA_2011_2170416
crossref_primary_10_1007_s42452_019_0777_9
crossref_primary_10_1155_2014_161932
crossref_primary_10_1155_2010_936512
crossref_primary_10_1007_s11760_010_0193_5
crossref_primary_10_1016_j_patcog_2009_08_016
crossref_primary_10_1109_TSMCB_2010_2045371
Cites_doi 10.1109/ICPR.2002.1044732
10.1016/j.patcog.2004.02.001
10.1109/34.244676
10.1109/icip.2005.1530384
10.1109/ICPR.2002.1048327
10.1109/78.668573
10.1049/ip-vis:20050213
10.1109/5.628669
10.1109/ICMLC.2002.1176794
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2007.1016
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Technology Research Database
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1939-3539
EndPage 612
ExternalDocumentID 2333973681
17299218
10_1109_TPAMI_2007_1016
4107565
Genre orig-research
Evaluation Studies
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c437t-1e66202d1d02f3ca847d7b2f9d35eeeb8facd1c69dcaf69b95e80bb3397cdf783
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Sun Sep 28 07:17:13 EDT 2025
Thu Oct 02 13:19:40 EDT 2025
Sat Sep 27 20:29:36 EDT 2025
Thu Oct 02 10:58:02 EDT 2025
Sun Jun 29 16:02:21 EDT 2025
Mon Jul 21 05:51:27 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Oct 01 06:43:54 EDT 2025
Tue Aug 26 16:41:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-1e66202d1d02f3ca847d7b2f9d35eeeb8facd1c69dcaf69b95e80bb3397cdf783
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 17299218
PQID 864117510
PQPubID 23500
PageCount 6
ParticipantIDs crossref_primary_10_1109_TPAMI_2007_1016
proquest_miscellaneous_903643970
proquest_journals_864117510
proquest_miscellaneous_69005313
ieee_primary_4107565
crossref_citationtrail_10_1109_TPAMI_2007_1016
proquest_miscellaneous_880659924
pubmed_primary_17299218
proquest_miscellaneous_34482244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-01
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2007
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
(ref14) 2004
Ross (ref19)
(ref15) 2004
ref11
(ref5) 2005
ref10
Proença (ref20)
ref2
Kalka (ref13); 6202
Flom (ref1) 1987
Dobes (ref17) 2004
ref8
Vatsa (ref4) 2005; 2
ref7
ref9
(ref18) 2006
ref3
ref6
(ref16) 2004
References_xml – ident: ref7
  doi: 10.1109/ICPR.2002.1044732
– ident: ref3
  doi: 10.1016/j.patcog.2004.02.001
– year: 2004
  ident: ref17
  article-title: UPOL Iris Image Database
– ident: ref6
  doi: 10.1109/34.244676
– volume-title: Proc. 2004 Biometric Consortium Conf.
  ident: ref19
  article-title: A Centralized Web-Enabled Multimodal Biometric Database
– start-page: 970
  volume-title: Proc. 13th Int’l Conf. Image Analysis and Processing
  ident: ref20
  article-title: UBIRIS: A Noisy Iris Image Database
– volume: 2
  start-page: 66
  issue: 1
  year: 2005
  ident: ref4
  article-title: Reducing the False Rejection Rate of Iris Recognition Using Textural and Topological Features
  publication-title: Int’l J. Signal Processing
– ident: ref12
  doi: 10.1109/icip.2005.1530384
– ident: ref11
  doi: 10.1109/ICPR.2002.1048327
– ident: ref9
  doi: 10.1109/78.668573
– year: 2004
  ident: ref14
  article-title: CASIA Iris Image Database
– ident: ref8
  doi: 10.1049/ip-vis:20050213
– ident: ref2
  doi: 10.1109/5.628669
– year: 2006
  ident: ref18
  article-title: Iris Challenge Evaluation
– year: 2004
  ident: ref16
  article-title: University of Bath Iris Image Database
– volume: 6202
  start-page: 263
  volume-title: Proc. SPIE Conf. Biometric Technology for Human Identification III
  ident: ref13
  article-title: Image Quality Accessment for Iris Biometric
– year: 1987
  ident: ref1
  article-title: Iris Recognition System
– year: 2004
  ident: ref15
  article-title: MMU Iris Image Database
– year: 2005
  ident: ref5
  article-title: Independent Test of Iris Recognition Technology
– ident: ref10
  doi: 10.1109/ICMLC.2002.1176794
SSID ssj0014503
Score 2.3174038
Snippet This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 607
SubjectTerms Acoustic reflection
Active control
Algorithms
Artificial Intelligence
biometrics
Biometry - methods
Brightness
Classification
Cluster Analysis
Error analysis
Feature extraction
Focusing
Humans
Image contrast
Image Interpretation, Computer-Assisted - methods
Image recognition
Image segmentation
Intelligence
Iris - anatomy & histology
Iris classification
Iris recognition
Lighting
Lighting control
noncooperative iris recognition
Optical reflection
Pattern Recognition, Automated - methods
Recognition
Reproducibility of Results
Sensitivity and Specificity
Signatures
Subtraction Technique
Title Toward Noncooperative Iris Recognition: A Classification Approach Using Multiple Signatures
URI https://ieeexplore.ieee.org/document/4107565
https://www.ncbi.nlm.nih.gov/pubmed/17299218
https://www.proquest.com/docview/864117510
https://www.proquest.com/docview/34482244
https://www.proquest.com/docview/69005313
https://www.proquest.com/docview/880659924
https://www.proquest.com/docview/903643970
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjlBYfOHAg2zwcJ-a2qqgK0lao3UqVOER-VlVRUrG7F34940dChYjUW6SdSHHGszOT-fx9AB-MtQLTsEopkzSlKqcprzRNMVuJWlmVq8odcF6cs7Mr-u26ut6CT-NZGGOMB5-Zmbv0s3zdq437VHZMsVfBAmQbtuuGhbNa48SAVl4FGSsYjHBsIyKNT57x4-X3-eJrYCt0varjCcWSkhdO6ONBMvLqKtOFpk84p7uwGB414EzuZpu1nKnf_7A4PnYtz-FZrDzJPGyVF7Bluj3YHVQdSAzyPXj6gKJwH34sPa6WnPed6vt7E4jCiROmJxcD-KjvPpM58fqaDnnknU3mka2ceFQCWUTkIrm8vQlsoquXcHX6ZXlylkZBhlTRsl6nuWGsyAqd66ywpRKY2XQtC8t1WeECZWOF0rliXCthGZe8Mk0mZYk1j9K2bspXsNP1nXkDRAuTYakgRSFKym0mma6w2eTC8e0p0yQwGzzTqshW7kQzfra-a8l4673qVDRrD1NL4ON4w30g6pg23Xf-GM2iKxI4GFzfxkBetQ2jjsw0zxJ4P_6KEejGKqIz_WbVltjhYiFEpy0Y9_91ZQJkwqLx823shadNuJsY45vEJ3kd9uXfdcbt_Pb_CzuAJ-GLtMMbvYOd9a-NOcRSai2PfAz9AQPxGqw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOFFpaQoH6wIED2ebDdmJuK0S1hWaFYCtV4hD5KwgVJRW7e-HXM3acUCEicYu0EynOeHZmMs_vAbyyTSMxDeuYckVjqlMaC2ZojNlKFrrRqWbugHO15ItL-uGKXe3Am_EsjLXWg8_szF36Wb7p9NZ9Kjul2KtgAXIH7jJKKetPa40zA8q8DjLWMBjj2EgEIp80EaerT_PqvOcrdN2qYwrFolJkTurjVjry-irTpaZPOWd7UA0P2yNNrmfbjZrpX3_xOP7vah7Bw1B7knm_WR7Djm33YW_QdSAhzPfhwS2SwgP4uvLIWrLsWt11N7anCidOmp58HuBHXfuWzIlX2HTYI-9uMg985cTjEkgVsIvky_dvPZ_o-glcnr1fvVvEQZIh1jQvNnFqOc-SzKQmyZpcS8xtplBZI0zOcIGqbKQ2qebCaNlwoQSzZaJUjlWPNk1R5oew23atfQrESJtgsaBkJnMqmkRxw7DdFNIx7mlbRjAbPFPrwFfuZDN-1L5vSUTtvep0NAsPVIvg9XjDTU_VMW164PwxmgVXRHA8uL4OobyuS04dnWmaRHAy_oox6AYrsrXddl3n2ONiKUSnLbjw_3Z5BGTCovQTbuyGp02Emxnjm8QnOer35Z91hu387N8LO4F7i1V1UV-cLz8ew_3--7RDHz2H3c3PrX2BhdVGvfTx9Bvpvh35
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Noncooperative+Iris+Recognition%3A+A+Classification+Approach+Using+Multiple+Signatures&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Proenca%2C+H&rft.au=Alexandre%2C+L+A&rft.date=2007-04-01&rft.issn=0162-8828&rft.volume=29&rft.issue=4&rft.spage=607&rft.epage=612&rft_id=info:doi/10.1109%2FTPAMI.2007.1016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon