Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication
Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication Daniel I. Chasman, PhD * ; Guillaume Paré, MD, MS * ;...
Saved in:
Published in | Circulation. Cardiovascular genetics Vol. 1; no. 1; pp. 21 - 30 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.10.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-6731 1942-325X 1942-3268 1943-2631 1942-3268 |
DOI | 10.1161/CIRCGENETICS.108.773168 |
Cover
Abstract | Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication
Daniel I. Chasman, PhD * ;
Guillaume Paré, MD, MS * ;
Robert Y.L. Zee, PhD, MPH ;
Alex N. Parker, PhD ;
Nancy R. Cook, ScD ;
Julie E. Buring, ScD ;
David J. Kwiatkowski, MD, PhD ;
Lynda M. Rose, MS ;
Joshua D. Smith, BS ;
Paul T. Williams, PhD ;
Mark J. Rieder, PhD ;
Jerome I. Rotter, MD ;
Deborah A. Nickerson, PhD ;
Ronald M. Krauss, MD ;
Joseph P. Miletich, MD and
Paul M Ridker, MD, MPH
From the Center for Cardiovascular Disease Prevention (D.I.C., G.P., R.Y.L.Z., N.R.C., J.E.B., L.M.R., P.M.R.) and Donald W. Reynolds Center for Cardiovascular Research (D.I.C., G.P., R.Y.L.Z., N.R.C., D.J.K., P.M.R.), Brigham and Womens Hospital, Harvard Medical School, Boston, Mass; Amgen, Inc, Cambridge, Mass (A.N.P., J.M.P.); Department of Genome Sciences, University of Washington, Seattle, Wash (J.D.S., M.J.R., D.A.N.); Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, Calif (P.T.W., R.M.K.); Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.I.R.); and Childrens Hospital Oakland Research Institute, Oakland, Calif (R.M.K.).
Correspondence to Daniel I. Chasman, Center for Cardiovascular Disease Prevention, Brigham and Womens Hospital, 900 Commonwealth Ave E, Boston, MA 02215. E-mail dchasman{at}rics.bwh.harvard.edu
Received February 13, 2008; accepted June 23, 2008.
Background— Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders.
Methods and Results— We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein (Apo) A1, and ApoB. Genome-wide associations ( P <5 x 10 –8 ) were found at the PCSK9 gene, the APOB gene, the LPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition, genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB.
Conclusion— Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women.
Key Words: lipoproteins lipids cardiovascular diseases population genetics
CLINICAL PERSPECTIVE
*Drs Chasman and Paré contributed equally.
Guest Editor for this article was Donna K. Arnett, PhD.
The online Data Supplement can be found with this article at http://circgenetics.ahajournals.org/cgi/content/full/1/1/21/DC1. |
---|---|
AbstractList | Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication
Daniel I. Chasman, PhD * ;
Guillaume Paré, MD, MS * ;
Robert Y.L. Zee, PhD, MPH ;
Alex N. Parker, PhD ;
Nancy R. Cook, ScD ;
Julie E. Buring, ScD ;
David J. Kwiatkowski, MD, PhD ;
Lynda M. Rose, MS ;
Joshua D. Smith, BS ;
Paul T. Williams, PhD ;
Mark J. Rieder, PhD ;
Jerome I. Rotter, MD ;
Deborah A. Nickerson, PhD ;
Ronald M. Krauss, MD ;
Joseph P. Miletich, MD and
Paul M Ridker, MD, MPH
From the Center for Cardiovascular Disease Prevention (D.I.C., G.P., R.Y.L.Z., N.R.C., J.E.B., L.M.R., P.M.R.) and Donald W. Reynolds Center for Cardiovascular Research (D.I.C., G.P., R.Y.L.Z., N.R.C., D.J.K., P.M.R.), Brigham and Womens Hospital, Harvard Medical School, Boston, Mass; Amgen, Inc, Cambridge, Mass (A.N.P., J.M.P.); Department of Genome Sciences, University of Washington, Seattle, Wash (J.D.S., M.J.R., D.A.N.); Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, Calif (P.T.W., R.M.K.); Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.I.R.); and Childrens Hospital Oakland Research Institute, Oakland, Calif (R.M.K.).
Correspondence to Daniel I. Chasman, Center for Cardiovascular Disease Prevention, Brigham and Womens Hospital, 900 Commonwealth Ave E, Boston, MA 02215. E-mail dchasman{at}rics.bwh.harvard.edu
Received February 13, 2008; accepted June 23, 2008.
Background— Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders.
Methods and Results— We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein (Apo) A1, and ApoB. Genome-wide associations ( P <5 x 10 –8 ) were found at the PCSK9 gene, the APOB gene, the LPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition, genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB.
Conclusion— Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women.
Key Words: lipoproteins lipids cardiovascular diseases population genetics
CLINICAL PERSPECTIVE
*Drs Chasman and Paré contributed equally.
Guest Editor for this article was Donna K. Arnett, PhD.
The online Data Supplement can be found with this article at http://circgenetics.ahajournals.org/cgi/content/full/1/1/21/DC1. Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders. We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein(Apo) A1, and ApoB. Genome-wide associations (P < 5 x 10(-8)) were found at the PCSK9 gene, the APOB gene, theLPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition,genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB. Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women. BACKGROUND—Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders. METHODS AND RESULTS—We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein (Apo) A1, and ApoB. Genome-wide associations (P<5×10) were found at the PCSK9 gene, the APOB gene, the LPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition, genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB. CONCLUSION—Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women. Background— Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders. Methods and Results— We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein (Apo) A1, and ApoB. Genome-wide associations ( P <5 10 −8 ) were found at the PCSK9 gene, the APOB gene, the LPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition, genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB. Conclusion— Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women. Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders.BACKGROUNDGenome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders.We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein(Apo) A1, and ApoB. Genome-wide associations (P < 5 x 10(-8)) were found at the PCSK9 gene, the APOB gene, theLPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition,genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB.METHODS AND RESULTSWe have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein(Apo) A1, and ApoB. Genome-wide associations (P < 5 x 10(-8)) were found at the PCSK9 gene, the APOB gene, theLPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition,genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB.Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women.CONCLUSIONGenome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women. |
Author | Krauss, Ronald M Kwiatkowski, David J Rose, Lynda M Pare, Guillaume Zee, Robert Y.L Rotter, Jerome I Nickerson, Deborah A Parker, Alex N Ridker, Paul M Cook, Nancy R Miletich, Joseph P Williams, Paul T Smith, Joshua D Rieder, Mark J Buring, Julie E Chasman, Daniel I |
AuthorAffiliation | From the Center for Cardiovascular Disease Prevention (D.I.C., G.P., R.Y.L.Z., N.R.C., J.E.B., L.M.R., P.M.R.) and Donald W. Reynolds Center for Cardiovascular Research (D.I.C., G.P., R.Y.L.Z., N.R.C., D.J.K., P.M.R.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass; Amgen, Inc, Cambridge, Mass (A.N.P., J.M.P.); Department of Genome Sciences, University of Washington, Seattle, Wash (J.D.S., M.J.R., D.A.N.); Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, Calif (P.T.W., R.M.K.); Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.I.R.); and Children’s Hospital Oakland Research Institute, Oakland, Calif (R.M.K.) |
AuthorAffiliation_xml | – name: From the Center for Cardiovascular Disease Prevention (D.I.C., G.P., R.Y.L.Z., N.R.C., J.E.B., L.M.R., P.M.R.) and Donald W. Reynolds Center for Cardiovascular Research (D.I.C., G.P., R.Y.L.Z., N.R.C., D.J.K., P.M.R.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass; Amgen, Inc, Cambridge, Mass (A.N.P., J.M.P.); Department of Genome Sciences, University of Washington, Seattle, Wash (J.D.S., M.J.R., D.A.N.); Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, Calif (P.T.W., R.M.K.); Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.I.R.); and Children’s Hospital Oakland Research Institute, Oakland, Calif (R.M.K.) |
Author_xml | – sequence: 1 fullname: Chasman, Daniel I – sequence: 2 fullname: Pare, Guillaume – sequence: 3 fullname: Zee, Robert Y.L – sequence: 4 fullname: Parker, Alex N – sequence: 5 fullname: Cook, Nancy R – sequence: 6 fullname: Buring, Julie E – sequence: 7 fullname: Kwiatkowski, David J – sequence: 8 fullname: Rose, Lynda M – sequence: 9 fullname: Smith, Joshua D – sequence: 10 fullname: Williams, Paul T – sequence: 11 fullname: Rieder, Mark J – sequence: 12 fullname: Rotter, Jerome I – sequence: 13 fullname: Nickerson, Deborah A – sequence: 14 fullname: Krauss, Ronald M – sequence: 15 fullname: Miletich, Joseph P – sequence: 16 fullname: Ridker, Paul M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19802338$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk2P0zAQjdAi9gP-AvgEl6bYcT4PHEIo3UoVoKWoR8t1Jo3Bsbu2S9U_zhl3s6DVXlaWZizPe_Y8z7uMzrTREEVvCJ4SkpP3zeKmmc--zFaL5vuU4HJaFJTk5bPoglQpjZOckrPoAmOSx3monEeXzv3EGOdVVr6IzklV4oTS8iL6MwcNXgq0NEKi2rmQuIcWraXv0TfF3cBRY7QA7S330mhkugA-xJ9AO-mPaCl3ZmeNB6lR0xsFzoM1aoKu5bZ_GrWycquOAqxswU1QvTPqAbQmE8R1-_j4I6oHo7cop2WC1r30gNZmAI1CLQgK23gd7kO15uropBvV3MBOSXEn4mX0vOPKwav7fBX9-DxbNdfx8ut80dTLWKS0yOKWV2QDWQuYQN6VVXsKhcg3bZXynKRtsUmKlOM2gTSFLAeR0U345a4UKSnTjl5F78Z7Q-e3-yCaDdIJUIprMHvHCpomCc5wFpCv75H7zQAt21k5cHtk_0YVAB9GgLDGOQsdE9LfiQmDkYoRzE7WYA-tEQ5LNloj8ItH_P9PPMlMR-bBqDA190vtD2BZD1z5nmFCaZFWRZxgXJLgMRyfwknR25HWByMcpAXGh8CxPjRuhfi9ZSSshNC_of3g6A |
CitedBy_id | crossref_primary_10_1253_circj_CJ_09_0790 crossref_primary_10_1017_S0007114514000580 crossref_primary_10_1017_S0007114524001594 crossref_primary_10_1161_CIRCGENETICS_114_000534 crossref_primary_10_1194_jlr_M028829 crossref_primary_10_1016_j_atherosclerosis_2015_08_015 crossref_primary_10_1161_CIRCGENETICS_110_957290 crossref_primary_10_1002_gepi_21801 crossref_primary_10_1007_s00394_018_1621_5 crossref_primary_10_1186_1471_2350_14_90 crossref_primary_10_1186_s12944_017_0488_4 crossref_primary_10_1097_MOL_0b013e328336eae9 crossref_primary_10_1097_MOL_0b013e328350fad2 crossref_primary_10_1371_journal_pone_0063469 crossref_primary_10_1194_jlr_P900008_JLR200 crossref_primary_10_2217_pgs_10_58 crossref_primary_10_1161_CIRCGENETICS_109_848986 crossref_primary_10_1007_s11596_011_0472_6 crossref_primary_10_1517_14728222_2014_965681 crossref_primary_10_1371_journal_pone_0218443 crossref_primary_10_1161_ATVBAHA_110_203273 crossref_primary_10_1002_mgg3_848 crossref_primary_10_1194_jlr_P008268 crossref_primary_10_1371_journal_pone_0064191 crossref_primary_10_1253_circj_CJ_08_1101 crossref_primary_10_1007_s11883_011_0198_8 crossref_primary_10_1016_j_gene_2020_145019 crossref_primary_10_1111_jcmm_12291 crossref_primary_10_1002_dad2_12300 crossref_primary_10_1016_j_ophtha_2010_07_009 crossref_primary_10_1371_journal_pone_0019586 crossref_primary_10_1371_journal_pone_0131667 crossref_primary_10_1016_j_cjca_2012_10_011 crossref_primary_10_1016_j_gene_2014_12_070 crossref_primary_10_1016_j_exger_2008_11_003 crossref_primary_10_1016_j_atherosclerosis_2009_08_013 crossref_primary_10_1016_j_metabol_2015_09_020 crossref_primary_10_3724_SP_J_1008_2011_00822 crossref_primary_10_1097_MOL_0000000000000489 crossref_primary_10_1016_j_gene_2016_07_070 crossref_primary_10_1016_j_gene_2019_01_007 crossref_primary_10_2337_db10_0839 crossref_primary_10_3389_fgene_2019_00540 crossref_primary_10_3390_genes13091553 crossref_primary_10_1194_jlr_R017855 crossref_primary_10_1007_s12263_014_0412_8 crossref_primary_10_1161_CIRCGENETICS_108_817304 crossref_primary_10_1371_journal_pone_0011690 crossref_primary_10_3892_mmr_2014_2007 crossref_primary_10_1016_j_mgene_2014_07_006 crossref_primary_10_1161_CIRCGENETICS_108_815530 crossref_primary_10_1371_journal_pone_0020555 crossref_primary_10_1007_s12170_010_0129_1 crossref_primary_10_2337_db10_1011 crossref_primary_10_1016_j_nut_2021_111246 crossref_primary_10_1016_j_ajhg_2009_10_014 crossref_primary_10_1038_ng_920 crossref_primary_10_2217_pgs_10_35 crossref_primary_10_3390_nu14132713 crossref_primary_10_1111_jmp_12642 crossref_primary_10_1152_physiolgenomics_00182_2013 crossref_primary_10_1016_j_atherosclerosis_2013_09_005 crossref_primary_10_1016_j_artere_2022_02_001 crossref_primary_10_1016_j_bcmd_2019_102376 crossref_primary_10_1016_j_arteri_2022_01_001 crossref_primary_10_1038_s41598_024_83099_8 crossref_primary_10_1111_jcmm_12713 crossref_primary_10_1016_j_cll_2016_05_010 crossref_primary_10_1161_CIRCGENETICS_111_961144 crossref_primary_10_3390_biomedicines10020259 crossref_primary_10_1007_s11883_012_0248_x crossref_primary_10_1038_jhg_2015_170 crossref_primary_10_2217_clp_10_38 crossref_primary_10_1186_1476_511X_13_157 crossref_primary_10_1586_erc_11_53 crossref_primary_10_1002_jgm_3071 crossref_primary_10_3390_ijms19010049 crossref_primary_10_1016_j_atherosclerosis_2010_12_039 crossref_primary_10_1586_erc_11_12 crossref_primary_10_1016_j_atherosclerosis_2017_05_028 crossref_primary_10_1093_aje_kwq234 crossref_primary_10_1186_1476_511X_10_248 crossref_primary_10_1373_clinchem_2008_107243 crossref_primary_10_1093_eurheartj_ehs010 crossref_primary_10_1097_MOL_0000000000000482 crossref_primary_10_1136_annrheumdis_2012_202405 crossref_primary_10_1186_s13000_015_0373_2 crossref_primary_10_1111_1753_0407_12064 crossref_primary_10_1074_jbc_M115_672790 crossref_primary_10_1111_j_1755_5922_2010_00201_x crossref_primary_10_1194_jlr_R004739 |
Cites_doi | 10.1056/NEJM199304223281603 10.1016/j.tibs.2006.12.008 10.1161/01.cir.0000143098.98869.f8 10.1146/annurev.genom.5.061903.175930 10.1038/ng.2007.61 10.1086/429864 10.1038/ng.76 10.1086/519795 10.1038/nrg1521 10.1038/ng1899 10.1016/S0140-6736(08)60208-1 10.1086/522497 10.1038/nature04226 10.1126/science.1142358 10.2337/diabetes.48.10.2022 10.1093/emboj/20.9.2180 10.1016/j.atherosclerosis.2006.04.024 10.1073/pnas.93.14.7225 10.1038/ng.75 10.1001/jama.294.3.326 10.1038/nature05329 10.1001/jama.286.1.64 10.1056/NEJMoa072366 10.1056/NEJMoa050613 10.1038/sj.gene.6364289 10.1016/j.devcel.2005.04.004 10.1016/j.amjcard.2005.09.134 10.1126/science.1092500 10.1146/annurev.genet.34.1.233 10.1016/j.ajhg.2008.03.015 10.1074/jbc.M608971200 10.1186/1471-2350-8-S1-S17 10.1016/0021-9150(91)90191-5 10.1038/ng1726 10.1074/jbc.272.6.3599 |
ContentType | Journal Article |
Copyright | 2008 American Heart Association, Inc. |
Copyright_xml | – notice: 2008 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/CIRCGENETICS.108.773168 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Medicine |
EISSN | 1943-2631 1942-3268 |
EndPage | 30 |
ExternalDocumentID | 19802338 10_1161_CIRCGENETICS_108_773168 01337497-200810000-00005 circcvg_1_1_21 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL043851 – fundername: NHLBI NIH HHS grantid: U19 HL069757 – fundername: NCI NIH HHS grantid: R01 CA047988 – fundername: NCI NIH HHS grantid: CA 047988 – fundername: NHLBI NIH HHS grantid: HL 043851 – fundername: NIDDK NIH HHS grantid: P30 DK063491 – fundername: NHLBI NIH HHS grantid: U01 HL069757 |
GroupedDBID | - 186 1AW 29H 2KS 2WC 34G 39C 3V. 4 53G 5GY 5RE 5VS 7X2 7X7 85S 88A 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 9M8 AAPBV AAYOK ABFLS ABPPZ ABPTD ABPTK ABSGY ABUFD ABUWG ACGOD ACNCT ACPRK ADACO ADBBV ADIPN AENEX AFDAS AFFNX AFFZL AFKRA AFMIJ AFRAH AGCAB AHMBA ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC BAWUL BBAFP BBNVY BENPR BES BHPHI BKNYI BKOMP BPHCQ BVXVI C1A CJ0 CS3 D0L DIK DU5 DWQXO DZ E3Z EBS EJD EMB F5P FH7 FRP FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HYE H~9 INIJC K9- KM KQ8 L7B LK8 LOTEE LXI M0K M0L M0R M1P M2O M2P M7P MBDVC MV1 MVM NADUK O0- OHT OK1 OMK OWPYF PADUT PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X QF4 QM4 QM9 QN7 QO4 R0Z RHF RHI RPM RXW SJN SV3 TAE TAF TGS TH9 TN5 TWZ U5U UHB UKR UNMZH UPT VQA WH7 WOQ X XHC YYQ YZZ Z ZY4 --- .XZ .Z2 29B AAAAV AAHPQ AAIQE AAJCS AARTV AASCR ABASU ABBUW ABDIG ABJNI ABVCZ ABXVJ ABXYN ABZAD ABZZY ACDDN ACEWG ACGFS ACILI ACWDW ACWRI ACXJB ACXNZ ADGGA ADHPY ADNKB AEBDS AEETU AFBFQ AFDTB AFEXH AFNMH AFUWQ AHQNM AHQVU AHRYX AHVBC AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ ALKUP ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BQLVK C45 DIWNM DUNZO E.X EEVPB EX3 FCALG FL- GNXGY GQDEL HLJTE HZ~ IKREB IN~ IPNFZ KD2 KQB L-C O9- ODMTH ODZKP OHYEH OPUJH OUVQU OVD OVDNE OXXIT P2P P6G RAH RIG S4S TEORI TR2 TSPGW V2I W2D W3M W8F WOW ZZMQN AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADKSD |
ID | FETCH-LOGICAL-c4375-da91be5de01e6f89d6f897c6bd94a614d7b274a0d2e44e56ec53b006f8c4184f3 |
ISSN | 0016-6731 1942-325X 1942-3268 |
IngestDate | Mon Sep 08 04:37:46 EDT 2025 Sat May 31 02:10:23 EDT 2025 Tue Jul 01 02:20:27 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 Fri May 16 03:46:54 EDT 2025 Thu Feb 25 13:04:03 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | cardiovascular disease GWAS lipoprotein lipid |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4375-da91be5de01e6f89d6f897c6bd94a614d7b274a0d2e44e56ec53b006f8c4184f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1161/CIRCGENETICS.108.773168 |
PMID | 19802338 |
PQID | 734220505 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_734220505 pubmed_primary_19802338 crossref_citationtrail_10_1161_CIRCGENETICS_108_773168 crossref_primary_10_1161_CIRCGENETICS_108_773168 wolterskluwer_health_01337497-200810000-00005 highwire_amheart_circcvg_1_1_21 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-October |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-October |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Circulation. Cardiovascular genetics |
PublicationTitleAlternate | Circ Cardiovasc Genet |
PublicationYear | 2008 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 (e_1_3_2_5_2) 2007; 54 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_18_2 – ident: e_1_3_2_32_2 doi: 10.1056/NEJM199304223281603 – ident: e_1_3_2_1_2 doi: 10.1016/j.tibs.2006.12.008 – ident: e_1_3_2_2_2 doi: 10.1161/01.cir.0000143098.98869.f8 – ident: e_1_3_2_3_2 doi: 10.1146/annurev.genom.5.061903.175930 – ident: e_1_3_2_10_2 doi: 10.1038/ng.2007.61 – ident: e_1_3_2_17_2 doi: 10.1086/429864 – ident: e_1_3_2_11_2 doi: 10.1038/ng.76 – ident: e_1_3_2_15_2 doi: 10.1086/519795 – volume: 54 start-page: 249 year: 2007 ident: e_1_3_2_5_2 publication-title: Clin Chem – ident: e_1_3_2_20_2 doi: 10.1038/nrg1521 – ident: e_1_3_2_14_2 doi: 10.1038/ng1899 – ident: e_1_3_2_12_2 doi: 10.1016/S0140-6736(08)60208-1 – ident: e_1_3_2_19_2 doi: 10.1086/522497 – ident: e_1_3_2_16_2 doi: 10.1038/nature04226 – ident: e_1_3_2_22_2 doi: 10.1126/science.1142358 – ident: e_1_3_2_24_2 doi: 10.2337/diabetes.48.10.2022 – ident: e_1_3_2_26_2 doi: 10.1093/emboj/20.9.2180 – ident: e_1_3_2_31_2 doi: 10.1016/j.atherosclerosis.2006.04.024 – ident: e_1_3_2_23_2 doi: 10.1073/pnas.93.14.7225 – ident: e_1_3_2_9_2 doi: 10.1038/ng.75 – ident: e_1_3_2_13_2 doi: 10.1001/jama.294.3.326 – ident: e_1_3_2_36_2 doi: 10.1038/nature05329 – ident: e_1_3_2_7_2 doi: 10.1001/jama.286.1.64 – ident: e_1_3_2_30_2 doi: 10.1056/NEJMoa072366 – ident: e_1_3_2_6_2 doi: 10.1056/NEJMoa050613 – ident: e_1_3_2_21_2 doi: 10.1038/sj.gene.6364289 – ident: e_1_3_2_28_2 doi: 10.1016/j.devcel.2005.04.004 – ident: e_1_3_2_8_2 doi: 10.1016/j.amjcard.2005.09.134 – ident: e_1_3_2_37_2 doi: 10.1126/science.1092500 – ident: e_1_3_2_4_2 doi: 10.1146/annurev.genet.34.1.233 – ident: e_1_3_2_25_2 doi: 10.1016/j.ajhg.2008.03.015 – ident: e_1_3_2_29_2 doi: 10.1074/jbc.M608971200 – ident: e_1_3_2_33_2 doi: 10.1186/1471-2350-8-S1-S17 – ident: e_1_3_2_34_2 doi: 10.1016/0021-9150(91)90191-5 – ident: e_1_3_2_35_2 doi: 10.1038/ng1726 – ident: e_1_3_2_27_2 doi: 10.1074/jbc.272.6.3599 |
SSID | ssj0006958 ssj0064336 |
Score | 2.3025484 |
Snippet | Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein... BACKGROUND—Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially... Background— Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially... Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing... |
SourceID | proquest pubmed crossref wolterskluwer highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21 |
SubjectTerms | Aged Apolipoprotein A-I - blood Apolipoprotein A-I - genetics Apolipoproteins B - blood Apolipoproteins B - genetics Cholesterol, HDL - blood Cholesterol, HDL - genetics Cholesterol, LDL - blood Cholesterol, LDL - genetics Female Genetic Loci - genetics Genetic Predisposition to Disease Genome, Human - genetics Genome-Wide Association Study Humans Lipid Metabolism - genetics Lipids - blood Lipids - genetics Middle Aged Polymorphism, Single Nucleotide - genetics Reproducibility of Results Triglycerides - blood Triglycerides - genetics White People - genetics |
Title | Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication |
URI | http://circgenetics.ahajournals.org/cgi/content/abstract/1/1/21 https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=01337497-200810000-00005 https://www.ncbi.nlm.nih.gov/pubmed/19802338 https://www.proquest.com/docview/734220505 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2ISEQQtwpl-EHeOpS4sSJk8cugFbUTVw6bfASJY47JtZ26lom-OE8c46di9tt2oYqRZGTOPXlyznH_s45hLwOFJfMjZQTcIHbjFw4eR54jsqy2I3zkJsApts74dYu_7gf7K-sDizW0nyWd-Sfc_1K_mdUoQzGFb1krzGydaVQAOcwvnCEEYbjlcYYY0ZjwNU-9HDd0aBB7uHi6ifQi0cZuvQZAmalGvYnp847pK2D-t0_PJ7oSA3o-4eZcjFsgsm5hQSQq9w3APP-6LeE5hbmi9PFvA_N7V1WEUSXLmy2uzrREUDTa-s8fW2dThNXYKBhcOrsQZ1N2BTdKjAYqmVGW69ODqeyTETWQRKLzbE9ML1UGw_JD-yYceNg3-51mp20qXqTJKBf6w2DOeZkmo_qyf_d0JYMHb39rdO3Hyz5Kegy1N7pLCynRDUxr5IAMfcc3wv2jYC0y0z-n1psnEFHJQIsZcLsOZ0VUyGKqaT3JUGC4qCXfEWuZ0foNGKNZK7YCEsCu6ZRagMuZKldEUZ8TU1Fq-SGJ0CjRKrC53pvDVRQnTizbmjJeoSK3l7wjxZ1tiqO9nk22W1y53SCNI-Tn9rLw9LVBvfI3dLIol2DmPtkRY0fkJvbJY3kIflbAocicGgDHIpTjBrg0AXg0MmQWsChFiCoBYgNasPm4rsWQLNBF5FBu2yDAmCWizepBgxFwFANGKoBQ-GaBRhaAca0xgLMI7L74f0g2XLKBCiO5L4InCKLWa6CQrlMhcMoLvAgZJgXMc9Ary5E7gmeuYWnOFdBqGTgoxgdRpKziA_9x2RtPBmrp4QOWZb7UoQicyPuSp4XQoQsGkrQVhmLZIuE1RCnsswOgElqjtJLJlmLuPWDxyZAzuWPvKrmUJqNQOeczuCdUyl_HaQMfh5rEVpNrRTEHe5hZmM1mZ-kwucYGsANWuSJmXLNW2MMZulD9c7CHEyNR3kKxq4veCxQhER6WxNDarjBs-u34Dm51Xw7XpC12XSuXoJxMsvXyWqUsHWNuH-iUjsj |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Loci+Associated+With+Plasma+Concentration+of+Low-Density+Lipoprotein+Cholesterol%2C+High-Density+Lipoprotein+Cholesterol%2C+Triglycerides%2C+Apolipoprotein+A1%2C+and+Apolipoprotein+B+Among+6382+White+Women+in+Genome-Wide+Analysis+With+Replication&rft.jtitle=Circulation.+Cardiovascular+genetics&rft.au=Chasman%2C+Daniel+I.&rft.au=Pare%CC%81%2C+Guillaume&rft.au=Zee%2C+Robert+Y.L.&rft.au=Parker%2C+Alex+N.&rft.date=2008-10-01&rft.issn=1942-325X&rft.eissn=1942-3268&rft.volume=1&rft.issue=1&rft.spage=21&rft.epage=30&rft_id=info:doi/10.1161%2FCIRCGENETICS.108.773168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_CIRCGENETICS_108_773168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-6731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-6731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-6731&client=summon |