Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication

Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication Daniel I. Chasman, PhD * ; Guillaume Paré, MD, MS * ;...

Full description

Saved in:
Bibliographic Details
Published inCirculation. Cardiovascular genetics Vol. 1; no. 1; pp. 21 - 30
Main Authors Chasman, Daniel I, Pare, Guillaume, Zee, Robert Y.L, Parker, Alex N, Cook, Nancy R, Buring, Julie E, Kwiatkowski, David J, Rose, Lynda M, Smith, Joshua D, Williams, Paul T, Rieder, Mark J, Rotter, Jerome I, Nickerson, Deborah A, Krauss, Ronald M, Miletich, Joseph P, Ridker, Paul M
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 01.10.2008
Subjects
Online AccessGet full text
ISSN0016-6731
1942-325X
1942-3268
1943-2631
1942-3268
DOI10.1161/CIRCGENETICS.108.773168

Cover

Abstract Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication Daniel I. Chasman, PhD * ; Guillaume Paré, MD, MS * ; Robert Y.L. Zee, PhD, MPH ; Alex N. Parker, PhD ; Nancy R. Cook, ScD ; Julie E. Buring, ScD ; David J. Kwiatkowski, MD, PhD ; Lynda M. Rose, MS ; Joshua D. Smith, BS ; Paul T. Williams, PhD ; Mark J. Rieder, PhD ; Jerome I. Rotter, MD ; Deborah A. Nickerson, PhD ; Ronald M. Krauss, MD ; Joseph P. Miletich, MD and Paul M Ridker, MD, MPH From the Center for Cardiovascular Disease Prevention (D.I.C., G.P., R.Y.L.Z., N.R.C., J.E.B., L.M.R., P.M.R.) and Donald W. Reynolds Center for Cardiovascular Research (D.I.C., G.P., R.Y.L.Z., N.R.C., D.J.K., P.M.R.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass; Amgen, Inc, Cambridge, Mass (A.N.P., J.M.P.); Department of Genome Sciences, University of Washington, Seattle, Wash (J.D.S., M.J.R., D.A.N.); Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, Calif (P.T.W., R.M.K.); Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.I.R.); and Children’s Hospital Oakland Research Institute, Oakland, Calif (R.M.K.). Correspondence to Daniel I. Chasman, Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, 900 Commonwealth Ave E, Boston, MA 02215. E-mail dchasman{at}rics.bwh.harvard.edu Received February 13, 2008; accepted June 23, 2008. Background— Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders. Methods and Results— We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein (Apo) A1, and ApoB. Genome-wide associations ( P <5 x 10 –8 ) were found at the PCSK9 gene, the APOB gene, the LPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition, genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB. Conclusion— Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women. Key Words: lipoproteins • lipids • cardiovascular diseases • population genetics   CLINICAL PERSPECTIVE *Drs Chasman and Paré contributed equally. Guest Editor for this article was Donna K. Arnett, PhD. The online Data Supplement can be found with this article at http://circgenetics.ahajournals.org/cgi/content/full/1/1/21/DC1.
AbstractList Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication Daniel I. Chasman, PhD * ; Guillaume Paré, MD, MS * ; Robert Y.L. Zee, PhD, MPH ; Alex N. Parker, PhD ; Nancy R. Cook, ScD ; Julie E. Buring, ScD ; David J. Kwiatkowski, MD, PhD ; Lynda M. Rose, MS ; Joshua D. Smith, BS ; Paul T. Williams, PhD ; Mark J. Rieder, PhD ; Jerome I. Rotter, MD ; Deborah A. Nickerson, PhD ; Ronald M. Krauss, MD ; Joseph P. Miletich, MD and Paul M Ridker, MD, MPH From the Center for Cardiovascular Disease Prevention (D.I.C., G.P., R.Y.L.Z., N.R.C., J.E.B., L.M.R., P.M.R.) and Donald W. Reynolds Center for Cardiovascular Research (D.I.C., G.P., R.Y.L.Z., N.R.C., D.J.K., P.M.R.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass; Amgen, Inc, Cambridge, Mass (A.N.P., J.M.P.); Department of Genome Sciences, University of Washington, Seattle, Wash (J.D.S., M.J.R., D.A.N.); Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, Calif (P.T.W., R.M.K.); Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.I.R.); and Children’s Hospital Oakland Research Institute, Oakland, Calif (R.M.K.). Correspondence to Daniel I. Chasman, Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, 900 Commonwealth Ave E, Boston, MA 02215. E-mail dchasman{at}rics.bwh.harvard.edu Received February 13, 2008; accepted June 23, 2008. Background— Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders. Methods and Results— We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein (Apo) A1, and ApoB. Genome-wide associations ( P <5 x 10 –8 ) were found at the PCSK9 gene, the APOB gene, the LPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition, genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB. Conclusion— Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women. Key Words: lipoproteins • lipids • cardiovascular diseases • population genetics   CLINICAL PERSPECTIVE *Drs Chasman and Paré contributed equally. Guest Editor for this article was Donna K. Arnett, PhD. The online Data Supplement can be found with this article at http://circgenetics.ahajournals.org/cgi/content/full/1/1/21/DC1.
Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders. We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein(Apo) A1, and ApoB. Genome-wide associations (P < 5 x 10(-8)) were found at the PCSK9 gene, the APOB gene, theLPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition,genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB. Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women.
BACKGROUND—Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders. METHODS AND RESULTS—We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein (Apo) A1, and ApoB. Genome-wide associations (P<5×10) were found at the PCSK9 gene, the APOB gene, the LPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition, genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB. CONCLUSION—Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women.
Background— Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders. Methods and Results— We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein (Apo) A1, and ApoB. Genome-wide associations ( P <5 10 −8 ) were found at the PCSK9 gene, the APOB gene, the LPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition, genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB. Conclusion— Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women.
Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders.BACKGROUNDGenome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders.We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein(Apo) A1, and ApoB. Genome-wide associations (P < 5 x 10(-8)) were found at the PCSK9 gene, the APOB gene, theLPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition,genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB.METHODS AND RESULTSWe have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein(Apo) A1, and ApoB. Genome-wide associations (P < 5 x 10(-8)) were found at the PCSK9 gene, the APOB gene, theLPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition,genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB.Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women.CONCLUSIONGenome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women.
Author Krauss, Ronald M
Kwiatkowski, David J
Rose, Lynda M
Pare, Guillaume
Zee, Robert Y.L
Rotter, Jerome I
Nickerson, Deborah A
Parker, Alex N
Ridker, Paul M
Cook, Nancy R
Miletich, Joseph P
Williams, Paul T
Smith, Joshua D
Rieder, Mark J
Buring, Julie E
Chasman, Daniel I
AuthorAffiliation From the Center for Cardiovascular Disease Prevention (D.I.C., G.P., R.Y.L.Z., N.R.C., J.E.B., L.M.R., P.M.R.) and Donald W. Reynolds Center for Cardiovascular Research (D.I.C., G.P., R.Y.L.Z., N.R.C., D.J.K., P.M.R.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass; Amgen, Inc, Cambridge, Mass (A.N.P., J.M.P.); Department of Genome Sciences, University of Washington, Seattle, Wash (J.D.S., M.J.R., D.A.N.); Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, Calif (P.T.W., R.M.K.); Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.I.R.); and Children’s Hospital Oakland Research Institute, Oakland, Calif (R.M.K.)
AuthorAffiliation_xml – name: From the Center for Cardiovascular Disease Prevention (D.I.C., G.P., R.Y.L.Z., N.R.C., J.E.B., L.M.R., P.M.R.) and Donald W. Reynolds Center for Cardiovascular Research (D.I.C., G.P., R.Y.L.Z., N.R.C., D.J.K., P.M.R.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass; Amgen, Inc, Cambridge, Mass (A.N.P., J.M.P.); Department of Genome Sciences, University of Washington, Seattle, Wash (J.D.S., M.J.R., D.A.N.); Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, Calif (P.T.W., R.M.K.); Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.I.R.); and Children’s Hospital Oakland Research Institute, Oakland, Calif (R.M.K.)
Author_xml – sequence: 1
  fullname: Chasman, Daniel I
– sequence: 2
  fullname: Pare, Guillaume
– sequence: 3
  fullname: Zee, Robert Y.L
– sequence: 4
  fullname: Parker, Alex N
– sequence: 5
  fullname: Cook, Nancy R
– sequence: 6
  fullname: Buring, Julie E
– sequence: 7
  fullname: Kwiatkowski, David J
– sequence: 8
  fullname: Rose, Lynda M
– sequence: 9
  fullname: Smith, Joshua D
– sequence: 10
  fullname: Williams, Paul T
– sequence: 11
  fullname: Rieder, Mark J
– sequence: 12
  fullname: Rotter, Jerome I
– sequence: 13
  fullname: Nickerson, Deborah A
– sequence: 14
  fullname: Krauss, Ronald M
– sequence: 15
  fullname: Miletich, Joseph P
– sequence: 16
  fullname: Ridker, Paul M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19802338$$D View this record in MEDLINE/PubMed
BookMark eNqFUk2P0zAQjdAi9gP-AvgEl6bYcT4PHEIo3UoVoKWoR8t1Jo3Bsbu2S9U_zhl3s6DVXlaWZizPe_Y8z7uMzrTREEVvCJ4SkpP3zeKmmc--zFaL5vuU4HJaFJTk5bPoglQpjZOckrPoAmOSx3monEeXzv3EGOdVVr6IzklV4oTS8iL6MwcNXgq0NEKi2rmQuIcWraXv0TfF3cBRY7QA7S330mhkugA-xJ9AO-mPaCl3ZmeNB6lR0xsFzoM1aoKu5bZ_GrWycquOAqxswU1QvTPqAbQmE8R1-_j4I6oHo7cop2WC1r30gNZmAI1CLQgK23gd7kO15uropBvV3MBOSXEn4mX0vOPKwav7fBX9-DxbNdfx8ut80dTLWKS0yOKWV2QDWQuYQN6VVXsKhcg3bZXynKRtsUmKlOM2gTSFLAeR0U345a4UKSnTjl5F78Z7Q-e3-yCaDdIJUIprMHvHCpomCc5wFpCv75H7zQAt21k5cHtk_0YVAB9GgLDGOQsdE9LfiQmDkYoRzE7WYA-tEQ5LNloj8ItH_P9PPMlMR-bBqDA190vtD2BZD1z5nmFCaZFWRZxgXJLgMRyfwknR25HWByMcpAXGh8CxPjRuhfi9ZSSshNC_of3g6A
CitedBy_id crossref_primary_10_1253_circj_CJ_09_0790
crossref_primary_10_1017_S0007114514000580
crossref_primary_10_1017_S0007114524001594
crossref_primary_10_1161_CIRCGENETICS_114_000534
crossref_primary_10_1194_jlr_M028829
crossref_primary_10_1016_j_atherosclerosis_2015_08_015
crossref_primary_10_1161_CIRCGENETICS_110_957290
crossref_primary_10_1002_gepi_21801
crossref_primary_10_1007_s00394_018_1621_5
crossref_primary_10_1186_1471_2350_14_90
crossref_primary_10_1186_s12944_017_0488_4
crossref_primary_10_1097_MOL_0b013e328336eae9
crossref_primary_10_1097_MOL_0b013e328350fad2
crossref_primary_10_1371_journal_pone_0063469
crossref_primary_10_1194_jlr_P900008_JLR200
crossref_primary_10_2217_pgs_10_58
crossref_primary_10_1161_CIRCGENETICS_109_848986
crossref_primary_10_1007_s11596_011_0472_6
crossref_primary_10_1517_14728222_2014_965681
crossref_primary_10_1371_journal_pone_0218443
crossref_primary_10_1161_ATVBAHA_110_203273
crossref_primary_10_1002_mgg3_848
crossref_primary_10_1194_jlr_P008268
crossref_primary_10_1371_journal_pone_0064191
crossref_primary_10_1253_circj_CJ_08_1101
crossref_primary_10_1007_s11883_011_0198_8
crossref_primary_10_1016_j_gene_2020_145019
crossref_primary_10_1111_jcmm_12291
crossref_primary_10_1002_dad2_12300
crossref_primary_10_1016_j_ophtha_2010_07_009
crossref_primary_10_1371_journal_pone_0019586
crossref_primary_10_1371_journal_pone_0131667
crossref_primary_10_1016_j_cjca_2012_10_011
crossref_primary_10_1016_j_gene_2014_12_070
crossref_primary_10_1016_j_exger_2008_11_003
crossref_primary_10_1016_j_atherosclerosis_2009_08_013
crossref_primary_10_1016_j_metabol_2015_09_020
crossref_primary_10_3724_SP_J_1008_2011_00822
crossref_primary_10_1097_MOL_0000000000000489
crossref_primary_10_1016_j_gene_2016_07_070
crossref_primary_10_1016_j_gene_2019_01_007
crossref_primary_10_2337_db10_0839
crossref_primary_10_3389_fgene_2019_00540
crossref_primary_10_3390_genes13091553
crossref_primary_10_1194_jlr_R017855
crossref_primary_10_1007_s12263_014_0412_8
crossref_primary_10_1161_CIRCGENETICS_108_817304
crossref_primary_10_1371_journal_pone_0011690
crossref_primary_10_3892_mmr_2014_2007
crossref_primary_10_1016_j_mgene_2014_07_006
crossref_primary_10_1161_CIRCGENETICS_108_815530
crossref_primary_10_1371_journal_pone_0020555
crossref_primary_10_1007_s12170_010_0129_1
crossref_primary_10_2337_db10_1011
crossref_primary_10_1016_j_nut_2021_111246
crossref_primary_10_1016_j_ajhg_2009_10_014
crossref_primary_10_1038_ng_920
crossref_primary_10_2217_pgs_10_35
crossref_primary_10_3390_nu14132713
crossref_primary_10_1111_jmp_12642
crossref_primary_10_1152_physiolgenomics_00182_2013
crossref_primary_10_1016_j_atherosclerosis_2013_09_005
crossref_primary_10_1016_j_artere_2022_02_001
crossref_primary_10_1016_j_bcmd_2019_102376
crossref_primary_10_1016_j_arteri_2022_01_001
crossref_primary_10_1038_s41598_024_83099_8
crossref_primary_10_1111_jcmm_12713
crossref_primary_10_1016_j_cll_2016_05_010
crossref_primary_10_1161_CIRCGENETICS_111_961144
crossref_primary_10_3390_biomedicines10020259
crossref_primary_10_1007_s11883_012_0248_x
crossref_primary_10_1038_jhg_2015_170
crossref_primary_10_2217_clp_10_38
crossref_primary_10_1186_1476_511X_13_157
crossref_primary_10_1586_erc_11_53
crossref_primary_10_1002_jgm_3071
crossref_primary_10_3390_ijms19010049
crossref_primary_10_1016_j_atherosclerosis_2010_12_039
crossref_primary_10_1586_erc_11_12
crossref_primary_10_1016_j_atherosclerosis_2017_05_028
crossref_primary_10_1093_aje_kwq234
crossref_primary_10_1186_1476_511X_10_248
crossref_primary_10_1373_clinchem_2008_107243
crossref_primary_10_1093_eurheartj_ehs010
crossref_primary_10_1097_MOL_0000000000000482
crossref_primary_10_1136_annrheumdis_2012_202405
crossref_primary_10_1186_s13000_015_0373_2
crossref_primary_10_1111_1753_0407_12064
crossref_primary_10_1074_jbc_M115_672790
crossref_primary_10_1111_j_1755_5922_2010_00201_x
crossref_primary_10_1194_jlr_R004739
Cites_doi 10.1056/NEJM199304223281603
10.1016/j.tibs.2006.12.008
10.1161/01.cir.0000143098.98869.f8
10.1146/annurev.genom.5.061903.175930
10.1038/ng.2007.61
10.1086/429864
10.1038/ng.76
10.1086/519795
10.1038/nrg1521
10.1038/ng1899
10.1016/S0140-6736(08)60208-1
10.1086/522497
10.1038/nature04226
10.1126/science.1142358
10.2337/diabetes.48.10.2022
10.1093/emboj/20.9.2180
10.1016/j.atherosclerosis.2006.04.024
10.1073/pnas.93.14.7225
10.1038/ng.75
10.1001/jama.294.3.326
10.1038/nature05329
10.1001/jama.286.1.64
10.1056/NEJMoa072366
10.1056/NEJMoa050613
10.1038/sj.gene.6364289
10.1016/j.devcel.2005.04.004
10.1016/j.amjcard.2005.09.134
10.1126/science.1092500
10.1146/annurev.genet.34.1.233
10.1016/j.ajhg.2008.03.015
10.1074/jbc.M608971200
10.1186/1471-2350-8-S1-S17
10.1016/0021-9150(91)90191-5
10.1038/ng1726
10.1074/jbc.272.6.3599
ContentType Journal Article
Copyright 2008 American Heart Association, Inc.
Copyright_xml – notice: 2008 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCGENETICS.108.773168
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
EISSN 1943-2631
1942-3268
EndPage 30
ExternalDocumentID 19802338
10_1161_CIRCGENETICS_108_773168
01337497-200810000-00005
circcvg_1_1_21
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL043851
– fundername: NHLBI NIH HHS
  grantid: U19 HL069757
– fundername: NCI NIH HHS
  grantid: R01 CA047988
– fundername: NCI NIH HHS
  grantid: CA 047988
– fundername: NHLBI NIH HHS
  grantid: HL 043851
– fundername: NIDDK NIH HHS
  grantid: P30 DK063491
– fundername: NHLBI NIH HHS
  grantid: U01 HL069757
GroupedDBID -
186
1AW
29H
2KS
2WC
34G
39C
3V.
4
53G
5GY
5RE
5VS
7X2
7X7
85S
88A
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
9M8
AAPBV
AAYOK
ABFLS
ABPPZ
ABPTD
ABPTK
ABSGY
ABUFD
ABUWG
ACGOD
ACNCT
ACPRK
ADACO
ADBBV
ADIPN
AENEX
AFDAS
AFFNX
AFFZL
AFKRA
AFMIJ
AFRAH
AGCAB
AHMBA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BAWUL
BBAFP
BBNVY
BENPR
BES
BHPHI
BKNYI
BKOMP
BPHCQ
BVXVI
C1A
CJ0
CS3
D0L
DIK
DU5
DWQXO
DZ
E3Z
EBS
EJD
EMB
F5P
FH7
FRP
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HYE
H~9
INIJC
K9-
KM
KQ8
L7B
LK8
LOTEE
LXI
M0K
M0L
M0R
M1P
M2O
M2P
M7P
MBDVC
MV1
MVM
NADUK
O0-
OHT
OK1
OMK
OWPYF
PADUT
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
QF4
QM4
QM9
QN7
QO4
R0Z
RHF
RHI
RPM
RXW
SJN
SV3
TAE
TAF
TGS
TH9
TN5
TWZ
U5U
UHB
UKR
UNMZH
UPT
VQA
WH7
WOQ
X
XHC
YYQ
YZZ
Z
ZY4
---
.XZ
.Z2
29B
AAAAV
AAHPQ
AAIQE
AAJCS
AARTV
AASCR
ABASU
ABBUW
ABDIG
ABJNI
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACDDN
ACEWG
ACGFS
ACILI
ACWDW
ACWRI
ACXJB
ACXNZ
ADGGA
ADHPY
ADNKB
AEBDS
AEETU
AFBFQ
AFDTB
AFEXH
AFNMH
AFUWQ
AHQNM
AHQVU
AHRYX
AHVBC
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
ALKUP
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BQLVK
C45
DIWNM
DUNZO
E.X
EEVPB
EX3
FCALG
FL-
GNXGY
GQDEL
HLJTE
HZ~
IKREB
IN~
IPNFZ
KD2
KQB
L-C
O9-
ODMTH
ODZKP
OHYEH
OPUJH
OUVQU
OVD
OVDNE
OXXIT
P2P
P6G
RAH
RIG
S4S
TEORI
TR2
TSPGW
V2I
W2D
W3M
W8F
WOW
ZZMQN
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADKSD
ID FETCH-LOGICAL-c4375-da91be5de01e6f89d6f897c6bd94a614d7b274a0d2e44e56ec53b006f8c4184f3
ISSN 0016-6731
1942-325X
1942-3268
IngestDate Mon Sep 08 04:37:46 EDT 2025
Sat May 31 02:10:23 EDT 2025
Tue Jul 01 02:20:27 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Fri May 16 03:46:54 EDT 2025
Thu Feb 25 13:04:03 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords cardiovascular disease
GWAS
lipoprotein
lipid
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4375-da91be5de01e6f89d6f897c6bd94a614d7b274a0d2e44e56ec53b006f8c4184f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1161/CIRCGENETICS.108.773168
PMID 19802338
PQID 734220505
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_734220505
pubmed_primary_19802338
crossref_citationtrail_10_1161_CIRCGENETICS_108_773168
crossref_primary_10_1161_CIRCGENETICS_108_773168
wolterskluwer_health_01337497-200810000-00005
highwire_amheart_circcvg_1_1_21
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-October
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-October
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation. Cardiovascular genetics
PublicationTitleAlternate Circ Cardiovasc Genet
PublicationYear 2008
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
(e_1_3_2_5_2) 2007; 54
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_18_2
– ident: e_1_3_2_32_2
  doi: 10.1056/NEJM199304223281603
– ident: e_1_3_2_1_2
  doi: 10.1016/j.tibs.2006.12.008
– ident: e_1_3_2_2_2
  doi: 10.1161/01.cir.0000143098.98869.f8
– ident: e_1_3_2_3_2
  doi: 10.1146/annurev.genom.5.061903.175930
– ident: e_1_3_2_10_2
  doi: 10.1038/ng.2007.61
– ident: e_1_3_2_17_2
  doi: 10.1086/429864
– ident: e_1_3_2_11_2
  doi: 10.1038/ng.76
– ident: e_1_3_2_15_2
  doi: 10.1086/519795
– volume: 54
  start-page: 249
  year: 2007
  ident: e_1_3_2_5_2
  publication-title: Clin Chem
– ident: e_1_3_2_20_2
  doi: 10.1038/nrg1521
– ident: e_1_3_2_14_2
  doi: 10.1038/ng1899
– ident: e_1_3_2_12_2
  doi: 10.1016/S0140-6736(08)60208-1
– ident: e_1_3_2_19_2
  doi: 10.1086/522497
– ident: e_1_3_2_16_2
  doi: 10.1038/nature04226
– ident: e_1_3_2_22_2
  doi: 10.1126/science.1142358
– ident: e_1_3_2_24_2
  doi: 10.2337/diabetes.48.10.2022
– ident: e_1_3_2_26_2
  doi: 10.1093/emboj/20.9.2180
– ident: e_1_3_2_31_2
  doi: 10.1016/j.atherosclerosis.2006.04.024
– ident: e_1_3_2_23_2
  doi: 10.1073/pnas.93.14.7225
– ident: e_1_3_2_9_2
  doi: 10.1038/ng.75
– ident: e_1_3_2_13_2
  doi: 10.1001/jama.294.3.326
– ident: e_1_3_2_36_2
  doi: 10.1038/nature05329
– ident: e_1_3_2_7_2
  doi: 10.1001/jama.286.1.64
– ident: e_1_3_2_30_2
  doi: 10.1056/NEJMoa072366
– ident: e_1_3_2_6_2
  doi: 10.1056/NEJMoa050613
– ident: e_1_3_2_21_2
  doi: 10.1038/sj.gene.6364289
– ident: e_1_3_2_28_2
  doi: 10.1016/j.devcel.2005.04.004
– ident: e_1_3_2_8_2
  doi: 10.1016/j.amjcard.2005.09.134
– ident: e_1_3_2_37_2
  doi: 10.1126/science.1092500
– ident: e_1_3_2_4_2
  doi: 10.1146/annurev.genet.34.1.233
– ident: e_1_3_2_25_2
  doi: 10.1016/j.ajhg.2008.03.015
– ident: e_1_3_2_29_2
  doi: 10.1074/jbc.M608971200
– ident: e_1_3_2_33_2
  doi: 10.1186/1471-2350-8-S1-S17
– ident: e_1_3_2_34_2
  doi: 10.1016/0021-9150(91)90191-5
– ident: e_1_3_2_35_2
  doi: 10.1038/ng1726
– ident: e_1_3_2_27_2
  doi: 10.1074/jbc.272.6.3599
SSID ssj0006958
ssj0064336
Score 2.3025484
Snippet Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein...
BACKGROUND—Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially...
Background— Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially...
Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing...
SourceID proquest
pubmed
crossref
wolterskluwer
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21
SubjectTerms Aged
Apolipoprotein A-I - blood
Apolipoprotein A-I - genetics
Apolipoproteins B - blood
Apolipoproteins B - genetics
Cholesterol, HDL - blood
Cholesterol, HDL - genetics
Cholesterol, LDL - blood
Cholesterol, LDL - genetics
Female
Genetic Loci - genetics
Genetic Predisposition to Disease
Genome, Human - genetics
Genome-Wide Association Study
Humans
Lipid Metabolism - genetics
Lipids - blood
Lipids - genetics
Middle Aged
Polymorphism, Single Nucleotide - genetics
Reproducibility of Results
Triglycerides - blood
Triglycerides - genetics
White People - genetics
Title Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication
URI http://circgenetics.ahajournals.org/cgi/content/abstract/1/1/21
https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=01337497-200810000-00005
https://www.ncbi.nlm.nih.gov/pubmed/19802338
https://www.proquest.com/docview/734220505
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2ISEQQtwpl-EHeOpS4sSJk8cugFbUTVw6bfASJY47JtZ26lom-OE8c46di9tt2oYqRZGTOPXlyznH_s45hLwOFJfMjZQTcIHbjFw4eR54jsqy2I3zkJsApts74dYu_7gf7K-sDizW0nyWd-Sfc_1K_mdUoQzGFb1krzGydaVQAOcwvnCEEYbjlcYYY0ZjwNU-9HDd0aBB7uHi6ifQi0cZuvQZAmalGvYnp847pK2D-t0_PJ7oSA3o-4eZcjFsgsm5hQSQq9w3APP-6LeE5hbmi9PFvA_N7V1WEUSXLmy2uzrREUDTa-s8fW2dThNXYKBhcOrsQZ1N2BTdKjAYqmVGW69ODqeyTETWQRKLzbE9ML1UGw_JD-yYceNg3-51mp20qXqTJKBf6w2DOeZkmo_qyf_d0JYMHb39rdO3Hyz5Kegy1N7pLCynRDUxr5IAMfcc3wv2jYC0y0z-n1psnEFHJQIsZcLsOZ0VUyGKqaT3JUGC4qCXfEWuZ0foNGKNZK7YCEsCu6ZRagMuZKldEUZ8TU1Fq-SGJ0CjRKrC53pvDVRQnTizbmjJeoSK3l7wjxZ1tiqO9nk22W1y53SCNI-Tn9rLw9LVBvfI3dLIol2DmPtkRY0fkJvbJY3kIflbAocicGgDHIpTjBrg0AXg0MmQWsChFiCoBYgNasPm4rsWQLNBF5FBu2yDAmCWizepBgxFwFANGKoBQ-GaBRhaAca0xgLMI7L74f0g2XLKBCiO5L4InCKLWa6CQrlMhcMoLvAgZJgXMc9Ary5E7gmeuYWnOFdBqGTgoxgdRpKziA_9x2RtPBmrp4QOWZb7UoQicyPuSp4XQoQsGkrQVhmLZIuE1RCnsswOgElqjtJLJlmLuPWDxyZAzuWPvKrmUJqNQOeczuCdUyl_HaQMfh5rEVpNrRTEHe5hZmM1mZ-kwucYGsANWuSJmXLNW2MMZulD9c7CHEyNR3kKxq4veCxQhER6WxNDarjBs-u34Dm51Xw7XpC12XSuXoJxMsvXyWqUsHWNuH-iUjsj
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Loci+Associated+With+Plasma+Concentration+of+Low-Density+Lipoprotein+Cholesterol%2C+High-Density+Lipoprotein+Cholesterol%2C+Triglycerides%2C+Apolipoprotein+A1%2C+and+Apolipoprotein+B+Among+6382+White+Women+in+Genome-Wide+Analysis+With+Replication&rft.jtitle=Circulation.+Cardiovascular+genetics&rft.au=Chasman%2C+Daniel+I.&rft.au=Pare%CC%81%2C+Guillaume&rft.au=Zee%2C+Robert+Y.L.&rft.au=Parker%2C+Alex+N.&rft.date=2008-10-01&rft.issn=1942-325X&rft.eissn=1942-3268&rft.volume=1&rft.issue=1&rft.spage=21&rft.epage=30&rft_id=info:doi/10.1161%2FCIRCGENETICS.108.773168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_CIRCGENETICS_108_773168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-6731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-6731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-6731&client=summon