Relative importance of water, energy, and heterogeneity in determining regional pteridophyte and seed plant richness in China
Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial pa...
Saved in:
Published in | Journal of systematics and evolution : JSE Vol. 49; no. 2; pp. 95 - 107 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.03.2011
Wiley Subscription Services, Inc Graduate University of the Chinese Academy of Sciences, Beijing 100049, China State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China%State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China%State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China |
Subjects | |
Online Access | Get full text |
ISSN | 1674-4918 1759-6831 |
DOI | 10.1111/j.1759-6831.2011.00120.x |
Cover
Abstract | Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology. |
---|---|
AbstractList | Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology. Abstract Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology [PUBLICATION ABSTRACT]. Abstract Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon‐specific functional traits define large‐scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water‐related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology. Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon‐specific functional traits define large‐scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water‐related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology. Q94; Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology. |
Author | Sheng-Bin CHEN Gao-Ming JIANG Zhi-Yun OUYANG Wei-Hua XU yi XIAO |
AuthorAffiliation | State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China Graduate University of the Chinese Academy of Sciences, Beijing 100049, China State Key Laboratory of Urban and Regional Ecology, Research Center for Eeo-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China |
AuthorAffiliation_xml | – name: State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China;Graduate University of the Chinese Academy of Sciences, Beijing 100049, China;State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China%State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China%State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China |
Author_xml | – sequence: 1 givenname: Sheng-Bin surname: CHEN fullname: CHEN, Sheng-Bin email: Author for correspondence. ; Tel.: 86-10-62836506; Fax: 86-10-82596146. Email:, jianggm@126.comchainpin@yahoo.com.cn organization: (State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China) – sequence: 2 givenname: Gao-Ming surname: JIANG fullname: JIANG, Gao-Ming email: Author for correspondence. ; Tel.: 86-10-62836506; Fax: 86-10-82596146. Email:, jianggm@126.comchainpin@yahoo.com.cn organization: (State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China) – sequence: 3 givenname: Zhi-Yun surname: OUYANG fullname: OUYANG, Zhi-Yun organization: (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China) – sequence: 4 givenname: Wei-Hua surname: XU fullname: XU, Wei-Hua organization: (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China) – sequence: 5 givenname: Yi surname: XIAO fullname: XIAO, Yi organization: (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China) |
BookMark | eNqNUU1v1DAUjFCRaAv_wYIDlybYcWInEkKiS2mBCiQ-1KPlJM9Zb7N2arvsBon_Xqe7KhKn-uKn8cy85zdHyYGxBpIEEZyReN6sMsLLOmUVJVmOCckwJjnOtk-Sw4eHg1gzXqRFTapnyZH3K4wZrzg7TP5-h0EG_RuQXo_WBWlaQFahjQzgThAYcP10gqTp0BIiZPsI6TAhbVA3A2tttOmRg15bIwc0Rkx3dlxOAe5lHqBD4yBNQE63SwPez-LFUhv5PHmq5ODhxf4-Tn59PPu5uEgvv51_Wry_TNuCcpzSPK94oYAqynPacYZr4ECl4g3UZdlKntcN5FTmsmlY1zaqVQx3smmBdxUp6XHyeue7kUZJ04uVvXVxWi_-bNSwbebF4RzjPDJf7Zijsze34MM_KikIKzlmePZ7t2O1znrvQIlWh7hGa4KTehAEizkcsRJzBmLOQMw9xH04YhsNqv8MRqfX0k2Pkb7d_0UPMD1aJz7_OItFlKc7ufYBtg9y6a4F45SX4urrufjAKL8ip19EFfkv95MurelvYtaike21is1FpLO6rjG9A-FnxPs |
CitedBy_id | crossref_primary_10_1186_1471_2229_12_210 crossref_primary_10_3389_fevo_2021_655313 crossref_primary_10_1093_jpe_rtw001 crossref_primary_10_3389_fpls_2024_1301395 crossref_primary_10_1111_geb_13349 crossref_primary_10_3390_f15061056 crossref_primary_10_3724_SP_J_1003_2011_10289 crossref_primary_10_1016_j_pld_2020_03_003 crossref_primary_10_1111_j_1759_6831_2012_00240_x crossref_primary_10_1111_jse_12158 crossref_primary_10_3390_f13071090 crossref_primary_10_3390_f14061241 crossref_primary_10_1111_jbi_13715 crossref_primary_10_1016_j_gecco_2023_e02375 crossref_primary_10_18474_JES23_26 crossref_primary_10_3390_d14090744 crossref_primary_10_3390_su14020587 crossref_primary_10_1016_j_geosus_2024_100252 crossref_primary_10_1515_biol_2022_0574 crossref_primary_10_3390_f11020227 crossref_primary_10_1007_s11258_022_01274_1 crossref_primary_10_1007_s11442_019_1650_x crossref_primary_10_3390_su16093750 crossref_primary_10_1007_s10531_014_0838_8 |
Cites_doi | 10.2307/2532625 10.1146/annurev.ecolsys.34.012103.144032 10.1126/science.1072779 10.1111/j.1600-0587.2010.06434.x 10.1111/j.1469-8137.2004.01060.x 10.1006/jare.2001.0851 10.1016/0924-2716(96)00015-9 10.2307/2845653 10.1023/B:BIOC.0000009515.11717.0b 10.1111/j.2005.0906-7590.04203.x 10.1890/09-0620.1 10.1890/03-8006 10.1038/nature02361 10.2307/1939924 10.1126/science.1078037 10.1023/A:1008985925162 10.1007/s10021-001-0004-5 10.1111/j.1600-0587.2009.05832.x 10.1098/rspb.2010.0120 10.1007/BF02860999 10.1111/j.1365-2699.2008.01963.x 10.1038/35012228 10.1111/j.1365-2699.2009.02128.x 10.1046/j.1365-2699.2001.00531.x 10.1111/j.1461-0248.2004.00671.x 10.2307/2684366 10.1111/j.1461-0248.2004.00678.x 10.1111/j.1466-8238.2007.00379.x 10.2307/2845635 10.2307/1940179 10.1046/j.0305-0270.2003.01013.x 10.2307/3545479 10.1038/nature04291 10.4287/jsprs.33.2_12 10.1086/345479 10.1111/j.1461-0248.2008.01168.x 10.1111/j.1466-8238.2006.00268.x 10.1111/j.1366-9516.2005.00161.x 10.1023/A:1026500710274 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2 10.1073/pnas.0601928103 10.1046/j.1466-822X.2003.00322.x 10.1023/A:1008865518378 10.1111/j.1466-822X.2004.00140.x 10.1890/04-1420 10.3732/ajb.94.4.701 10.1111/j.2006.0906-7590.04272.x 10.1111/j.0906-7590.2007.05025.x 10.1086/285144 10.1111/j.1466-8238.2009.00450.x 10.1111/j.1466-8238.2006.00250.x 10.1111/j.1366-9516.2006.00232.x 10.1111/j.1600-0587.2009.06299.x 10.1023/A:1009899615852 10.1111/j.1365-2699.2008.02028.x 10.1017/S1464793104006517 10.1002/joc.1276 10.1073/pnas.0608361104 10.1111/j.1365-2311.2009.01148.x 10.1073/pnas.071034898 |
ClassificationCodes | Q94 |
ContentType | Journal Article |
Copyright | 2011 Institute of Botany, Chinese Academy of Sciences Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2011 Institute of Botany, Chinese Academy of Sciences – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 WU4 ~WA BSCLL AAYXX CITATION 7ST 8FD C1K FR3 P64 RC3 SOI 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1111/j.1759-6831.2011.00120.x |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 Istex CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Genetics Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
DocumentTitleAlternate | Relative importance of water, energy, and heterogeneity in determining regional pteridophyte and seed plant richness in China |
EISSN | 1759-6831 |
EndPage | 107 |
ExternalDocumentID | zwflxb201102002 3034390051 10_1111_j_1759_6831_2011_00120_x JSE120 ark_67375_WNG_D637W1BK_8 37569990 |
Genre | article |
GroupedDBID | -01 -0A -SA -S~ 05W 0R~ 1OC 29L 2B. 2C. 2RA 31~ 33P 3SF 4.4 52U 5DZ 5VR 8-1 92E 92I 92L 92M 9D9 9DA A00 AAESR AAEVG AAHHS AAJUZ AAONW AASGY AAXRX AAZKR ABCUV ABCVL ABDBF ABHUG ABPTK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACPRK ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFUIB AFVGU AGJLS AIAGR AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C45 CAG CAJEA CAJUS CCEZO CCVFK CDYEO CHBEP CIAHI COF CQIGP CW9 DCZOG DRFUL DRSTM DU5 EBD EBS EJD ESX F5P FA0 FEDTE G-S GODZA GX1 HZ~ JUIAU LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- OK1 OVD P2P P2W P4E Q-- Q-0 R-A ROL RT1 S.. SUPJJ T8Q TCJ TEORI TGP TUS U1F U1G U5A U5K W94 WBKPD WIH WIK WNSPC WOHZO WU4 WXSBR WYISQ WYJ XV2 ZZTAW ~WA AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAYCA ACRPL ACUHS ACYXJ ADNMO AEFGJ AEIGN AEUYR AEYWJ AFFPM AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG ALVPJ BSCLL HGLYW HVGLF LH4 AAYXX CITATION 7ST 8FD C1K FR3 P64 RC3 SOI 4A8 93N PSX |
ID | FETCH-LOGICAL-c4370-322874fe3f3723d7609e7e3af7be955ca729be23a2abb6dcbfcf60dabce7d8153 |
ISSN | 1674-4918 |
IngestDate | Thu May 29 04:02:56 EDT 2025 Sun Jul 13 04:24:57 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Tue Jul 01 01:56:42 EDT 2025 Sun Sep 21 06:21:47 EDT 2025 Sun Sep 21 06:31:40 EDT 2025 Fri Dec 16 16:06:42 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | pteridophytes species richness habitat heterogeneity water-energy hypothesis seed plants |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4370-322874fe3f3723d7609e7e3af7be955ca729be23a2abb6dcbfcf60dabce7d8153 |
Notes | Q949.36 S718.512 habitat heterogeneity, pteridophytes, seed plants, species richness, water-energy hypothesis. 11-5779/Q ArticleID:JSE120 ark:/67375/WNG-D637W1BK-8 istex:A1F77B0328F4AE0EA22E144460A5BDC09903008A ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
PQID | 1416570605 |
PQPubID | 1016363 |
PageCount | 13 |
ParticipantIDs | wanfang_journals_zwflxb201102002 proquest_journals_1416570605 crossref_citationtrail_10_1111_j_1759_6831_2011_00120_x crossref_primary_10_1111_j_1759_6831_2011_00120_x wiley_primary_10_1111_j_1759_6831_2011_00120_x_JSE120 istex_primary_ark_67375_WNG_D637W1BK_8 chongqing_backfile_37569990 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2011 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: March 2011 |
PublicationDecade | 2010 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: Beijing |
PublicationTitle | Journal of systematics and evolution : JSE |
PublicationTitleAlternate | Journal of Systematics and Evolution |
PublicationTitle_FL | JOURNAL OF SYSTEMATICS AND EVOLUTION |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Inc Wiley Subscription Services, Inc Graduate University of the Chinese Academy of Sciences, Beijing 100049, China State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China%State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China%State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China |
Publisher_xml | – name: Blackwell Publishing Inc – name: Wiley Subscription Services, Inc – name: State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China – name: Graduate University of the Chinese Academy of Sciences, Beijing 100049, China – name: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China%State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China%State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China |
References | Tryon RM. 1986. The biogeography of species, with special reference to ferns. The Botanical Review 52: 117-156. Lamoreux JF, Morrison JC, Ricketts TH, Olson DM, Dinerstein E, McKnight MW, Shugart HH. 2006. Global tests of biodiversity concordance and the importance of endemism. Nature 440: 212-214. Diniz-Filho JAF, Bini LM, Hawkins BA. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography 12: 53-64. Pausas JG, Sáez L. 2000. Pteridophyte richness in the NE Iberian Peninsula: Biogeographic patterns. Plant Ecology 148: 195-205. Mac Nally R, Walsh C. 2004. Hierarchical partitioning public-domain software. Biodiversity and Conservation 13: 659-660. Barrington DS. 1993. Ecological and historical factors in fern biogeography. Journal of Biogeography 20: 275-280. Tateishi R, Ahn CH. 1996. Mapping evapotranspiration and water balance for global land surfaces. ISPRS Journal of Photogrammetry and Remote Sensing 51: 209-215. Gaston KJ. 2000. Global patterns in biodiversity. Nature 405: 220-227. Hutchings MJ, John EA, Stewart AJA. 2000. The ecological consequences of environmental heterogeneity. Oxford : Blackwell Science. Linares-Palomino R, Kessler M. 2009. The role of dispersal ability, climate and spatial separation in shaping biogeographical patterns of phylogenetically distant plant groups in seasonally dry Andean forests of Bolivia. Journal of Biogeography 36: 280-290. Qian H, Wang X, Wang S, Li Y. 2007. Environmental determinants of amphibian and reptile species richness in China. Ecography 30: 471-482. Kessler M. 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology 149: 181-193. Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan J-F, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O'Brien E, Turner JRG. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7: 1121-1134. Kreft H, Sommer JH, Barthlott W. 2006. The significance of geographic range size for the explanation of spatial diversity patterns in Neotropical palms. Ecography 29: 21-30. Latham RE, Ricklefs RE. 1993. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67: 325-333. Legendre P. 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology 74:1659-1673. Qian H, Kissling WD. 2010. Spatial scale and cross-taxon congruence of terrestrial vertebrate and vascular plant species richness in China. Ecology 91: 1172-1183. Whittaker RJ, Nogués-Bravo D, Araújo MB. 2007. Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Global Ecology and Biogeography 16: 76-89. Borcard D, Legendre P, Drapeau P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045-1055. Rosenzweig M L. 1995. Species diversity in space and time. Cambridge : Cambridge University Press. Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Turner JRG. 2008. Spatial species-richness gradients across scales: A meta-analysis. Journal of Biogeography 36: 132-147. Chevan A, Sutherland M. 1991. Hierarchical partitioning. The American Statistician 45: 90-96. Zang D. 1998. A preliminary study on the ferns flora in China. Acta Botanica Boreali-Occidentalla Sinica 18: 459-465. Zhang J, Yang Z, Wang D, Zhang X. 2002. Climate change and causes in the Yuanmou dry-hot valley of Yunnan, China. Journal of Arid Environment 51: 153-162. Hovestadt T, Poethke HJ. 2005. Dispersal and establishment: Spatial patterns and species-area relationships. Diversity and Distributions 11: 333-340. Sommer JH, Kreft H, Kier G, Jetz W, Mutke J, Barthlott W. 2010. Projected impacts of climate change on regional capacities for global plant species richness. Proceedings of the Royal Society B: Biological Sciences 277: 2271-2280. Hijmans RJ, Cameron SE, Parra JL, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. Wolf PG, Schnerder H, Ranker TA. 2001. Geographic distributions of homosporous ferns: Does dispersal obscure evidence of vicariance? Journal of Biogeography 28: 263-270. Evans KL, Warren PH, Gaston KJ. 2005. Species-energy relationships at the macroecological scale: A review of the mechanisms. Biological Review 80: 1-25. Kissling WD, Field R, Böhning-Gaese K. 2008. Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects? Global Ecology and Biogeography 17: 327-339. Qian H, Kissling WD, Wang X, Andrews P. 2009. Effects of woody plant species richness on mammal species richness in southern Africa. Journal of Biogeography 36: 1685-1697. Shafer SL, Bartlein PJ, Thompson RS. 2001. Potential changes in the distributions of western north America tree and shrub taxa under future climate scenarios. Ecosystems 4: 200-215. Peres-Neto PR, Legendre P, Dray S, Borcard D. 2006. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87: 2614-2625. Jetz W, Rahbek C. 2002. Geographic range size and determinants of avian species richness. Science 297: 1548-1551. Bickford SA, Laffan SW. 2006. Multi-extent analysis of the relationship between pteridophyte species richness and climate. Global Ecology and Biogeography 15: 588-601. Brodribb TJ, Holbrook NM. 2004. Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms. New Phytologist 162: 663-670. Hawkins BA, Porter EE. 2003. Does herbivore diversity depend on plant diversity? The case of California butterflies. The American Naturalist 161: 40-49. Ahn CH, Tateishi R. 1994. Development of a global 30-minute grid potential evapotranspiration data set. Journal of the Japan Society of Photogrammetry and Remote Sensing 33: 12-21. Currie DJ. 1991. Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist 137: 27-49. Cook JM, Segar ST. 2010. Speciation in fig wasps. Ecological Entomology 35: 54-66. Watkins JE Jr, Mack MK, Mulkey SS. 2007. Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns. American Journal of Botany 94: 701-708. Willig MR, Kaufman DM, Stevens RD. 2003. Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34: 273-309. Zhao S, Fang J. 2006. Patterns of species richness for vascular plants in China's nature reserves. Diversity and Distributions 12: 364-372. Dzwonko Z, Kornas J. 1994. Patterns of species richness and distribution of pteridophytes in Rwanda (central Africa): A numerical analysis. Journal of Biogeography 21: 491-501. Mac Nally R. 2000. Regression and model-building in conservation biology, biogeography and ecology: The distinction between - and reconciliation of -'predictive' and 'explanatory' models. Biodiversity and Conservation 9: 655-671. Hughes C, Eastwood R. 2006. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences USA 103: 10334-10339. Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R. 2004. Ferns diversified in the shadow of angiosperms. Nature 428: 553-557. Algar AC, Kharouba HM, Young ER, Kerr JT. 2009. Predicting the future of species diversity: Macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography 32: 22-33. Li XW. 1996. Floristic statistics and analyses of seed plants from China. Acta Botanica Yunnanica 18: 363-384. Karst J, Gilbert B, Lechowicz MJ. 2005. Fern community assembly: The roles of chance and the environment at local and intermediate scales. Ecology 86: 2473-2486. Qian H, Ricklefs RE. 2008. Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecology Letters 11: 547-553. Kreft H, Jetz W. 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences USA 104: 5925-5930. Kreft H, Jetz W, Mutke J, Barthlott W. 2010. Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33: 408-419. Lwanga JS, Balmford A, Badaza R. 1998. Assessing fern diversity: Relative species richness and its environmental correlates in Uganda. Biodiversity and Conservation 7: 1378-1398. Ferrer-Castán D, Vetaas OR. 2005. Pteridophyte richness, climate and topography in the Iberian Peninsula: Comparing spatial and non-spatial models of richness patterns. Global Ecology and Biogeography 14: 155-165. Rahbek C, Graves GR. 2001. Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences USA 98: 4534-4539. Tuomisto H, Ruokolainen K, Yli-Halla M. 2003. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299: 241-244. Bhattarai KR, Vetaas OR, Grytnes JA. 2004. Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography 31: 389-400. Rangel TF, Diniz-Filho JAF, Bini LM. 2010. SAM: A comprehensive application for Spatial Analysis in Macroecology. Ecography 33: 46-50. Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Porter EE, Turner JRG. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84: 3105-3117. Dutilleul P. 1993. Modifying the t-test for assessing the correlation between two spatial processes. Biometrics 49: 305-314. Jetz W, Rahbek C, Colwell RK. 2004. The coincidence of rarity and richness and the potential signature of history in centers of endemism. Ecology Letters 7: 1180-1191. Qian H. 2009. Beta diversity in relation to dispersal ability for vascular pla 2007; 104 1993; 67 2002; 51 2004; 162 2004; 7 2000; 9 1993; 20 2008; 36 2007; 30 1994; 21 2003; 12 2005; 25 1998; 18 2004; 31 1991; 45 2000 2000; 405 2010; 277 1993; 74 1994; 33 2003; 161 2006; 29 2006; 440 2003; 84 2009; 18 2001; 98 2010; 33 1996; 18 2010; 35 1993; 49 1986; 52 2006; 12 2002; 297 2006; 15 2008; 17 2005; 86 1995 1996; 51 2005; 80 2008; 11 2007; 94 2001; 28 2004; 428 1991; 137 2003; 299 1992; 73 2007; 16 2003; 34 2009; 36 2009; 32 2000; 148 2006; 87 2000; 149 2001; 4 2004; 13 1998; 7 2010; 91 2005; 11 2006; 103 2005; 14 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 Zang D. (e_1_2_6_62_1) 1998; 18 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 Li XW. (e_1_2_6_37_1) 1996; 18 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_58_1 Hutchings MJ (e_1_2_6_25_1) 2000 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Gaston KJ. 2000. Global patterns in biodiversity. Nature 405: 220-227. – reference: Hijmans RJ, Cameron SE, Parra JL, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. – reference: Algar AC, Kharouba HM, Young ER, Kerr JT. 2009. Predicting the future of species diversity: Macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography 32: 22-33. – reference: Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan J-F, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O'Brien E, Turner JRG. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7: 1121-1134. – reference: Linares-Palomino R, Kessler M. 2009. The role of dispersal ability, climate and spatial separation in shaping biogeographical patterns of phylogenetically distant plant groups in seasonally dry Andean forests of Bolivia. Journal of Biogeography 36: 280-290. – reference: Bhattarai KR, Vetaas OR, Grytnes JA. 2004. Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography 31: 389-400. – reference: Kessler M. 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology 149: 181-193. – reference: Pausas JG, Sáez L. 2000. Pteridophyte richness in the NE Iberian Peninsula: Biogeographic patterns. Plant Ecology 148: 195-205. – reference: Barrington DS. 1993. Ecological and historical factors in fern biogeography. Journal of Biogeography 20: 275-280. – reference: Rahbek C, Graves GR. 2001. Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences USA 98: 4534-4539. – reference: Cook JM, Segar ST. 2010. Speciation in fig wasps. Ecological Entomology 35: 54-66. – reference: Kissling WD, Field R, Böhning-Gaese K. 2008. Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects? Global Ecology and Biogeography 17: 327-339. – reference: Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Porter EE, Turner JRG. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84: 3105-3117. – reference: Qian H, Kissling WD, Wang X, Andrews P. 2009. Effects of woody plant species richness on mammal species richness in southern Africa. Journal of Biogeography 36: 1685-1697. – reference: Ahn CH, Tateishi R. 1994. Development of a global 30-minute grid potential evapotranspiration data set. Journal of the Japan Society of Photogrammetry and Remote Sensing 33: 12-21. – reference: Bickford SA, Laffan SW. 2006. Multi-extent analysis of the relationship between pteridophyte species richness and climate. Global Ecology and Biogeography 15: 588-601. – reference: Borcard D, Legendre P, Drapeau P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045-1055. – reference: Qian H, Ricklefs RE. 2008. Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecology Letters 11: 547-553. – reference: Watkins JE Jr, Mack MK, Mulkey SS. 2007. Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns. American Journal of Botany 94: 701-708. – reference: Chevan A, Sutherland M. 1991. Hierarchical partitioning. The American Statistician 45: 90-96. – reference: Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R. 2004. Ferns diversified in the shadow of angiosperms. Nature 428: 553-557. – reference: Hughes C, Eastwood R. 2006. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences USA 103: 10334-10339. – reference: Lamoreux JF, Morrison JC, Ricketts TH, Olson DM, Dinerstein E, McKnight MW, Shugart HH. 2006. Global tests of biodiversity concordance and the importance of endemism. Nature 440: 212-214. – reference: Lwanga JS, Balmford A, Badaza R. 1998. Assessing fern diversity: Relative species richness and its environmental correlates in Uganda. Biodiversity and Conservation 7: 1378-1398. – reference: Kreft H, Jetz W. 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences USA 104: 5925-5930. – reference: Qian H. 2009. Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography 18: 327-332. – reference: Kreft H, Sommer JH, Barthlott W. 2006. The significance of geographic range size for the explanation of spatial diversity patterns in Neotropical palms. Ecography 29: 21-30. – reference: Dzwonko Z, Kornas J. 1994. Patterns of species richness and distribution of pteridophytes in Rwanda (central Africa): A numerical analysis. Journal of Biogeography 21: 491-501. – reference: Jetz W, Rahbek C. 2002. Geographic range size and determinants of avian species richness. Science 297: 1548-1551. – reference: Dutilleul P. 1993. Modifying the t-test for assessing the correlation between two spatial processes. Biometrics 49: 305-314. – reference: Rosenzweig M L. 1995. Species diversity in space and time. Cambridge : Cambridge University Press. – reference: Tateishi R, Ahn CH. 1996. Mapping evapotranspiration and water balance for global land surfaces. ISPRS Journal of Photogrammetry and Remote Sensing 51: 209-215. – reference: Zhang J, Yang Z, Wang D, Zhang X. 2002. Climate change and causes in the Yuanmou dry-hot valley of Yunnan, China. Journal of Arid Environment 51: 153-162. – reference: Karst J, Gilbert B, Lechowicz MJ. 2005. Fern community assembly: The roles of chance and the environment at local and intermediate scales. Ecology 86: 2473-2486. – reference: Qian H, Kissling WD. 2010. Spatial scale and cross-taxon congruence of terrestrial vertebrate and vascular plant species richness in China. Ecology 91: 1172-1183. – reference: Ferrer-Castán D, Vetaas OR. 2005. Pteridophyte richness, climate and topography in the Iberian Peninsula: Comparing spatial and non-spatial models of richness patterns. Global Ecology and Biogeography 14: 155-165. – reference: Jetz W, Rahbek C, Colwell RK. 2004. The coincidence of rarity and richness and the potential signature of history in centers of endemism. Ecology Letters 7: 1180-1191. – reference: Willig MR, Kaufman DM, Stevens RD. 2003. Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34: 273-309. – reference: Latham RE, Ricklefs RE. 1993. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67: 325-333. – reference: Mac Nally R, Walsh C. 2004. Hierarchical partitioning public-domain software. Biodiversity and Conservation 13: 659-660. – reference: Zang D. 1998. A preliminary study on the ferns flora in China. Acta Botanica Boreali-Occidentalla Sinica 18: 459-465. – reference: Evans KL, Warren PH, Gaston KJ. 2005. Species-energy relationships at the macroecological scale: A review of the mechanisms. Biological Review 80: 1-25. – reference: Brodribb TJ, Holbrook NM. 2004. Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms. New Phytologist 162: 663-670. – reference: Currie DJ. 1991. Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist 137: 27-49. – reference: Shafer SL, Bartlein PJ, Thompson RS. 2001. Potential changes in the distributions of western north America tree and shrub taxa under future climate scenarios. Ecosystems 4: 200-215. – reference: Hovestadt T, Poethke HJ. 2005. Dispersal and establishment: Spatial patterns and species-area relationships. Diversity and Distributions 11: 333-340. – reference: Hawkins BA, Porter EE. 2003. Does herbivore diversity depend on plant diversity? The case of California butterflies. The American Naturalist 161: 40-49. – reference: Wolf PG, Schnerder H, Ranker TA. 2001. Geographic distributions of homosporous ferns: Does dispersal obscure evidence of vicariance? Journal of Biogeography 28: 263-270. – reference: Zhao S, Fang J. 2006. Patterns of species richness for vascular plants in China's nature reserves. Diversity and Distributions 12: 364-372. – reference: Qian H, Wang X, Wang S, Li Y. 2007. Environmental determinants of amphibian and reptile species richness in China. Ecography 30: 471-482. – reference: Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Turner JRG. 2008. Spatial species-richness gradients across scales: A meta-analysis. Journal of Biogeography 36: 132-147. – reference: Peres-Neto PR, Legendre P, Dray S, Borcard D. 2006. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87: 2614-2625. – reference: Whittaker RJ, Nogués-Bravo D, Araújo MB. 2007. Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Global Ecology and Biogeography 16: 76-89. – reference: Tryon RM. 1986. The biogeography of species, with special reference to ferns. The Botanical Review 52: 117-156. – reference: Legendre P. 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology 74:1659-1673. – reference: Tuomisto H, Ruokolainen K, Yli-Halla M. 2003. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299: 241-244. – reference: Mac Nally R. 2000. Regression and model-building in conservation biology, biogeography and ecology: The distinction between - and reconciliation of -'predictive' and 'explanatory' models. Biodiversity and Conservation 9: 655-671. – reference: Hutchings MJ, John EA, Stewart AJA. 2000. The ecological consequences of environmental heterogeneity. Oxford : Blackwell Science. – reference: Diniz-Filho JAF, Bini LM, Hawkins BA. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography 12: 53-64. – reference: Rangel TF, Diniz-Filho JAF, Bini LM. 2010. SAM: A comprehensive application for Spatial Analysis in Macroecology. Ecography 33: 46-50. – reference: Sommer JH, Kreft H, Kier G, Jetz W, Mutke J, Barthlott W. 2010. Projected impacts of climate change on regional capacities for global plant species richness. Proceedings of the Royal Society B: Biological Sciences 277: 2271-2280. – reference: Kreft H, Jetz W, Mutke J, Barthlott W. 2010. Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33: 408-419. – reference: Li XW. 1996. Floristic statistics and analyses of seed plants from China. Acta Botanica Yunnanica 18: 363-384. – volume: 31 start-page: 389 year: 2004 end-page: 400 article-title: Fern species richness along a central Himalayan elevational gradient, Nepal publication-title: Journal of Biogeography – volume: 11 start-page: 333 year: 2005 end-page: 340 article-title: Dispersal and establishment: Spatial patterns and species‐area relationships publication-title: Diversity and Distributions – volume: 45 start-page: 90 year: 1991 end-page: 96 article-title: Hierarchical partitioning publication-title: The American Statistician – volume: 297 start-page: 1548 year: 2002 end-page: 1551 article-title: Geographic range size and determinants of avian species richness publication-title: Science – volume: 17 start-page: 327 year: 2008 end-page: 339 article-title: Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects? publication-title: Global Ecology and Biogeography – volume: 162 start-page: 663 year: 2004 end-page: 670 article-title: Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms publication-title: New Phytologist – volume: 33 start-page: 408 year: 2010 end-page: 419 article-title: Contrasting environmental and regional effects on global pteridophyte and seed plant diversity publication-title: Ecography – volume: 36 start-page: 280 year: 2009 end-page: 290 article-title: The role of dispersal ability, climate and spatial separation in shaping biogeographical patterns of phylogenetically distant plant groups in seasonally dry Andean forests of Bolivia publication-title: Journal of Biogeography – volume: 104 start-page: 5925 year: 2007 end-page: 5930 article-title: Global patterns and determinants of vascular plant diversity publication-title: Proceedings of the National Academy of Sciences USA – volume: 36 start-page: 1685 year: 2009 end-page: 1697 article-title: Effects of woody plant species richness on mammal species richness in southern Africa publication-title: Journal of Biogeography – volume: 49 start-page: 305 year: 1993 end-page: 314 article-title: Modifying the ‐test for assessing the correlation between two spatial processes publication-title: Biometrics – volume: 149 start-page: 181 year: 2000 end-page: 193 article-title: Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes publication-title: Plant Ecology – volume: 32 start-page: 22 year: 2009 end-page: 33 article-title: Predicting the future of species diversity: Macroecological theory, climate change, and direct tests of alternative forecasting methods publication-title: Ecography – volume: 9 start-page: 655 year: 2000 end-page: 671 article-title: Regression and model‐building in conservation biology, biogeography and ecology: The distinction between – and reconciliation of –‘predictive’ and ‘explanatory’ models publication-title: Biodiversity and Conservation – volume: 11 start-page: 547 year: 2008 end-page: 553 article-title: Global concordance in diversity patterns of vascular plants and terrestrial vertebrates publication-title: Ecology Letters – volume: 18 start-page: 327 year: 2009 end-page: 332 article-title: Beta diversity in relation to dispersal ability for vascular plants in North America publication-title: Global Ecology and Biogeography – volume: 94 start-page: 701 year: 2007 end-page: 708 article-title: Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns publication-title: American Journal of Botany – volume: 12 start-page: 53 year: 2003 end-page: 64 article-title: Spatial autocorrelation and red herrings in geographical ecology publication-title: Global Ecology and Biogeography – volume: 33 start-page: 46 year: 2010 end-page: 50 article-title: SAM: A comprehensive application for Spatial Analysis in Macroecology publication-title: Ecography – volume: 7 start-page: 1180 year: 2004 end-page: 1191 article-title: The coincidence of rarity and richness and the potential signature of history in centers of endemism publication-title: Ecology Letters – volume: 14 start-page: 155 year: 2005 end-page: 165 article-title: Pteridophyte richness, climate and topography in the Iberian Peninsula: Comparing spatial and non‐spatial models of richness patterns publication-title: Global Ecology and Biogeography – volume: 277 start-page: 2271 year: 2010 end-page: 2280 article-title: Projected impacts of climate change on regional capacities for global plant species richness publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 28 start-page: 263 year: 2001 end-page: 270 article-title: Geographic distributions of homosporous ferns: Does dispersal obscure evidence of vicariance? publication-title: Journal of Biogeography – volume: 21 start-page: 491 year: 1994 end-page: 501 article-title: Patterns of species richness and distribution of pteridophytes in Rwanda (central Africa): A numerical analysis publication-title: Journal of Biogeography – volume: 7 start-page: 1378 year: 1998 end-page: 1398 article-title: Assessing fern diversity: Relative species richness and its environmental correlates in Uganda publication-title: Biodiversity and Conservation – volume: 51 start-page: 153 year: 2002 end-page: 162 article-title: Climate change and causes in the Yuanmou dry‐hot valley of Yunnan, China publication-title: Journal of Arid Environment – volume: 4 start-page: 200 year: 2001 end-page: 215 article-title: Potential changes in the distributions of western north America tree and shrub taxa under future climate scenarios publication-title: Ecosystems – volume: 35 start-page: 54 year: 2010 end-page: 66 article-title: Speciation in fig wasps publication-title: Ecological Entomology – volume: 12 start-page: 364 year: 2006 end-page: 372 article-title: Patterns of species richness for vascular plants in China's nature reserves publication-title: Diversity and Distributions – volume: 15 start-page: 588 year: 2006 end-page: 601 article-title: Multi‐extent analysis of the relationship between pteridophyte species richness and climate publication-title: Global Ecology and Biogeography – volume: 67 start-page: 325 year: 1993 end-page: 333 article-title: Global patterns of tree species richness in moist forests: Energy‐diversity theory does not account for variation in species richness publication-title: Oikos – volume: 34 start-page: 273 year: 2003 end-page: 309 article-title: Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 18 start-page: 459 year: 1998 end-page: 465 article-title: A preliminary study on the ferns flora in China publication-title: Acta Botanica Boreali-Occidentalla Sinica – volume: 80 start-page: 1 year: 2005 end-page: 25 article-title: Species–energy relationships at the macroecological scale: A review of the mechanisms publication-title: Biological Review – volume: 87 start-page: 2614 year: 2006 end-page: 2625 article-title: Variation partitioning of species data matrices: Estimation and comparison of fractions publication-title: Ecology – volume: 137 start-page: 27 year: 1991 end-page: 49 article-title: Energy and large‐scale patterns of animal‐ and plant‐species richness publication-title: The American Naturalist – volume: 74 start-page: 1659 year: 1993 end-page: 1673 article-title: Spatial autocorrelation: Trouble or new paradigm? publication-title: Ecology – volume: 98 start-page: 4534 year: 2001 end-page: 4539 article-title: Multiscale assessment of patterns of avian species richness publication-title: Proceedings of the National Academy of Sciences USA – volume: 161 start-page: 40 year: 2003 end-page: 49 article-title: Does herbivore diversity depend on plant diversity? The case of California butterflies publication-title: The American Naturalist – volume: 16 start-page: 76 year: 2007 end-page: 89 article-title: Geographical gradients of species richness: A test of the water‐energy conjecture of Hawkins et al. (2003) using European data for five taxa publication-title: Global Ecology and Biogeography – volume: 103 start-page: 10334 year: 2006 end-page: 10339 article-title: Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes publication-title: Proceedings of the National Academy of Sciences USA – year: 2000 – volume: 428 start-page: 553 year: 2004 end-page: 557 article-title: Ferns diversified in the shadow of angiosperms publication-title: Nature – volume: 18 start-page: 363 year: 1996 end-page: 384 article-title: Floristic statistics and analyses of seed plants from China publication-title: Acta Botanica Yunnanica – volume: 52 start-page: 117 year: 1986 end-page: 156 article-title: The biogeography of species, with special reference to ferns publication-title: The Botanical Review – volume: 84 start-page: 3105 year: 2003 end-page: 3117 article-title: Energy, water, and broad‐scale geographic patterns of species richness publication-title: Ecology – volume: 51 start-page: 209 year: 1996 end-page: 215 article-title: Mapping evapotranspiration and water balance for global land surfaces publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 405 start-page: 220 year: 2000 end-page: 227 article-title: Global patterns in biodiversity publication-title: Nature – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 36 start-page: 132 year: 2008 end-page: 147 article-title: Spatial species‐richness gradients across scales: A meta‐analysis publication-title: Journal of Biogeography – volume: 7 start-page: 1121 year: 2004 end-page: 1134 article-title: Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness publication-title: Ecology Letters – volume: 13 start-page: 659 year: 2004 end-page: 660 article-title: Hierarchical partitioning public‐domain software publication-title: Biodiversity and Conservation – volume: 91 start-page: 1172 year: 2010 end-page: 1183 article-title: Spatial scale and cross‐taxon congruence of terrestrial vertebrate and vascular plant species richness in China publication-title: Ecology – volume: 20 start-page: 275 year: 1993 end-page: 280 article-title: Ecological and historical factors in fern biogeography publication-title: Journal of Biogeography – volume: 73 start-page: 1045 year: 1992 end-page: 1055 article-title: Partialling out the spatial component of ecological variation publication-title: Ecology – volume: 33 start-page: 12 year: 1994 end-page: 21 article-title: Development of a global 30‐minute grid potential evapotranspiration data set publication-title: Journal of the Japan Society of Photogrammetry and Remote Sensing – volume: 440 start-page: 212 year: 2006 end-page: 214 article-title: Global tests of biodiversity concordance and the importance of endemism publication-title: Nature – volume: 148 start-page: 195 year: 2000 end-page: 205 article-title: Pteridophyte richness in the NE Iberian Peninsula: Biogeographic patterns publication-title: Plant Ecology – year: 1995 – volume: 29 start-page: 21 year: 2006 end-page: 30 article-title: The significance of geographic range size for the explanation of spatial diversity patterns in Neotropical palms publication-title: Ecography – volume: 30 start-page: 471 year: 2007 end-page: 482 article-title: Environmental determinants of amphibian and reptile species richness in China publication-title: Ecography – volume: 299 start-page: 241 year: 2003 end-page: 244 article-title: Dispersal, environment, and floristic variation of western Amazonian forests publication-title: Science – volume: 86 start-page: 2473 year: 2005 end-page: 2486 article-title: Fern community assembly: The roles of chance and the environment at local and intermediate scales publication-title: Ecology – ident: e_1_2_6_14_1 doi: 10.2307/2532625 – ident: e_1_2_6_60_1 doi: 10.1146/annurev.ecolsys.34.012103.144032 – ident: e_1_2_6_26_1 doi: 10.1126/science.1072779 – ident: e_1_2_6_32_1 doi: 10.1111/j.1600-0587.2010.06434.x – ident: e_1_2_6_8_1 doi: 10.1111/j.1469-8137.2004.01060.x – ident: e_1_2_6_63_1 doi: 10.1006/jare.2001.0851 – ident: e_1_2_6_55_1 doi: 10.1016/0924-2716(96)00015-9 – ident: e_1_2_6_15_1 doi: 10.2307/2845653 – ident: e_1_2_6_41_1 doi: 10.1023/B:BIOC.0000009515.11717.0b – ident: e_1_2_6_33_1 doi: 10.1111/j.2005.0906-7590.04203.x – ident: e_1_2_6_45_1 doi: 10.1890/09-0620.1 – ident: e_1_2_6_21_1 doi: 10.1890/03-8006 – ident: e_1_2_6_52_1 doi: 10.1038/nature02361 – ident: e_1_2_6_36_1 doi: 10.2307/1939924 – ident: e_1_2_6_57_1 doi: 10.1126/science.1078037 – ident: e_1_2_6_40_1 doi: 10.1023/A:1008985925162 – ident: e_1_2_6_53_1 doi: 10.1007/s10021-001-0004-5 – ident: e_1_2_6_3_1 doi: 10.1111/j.1600-0587.2009.05832.x – ident: e_1_2_6_54_1 doi: 10.1098/rspb.2010.0120 – ident: e_1_2_6_56_1 doi: 10.1007/BF02860999 – ident: e_1_2_6_18_1 doi: 10.1111/j.1365-2699.2008.01963.x – ident: e_1_2_6_19_1 doi: 10.1038/35012228 – ident: e_1_2_6_47_1 doi: 10.1111/j.1365-2699.2009.02128.x – ident: e_1_2_6_61_1 doi: 10.1046/j.1365-2699.2001.00531.x – ident: e_1_2_6_12_1 doi: 10.1111/j.1461-0248.2004.00671.x – ident: e_1_2_6_9_1 doi: 10.2307/2684366 – ident: e_1_2_6_27_1 doi: 10.1111/j.1461-0248.2004.00678.x – ident: e_1_2_6_30_1 doi: 10.1111/j.1466-8238.2007.00379.x – ident: e_1_2_6_4_1 doi: 10.2307/2845635 – ident: e_1_2_6_7_1 doi: 10.2307/1940179 – ident: e_1_2_6_5_1 doi: 10.1046/j.0305-0270.2003.01013.x – ident: e_1_2_6_35_1 doi: 10.2307/3545479 – ident: e_1_2_6_34_1 doi: 10.1038/nature04291 – ident: e_1_2_6_2_1 doi: 10.4287/jsprs.33.2_12 – ident: e_1_2_6_20_1 doi: 10.1086/345479 – ident: e_1_2_6_46_1 doi: 10.1111/j.1461-0248.2008.01168.x – ident: e_1_2_6_59_1 doi: 10.1111/j.1466-8238.2006.00268.x – ident: e_1_2_6_23_1 doi: 10.1111/j.1366-9516.2005.00161.x – ident: e_1_2_6_29_1 doi: 10.1023/A:1026500710274 – ident: e_1_2_6_43_1 doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2 – volume-title: The ecological consequences of environmental heterogeneity year: 2000 ident: e_1_2_6_25_1 – ident: e_1_2_6_24_1 doi: 10.1073/pnas.0601928103 – ident: e_1_2_6_13_1 doi: 10.1046/j.1466-822X.2003.00322.x – ident: e_1_2_6_39_1 doi: 10.1023/A:1008865518378 – ident: e_1_2_6_17_1 doi: 10.1111/j.1466-822X.2004.00140.x – ident: e_1_2_6_28_1 doi: 10.1890/04-1420 – ident: e_1_2_6_58_1 doi: 10.3732/ajb.94.4.701 – ident: e_1_2_6_51_1 doi: 10.1111/j.2006.0906-7590.04272.x – ident: e_1_2_6_48_1 doi: 10.1111/j.0906-7590.2007.05025.x – ident: e_1_2_6_11_1 doi: 10.1086/285144 – ident: e_1_2_6_44_1 doi: 10.1111/j.1466-8238.2009.00450.x – volume: 18 start-page: 459 year: 1998 ident: e_1_2_6_62_1 article-title: A preliminary study on the ferns flora in China publication-title: Acta Botanica Boreali-Occidentalla Sinica – ident: e_1_2_6_6_1 doi: 10.1111/j.1466-8238.2006.00250.x – volume: 18 start-page: 363 year: 1996 ident: e_1_2_6_37_1 article-title: Floristic statistics and analyses of seed plants from China publication-title: Acta Botanica Yunnanica – ident: e_1_2_6_64_1 doi: 10.1111/j.1366-9516.2006.00232.x – ident: e_1_2_6_50_1 doi: 10.1111/j.1600-0587.2009.06299.x – ident: e_1_2_6_42_1 doi: 10.1023/A:1009899615852 – ident: e_1_2_6_38_1 doi: 10.1111/j.1365-2699.2008.02028.x – ident: e_1_2_6_16_1 doi: 10.1017/S1464793104006517 – ident: e_1_2_6_22_1 doi: 10.1002/joc.1276 – ident: e_1_2_6_31_1 doi: 10.1073/pnas.0608361104 – ident: e_1_2_6_10_1 doi: 10.1111/j.1365-2311.2009.01148.x – ident: e_1_2_6_49_1 doi: 10.1073/pnas.071034898 |
SSID | ssj0067876 |
Score | 1.9930128 |
Snippet | Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species... Abstract Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for... Abstract Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for... Q94; Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species... |
SourceID | wanfang proquest crossref wiley istex chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 95 |
SubjectTerms | Biodiversity Energy Environmental effects Environmental organizations Environmental requirements Flora habitat heterogeneity Heterogeneity pteridophytes Seed dispersal seed plants Seeds Species diversity Species richness Water availability water-energy hypothesis 丰富度 水供应 物种多样性 环境异质性 种子植物 蕨类植物 |
Title | Relative importance of water, energy, and heterogeneity in determining regional pteridophyte and seed plant richness in China |
URI | http://lib.cqvip.com/qk/94666A/20112/37569990.html https://api.istex.fr/ark:/67375/WNG-D637W1BK-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1759-6831.2011.00120.x https://www.proquest.com/docview/1416570605 https://d.wanfangdata.com.cn/periodical/zwflxb201102002 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1759-6831 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067876 issn: 1674-4918 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FFiQuiKcwLWgPiAs1SrzxOj42UBKK2ksbNeWy2rXXTdTKLm3ShEr8ZX4DM7trx6lSKXCxLDtrOTtf5pVvZgh5n3UU2n3ms4w3_bbkGvSg5n6glJQ662gWYzXywSHvD9r7w3DYaPypsZamE_UpuV1ZV_I_UoVrIFeskv0HyVYPhQtwDvKFI0gYjmvJ2DLZbjTWOqIbjT9ScP5m0k3b0KawryRojpD5UsDDNHrehgVrqTCYLcABDSYpeInNm9MCdn9i_1m4BvuGw6bzyUfQmSOjGrFUsBy8vcK1XbSHth2g9Y3bBpOA2D9aVD_09wzN4Gik8zO_O66Quv9t1xZT9WThH5TmFZPBg1N358do7J9OqxXDgaEL6rHfn8p6LqNVI3OtylnaHNwSHxRrJvx27FS2tteiMPZ5xxkTp9RtH1QH3qCmoe1IT2fr3cTd-81I-WjX6xUrjUt6ab1z9x2LWvEc5dU5EueiUJwc9sQXzqKTVve76Dwgm0HEOU7c6A0rShL4DWYYYvUl7zDPVr0LtgQZFfnZT9iqJddqE7XEfCluejSTeSbxc_U4zDhSx0_JEwcTumvh_Iw0dP6cPOwWAN9fL8jvEtN0gWlaZNRgeodaRO9QQBVdwjMd57SGZ1rimdbxbJYhnqnBMy3xjIsNnl-Swde94899340I8ZM2i8CDCHBeQ6ZZxqKApRFvxjrSTGaR0nEYJhJiR6UDJgOpFE8TlSWgk1KpEh2lHbD2r8hGXuT6NaHtNM4U-r8qAZ9cJXGbJTxkIVPgwbNUe2Sr2mlwMZNzbJwmQLYcYqymR6Jy70XiuuvjkJcLUYuyQYICJShQgsJIUMw90qpWXtoOM2us-WDEWy24D2ge2S7lL5ziuoZov4WEN94MPUIdJhZ3b2fZxVyZuAAJXB4JDVjWfjcBWgRO3qz7ilvk8UIVbJONydVUvwVHf6LemV_HXwtw9-w |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+importance+of+water%2C+energy%2C+and+heterogeneity+in+determining+regional+pteridophyte+and+seed+plant+richness+in+China&rft.jtitle=Journal+of+systematics+and+evolution+%3A+JSE&rft.au=CHEN%2C+Sheng-Bin&rft.au=JIANG%2C+Gao-Ming&rft.au=OUYANG%2C+Zhi-Yun&rft.au=XU%2C+Wei-Hua&rft.date=2011-03-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=1674-4918&rft.eissn=1759-6831&rft.volume=49&rft.issue=2&rft.spage=95&rft.epage=107&rft_id=info:doi/10.1111%2Fj.1759-6831.2011.00120.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_D637W1BK_8 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94666A%2F94666A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwflxb%2Fzwflxb.jpg |