Relative importance of water, energy, and heterogeneity in determining regional pteridophyte and seed plant richness in China

Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial pa...

Full description

Saved in:
Bibliographic Details
Published inJournal of systematics and evolution : JSE Vol. 49; no. 2; pp. 95 - 107
Main Authors CHEN, Sheng-Bin, JIANG, Gao-Ming, OUYANG, Zhi-Yun, XU, Wei-Hua, XIAO, Yi
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.03.2011
Wiley Subscription Services, Inc
Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China%State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China%State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Subjects
Online AccessGet full text
ISSN1674-4918
1759-6831
DOI10.1111/j.1759-6831.2011.00120.x

Cover

Abstract Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology.
AbstractList Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology.
Abstract Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology [PUBLICATION ABSTRACT].
Abstract  Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon‐specific functional traits define large‐scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water‐related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology.
Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon‐specific functional traits define large‐scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water‐related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology.
Q94; Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology.
Author Sheng-Bin CHEN Gao-Ming JIANG Zhi-Yun OUYANG Wei-Hua XU yi XIAO
AuthorAffiliation State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China Graduate University of the Chinese Academy of Sciences, Beijing 100049, China State Key Laboratory of Urban and Regional Ecology, Research Center for Eeo-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
AuthorAffiliation_xml – name: State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China;Graduate University of the Chinese Academy of Sciences, Beijing 100049, China;State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China%State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China%State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Author_xml – sequence: 1
  givenname: Sheng-Bin
  surname: CHEN
  fullname: CHEN, Sheng-Bin
  email:  Author for correspondence. ; Tel.: 86-10-62836506; Fax: 86-10-82596146. Email:, jianggm@126.comchainpin@yahoo.com.cn
  organization: (State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China)
– sequence: 2
  givenname: Gao-Ming
  surname: JIANG
  fullname: JIANG, Gao-Ming
  email:  Author for correspondence. ; Tel.: 86-10-62836506; Fax: 86-10-82596146. Email:, jianggm@126.comchainpin@yahoo.com.cn
  organization: (State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China)
– sequence: 3
  givenname: Zhi-Yun
  surname: OUYANG
  fullname: OUYANG, Zhi-Yun
  organization: (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)
– sequence: 4
  givenname: Wei-Hua
  surname: XU
  fullname: XU, Wei-Hua
  organization: (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)
– sequence: 5
  givenname: Yi
  surname: XIAO
  fullname: XIAO, Yi
  organization: (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)
BookMark eNqNUU1v1DAUjFCRaAv_wYIDlybYcWInEkKiS2mBCiQ-1KPlJM9Zb7N2arvsBon_Xqe7KhKn-uKn8cy85zdHyYGxBpIEEZyReN6sMsLLOmUVJVmOCckwJjnOtk-Sw4eHg1gzXqRFTapnyZH3K4wZrzg7TP5-h0EG_RuQXo_WBWlaQFahjQzgThAYcP10gqTp0BIiZPsI6TAhbVA3A2tttOmRg15bIwc0Rkx3dlxOAe5lHqBD4yBNQE63SwPez-LFUhv5PHmq5ODhxf4-Tn59PPu5uEgvv51_Wry_TNuCcpzSPK94oYAqynPacYZr4ECl4g3UZdlKntcN5FTmsmlY1zaqVQx3smmBdxUp6XHyeue7kUZJ04uVvXVxWi_-bNSwbebF4RzjPDJf7Zijsze34MM_KikIKzlmePZ7t2O1znrvQIlWh7hGa4KTehAEizkcsRJzBmLOQMw9xH04YhsNqv8MRqfX0k2Pkb7d_0UPMD1aJz7_OItFlKc7ufYBtg9y6a4F45SX4urrufjAKL8ip19EFfkv95MurelvYtaike21is1FpLO6rjG9A-FnxPs
CitedBy_id crossref_primary_10_1186_1471_2229_12_210
crossref_primary_10_3389_fevo_2021_655313
crossref_primary_10_1093_jpe_rtw001
crossref_primary_10_3389_fpls_2024_1301395
crossref_primary_10_1111_geb_13349
crossref_primary_10_3390_f15061056
crossref_primary_10_3724_SP_J_1003_2011_10289
crossref_primary_10_1016_j_pld_2020_03_003
crossref_primary_10_1111_j_1759_6831_2012_00240_x
crossref_primary_10_1111_jse_12158
crossref_primary_10_3390_f13071090
crossref_primary_10_3390_f14061241
crossref_primary_10_1111_jbi_13715
crossref_primary_10_1016_j_gecco_2023_e02375
crossref_primary_10_18474_JES23_26
crossref_primary_10_3390_d14090744
crossref_primary_10_3390_su14020587
crossref_primary_10_1016_j_geosus_2024_100252
crossref_primary_10_1515_biol_2022_0574
crossref_primary_10_3390_f11020227
crossref_primary_10_1007_s11258_022_01274_1
crossref_primary_10_1007_s11442_019_1650_x
crossref_primary_10_3390_su16093750
crossref_primary_10_1007_s10531_014_0838_8
Cites_doi 10.2307/2532625
10.1146/annurev.ecolsys.34.012103.144032
10.1126/science.1072779
10.1111/j.1600-0587.2010.06434.x
10.1111/j.1469-8137.2004.01060.x
10.1006/jare.2001.0851
10.1016/0924-2716(96)00015-9
10.2307/2845653
10.1023/B:BIOC.0000009515.11717.0b
10.1111/j.2005.0906-7590.04203.x
10.1890/09-0620.1
10.1890/03-8006
10.1038/nature02361
10.2307/1939924
10.1126/science.1078037
10.1023/A:1008985925162
10.1007/s10021-001-0004-5
10.1111/j.1600-0587.2009.05832.x
10.1098/rspb.2010.0120
10.1007/BF02860999
10.1111/j.1365-2699.2008.01963.x
10.1038/35012228
10.1111/j.1365-2699.2009.02128.x
10.1046/j.1365-2699.2001.00531.x
10.1111/j.1461-0248.2004.00671.x
10.2307/2684366
10.1111/j.1461-0248.2004.00678.x
10.1111/j.1466-8238.2007.00379.x
10.2307/2845635
10.2307/1940179
10.1046/j.0305-0270.2003.01013.x
10.2307/3545479
10.1038/nature04291
10.4287/jsprs.33.2_12
10.1086/345479
10.1111/j.1461-0248.2008.01168.x
10.1111/j.1466-8238.2006.00268.x
10.1111/j.1366-9516.2005.00161.x
10.1023/A:1026500710274
10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
10.1073/pnas.0601928103
10.1046/j.1466-822X.2003.00322.x
10.1023/A:1008865518378
10.1111/j.1466-822X.2004.00140.x
10.1890/04-1420
10.3732/ajb.94.4.701
10.1111/j.2006.0906-7590.04272.x
10.1111/j.0906-7590.2007.05025.x
10.1086/285144
10.1111/j.1466-8238.2009.00450.x
10.1111/j.1466-8238.2006.00250.x
10.1111/j.1366-9516.2006.00232.x
10.1111/j.1600-0587.2009.06299.x
10.1023/A:1009899615852
10.1111/j.1365-2699.2008.02028.x
10.1017/S1464793104006517
10.1002/joc.1276
10.1073/pnas.0608361104
10.1111/j.1365-2311.2009.01148.x
10.1073/pnas.071034898
ClassificationCodes Q94
ContentType Journal Article
Copyright 2011 Institute of Botany, Chinese Academy of Sciences
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2011 Institute of Botany, Chinese Academy of Sciences
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
WU4
~WA
BSCLL
AAYXX
CITATION
7ST
8FD
C1K
FR3
P64
RC3
SOI
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1111/j.1759-6831.2011.00120.x
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
Istex
CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Genetics Abstracts
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate Relative importance of water, energy, and heterogeneity in determining regional pteridophyte and seed plant richness in China
EISSN 1759-6831
EndPage 107
ExternalDocumentID zwflxb201102002
3034390051
10_1111_j_1759_6831_2011_00120_x
JSE120
ark_67375_WNG_D637W1BK_8
37569990
Genre article
GroupedDBID -01
-0A
-SA
-S~
05W
0R~
1OC
29L
2B.
2C.
2RA
31~
33P
3SF
4.4
52U
5DZ
5VR
8-1
92E
92I
92L
92M
9D9
9DA
A00
AAESR
AAEVG
AAHHS
AAJUZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABCVL
ABDBF
ABHUG
ABPTK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFUIB
AFVGU
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C45
CAG
CAJEA
CAJUS
CCEZO
CCVFK
CDYEO
CHBEP
CIAHI
COF
CQIGP
CW9
DCZOG
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F5P
FA0
FEDTE
G-S
GODZA
GX1
HZ~
JUIAU
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
OK1
OVD
P2P
P2W
P4E
Q--
Q-0
R-A
ROL
RT1
S..
SUPJJ
T8Q
TCJ
TEORI
TGP
TUS
U1F
U1G
U5A
U5K
W94
WBKPD
WIH
WIK
WNSPC
WOHZO
WU4
WXSBR
WYISQ
WYJ
XV2
ZZTAW
~WA
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEIGN
AEUYR
AEYWJ
AFFPM
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
BSCLL
HGLYW
HVGLF
LH4
AAYXX
CITATION
7ST
8FD
C1K
FR3
P64
RC3
SOI
4A8
93N
PSX
ID FETCH-LOGICAL-c4370-322874fe3f3723d7609e7e3af7be955ca729be23a2abb6dcbfcf60dabce7d8153
ISSN 1674-4918
IngestDate Thu May 29 04:02:56 EDT 2025
Sun Jul 13 04:24:57 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Tue Jul 01 01:56:42 EDT 2025
Sun Sep 21 06:21:47 EDT 2025
Sun Sep 21 06:31:40 EDT 2025
Fri Dec 16 16:06:42 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords pteridophytes
species richness
habitat heterogeneity
water-energy hypothesis
seed plants
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4370-322874fe3f3723d7609e7e3af7be955ca729be23a2abb6dcbfcf60dabce7d8153
Notes Q949.36
S718.512
habitat heterogeneity, pteridophytes, seed plants, species richness, water-energy hypothesis.
11-5779/Q
ArticleID:JSE120
ark:/67375/WNG-D637W1BK-8
istex:A1F77B0328F4AE0EA22E144460A5BDC09903008A
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
PQID 1416570605
PQPubID 1016363
PageCount 13
ParticipantIDs wanfang_journals_zwflxb201102002
proquest_journals_1416570605
crossref_citationtrail_10_1111_j_1759_6831_2011_00120_x
crossref_primary_10_1111_j_1759_6831_2011_00120_x
wiley_primary_10_1111_j_1759_6831_2011_00120_x_JSE120
istex_primary_ark_67375_WNG_D637W1BK_8
chongqing_backfile_37569990
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2011
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: March 2011
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: Beijing
PublicationTitle Journal of systematics and evolution : JSE
PublicationTitleAlternate Journal of Systematics and Evolution
PublicationTitle_FL JOURNAL OF SYSTEMATICS AND EVOLUTION
PublicationYear 2011
Publisher Blackwell Publishing Inc
Wiley Subscription Services, Inc
Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China%State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China%State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley Subscription Services, Inc
– name: State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China
– name: Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
– name: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China%State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China%State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
References Tryon RM. 1986. The biogeography of species, with special reference to ferns. The Botanical Review 52: 117-156.
Lamoreux JF, Morrison JC, Ricketts TH, Olson DM, Dinerstein E, McKnight MW, Shugart HH. 2006. Global tests of biodiversity concordance and the importance of endemism. Nature 440: 212-214.
Diniz-Filho JAF, Bini LM, Hawkins BA. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography 12: 53-64.
Pausas JG, Sáez L. 2000. Pteridophyte richness in the NE Iberian Peninsula: Biogeographic patterns. Plant Ecology 148: 195-205.
Mac Nally R, Walsh C. 2004. Hierarchical partitioning public-domain software. Biodiversity and Conservation 13: 659-660.
Barrington DS. 1993. Ecological and historical factors in fern biogeography. Journal of Biogeography 20: 275-280.
Tateishi R, Ahn CH. 1996. Mapping evapotranspiration and water balance for global land surfaces. ISPRS Journal of Photogrammetry and Remote Sensing 51: 209-215.
Gaston KJ. 2000. Global patterns in biodiversity. Nature 405: 220-227.
Hutchings MJ, John EA, Stewart AJA. 2000. The ecological consequences of environmental heterogeneity. Oxford : Blackwell Science.
Linares-Palomino R, Kessler M. 2009. The role of dispersal ability, climate and spatial separation in shaping biogeographical patterns of phylogenetically distant plant groups in seasonally dry Andean forests of Bolivia. Journal of Biogeography 36: 280-290.
Qian H, Wang X, Wang S, Li Y. 2007. Environmental determinants of amphibian and reptile species richness in China. Ecography 30: 471-482.
Kessler M. 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology 149: 181-193.
Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan J-F, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O'Brien E, Turner JRG. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7: 1121-1134.
Kreft H, Sommer JH, Barthlott W. 2006. The significance of geographic range size for the explanation of spatial diversity patterns in Neotropical palms. Ecography 29: 21-30.
Latham RE, Ricklefs RE. 1993. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67: 325-333.
Legendre P. 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology 74:1659-1673.
Qian H, Kissling WD. 2010. Spatial scale and cross-taxon congruence of terrestrial vertebrate and vascular plant species richness in China. Ecology 91: 1172-1183.
Whittaker RJ, Nogués-Bravo D, Araújo MB. 2007. Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Global Ecology and Biogeography 16: 76-89.
Borcard D, Legendre P, Drapeau P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045-1055.
Rosenzweig M L. 1995. Species diversity in space and time. Cambridge : Cambridge University Press.
Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Turner JRG. 2008. Spatial species-richness gradients across scales: A meta-analysis. Journal of Biogeography 36: 132-147.
Chevan A, Sutherland M. 1991. Hierarchical partitioning. The American Statistician 45: 90-96.
Zang D. 1998. A preliminary study on the ferns flora in China. Acta Botanica Boreali-Occidentalla Sinica 18: 459-465.
Zhang J, Yang Z, Wang D, Zhang X. 2002. Climate change and causes in the Yuanmou dry-hot valley of Yunnan, China. Journal of Arid Environment 51: 153-162.
Hovestadt T, Poethke HJ. 2005. Dispersal and establishment: Spatial patterns and species-area relationships. Diversity and Distributions 11: 333-340.
Sommer JH, Kreft H, Kier G, Jetz W, Mutke J, Barthlott W. 2010. Projected impacts of climate change on regional capacities for global plant species richness. Proceedings of the Royal Society B: Biological Sciences 277: 2271-2280.
Hijmans RJ, Cameron SE, Parra JL, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.
Wolf PG, Schnerder H, Ranker TA. 2001. Geographic distributions of homosporous ferns: Does dispersal obscure evidence of vicariance? Journal of Biogeography 28: 263-270.
Evans KL, Warren PH, Gaston KJ. 2005. Species-energy relationships at the macroecological scale: A review of the mechanisms. Biological Review 80: 1-25.
Kissling WD, Field R, Böhning-Gaese K. 2008. Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects? Global Ecology and Biogeography 17: 327-339.
Qian H, Kissling WD, Wang X, Andrews P. 2009. Effects of woody plant species richness on mammal species richness in southern Africa. Journal of Biogeography 36: 1685-1697.
Shafer SL, Bartlein PJ, Thompson RS. 2001. Potential changes in the distributions of western north America tree and shrub taxa under future climate scenarios. Ecosystems 4: 200-215.
Peres-Neto PR, Legendre P, Dray S, Borcard D. 2006. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87: 2614-2625.
Jetz W, Rahbek C. 2002. Geographic range size and determinants of avian species richness. Science 297: 1548-1551.
Bickford SA, Laffan SW. 2006. Multi-extent analysis of the relationship between pteridophyte species richness and climate. Global Ecology and Biogeography 15: 588-601.
Brodribb TJ, Holbrook NM. 2004. Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms. New Phytologist 162: 663-670.
Hawkins BA, Porter EE. 2003. Does herbivore diversity depend on plant diversity? The case of California butterflies. The American Naturalist 161: 40-49.
Ahn CH, Tateishi R. 1994. Development of a global 30-minute grid potential evapotranspiration data set. Journal of the Japan Society of Photogrammetry and Remote Sensing 33: 12-21.
Currie DJ. 1991. Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist 137: 27-49.
Cook JM, Segar ST. 2010. Speciation in fig wasps. Ecological Entomology 35: 54-66.
Watkins JE Jr, Mack MK, Mulkey SS. 2007. Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns. American Journal of Botany 94: 701-708.
Willig MR, Kaufman DM, Stevens RD. 2003. Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34: 273-309.
Zhao S, Fang J. 2006. Patterns of species richness for vascular plants in China's nature reserves. Diversity and Distributions 12: 364-372.
Dzwonko Z, Kornas J. 1994. Patterns of species richness and distribution of pteridophytes in Rwanda (central Africa): A numerical analysis. Journal of Biogeography 21: 491-501.
Mac Nally R. 2000. Regression and model-building in conservation biology, biogeography and ecology: The distinction between - and reconciliation of -'predictive' and 'explanatory' models. Biodiversity and Conservation 9: 655-671.
Hughes C, Eastwood R. 2006. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences USA 103: 10334-10339.
Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R. 2004. Ferns diversified in the shadow of angiosperms. Nature 428: 553-557.
Algar AC, Kharouba HM, Young ER, Kerr JT. 2009. Predicting the future of species diversity: Macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography 32: 22-33.
Li XW. 1996. Floristic statistics and analyses of seed plants from China. Acta Botanica Yunnanica 18: 363-384.
Karst J, Gilbert B, Lechowicz MJ. 2005. Fern community assembly: The roles of chance and the environment at local and intermediate scales. Ecology 86: 2473-2486.
Qian H, Ricklefs RE. 2008. Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecology Letters 11: 547-553.
Kreft H, Jetz W. 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences USA 104: 5925-5930.
Kreft H, Jetz W, Mutke J, Barthlott W. 2010. Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33: 408-419.
Lwanga JS, Balmford A, Badaza R. 1998. Assessing fern diversity: Relative species richness and its environmental correlates in Uganda. Biodiversity and Conservation 7: 1378-1398.
Ferrer-Castán D, Vetaas OR. 2005. Pteridophyte richness, climate and topography in the Iberian Peninsula: Comparing spatial and non-spatial models of richness patterns. Global Ecology and Biogeography 14: 155-165.
Rahbek C, Graves GR. 2001. Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences USA 98: 4534-4539.
Tuomisto H, Ruokolainen K, Yli-Halla M. 2003. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299: 241-244.
Bhattarai KR, Vetaas OR, Grytnes JA. 2004. Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography 31: 389-400.
Rangel TF, Diniz-Filho JAF, Bini LM. 2010. SAM: A comprehensive application for Spatial Analysis in Macroecology. Ecography 33: 46-50.
Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Porter EE, Turner JRG. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84: 3105-3117.
Dutilleul P. 1993. Modifying the t-test for assessing the correlation between two spatial processes. Biometrics 49: 305-314.
Jetz W, Rahbek C, Colwell RK. 2004. The coincidence of rarity and richness and the potential signature of history in centers of endemism. Ecology Letters 7: 1180-1191.
Qian H. 2009. Beta diversity in relation to dispersal ability for vascular pla
2007; 104
1993; 67
2002; 51
2004; 162
2004; 7
2000; 9
1993; 20
2008; 36
2007; 30
1994; 21
2003; 12
2005; 25
1998; 18
2004; 31
1991; 45
2000
2000; 405
2010; 277
1993; 74
1994; 33
2003; 161
2006; 29
2006; 440
2003; 84
2009; 18
2001; 98
2010; 33
1996; 18
2010; 35
1993; 49
1986; 52
2006; 12
2002; 297
2006; 15
2008; 17
2005; 86
1995
1996; 51
2005; 80
2008; 11
2007; 94
2001; 28
2004; 428
1991; 137
2003; 299
1992; 73
2007; 16
2003; 34
2009; 36
2009; 32
2000; 148
2006; 87
2000; 149
2001; 4
2004; 13
1998; 7
2010; 91
2005; 11
2006; 103
2005; 14
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
Zang D. (e_1_2_6_62_1) 1998; 18
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
Li XW. (e_1_2_6_37_1) 1996; 18
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_58_1
Hutchings MJ (e_1_2_6_25_1) 2000
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Gaston KJ. 2000. Global patterns in biodiversity. Nature 405: 220-227.
– reference: Hijmans RJ, Cameron SE, Parra JL, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.
– reference: Algar AC, Kharouba HM, Young ER, Kerr JT. 2009. Predicting the future of species diversity: Macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography 32: 22-33.
– reference: Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan J-F, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O'Brien E, Turner JRG. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7: 1121-1134.
– reference: Linares-Palomino R, Kessler M. 2009. The role of dispersal ability, climate and spatial separation in shaping biogeographical patterns of phylogenetically distant plant groups in seasonally dry Andean forests of Bolivia. Journal of Biogeography 36: 280-290.
– reference: Bhattarai KR, Vetaas OR, Grytnes JA. 2004. Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography 31: 389-400.
– reference: Kessler M. 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology 149: 181-193.
– reference: Pausas JG, Sáez L. 2000. Pteridophyte richness in the NE Iberian Peninsula: Biogeographic patterns. Plant Ecology 148: 195-205.
– reference: Barrington DS. 1993. Ecological and historical factors in fern biogeography. Journal of Biogeography 20: 275-280.
– reference: Rahbek C, Graves GR. 2001. Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences USA 98: 4534-4539.
– reference: Cook JM, Segar ST. 2010. Speciation in fig wasps. Ecological Entomology 35: 54-66.
– reference: Kissling WD, Field R, Böhning-Gaese K. 2008. Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects? Global Ecology and Biogeography 17: 327-339.
– reference: Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Porter EE, Turner JRG. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84: 3105-3117.
– reference: Qian H, Kissling WD, Wang X, Andrews P. 2009. Effects of woody plant species richness on mammal species richness in southern Africa. Journal of Biogeography 36: 1685-1697.
– reference: Ahn CH, Tateishi R. 1994. Development of a global 30-minute grid potential evapotranspiration data set. Journal of the Japan Society of Photogrammetry and Remote Sensing 33: 12-21.
– reference: Bickford SA, Laffan SW. 2006. Multi-extent analysis of the relationship between pteridophyte species richness and climate. Global Ecology and Biogeography 15: 588-601.
– reference: Borcard D, Legendre P, Drapeau P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045-1055.
– reference: Qian H, Ricklefs RE. 2008. Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecology Letters 11: 547-553.
– reference: Watkins JE Jr, Mack MK, Mulkey SS. 2007. Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns. American Journal of Botany 94: 701-708.
– reference: Chevan A, Sutherland M. 1991. Hierarchical partitioning. The American Statistician 45: 90-96.
– reference: Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R. 2004. Ferns diversified in the shadow of angiosperms. Nature 428: 553-557.
– reference: Hughes C, Eastwood R. 2006. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences USA 103: 10334-10339.
– reference: Lamoreux JF, Morrison JC, Ricketts TH, Olson DM, Dinerstein E, McKnight MW, Shugart HH. 2006. Global tests of biodiversity concordance and the importance of endemism. Nature 440: 212-214.
– reference: Lwanga JS, Balmford A, Badaza R. 1998. Assessing fern diversity: Relative species richness and its environmental correlates in Uganda. Biodiversity and Conservation 7: 1378-1398.
– reference: Kreft H, Jetz W. 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences USA 104: 5925-5930.
– reference: Qian H. 2009. Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography 18: 327-332.
– reference: Kreft H, Sommer JH, Barthlott W. 2006. The significance of geographic range size for the explanation of spatial diversity patterns in Neotropical palms. Ecography 29: 21-30.
– reference: Dzwonko Z, Kornas J. 1994. Patterns of species richness and distribution of pteridophytes in Rwanda (central Africa): A numerical analysis. Journal of Biogeography 21: 491-501.
– reference: Jetz W, Rahbek C. 2002. Geographic range size and determinants of avian species richness. Science 297: 1548-1551.
– reference: Dutilleul P. 1993. Modifying the t-test for assessing the correlation between two spatial processes. Biometrics 49: 305-314.
– reference: Rosenzweig M L. 1995. Species diversity in space and time. Cambridge : Cambridge University Press.
– reference: Tateishi R, Ahn CH. 1996. Mapping evapotranspiration and water balance for global land surfaces. ISPRS Journal of Photogrammetry and Remote Sensing 51: 209-215.
– reference: Zhang J, Yang Z, Wang D, Zhang X. 2002. Climate change and causes in the Yuanmou dry-hot valley of Yunnan, China. Journal of Arid Environment 51: 153-162.
– reference: Karst J, Gilbert B, Lechowicz MJ. 2005. Fern community assembly: The roles of chance and the environment at local and intermediate scales. Ecology 86: 2473-2486.
– reference: Qian H, Kissling WD. 2010. Spatial scale and cross-taxon congruence of terrestrial vertebrate and vascular plant species richness in China. Ecology 91: 1172-1183.
– reference: Ferrer-Castán D, Vetaas OR. 2005. Pteridophyte richness, climate and topography in the Iberian Peninsula: Comparing spatial and non-spatial models of richness patterns. Global Ecology and Biogeography 14: 155-165.
– reference: Jetz W, Rahbek C, Colwell RK. 2004. The coincidence of rarity and richness and the potential signature of history in centers of endemism. Ecology Letters 7: 1180-1191.
– reference: Willig MR, Kaufman DM, Stevens RD. 2003. Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34: 273-309.
– reference: Latham RE, Ricklefs RE. 1993. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67: 325-333.
– reference: Mac Nally R, Walsh C. 2004. Hierarchical partitioning public-domain software. Biodiversity and Conservation 13: 659-660.
– reference: Zang D. 1998. A preliminary study on the ferns flora in China. Acta Botanica Boreali-Occidentalla Sinica 18: 459-465.
– reference: Evans KL, Warren PH, Gaston KJ. 2005. Species-energy relationships at the macroecological scale: A review of the mechanisms. Biological Review 80: 1-25.
– reference: Brodribb TJ, Holbrook NM. 2004. Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms. New Phytologist 162: 663-670.
– reference: Currie DJ. 1991. Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist 137: 27-49.
– reference: Shafer SL, Bartlein PJ, Thompson RS. 2001. Potential changes in the distributions of western north America tree and shrub taxa under future climate scenarios. Ecosystems 4: 200-215.
– reference: Hovestadt T, Poethke HJ. 2005. Dispersal and establishment: Spatial patterns and species-area relationships. Diversity and Distributions 11: 333-340.
– reference: Hawkins BA, Porter EE. 2003. Does herbivore diversity depend on plant diversity? The case of California butterflies. The American Naturalist 161: 40-49.
– reference: Wolf PG, Schnerder H, Ranker TA. 2001. Geographic distributions of homosporous ferns: Does dispersal obscure evidence of vicariance? Journal of Biogeography 28: 263-270.
– reference: Zhao S, Fang J. 2006. Patterns of species richness for vascular plants in China's nature reserves. Diversity and Distributions 12: 364-372.
– reference: Qian H, Wang X, Wang S, Li Y. 2007. Environmental determinants of amphibian and reptile species richness in China. Ecography 30: 471-482.
– reference: Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Turner JRG. 2008. Spatial species-richness gradients across scales: A meta-analysis. Journal of Biogeography 36: 132-147.
– reference: Peres-Neto PR, Legendre P, Dray S, Borcard D. 2006. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87: 2614-2625.
– reference: Whittaker RJ, Nogués-Bravo D, Araújo MB. 2007. Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Global Ecology and Biogeography 16: 76-89.
– reference: Tryon RM. 1986. The biogeography of species, with special reference to ferns. The Botanical Review 52: 117-156.
– reference: Legendre P. 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology 74:1659-1673.
– reference: Tuomisto H, Ruokolainen K, Yli-Halla M. 2003. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299: 241-244.
– reference: Mac Nally R. 2000. Regression and model-building in conservation biology, biogeography and ecology: The distinction between - and reconciliation of -'predictive' and 'explanatory' models. Biodiversity and Conservation 9: 655-671.
– reference: Hutchings MJ, John EA, Stewart AJA. 2000. The ecological consequences of environmental heterogeneity. Oxford : Blackwell Science.
– reference: Diniz-Filho JAF, Bini LM, Hawkins BA. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography 12: 53-64.
– reference: Rangel TF, Diniz-Filho JAF, Bini LM. 2010. SAM: A comprehensive application for Spatial Analysis in Macroecology. Ecography 33: 46-50.
– reference: Sommer JH, Kreft H, Kier G, Jetz W, Mutke J, Barthlott W. 2010. Projected impacts of climate change on regional capacities for global plant species richness. Proceedings of the Royal Society B: Biological Sciences 277: 2271-2280.
– reference: Kreft H, Jetz W, Mutke J, Barthlott W. 2010. Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33: 408-419.
– reference: Li XW. 1996. Floristic statistics and analyses of seed plants from China. Acta Botanica Yunnanica 18: 363-384.
– volume: 31
  start-page: 389
  year: 2004
  end-page: 400
  article-title: Fern species richness along a central Himalayan elevational gradient, Nepal
  publication-title: Journal of Biogeography
– volume: 11
  start-page: 333
  year: 2005
  end-page: 340
  article-title: Dispersal and establishment: Spatial patterns and species‐area relationships
  publication-title: Diversity and Distributions
– volume: 45
  start-page: 90
  year: 1991
  end-page: 96
  article-title: Hierarchical partitioning
  publication-title: The American Statistician
– volume: 297
  start-page: 1548
  year: 2002
  end-page: 1551
  article-title: Geographic range size and determinants of avian species richness
  publication-title: Science
– volume: 17
  start-page: 327
  year: 2008
  end-page: 339
  article-title: Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects?
  publication-title: Global Ecology and Biogeography
– volume: 162
  start-page: 663
  year: 2004
  end-page: 670
  article-title: Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms
  publication-title: New Phytologist
– volume: 33
  start-page: 408
  year: 2010
  end-page: 419
  article-title: Contrasting environmental and regional effects on global pteridophyte and seed plant diversity
  publication-title: Ecography
– volume: 36
  start-page: 280
  year: 2009
  end-page: 290
  article-title: The role of dispersal ability, climate and spatial separation in shaping biogeographical patterns of phylogenetically distant plant groups in seasonally dry Andean forests of Bolivia
  publication-title: Journal of Biogeography
– volume: 104
  start-page: 5925
  year: 2007
  end-page: 5930
  article-title: Global patterns and determinants of vascular plant diversity
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 36
  start-page: 1685
  year: 2009
  end-page: 1697
  article-title: Effects of woody plant species richness on mammal species richness in southern Africa
  publication-title: Journal of Biogeography
– volume: 49
  start-page: 305
  year: 1993
  end-page: 314
  article-title: Modifying the ‐test for assessing the correlation between two spatial processes
  publication-title: Biometrics
– volume: 149
  start-page: 181
  year: 2000
  end-page: 193
  article-title: Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes
  publication-title: Plant Ecology
– volume: 32
  start-page: 22
  year: 2009
  end-page: 33
  article-title: Predicting the future of species diversity: Macroecological theory, climate change, and direct tests of alternative forecasting methods
  publication-title: Ecography
– volume: 9
  start-page: 655
  year: 2000
  end-page: 671
  article-title: Regression and model‐building in conservation biology, biogeography and ecology: The distinction between – and reconciliation of –‘predictive’ and ‘explanatory’ models
  publication-title: Biodiversity and Conservation
– volume: 11
  start-page: 547
  year: 2008
  end-page: 553
  article-title: Global concordance in diversity patterns of vascular plants and terrestrial vertebrates
  publication-title: Ecology Letters
– volume: 18
  start-page: 327
  year: 2009
  end-page: 332
  article-title: Beta diversity in relation to dispersal ability for vascular plants in North America
  publication-title: Global Ecology and Biogeography
– volume: 94
  start-page: 701
  year: 2007
  end-page: 708
  article-title: Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns
  publication-title: American Journal of Botany
– volume: 12
  start-page: 53
  year: 2003
  end-page: 64
  article-title: Spatial autocorrelation and red herrings in geographical ecology
  publication-title: Global Ecology and Biogeography
– volume: 33
  start-page: 46
  year: 2010
  end-page: 50
  article-title: SAM: A comprehensive application for Spatial Analysis in Macroecology
  publication-title: Ecography
– volume: 7
  start-page: 1180
  year: 2004
  end-page: 1191
  article-title: The coincidence of rarity and richness and the potential signature of history in centers of endemism
  publication-title: Ecology Letters
– volume: 14
  start-page: 155
  year: 2005
  end-page: 165
  article-title: Pteridophyte richness, climate and topography in the Iberian Peninsula: Comparing spatial and non‐spatial models of richness patterns
  publication-title: Global Ecology and Biogeography
– volume: 277
  start-page: 2271
  year: 2010
  end-page: 2280
  article-title: Projected impacts of climate change on regional capacities for global plant species richness
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 28
  start-page: 263
  year: 2001
  end-page: 270
  article-title: Geographic distributions of homosporous ferns: Does dispersal obscure evidence of vicariance?
  publication-title: Journal of Biogeography
– volume: 21
  start-page: 491
  year: 1994
  end-page: 501
  article-title: Patterns of species richness and distribution of pteridophytes in Rwanda (central Africa): A numerical analysis
  publication-title: Journal of Biogeography
– volume: 7
  start-page: 1378
  year: 1998
  end-page: 1398
  article-title: Assessing fern diversity: Relative species richness and its environmental correlates in Uganda
  publication-title: Biodiversity and Conservation
– volume: 51
  start-page: 153
  year: 2002
  end-page: 162
  article-title: Climate change and causes in the Yuanmou dry‐hot valley of Yunnan, China
  publication-title: Journal of Arid Environment
– volume: 4
  start-page: 200
  year: 2001
  end-page: 215
  article-title: Potential changes in the distributions of western north America tree and shrub taxa under future climate scenarios
  publication-title: Ecosystems
– volume: 35
  start-page: 54
  year: 2010
  end-page: 66
  article-title: Speciation in fig wasps
  publication-title: Ecological Entomology
– volume: 12
  start-page: 364
  year: 2006
  end-page: 372
  article-title: Patterns of species richness for vascular plants in China's nature reserves
  publication-title: Diversity and Distributions
– volume: 15
  start-page: 588
  year: 2006
  end-page: 601
  article-title: Multi‐extent analysis of the relationship between pteridophyte species richness and climate
  publication-title: Global Ecology and Biogeography
– volume: 67
  start-page: 325
  year: 1993
  end-page: 333
  article-title: Global patterns of tree species richness in moist forests: Energy‐diversity theory does not account for variation in species richness
  publication-title: Oikos
– volume: 34
  start-page: 273
  year: 2003
  end-page: 309
  article-title: Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 18
  start-page: 459
  year: 1998
  end-page: 465
  article-title: A preliminary study on the ferns flora in China
  publication-title: Acta Botanica Boreali-Occidentalla Sinica
– volume: 80
  start-page: 1
  year: 2005
  end-page: 25
  article-title: Species–energy relationships at the macroecological scale: A review of the mechanisms
  publication-title: Biological Review
– volume: 87
  start-page: 2614
  year: 2006
  end-page: 2625
  article-title: Variation partitioning of species data matrices: Estimation and comparison of fractions
  publication-title: Ecology
– volume: 137
  start-page: 27
  year: 1991
  end-page: 49
  article-title: Energy and large‐scale patterns of animal‐ and plant‐species richness
  publication-title: The American Naturalist
– volume: 74
  start-page: 1659
  year: 1993
  end-page: 1673
  article-title: Spatial autocorrelation: Trouble or new paradigm?
  publication-title: Ecology
– volume: 98
  start-page: 4534
  year: 2001
  end-page: 4539
  article-title: Multiscale assessment of patterns of avian species richness
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 161
  start-page: 40
  year: 2003
  end-page: 49
  article-title: Does herbivore diversity depend on plant diversity? The case of California butterflies
  publication-title: The American Naturalist
– volume: 16
  start-page: 76
  year: 2007
  end-page: 89
  article-title: Geographical gradients of species richness: A test of the water‐energy conjecture of Hawkins et al. (2003) using European data for five taxa
  publication-title: Global Ecology and Biogeography
– volume: 103
  start-page: 10334
  year: 2006
  end-page: 10339
  article-title: Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes
  publication-title: Proceedings of the National Academy of Sciences USA
– year: 2000
– volume: 428
  start-page: 553
  year: 2004
  end-page: 557
  article-title: Ferns diversified in the shadow of angiosperms
  publication-title: Nature
– volume: 18
  start-page: 363
  year: 1996
  end-page: 384
  article-title: Floristic statistics and analyses of seed plants from China
  publication-title: Acta Botanica Yunnanica
– volume: 52
  start-page: 117
  year: 1986
  end-page: 156
  article-title: The biogeography of species, with special reference to ferns
  publication-title: The Botanical Review
– volume: 84
  start-page: 3105
  year: 2003
  end-page: 3117
  article-title: Energy, water, and broad‐scale geographic patterns of species richness
  publication-title: Ecology
– volume: 51
  start-page: 209
  year: 1996
  end-page: 215
  article-title: Mapping evapotranspiration and water balance for global land surfaces
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 405
  start-page: 220
  year: 2000
  end-page: 227
  article-title: Global patterns in biodiversity
  publication-title: Nature
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 36
  start-page: 132
  year: 2008
  end-page: 147
  article-title: Spatial species‐richness gradients across scales: A meta‐analysis
  publication-title: Journal of Biogeography
– volume: 7
  start-page: 1121
  year: 2004
  end-page: 1134
  article-title: Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness
  publication-title: Ecology Letters
– volume: 13
  start-page: 659
  year: 2004
  end-page: 660
  article-title: Hierarchical partitioning public‐domain software
  publication-title: Biodiversity and Conservation
– volume: 91
  start-page: 1172
  year: 2010
  end-page: 1183
  article-title: Spatial scale and cross‐taxon congruence of terrestrial vertebrate and vascular plant species richness in China
  publication-title: Ecology
– volume: 20
  start-page: 275
  year: 1993
  end-page: 280
  article-title: Ecological and historical factors in fern biogeography
  publication-title: Journal of Biogeography
– volume: 73
  start-page: 1045
  year: 1992
  end-page: 1055
  article-title: Partialling out the spatial component of ecological variation
  publication-title: Ecology
– volume: 33
  start-page: 12
  year: 1994
  end-page: 21
  article-title: Development of a global 30‐minute grid potential evapotranspiration data set
  publication-title: Journal of the Japan Society of Photogrammetry and Remote Sensing
– volume: 440
  start-page: 212
  year: 2006
  end-page: 214
  article-title: Global tests of biodiversity concordance and the importance of endemism
  publication-title: Nature
– volume: 148
  start-page: 195
  year: 2000
  end-page: 205
  article-title: Pteridophyte richness in the NE Iberian Peninsula: Biogeographic patterns
  publication-title: Plant Ecology
– year: 1995
– volume: 29
  start-page: 21
  year: 2006
  end-page: 30
  article-title: The significance of geographic range size for the explanation of spatial diversity patterns in Neotropical palms
  publication-title: Ecography
– volume: 30
  start-page: 471
  year: 2007
  end-page: 482
  article-title: Environmental determinants of amphibian and reptile species richness in China
  publication-title: Ecography
– volume: 299
  start-page: 241
  year: 2003
  end-page: 244
  article-title: Dispersal, environment, and floristic variation of western Amazonian forests
  publication-title: Science
– volume: 86
  start-page: 2473
  year: 2005
  end-page: 2486
  article-title: Fern community assembly: The roles of chance and the environment at local and intermediate scales
  publication-title: Ecology
– ident: e_1_2_6_14_1
  doi: 10.2307/2532625
– ident: e_1_2_6_60_1
  doi: 10.1146/annurev.ecolsys.34.012103.144032
– ident: e_1_2_6_26_1
  doi: 10.1126/science.1072779
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1600-0587.2010.06434.x
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1469-8137.2004.01060.x
– ident: e_1_2_6_63_1
  doi: 10.1006/jare.2001.0851
– ident: e_1_2_6_55_1
  doi: 10.1016/0924-2716(96)00015-9
– ident: e_1_2_6_15_1
  doi: 10.2307/2845653
– ident: e_1_2_6_41_1
  doi: 10.1023/B:BIOC.0000009515.11717.0b
– ident: e_1_2_6_33_1
  doi: 10.1111/j.2005.0906-7590.04203.x
– ident: e_1_2_6_45_1
  doi: 10.1890/09-0620.1
– ident: e_1_2_6_21_1
  doi: 10.1890/03-8006
– ident: e_1_2_6_52_1
  doi: 10.1038/nature02361
– ident: e_1_2_6_36_1
  doi: 10.2307/1939924
– ident: e_1_2_6_57_1
  doi: 10.1126/science.1078037
– ident: e_1_2_6_40_1
  doi: 10.1023/A:1008985925162
– ident: e_1_2_6_53_1
  doi: 10.1007/s10021-001-0004-5
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1600-0587.2009.05832.x
– ident: e_1_2_6_54_1
  doi: 10.1098/rspb.2010.0120
– ident: e_1_2_6_56_1
  doi: 10.1007/BF02860999
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1365-2699.2008.01963.x
– ident: e_1_2_6_19_1
  doi: 10.1038/35012228
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1365-2699.2009.02128.x
– ident: e_1_2_6_61_1
  doi: 10.1046/j.1365-2699.2001.00531.x
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1461-0248.2004.00671.x
– ident: e_1_2_6_9_1
  doi: 10.2307/2684366
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1461-0248.2004.00678.x
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1466-8238.2007.00379.x
– ident: e_1_2_6_4_1
  doi: 10.2307/2845635
– ident: e_1_2_6_7_1
  doi: 10.2307/1940179
– ident: e_1_2_6_5_1
  doi: 10.1046/j.0305-0270.2003.01013.x
– ident: e_1_2_6_35_1
  doi: 10.2307/3545479
– ident: e_1_2_6_34_1
  doi: 10.1038/nature04291
– ident: e_1_2_6_2_1
  doi: 10.4287/jsprs.33.2_12
– ident: e_1_2_6_20_1
  doi: 10.1086/345479
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1461-0248.2008.01168.x
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1466-8238.2006.00268.x
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1366-9516.2005.00161.x
– ident: e_1_2_6_29_1
  doi: 10.1023/A:1026500710274
– ident: e_1_2_6_43_1
  doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
– volume-title: The ecological consequences of environmental heterogeneity
  year: 2000
  ident: e_1_2_6_25_1
– ident: e_1_2_6_24_1
  doi: 10.1073/pnas.0601928103
– ident: e_1_2_6_13_1
  doi: 10.1046/j.1466-822X.2003.00322.x
– ident: e_1_2_6_39_1
  doi: 10.1023/A:1008865518378
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1466-822X.2004.00140.x
– ident: e_1_2_6_28_1
  doi: 10.1890/04-1420
– ident: e_1_2_6_58_1
  doi: 10.3732/ajb.94.4.701
– ident: e_1_2_6_51_1
  doi: 10.1111/j.2006.0906-7590.04272.x
– ident: e_1_2_6_48_1
  doi: 10.1111/j.0906-7590.2007.05025.x
– ident: e_1_2_6_11_1
  doi: 10.1086/285144
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1466-8238.2009.00450.x
– volume: 18
  start-page: 459
  year: 1998
  ident: e_1_2_6_62_1
  article-title: A preliminary study on the ferns flora in China
  publication-title: Acta Botanica Boreali-Occidentalla Sinica
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1466-8238.2006.00250.x
– volume: 18
  start-page: 363
  year: 1996
  ident: e_1_2_6_37_1
  article-title: Floristic statistics and analyses of seed plants from China
  publication-title: Acta Botanica Yunnanica
– ident: e_1_2_6_64_1
  doi: 10.1111/j.1366-9516.2006.00232.x
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1600-0587.2009.06299.x
– ident: e_1_2_6_42_1
  doi: 10.1023/A:1009899615852
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1365-2699.2008.02028.x
– ident: e_1_2_6_16_1
  doi: 10.1017/S1464793104006517
– ident: e_1_2_6_22_1
  doi: 10.1002/joc.1276
– ident: e_1_2_6_31_1
  doi: 10.1073/pnas.0608361104
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2311.2009.01148.x
– ident: e_1_2_6_49_1
  doi: 10.1073/pnas.071034898
SSID ssj0067876
Score 1.9930128
Snippet Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species...
Abstract  Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for...
Abstract Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for...
Q94; Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species...
SourceID wanfang
proquest
crossref
wiley
istex
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 95
SubjectTerms Biodiversity
Energy
Environmental effects
Environmental organizations
Environmental requirements
Flora
habitat heterogeneity
Heterogeneity
pteridophytes
Seed dispersal
seed plants
Seeds
Species diversity
Species richness
Water availability
water-energy hypothesis
丰富度
水供应
物种多样性
环境异质性
种子植物
蕨类植物
Title Relative importance of water, energy, and heterogeneity in determining regional pteridophyte and seed plant richness in China
URI http://lib.cqvip.com/qk/94666A/20112/37569990.html
https://api.istex.fr/ark:/67375/WNG-D637W1BK-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1759-6831.2011.00120.x
https://www.proquest.com/docview/1416570605
https://d.wanfangdata.com.cn/periodical/zwflxb201102002
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1759-6831
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067876
  issn: 1674-4918
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FFiQuiKcwLWgPiAs1SrzxOj42UBKK2ksbNeWy2rXXTdTKLm3ShEr8ZX4DM7trx6lSKXCxLDtrOTtf5pVvZgh5n3UU2n3ms4w3_bbkGvSg5n6glJQ662gWYzXywSHvD9r7w3DYaPypsZamE_UpuV1ZV_I_UoVrIFeskv0HyVYPhQtwDvKFI0gYjmvJ2DLZbjTWOqIbjT9ScP5m0k3b0KawryRojpD5UsDDNHrehgVrqTCYLcABDSYpeInNm9MCdn9i_1m4BvuGw6bzyUfQmSOjGrFUsBy8vcK1XbSHth2g9Y3bBpOA2D9aVD_09wzN4Gik8zO_O66Quv9t1xZT9WThH5TmFZPBg1N358do7J9OqxXDgaEL6rHfn8p6LqNVI3OtylnaHNwSHxRrJvx27FS2tteiMPZ5xxkTp9RtH1QH3qCmoe1IT2fr3cTd-81I-WjX6xUrjUt6ab1z9x2LWvEc5dU5EueiUJwc9sQXzqKTVve76Dwgm0HEOU7c6A0rShL4DWYYYvUl7zDPVr0LtgQZFfnZT9iqJddqE7XEfCluejSTeSbxc_U4zDhSx0_JEwcTumvh_Iw0dP6cPOwWAN9fL8jvEtN0gWlaZNRgeodaRO9QQBVdwjMd57SGZ1rimdbxbJYhnqnBMy3xjIsNnl-Swde94899340I8ZM2i8CDCHBeQ6ZZxqKApRFvxjrSTGaR0nEYJhJiR6UDJgOpFE8TlSWgk1KpEh2lHbD2r8hGXuT6NaHtNM4U-r8qAZ9cJXGbJTxkIVPgwbNUe2Sr2mlwMZNzbJwmQLYcYqymR6Jy70XiuuvjkJcLUYuyQYICJShQgsJIUMw90qpWXtoOM2us-WDEWy24D2ge2S7lL5ziuoZov4WEN94MPUIdJhZ3b2fZxVyZuAAJXB4JDVjWfjcBWgRO3qz7ilvk8UIVbJONydVUvwVHf6LemV_HXwtw9-w
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+importance+of+water%2C+energy%2C+and+heterogeneity+in+determining+regional+pteridophyte+and+seed+plant+richness+in+China&rft.jtitle=Journal+of+systematics+and+evolution+%3A+JSE&rft.au=CHEN%2C+Sheng-Bin&rft.au=JIANG%2C+Gao-Ming&rft.au=OUYANG%2C+Zhi-Yun&rft.au=XU%2C+Wei-Hua&rft.date=2011-03-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=1674-4918&rft.eissn=1759-6831&rft.volume=49&rft.issue=2&rft.spage=95&rft.epage=107&rft_id=info:doi/10.1111%2Fj.1759-6831.2011.00120.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_D637W1BK_8
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94666A%2F94666A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwflxb%2Fzwflxb.jpg