A high-fat high-sugar diet in adolescent rats impairs social memory and alters chemical markers characteristic of atypical neuroplasticity and parvalbumin interneuron depletion in the medial prefrontal cortex

Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central t...

Full description

Saved in:
Bibliographic Details
Published inFood & function Vol. 1; no. 4; pp. 1985 - 1998
Main Authors Reichelt, Amy C, Gibson, Gabrielle D, Abbott, Kirsten N, Hare, Dominic J
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 17.04.2019
Subjects
Online AccessGet full text
ISSN2042-6496
2042-650X
2042-650X
DOI10.1039/c8fo02118j

Cover

Abstract Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28-P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by −21.9% and −16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5-10-fold increase ( p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence. A hypercaloric diet given to adolescent rats induces social memory deficits and reduced neurochemical markers of normal social development.
AbstractList Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28-P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by −21.9% and −16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5-10-fold increase ( p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence. A hypercaloric diet given to adolescent rats induces social memory deficits and reduced neurochemical markers of normal social development.
Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28-P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by -21.9% and -16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5-10-fold increase (p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence.Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28-P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by -21.9% and -16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5-10-fold increase (p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence.
Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28–P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by −21.9% and −16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5–10-fold increase ( p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence.
Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28–P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by −21.9% and −16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5–10-fold increase (p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence.
Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28-P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by -21.9% and -16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5-10-fold increase (p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence.
Author Gibson, Gabrielle D
Abbott, Kirsten N
Hare, Dominic J
Reichelt, Amy C
AuthorAffiliation BrainsCAN and Robarts Research Institute
UNSW Sydney
University of Western Ontario
The Florey Institute of Neuroscience and Mental Health
Melbourne Dementia Research Centre at the Florey Institute of Neuroscience and Mental Health and The University of Melbourne
The University of Melbourne
School of Psychology
Department of Clinical Pathology
AuthorAffiliation_xml – sequence: 0
  name: University of Western Ontario
– sequence: 0
  name: The Florey Institute of Neuroscience and Mental Health
– sequence: 0
  name: BrainsCAN and Robarts Research Institute
– sequence: 0
  name: Department of Clinical Pathology
– sequence: 0
  name: Melbourne Dementia Research Centre at the Florey Institute of Neuroscience and Mental Health and The University of Melbourne
– sequence: 0
  name: UNSW Sydney
– sequence: 0
  name: The University of Melbourne
– sequence: 0
  name: School of Psychology
Author_xml – sequence: 1
  givenname: Amy C
  surname: Reichelt
  fullname: Reichelt, Amy C
– sequence: 2
  givenname: Gabrielle D
  surname: Gibson
  fullname: Gibson, Gabrielle D
– sequence: 3
  givenname: Kirsten N
  surname: Abbott
  fullname: Abbott, Kirsten N
– sequence: 4
  givenname: Dominic J
  surname: Hare
  fullname: Hare, Dominic J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30900711$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNUREvphTvIEheEFLDjfDjHakX5UKVeQOIWTZxx10sSB9tB7L_sT-pk0xapQsIXj-Z9Zpy8M8-To9GNmCQvBX8vuKw_aGUcz4RQuyfJScbzLC0L_uPoPs7r8jg5C2HH6ci6VrV6lhxLXnNeCXGS3Jyzrb3epgbiGoT5GjzrLEZmRwad6zFoHCPzEAOzwwTWBxacttCzAQfn9wzGjkEfkQS9xcHqRQL_c02AB02aDdFq5gyDuJ8OyIizd1MPi2Dj2mYC_xv6dh7ocTtS2QEaWYdTj9G6JcviFunpbvmCyaMhPVKonY_450Xy1EAf8OzuPk2-X3z8tvmcXl59-rI5v0x1LsuYGlkInQuOJjNoQGo0vIO2la0qBSXyMlOAbWWMyYXMTScxU6qqO6kL0KKTp8nbte_k3a8ZQ2wGS0b1PYzo5tBkWSGznEvF_4-KuiwyWVSK0DeP0J2b_Ug_Qg1p3qUq6oqo13fU3JIPzeQt2b1v7sdKwLsV0N6FQBY9III3y9o0G3VxdVibrwTzRzBNAxavowfb_7vk1Vrig35o_XcT5S1e7dQg
CitedBy_id crossref_primary_10_1096_fj_202000346RR
crossref_primary_10_3390_ijms25105524
crossref_primary_10_3389_fnins_2023_1188065
crossref_primary_10_1016_j_brainres_2020_147096
crossref_primary_10_1371_journal_pone_0290308
crossref_primary_10_1016_j_neuropharm_2023_109772
crossref_primary_10_1016_j_tins_2019_04_003
crossref_primary_10_1016_j_tem_2021_04_001
crossref_primary_10_1155_2022_6711160
crossref_primary_10_1002_dev_22392
crossref_primary_10_3390_ijms25063412
crossref_primary_10_3390_nu13010089
crossref_primary_10_1016_j_bbr_2024_115152
crossref_primary_10_1016_j_obmed_2020_100246
crossref_primary_10_1159_000508663
crossref_primary_10_1016_j_jadohealth_2023_08_033
crossref_primary_10_3390_microorganisms12122542
crossref_primary_10_1016_j_ejphar_2021_174338
crossref_primary_10_1039_D4FO05553E
crossref_primary_10_1002_ece3_9511
crossref_primary_10_1016_j_ntt_2022_107094
crossref_primary_10_1038_s41380_022_01634_3
crossref_primary_10_1016_j_physbeh_2020_112963
crossref_primary_10_1016_j_jnutbio_2022_109220
crossref_primary_10_3389_fncir_2022_939235
crossref_primary_10_1016_S2352_4642_19_30404_3
crossref_primary_10_1038_s41386_022_01337_x
crossref_primary_10_1080_1028415X_2024_2355603
crossref_primary_10_1371_journal_pone_0311920
crossref_primary_10_1038_s41598_021_85092_x
crossref_primary_10_1016_j_neuropharm_2020_108290
crossref_primary_10_1016_j_bbr_2024_115020
crossref_primary_10_1002_dev_22063
crossref_primary_10_1093_texcom_tgab014
crossref_primary_10_1177_10738584221106346
Cites_doi 10.1046/j.0022-3042.2001.00706.x
10.1038/nature10360
10.1037/h0036970
10.1093/emph/eou019
10.1101/lm.030197.112
10.1016/j.biopsych.2012.09.020
10.1176/jnp.23.2.jnp121
10.1016/j.ibror.2016.10.001
10.1016/j.biopsych.2017.11.033
10.1037/bne0000203
10.1016/j.cell.2015.11.038
10.1097/00001756-199210000-00012
10.1126/science.1072699
10.1016/j.expneurol.2014.11.013
10.3389/fpsyg.2015.01805
10.1016/j.neuroimage.2013.01.017
10.1523/JNEUROSCI.3894-11.2011
10.1126/science.aau8977
10.1002/cne.24132
10.1093/brain/aww022
10.1007/s11689-009-9023-x
10.1155/2018/2108373
10.1523/JNEUROSCI.5923-10.2011
10.7554/eLife.27868
10.1186/s40659-016-0075-6
10.1038/mp.2016.193
10.1037/h0029303
10.1038/sj.npp.1301544
10.1038/npp.2016.24
10.1073/pnas.1800171115
10.1016/j.molbrainres.2004.05.014
10.1016/j.pscychresns.2013.06.004
10.1038/nature12866
10.1093/brain/awq145
10.1046/j.1460-9568.2000.00970.x
10.1016/j.nlm.2016.10.002
10.1038/npp.2010.90
10.1101/lm.1879610
10.1016/S1364-6613(99)01399-6
10.1016/j.conb.2010.12.006
10.1016/j.neurobiolaging.2016.07.010
10.1111/j.1601-1848.2004.00076.x
10.1038/nmeth.2089
10.1016/j.cell.2017.09.021
10.1523/ENEURO.0112-16.2016
10.1016/S0959-4388(99)00047-1
10.1523/ENEURO.0125-16.2016
10.1016/j.pneurobio.2013.04.001
10.1523/JNEUROSCI.6267-11.2013
10.1101/lm.038000.114
10.1523/JNEUROSCI.3475-12.2012
10.1007/s12264-008-0109-3
10.1523/JNEUROSCI.2661-04.2004
10.1093/schbul/sbv065
10.1126/science.1174146
10.3389/fnbeh.2016.00189
10.1002/cne.24381
10.1523/JNEUROSCI.3481-09.2010
10.1080/1028415X.2018.1537169
10.1016/j.biopsych.2011.05.006
10.1007/BF00711092
10.1016/j.tins.2017.02.005
10.1523/JNEUROSCI.20-16-06225.2000
10.1016/j.bbi.2014.03.005
10.1002/hipo.22032
10.1523/JNEUROSCI.3122-14.2015
10.1155/2015/256389
10.1016/j.neuropharm.2011.03.010
10.1016/0304-3940(93)90241-C
10.1101/lm.042416.116
10.1038/nrn3111
10.1007/s00441-012-1375-y
10.1016/j.neubiorev.2014.04.012
10.1073/pnas.1300454110
10.1002/dneu.20974
10.1523/JNEUROSCI.3325-16.2017
10.1016/j.neuroscience.2016.11.035
10.1007/s00429-013-0508-8
10.1038/13158
10.1016/j.tins.2011.10.004
10.1001/archgenpsychiatry.2009.196
10.1002/hipo.10129
10.1093/gerona/glt177
10.1016/S0149-7634(00)00014-2
10.1016/j.physbeh.2016.01.038
10.1126/scitranslmed.aah6733
10.1038/mp.2014.162
10.3233/JAD-160804
10.1016/S0014-5793(01)02437-1
10.1007/BF00191452
10.1038/s41598-018-26631-x
10.1016/j.neubiorev.2010.10.008
10.1016/j.bbr.2013.08.020
10.1523/JNEUROSCI.2504-16.2016
10.1002/cne.23965
10.1016/j.molmed.2015.05.002
10.1096/fj.09-139691
10.1523/JNEUROSCI.3592-14.2015
10.1007/s004290000135
10.1016/0166-4328(88)90157-X
10.1016/j.biopsych.2013.05.007
10.1007/s00441-013-1581-2
10.1007/s10339-011-0430-z
10.1007/s12035-014-9040-y
10.1139/o85-039
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
7S9
L.6
DOI 10.1039/c8fo02118j
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Oncogenes and Growth Factors Abstracts
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 2042-650X
EndPage 1998
ExternalDocumentID 30900711
10_1039_C8FO02118J
c8fo02118j
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
4.4
53G
705
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
AAYXX
AFRZK
AKMSF
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c436t-f351c410ef2fefa3cef0dabb3b861efa4628aeb7fff4134fd3e28879d3c5ac1d3
ISSN 2042-6496
2042-650X
IngestDate Sun Sep 28 02:16:38 EDT 2025
Sat Sep 27 19:43:45 EDT 2025
Mon Jun 30 12:04:56 EDT 2025
Mon Jul 21 05:53:44 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Tue Jul 01 03:02:11 EDT 2025
Tue Dec 17 20:59:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-f351c410ef2fefa3cef0dabb3b861efa4628aeb7fff4134fd3e28879d3c5ac1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0637-0411
0000-0002-5922-7643
PMID 30900711
PQID 2210368597
PQPubID 2047526
PageCount 14
ParticipantIDs crossref_primary_10_1039_C8FO02118J
rsc_primary_c8fo02118j
proquest_miscellaneous_2196523578
proquest_journals_2210368597
proquest_miscellaneous_2253240380
crossref_citationtrail_10_1039_C8FO02118J
pubmed_primary_30900711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190417
PublicationDateYYYYMMDD 2019-04-17
PublicationDate_xml – month: 4
  year: 2019
  text: 20190417
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Food & function
PublicationTitleAlternate Food Funct
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Baker (C8FO02118J-(cit57)/*[position()=1]) 2017; 131
Hylin (C8FO02118J-(cit50)/*[position()=1]) 2013; 20
Reichelt (C8FO02118J-(cit16)/*[position()=1]) 2015; 22
Reichelt (C8FO02118J-(cit33)/*[position()=1]) 2016; 10
Massi (C8FO02118J-(cit73)/*[position()=1]) 2012; 32
Crawley (C8FO02118J-(cit39)/*[position()=1]) 2000
Gogolla (C8FO02118J-(cit49)/*[position()=1]) 2009; 325
Slaker (C8FO02118J-(cit47)/*[position()=1]) 2016; 1
Schneider (C8FO02118J-(cit52)/*[position()=1]) 2012; 9
Mauney (C8FO02118J-(cit2)/*[position()=1]) 2013; 74
Calabrese (C8FO02118J-(cit81)/*[position()=1]) 2013; 71
Nissen (C8FO02118J-(cit23)/*[position()=1]) 2010; 30
Selimbeyoglu (C8FO02118J-(cit88)/*[position()=1]) 2017; 9
Rossier (C8FO02118J-(cit103)/*[position()=1]) 2015; 20
Sandoval-Salazar (C8FO02118J-(cit106)/*[position()=1]) 2016; 49
McClung (C8FO02118J-(cit60)/*[position()=1]) 2004; 132
Kim (C8FO02118J-(cit20)/*[position()=1]) 2016; 164
Berardi (C8FO02118J-(cit94)/*[position()=1]) 2000; 10
Semple (C8FO02118J-(cit36)/*[position()=1]) 2013; 106
Marder (C8FO02118J-(cit90)/*[position()=1]) 2004; 24
Butter (C8FO02118J-(cit5)/*[position()=1]) 1972; 32
Boitard (C8FO02118J-(cit10)/*[position()=1]) 2014; 40
Quirk (C8FO02118J-(cit77)/*[position()=1]) 2000; 20
Favuzzi (C8FO02118J-(cit74)/*[position()=1]) 2019; 363
Morris (C8FO02118J-(cit58)/*[position()=1]) 2000; 12
Caballero (C8FO02118J-(cit56)/*[position()=1]) 2014; 219
Hilbig (C8FO02118J-(cit48)/*[position()=1]) 2001; 203
Robison (C8FO02118J-(cit62)/*[position()=1]) 2011; 12
Gogolla (C8FO02118J-(cit87)/*[position()=1]) 2009; 1
Horii-Hayashi (C8FO02118J-(cit26)/*[position()=1]) 2015; 2015
Staff (C8FO02118J-(cit91)/*[position()=1]) 2003; 13
Guillemot-Legris (C8FO02118J-(cit99)/*[position()=1]) 2017; 40
Boitard (C8FO02118J-(cit11)/*[position()=1]) 2012; 22
Boitard (C8FO02118J-(cit12)/*[position()=1]) 2015; 35
Kwok (C8FO02118J-(cit93)/*[position()=1]) 2011; 71
Baker (C8FO02118J-(cit17)/*[position()=1]) 2016; 136
Cabungcal (C8FO02118J-(cit67)/*[position()=1]) 2013; 73
Pantazopoulos (C8FO02118J-(cit43)/*[position()=1]) 2010; 67
Kalyan-Masih (C8FO02118J-(cit82)/*[position()=1]) 2016; 3
Cadet (C8FO02118J-(cit63)/*[position()=1]) 2016; 53
Hare (C8FO02118J-(cit108)/*[position()=1]) 2016; 139
Giedd (C8FO02118J-(cit9)/*[position()=1]) 1999; 2
Li (C8FO02118J-(cit25)/*[position()=1]) 2017; 57
Pizzorusso (C8FO02118J-(cit30)/*[position()=1]) 2002; 298
Antunes (C8FO02118J-(cit53)/*[position()=1]) 2012; 13
Alcántara (C8FO02118J-(cit65)/*[position()=1]) 1993; 188
Olsen (C8FO02118J-(cit61)/*[position()=1]) 2011; 61
Bourne (C8FO02118J-(cit64)/*[position()=1]) 2013; 256
Atlante (C8FO02118J-(cit107)/*[position()=1]) 2001; 497
Wang (C8FO02118J-(cit28)/*[position()=1]) 2012; 349
Spear (C8FO02118J-(cit1)/*[position()=1]) 2000; 24
Do (C8FO02118J-(cit101)/*[position()=1]) 2015; 41
Murray (C8FO02118J-(cit98)/*[position()=1]) 2009; 23
Dauth (C8FO02118J-(cit45)/*[position()=1]) 2016; 524
Spear (C8FO02118J-(cit35)/*[position()=1]) 2014; 45
Yang (C8FO02118J-(cit97)/*[position()=1]) 2015; 265
Van den Oever (C8FO02118J-(cit104)/*[position()=1]) 2010; 35
Xia (C8FO02118J-(cit21)/*[position()=1]) 2017; 6
Balmer (C8FO02118J-(cit31)/*[position()=1]) 2016; 3
Wells (C8FO02118J-(cit15)/*[position()=1]) 2014; 2014
Albasser (C8FO02118J-(cit55)/*[position()=1]) 2010; 17
Brenhouse (C8FO02118J-(cit66)/*[position()=1]) 2011; 70
Reichelt (C8FO02118J-(cit80)/*[position()=1]) 2016; 23
Paxinos (C8FO02118J-(cit41)/*[position()=1]) 2007
Li (C8FO02118J-(cit85)/*[position()=1]) 2008; 24
Dityatev (C8FO02118J-(cit92)/*[position()=1]) 2011; 21
Reichelt (C8FO02118J-(cit79)/*[position()=1]) 2016; 157
Labouesse (C8FO02118J-(cit13)/*[position()=1]) 2017; 22
Woodruff (C8FO02118J-(cit72)/*[position()=1]) 2011; 31
Tucsek (C8FO02118J-(cit100)/*[position()=1]) 2014; 69
McQuail (C8FO02118J-(cit19)/*[position()=1]) 2015; 21
Enwright (C8FO02118J-(cit42)/*[position()=1]) 2016; 41
Ferguson (C8FO02118J-(cit86)/*[position()=1]) 2017; 83
Young (C8FO02118J-(cit46)/*[position()=1]) 1985; 63
Butter (C8FO02118J-(cit6)/*[position()=1]) 1970; 72
Ennaceur (C8FO02118J-(cit54)/*[position()=1]) 1988; 31
Labouesse (C8FO02118J-(cit78)/*[position()=1]) 2018; 8
Donato (C8FO02118J-(cit22)/*[position()=1]) 2013; 504
Carulli (C8FO02118J-(cit95)/*[position()=1]) 2010; 133
Miyamae (C8FO02118J-(cit75)/*[position()=1]) 2017; 37
Labouesse (C8FO02118J-(cit14)/*[position()=1]) 2018; 115
Slaker (C8FO02118J-(cit32)/*[position()=1]) 2015; 35
Stevens (C8FO02118J-(cit69)/*[position()=1]) 2011; 23
Härtig (C8FO02118J-(cit51)/*[position()=1]) 1992; 3
Bicks (C8FO02118J-(cit7)/*[position()=1]) 2015; 6
Morgan (C8FO02118J-(cit76)/*[position()=1]) 1993; 163
Kolb (C8FO02118J-(cit8)/*[position()=1]) 1974; 87
Shashoua (C8FO02118J-(cit24)/*[position()=1]) 1985; 5
McClung (C8FO02118J-(cit59)/*[position()=1]) 2007; 33
Swanson (C8FO02118J-(cit37)/*[position()=1]) 2018; 526
Reichelt (C8FO02118J-(cit38)/*[position()=1]) 2018
Yamada (C8FO02118J-(cit44)/*[position()=1]) 2016; 525
Adolphs (C8FO02118J-(cit3)/*[position()=1]) 1999; 3
Ueno (C8FO02118J-(cit27)/*[position()=1]) 2017; 343
Kim (C8FO02118J-(cit70)/*[position()=1]) 2011; 31
Bitanihirwe (C8FO02118J-(cit102)/*[position()=1]) 2011; 35
Sah (C8FO02118J-(cit105)/*[position()=1]) 2002; 80
Ackerly (C8FO02118J-(cit4)/*[position()=1]) 1948; 27
Romberg (C8FO02118J-(cit96)/*[position()=1]) 2013; 33
Cabungcal (C8FO02118J-(cit68)/*[position()=1]) 2013; 110
Schneider (C8FO02118J-(cit34)/*[position()=1]) 2013; 354
Lewis (C8FO02118J-(cit18)/*[position()=1]) 2012; 35
Ronan (C8FO02118J-(cit83)/*[position()=1]) 2016; 47
Yizhar (C8FO02118J-(cit89)/*[position()=1]) 2011; 477
Dingess (C8FO02118J-(cit71)/*[position()=1]) 2018; 2018
Moy (C8FO02118J-(cit40)/*[position()=1]) 2004; 3
Stockwell (C8FO02118J-(cit109)/*[position()=1]) 2017; 171
Marqués-Iturria (C8FO02118J-(cit84)/*[position()=1]) 2013; 214
Lensjø (C8FO02118J-(cit29)/*[position()=1]) 2016; 37
References_xml – issn: 2000
  publication-title: What's Wrong With My Mouse?: Behavioral Phenotyping of Transgenic and Knockout Mice
  doi: Crawley
– issn: 2007
  publication-title: The Rat Brain in Stereotaxic Coordinates
  doi: Paxinos Watson
– volume: 80
  start-page: 383
  year: 2002
  ident: C8FO02118J-(cit105)/*[position()=1]
  publication-title: J. Neurochem.
  doi: 10.1046/j.0022-3042.2001.00706.x
– volume: 477
  start-page: 171
  year: 2011
  ident: C8FO02118J-(cit89)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature10360
– volume: 87
  start-page: 772
  year: 1974
  ident: C8FO02118J-(cit8)/*[position()=1]
  publication-title: J. Comp. Physiol. Psychol.
  doi: 10.1037/h0036970
– volume: 2014
  start-page: 109
  year: 2014
  ident: C8FO02118J-(cit15)/*[position()=1]
  publication-title: Evol. Med. Public Health
  doi: 10.1093/emph/eou019
– volume: 20
  start-page: 267
  year: 2013
  ident: C8FO02118J-(cit50)/*[position()=1]
  publication-title: Learn. Mem.
  doi: 10.1101/lm.030197.112
– volume: 73
  start-page: 574
  year: 2013
  ident: C8FO02118J-(cit67)/*[position()=1]
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2012.09.020
– volume: 23
  start-page: 121
  year: 2011
  ident: C8FO02118J-(cit69)/*[position()=1]
  publication-title: J. Neuropsychiatry Clin. Neurosci.
  doi: 10.1176/jnp.23.2.jnp121
– volume: 1
  start-page: 54
  year: 2016
  ident: C8FO02118J-(cit47)/*[position()=1]
  publication-title: IBRO Rep.
  doi: 10.1016/j.ibror.2016.10.001
– volume: 83
  start-page: 657
  year: 2017
  ident: C8FO02118J-(cit86)/*[position()=1]
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2017.11.033
– volume: 131
  start-page: 289
  year: 2017
  ident: C8FO02118J-(cit57)/*[position()=1]
  publication-title: Behav. Neurosci.
  doi: 10.1037/bne0000203
– volume: 164
  start-page: 208
  year: 2016
  ident: C8FO02118J-(cit20)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.038
– volume: 3
  start-page: 869
  year: 1992
  ident: C8FO02118J-(cit51)/*[position()=1]
  publication-title: NeuroReport
  doi: 10.1097/00001756-199210000-00012
– volume: 298
  start-page: 1248
  year: 2002
  ident: C8FO02118J-(cit30)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1072699
– volume: 265
  start-page: 48
  year: 2015
  ident: C8FO02118J-(cit97)/*[position()=1]
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2014.11.013
– volume: 6
  start-page: a1805
  year: 2015
  ident: C8FO02118J-(cit7)/*[position()=1]
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2015.01805
– volume: 71
  start-page: 196
  year: 2013
  ident: C8FO02118J-(cit81)/*[position()=1]
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.017
– volume: 32
  start-page: 525
  year: 1972
  ident: C8FO02118J-(cit5)/*[position()=1]
  publication-title: Acta Neurobiol. Exp.
– volume: 31
  start-page: 17872
  year: 2011
  ident: C8FO02118J-(cit72)/*[position()=1]
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3894-11.2011
– volume: 363
  start-page: 413
  year: 2019
  ident: C8FO02118J-(cit74)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aau8977
– volume: 525
  start-page: 1234
  year: 2016
  ident: C8FO02118J-(cit44)/*[position()=1]
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.24132
– volume: 139
  start-page: 1026
  year: 2016
  ident: C8FO02118J-(cit108)/*[position()=1]
  publication-title: Brain
  doi: 10.1093/brain/aww022
– volume: 1
  start-page: 172
  year: 2009
  ident: C8FO02118J-(cit87)/*[position()=1]
  publication-title: J. Neurodev. Disord.
  doi: 10.1007/s11689-009-9023-x
– volume: 2018
  start-page: 1
  year: 2018
  ident: C8FO02118J-(cit71)/*[position()=1]
  publication-title: Neural Plast.
  doi: 10.1155/2018/2108373
– volume: 27
  start-page: 479
  year: 1948
  ident: C8FO02118J-(cit4)/*[position()=1]
  publication-title: Res. Publ. - Assoc. Res. Nerv. Ment. Dis.
– volume: 31
  start-page: 4771
  year: 2011
  ident: C8FO02118J-(cit70)/*[position()=1]
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5923-10.2011
– volume: 6
  start-page: e27868
  year: 2017
  ident: C8FO02118J-(cit21)/*[position()=1]
  publication-title: eLife
  doi: 10.7554/eLife.27868
– volume: 49
  start-page: 15
  year: 2016
  ident: C8FO02118J-(cit106)/*[position()=1]
  publication-title: Biol. Res.
  doi: 10.1186/s40659-016-0075-6
– volume: 22
  start-page: 961
  year: 2017
  ident: C8FO02118J-(cit13)/*[position()=1]
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2016.193
– volume: 72
  start-page: 132
  year: 1970
  ident: C8FO02118J-(cit6)/*[position()=1]
  publication-title: J. Comp. Physiol. Psychol.
  doi: 10.1037/h0029303
– volume-title: What's Wrong With My Mouse?: Behavioral Phenotyping of Transgenic and Knockout Mice
  year: 2000
  ident: C8FO02118J-(cit39)/*[position()=1]
– volume: 33
  start-page: 3
  year: 2007
  ident: C8FO02118J-(cit59)/*[position()=1]
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1301544
– volume: 41
  start-page: 2206
  year: 2016
  ident: C8FO02118J-(cit42)/*[position()=1]
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2016.24
– volume-title: The Rat Brain in Stereotaxic Coordinates
  year: 2007
  ident: C8FO02118J-(cit41)/*[position()=1]
– volume: 115
  start-page: 201800171
  year: 2018
  ident: C8FO02118J-(cit14)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1800171115
– volume: 132
  start-page: 146
  year: 2004
  ident: C8FO02118J-(cit60)/*[position()=1]
  publication-title: Mol. Brain Res.
  doi: 10.1016/j.molbrainres.2004.05.014
– volume: 214
  start-page: 109
  year: 2013
  ident: C8FO02118J-(cit84)/*[position()=1]
  publication-title: Psychiatry Res., Neuroimaging
  doi: 10.1016/j.pscychresns.2013.06.004
– volume: 504
  start-page: 272
  year: 2013
  ident: C8FO02118J-(cit22)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12866
– volume: 133
  start-page: 2331
  year: 2010
  ident: C8FO02118J-(cit95)/*[position()=1]
  publication-title: Brain
  doi: 10.1093/brain/awq145
– volume: 12
  start-page: 828
  year: 2000
  ident: C8FO02118J-(cit58)/*[position()=1]
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2000.00970.x
– volume: 136
  start-page: 127
  year: 2016
  ident: C8FO02118J-(cit17)/*[position()=1]
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2016.10.002
– volume: 35
  start-page: 2120
  year: 2010
  ident: C8FO02118J-(cit104)/*[position()=1]
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2010.90
– volume: 17
  start-page: 407
  year: 2010
  ident: C8FO02118J-(cit55)/*[position()=1]
  publication-title: Learn. Mem.
  doi: 10.1101/lm.1879610
– volume: 3
  start-page: 469
  year: 1999
  ident: C8FO02118J-(cit3)/*[position()=1]
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/S1364-6613(99)01399-6
– volume: 21
  start-page: 353
  year: 2011
  ident: C8FO02118J-(cit92)/*[position()=1]
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2010.12.006
– volume: 47
  start-page: 63
  year: 2016
  ident: C8FO02118J-(cit83)/*[position()=1]
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2016.07.010
– volume: 3
  start-page: 287
  year: 2004
  ident: C8FO02118J-(cit40)/*[position()=1]
  publication-title: Genes, Brain Behav.
  doi: 10.1111/j.1601-1848.2004.00076.x
– volume: 9
  start-page: 671
  year: 2012
  ident: C8FO02118J-(cit52)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 171
  start-page: 273
  year: 2017
  ident: C8FO02118J-(cit109)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.021
– volume: 3
  start-page: 16
  year: 2016
  ident: C8FO02118J-(cit31)/*[position()=1]
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0112-16.2016
– volume: 10
  start-page: 138
  year: 2000
  ident: C8FO02118J-(cit94)/*[position()=1]
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(99)00047-1
– volume: 3
  start-page: e0125
  year: 2016
  ident: C8FO02118J-(cit82)/*[position()=1]
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0125-16.2016
– volume: 106
  start-page: 1
  year: 2013
  ident: C8FO02118J-(cit36)/*[position()=1]
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2013.04.001
– volume: 33
  start-page: 7057
  year: 2013
  ident: C8FO02118J-(cit96)/*[position()=1]
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6267-11.2013
– volume: 22
  start-page: 215
  year: 2015
  ident: C8FO02118J-(cit16)/*[position()=1]
  publication-title: Learn. Mem.
  doi: 10.1101/lm.038000.114
– volume: 32
  start-page: 16496
  year: 2012
  ident: C8FO02118J-(cit73)/*[position()=1]
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3475-12.2012
– volume: 24
  start-page: 195
  year: 2008
  ident: C8FO02118J-(cit85)/*[position()=1]
  publication-title: Neurosci. Bull.
  doi: 10.1007/s12264-008-0109-3
– volume: 24
  start-page: 8873
  year: 2004
  ident: C8FO02118J-(cit90)/*[position()=1]
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2661-04.2004
– volume: 41
  start-page: 835
  year: 2015
  ident: C8FO02118J-(cit101)/*[position()=1]
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbv065
– volume: 325
  start-page: 1258
  year: 2009
  ident: C8FO02118J-(cit49)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1174146
– volume: 10
  start-page: a189
  year: 2016
  ident: C8FO02118J-(cit33)/*[position()=1]
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2016.00189
– volume: 526
  start-page: 935
  year: 2018
  ident: C8FO02118J-(cit37)/*[position()=1]
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.24381
– volume: 30
  start-page: 1337
  year: 2010
  ident: C8FO02118J-(cit23)/*[position()=1]
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3481-09.2010
– year: 2018
  ident: C8FO02118J-(cit38)/*[position()=1]
  publication-title: Nutr. Neurosci.
  doi: 10.1080/1028415X.2018.1537169
– volume: 70
  start-page: 434
  year: 2011
  ident: C8FO02118J-(cit66)/*[position()=1]
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2011.05.006
– volume: 5
  start-page: 183
  year: 1985
  ident: C8FO02118J-(cit24)/*[position()=1]
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/BF00711092
– volume: 40
  start-page: 237
  year: 2017
  ident: C8FO02118J-(cit99)/*[position()=1]
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.02.005
– volume: 20
  start-page: 6225
  year: 2000
  ident: C8FO02118J-(cit77)/*[position()=1]
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-16-06225.2000
– volume: 40
  start-page: 9
  year: 2014
  ident: C8FO02118J-(cit10)/*[position()=1]
  publication-title: Brain, Behav., Immun.
  doi: 10.1016/j.bbi.2014.03.005
– volume: 22
  start-page: 2095
  year: 2012
  ident: C8FO02118J-(cit11)/*[position()=1]
  publication-title: Hippocampus
  doi: 10.1002/hipo.22032
– volume: 35
  start-page: 4092
  year: 2015
  ident: C8FO02118J-(cit12)/*[position()=1]
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3122-14.2015
– volume: 2015
  start-page: 1
  year: 2015
  ident: C8FO02118J-(cit26)/*[position()=1]
  publication-title: Neural Plast.
  doi: 10.1155/2015/256389
– volume: 61
  start-page: 1109
  year: 2011
  ident: C8FO02118J-(cit61)/*[position()=1]
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2011.03.010
– volume: 163
  start-page: 109
  year: 1993
  ident: C8FO02118J-(cit76)/*[position()=1]
  publication-title: Neurosci. Lett.
  doi: 10.1016/0304-3940(93)90241-C
– volume: 23
  start-page: 386
  year: 2016
  ident: C8FO02118J-(cit80)/*[position()=1]
  publication-title: Learn. Mem.
  doi: 10.1101/lm.042416.116
– volume: 12
  start-page: 623
  year: 2011
  ident: C8FO02118J-(cit62)/*[position()=1]
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3111
– volume: 349
  start-page: 147
  year: 2012
  ident: C8FO02118J-(cit28)/*[position()=1]
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-012-1375-y
– volume: 45
  start-page: 1
  year: 2014
  ident: C8FO02118J-(cit35)/*[position()=1]
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2014.04.012
– volume: 110
  start-page: 9130
  year: 2013
  ident: C8FO02118J-(cit68)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1300454110
– volume: 71
  start-page: 1073
  year: 2011
  ident: C8FO02118J-(cit93)/*[position()=1]
  publication-title: Dev. Neurobiol.
  doi: 10.1002/dneu.20974
– volume: 37
  start-page: 4883
  year: 2017
  ident: C8FO02118J-(cit75)/*[position()=1]
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3325-16.2017
– volume: 343
  start-page: 115
  year: 2017
  ident: C8FO02118J-(cit27)/*[position()=1]
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.11.035
– volume: 219
  start-page: 395
  year: 2014
  ident: C8FO02118J-(cit56)/*[position()=1]
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0508-8
– volume: 2
  start-page: 861
  year: 1999
  ident: C8FO02118J-(cit9)/*[position()=1]
  publication-title: Nat. Neurosci.
  doi: 10.1038/13158
– volume: 35
  start-page: 57
  year: 2012
  ident: C8FO02118J-(cit18)/*[position()=1]
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.10.004
– volume: 67
  start-page: 155
  year: 2010
  ident: C8FO02118J-(cit43)/*[position()=1]
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2009.196
– volume: 13
  start-page: 801
  year: 2003
  ident: C8FO02118J-(cit91)/*[position()=1]
  publication-title: Hippocampus
  doi: 10.1002/hipo.10129
– volume: 69
  start-page: 1212
  year: 2014
  ident: C8FO02118J-(cit100)/*[position()=1]
  publication-title: J. Gerontol., Ser. A
  doi: 10.1093/gerona/glt177
– volume: 24
  start-page: 417
  year: 2000
  ident: C8FO02118J-(cit1)/*[position()=1]
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/S0149-7634(00)00014-2
– volume: 157
  start-page: 13
  year: 2016
  ident: C8FO02118J-(cit79)/*[position()=1]
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2016.01.038
– volume: 9
  start-page: eaah6733
  year: 2017
  ident: C8FO02118J-(cit88)/*[position()=1]
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aah6733
– volume: 20
  start-page: 154
  year: 2015
  ident: C8FO02118J-(cit103)/*[position()=1]
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2014.162
– volume: 57
  start-page: 395
  year: 2017
  ident: C8FO02118J-(cit25)/*[position()=1]
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-160804
– volume: 497
  start-page: 1
  year: 2001
  ident: C8FO02118J-(cit107)/*[position()=1]
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02437-1
– volume: 188
  start-page: 63
  year: 1993
  ident: C8FO02118J-(cit65)/*[position()=1]
  publication-title: Anat. Embryol.
  doi: 10.1007/BF00191452
– volume: 8
  start-page: 8344
  year: 2018
  ident: C8FO02118J-(cit78)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26631-x
– volume: 35
  start-page: 878
  year: 2011
  ident: C8FO02118J-(cit102)/*[position()=1]
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2010.10.008
– volume: 256
  start-page: 188
  year: 2013
  ident: C8FO02118J-(cit64)/*[position()=1]
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2013.08.020
– volume: 37
  start-page: 1269
  year: 2016
  ident: C8FO02118J-(cit29)/*[position()=1]
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2504-16.2016
– volume: 524
  start-page: 1309
  year: 2016
  ident: C8FO02118J-(cit45)/*[position()=1]
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23965
– volume: 21
  start-page: 450
  year: 2015
  ident: C8FO02118J-(cit19)/*[position()=1]
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2015.05.002
– volume: 23
  start-page: 4353
  year: 2009
  ident: C8FO02118J-(cit98)/*[position()=1]
  publication-title: FASEB J.
  doi: 10.1096/fj.09-139691
– volume: 35
  start-page: 4190
  year: 2015
  ident: C8FO02118J-(cit32)/*[position()=1]
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3592-14.2015
– volume: 203
  start-page: 45
  year: 2001
  ident: C8FO02118J-(cit48)/*[position()=1]
  publication-title: Anat. Embryol.
  doi: 10.1007/s004290000135
– volume: 31
  start-page: 47
  year: 1988
  ident: C8FO02118J-(cit54)/*[position()=1]
  publication-title: Behav. Brain Res.
  doi: 10.1016/0166-4328(88)90157-X
– volume: 74
  start-page: 427
  year: 2013
  ident: C8FO02118J-(cit2)/*[position()=1]
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2013.05.007
– volume: 354
  start-page: 99
  year: 2013
  ident: C8FO02118J-(cit34)/*[position()=1]
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-013-1581-2
– volume: 13
  start-page: 93
  year: 2012
  ident: C8FO02118J-(cit53)/*[position()=1]
  publication-title: Cogn. Process.
  doi: 10.1007/s10339-011-0430-z
– volume: 53
  start-page: 545
  year: 2016
  ident: C8FO02118J-(cit63)/*[position()=1]
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-014-9040-y
– volume: 63
  start-page: 268
  year: 1985
  ident: C8FO02118J-(cit46)/*[position()=1]
  publication-title: Can. J. Biochem. Cell Biol.
  doi: 10.1139/o85-039
SSID ssj0000399898
Score 2.3915124
Snippet Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1985
SubjectTerms Addictions
adolescence
Adolescents
animal models
Animals
Brain
Depletion
Diet
Diet, High-Fat - adverse effects
Dietary Sugars - adverse effects
Dietary Sugars - metabolism
Emotional behavior
Extracellular matrix
Fluorescence
GABAergic Neurons - cytology
GABAergic Neurons - metabolism
high carbohydrate diet
High fat diet
Humans
Immunohistochemistry
impulse control disorders
Interneurons
Interneurons - cytology
Interneurons - metabolism
Localization
Memory
Neuronal Plasticity
Neurons
Neuroplasticity
obesity
Organic chemistry
Parvalbumin
Parvalbumins - metabolism
Pediatric Obesity - etiology
Pediatric Obesity - metabolism
Pediatric Obesity - physiopathology
Pediatric Obesity - psychology
Perineuronal nets
Prefrontal cortex
Prefrontal Cortex - cytology
Prefrontal Cortex - metabolism
Rats
Rats, Sprague-Dawley
Recognition
Social Behavior
Social interactions
Sugar
γ-Aminobutyric acid
Title A high-fat high-sugar diet in adolescent rats impairs social memory and alters chemical markers characteristic of atypical neuroplasticity and parvalbumin interneuron depletion in the medial prefrontal cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/30900711
https://www.proquest.com/docview/2210368597
https://www.proquest.com/docview/2196523578
https://www.proquest.com/docview/2253240380
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMetsb3wgvg1KAx0CISEqkB-tsljta2UaXQSaqW-RYlro6I1rdJUYvyPSPxJ3NlxnLEKDV6qyrXcqPepfbbvvsfYG9zG9jzuSkfEPHLCQAgn97Pc8T2eROjfJ9KnbOTP495oGp7Notne3s9W1NK2yt_zHzvzSv7HqtiGdqUs2X-wbDMoNuB7tC--ooXx9VY2HnRJbdiRuMlXbzbbr1nZnS-E0v23Yk1dNPNGJUQuyo05Jl9SjK1WX1JX5psuN-IBS4rZUQ1tNWcVMlBdrVUXpYO5RteborIrPcya6gzRkf-iUDIUpeqkom1J4tsGVdbpKmtcnUk_QUmUlJX43vaUhyS3TFzSytuOFvgiVPSqlktYXtljXlsL_WOWlwu6kbDxzANVM01Na_gb4EbB3kGNMn0Of7IinRVeX5TVJyGeutTRiZ96wvQp1Qg9zple23a0mRnfbZEdtqZvL9H1g26sK25Asqw8liv0ibz4m109TcTA-CIdTs_P08npbHKHHfh9dOX22cHgdPLpvDn0w2GoXicVPDTPZSRzg-SDHf66k3Rj54N-UGnq0yg_aHKf3as3MDDQND5ge6J4yDonyBy8hVpl9hLGpsjDI_ZrAIZSsJQCUQqLAiylQJRCTSloSkFTCogXaErBUAo1pXCdUlhJMJTCH5SqYVqUQotSaCilp0JKQVMKllLQlD5m0-Hp5Hjk1HVEHB4GvcqRQeTx0HOF9KWQWcCFdOdZngd53POwgdKzM5H3pZTo0oVyHggf195kHvAo4948OGT7xaoQTxmIiMso4jHuq_Iwc_0sDJM49yMhxdzt8azD3hnDpbwW2adaL5epCvYIkvQ4Hl4oI5912Oum71pLy-zsdWTsn9ZTzyb1fezVi6Ok32Gvmo9xYaDbvqwQqy32Ia1QJWb1lz5-pAQ5Y7fDnmi2mkcJ3IT2H16HHSJsTbOF9Nktvvo5u2v_qUdsvyq34gV68VX-sv5v_AYteAIn
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-fat+high-sugar+diet+in+adolescent+rats+impairs+social+memory+and+alters+chemical+markers+characteristic+of+atypical+neuroplasticity+and+parvalbumin+interneuron+depletion+in+the+medial+prefrontal+cortex&rft.jtitle=Food+%26+function&rft.au=Reichelt%2C+Amy+C&rft.au=Gibson%2C+Gabrielle+D&rft.au=Abbott%2C+Kirsten+N&rft.au=Hare%2C+Dominic+J&rft.date=2019-04-17&rft.issn=2042-650X&rft.eissn=2042-650X&rft.volume=10&rft.issue=4&rft.spage=1985&rft_id=info:doi/10.1039%2Fc8fo02118j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon