A high-fat high-sugar diet in adolescent rats impairs social memory and alters chemical markers characteristic of atypical neuroplasticity and parvalbumin interneuron depletion in the medial prefrontal cortex
Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central t...
Saved in:
Published in | Food & function Vol. 1; no. 4; pp. 1985 - 1998 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
17.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2042-6496 2042-650X 2042-650X |
DOI | 10.1039/c8fo02118j |
Cover
Abstract | Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28-P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by −21.9% and −16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5-10-fold increase (
p
< 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence.
A hypercaloric diet given to adolescent rats induces social memory deficits and reduced neurochemical markers of normal social development. |
---|---|
AbstractList | Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28-P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by −21.9% and −16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5-10-fold increase (
p
< 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence.
A hypercaloric diet given to adolescent rats induces social memory deficits and reduced neurochemical markers of normal social development. Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28-P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by -21.9% and -16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5-10-fold increase (p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence.Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28-P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by -21.9% and -16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5-10-fold increase (p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence. Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28–P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by −21.9% and −16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5–10-fold increase ( p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence. Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28–P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by −21.9% and −16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5–10-fold increase (p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence. Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28-P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by -21.9% and -16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5-10-fold increase (p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence. |
Author | Gibson, Gabrielle D Abbott, Kirsten N Hare, Dominic J Reichelt, Amy C |
AuthorAffiliation | BrainsCAN and Robarts Research Institute UNSW Sydney University of Western Ontario The Florey Institute of Neuroscience and Mental Health Melbourne Dementia Research Centre at the Florey Institute of Neuroscience and Mental Health and The University of Melbourne The University of Melbourne School of Psychology Department of Clinical Pathology |
AuthorAffiliation_xml | – sequence: 0 name: University of Western Ontario – sequence: 0 name: The Florey Institute of Neuroscience and Mental Health – sequence: 0 name: BrainsCAN and Robarts Research Institute – sequence: 0 name: Department of Clinical Pathology – sequence: 0 name: Melbourne Dementia Research Centre at the Florey Institute of Neuroscience and Mental Health and The University of Melbourne – sequence: 0 name: UNSW Sydney – sequence: 0 name: The University of Melbourne – sequence: 0 name: School of Psychology |
Author_xml | – sequence: 1 givenname: Amy C surname: Reichelt fullname: Reichelt, Amy C – sequence: 2 givenname: Gabrielle D surname: Gibson fullname: Gibson, Gabrielle D – sequence: 3 givenname: Kirsten N surname: Abbott fullname: Abbott, Kirsten N – sequence: 4 givenname: Dominic J surname: Hare fullname: Hare, Dominic J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30900711$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNUREvphTvIEheEFLDjfDjHakX5UKVeQOIWTZxx10sSB9tB7L_sT-pk0xapQsIXj-Z9Zpy8M8-To9GNmCQvBX8vuKw_aGUcz4RQuyfJScbzLC0L_uPoPs7r8jg5C2HH6ci6VrV6lhxLXnNeCXGS3Jyzrb3epgbiGoT5GjzrLEZmRwad6zFoHCPzEAOzwwTWBxacttCzAQfn9wzGjkEfkQS9xcHqRQL_c02AB02aDdFq5gyDuJ8OyIizd1MPi2Dj2mYC_xv6dh7ocTtS2QEaWYdTj9G6JcviFunpbvmCyaMhPVKonY_450Xy1EAf8OzuPk2-X3z8tvmcXl59-rI5v0x1LsuYGlkInQuOJjNoQGo0vIO2la0qBSXyMlOAbWWMyYXMTScxU6qqO6kL0KKTp8nbte_k3a8ZQ2wGS0b1PYzo5tBkWSGznEvF_4-KuiwyWVSK0DeP0J2b_Ug_Qg1p3qUq6oqo13fU3JIPzeQt2b1v7sdKwLsV0N6FQBY9III3y9o0G3VxdVibrwTzRzBNAxavowfb_7vk1Vrig35o_XcT5S1e7dQg |
CitedBy_id | crossref_primary_10_1096_fj_202000346RR crossref_primary_10_3390_ijms25105524 crossref_primary_10_3389_fnins_2023_1188065 crossref_primary_10_1016_j_brainres_2020_147096 crossref_primary_10_1371_journal_pone_0290308 crossref_primary_10_1016_j_neuropharm_2023_109772 crossref_primary_10_1016_j_tins_2019_04_003 crossref_primary_10_1016_j_tem_2021_04_001 crossref_primary_10_1155_2022_6711160 crossref_primary_10_1002_dev_22392 crossref_primary_10_3390_ijms25063412 crossref_primary_10_3390_nu13010089 crossref_primary_10_1016_j_bbr_2024_115152 crossref_primary_10_1016_j_obmed_2020_100246 crossref_primary_10_1159_000508663 crossref_primary_10_1016_j_jadohealth_2023_08_033 crossref_primary_10_3390_microorganisms12122542 crossref_primary_10_1016_j_ejphar_2021_174338 crossref_primary_10_1039_D4FO05553E crossref_primary_10_1002_ece3_9511 crossref_primary_10_1016_j_ntt_2022_107094 crossref_primary_10_1038_s41380_022_01634_3 crossref_primary_10_1016_j_physbeh_2020_112963 crossref_primary_10_1016_j_jnutbio_2022_109220 crossref_primary_10_3389_fncir_2022_939235 crossref_primary_10_1016_S2352_4642_19_30404_3 crossref_primary_10_1038_s41386_022_01337_x crossref_primary_10_1080_1028415X_2024_2355603 crossref_primary_10_1371_journal_pone_0311920 crossref_primary_10_1038_s41598_021_85092_x crossref_primary_10_1016_j_neuropharm_2020_108290 crossref_primary_10_1016_j_bbr_2024_115020 crossref_primary_10_1002_dev_22063 crossref_primary_10_1093_texcom_tgab014 crossref_primary_10_1177_10738584221106346 |
Cites_doi | 10.1046/j.0022-3042.2001.00706.x 10.1038/nature10360 10.1037/h0036970 10.1093/emph/eou019 10.1101/lm.030197.112 10.1016/j.biopsych.2012.09.020 10.1176/jnp.23.2.jnp121 10.1016/j.ibror.2016.10.001 10.1016/j.biopsych.2017.11.033 10.1037/bne0000203 10.1016/j.cell.2015.11.038 10.1097/00001756-199210000-00012 10.1126/science.1072699 10.1016/j.expneurol.2014.11.013 10.3389/fpsyg.2015.01805 10.1016/j.neuroimage.2013.01.017 10.1523/JNEUROSCI.3894-11.2011 10.1126/science.aau8977 10.1002/cne.24132 10.1093/brain/aww022 10.1007/s11689-009-9023-x 10.1155/2018/2108373 10.1523/JNEUROSCI.5923-10.2011 10.7554/eLife.27868 10.1186/s40659-016-0075-6 10.1038/mp.2016.193 10.1037/h0029303 10.1038/sj.npp.1301544 10.1038/npp.2016.24 10.1073/pnas.1800171115 10.1016/j.molbrainres.2004.05.014 10.1016/j.pscychresns.2013.06.004 10.1038/nature12866 10.1093/brain/awq145 10.1046/j.1460-9568.2000.00970.x 10.1016/j.nlm.2016.10.002 10.1038/npp.2010.90 10.1101/lm.1879610 10.1016/S1364-6613(99)01399-6 10.1016/j.conb.2010.12.006 10.1016/j.neurobiolaging.2016.07.010 10.1111/j.1601-1848.2004.00076.x 10.1038/nmeth.2089 10.1016/j.cell.2017.09.021 10.1523/ENEURO.0112-16.2016 10.1016/S0959-4388(99)00047-1 10.1523/ENEURO.0125-16.2016 10.1016/j.pneurobio.2013.04.001 10.1523/JNEUROSCI.6267-11.2013 10.1101/lm.038000.114 10.1523/JNEUROSCI.3475-12.2012 10.1007/s12264-008-0109-3 10.1523/JNEUROSCI.2661-04.2004 10.1093/schbul/sbv065 10.1126/science.1174146 10.3389/fnbeh.2016.00189 10.1002/cne.24381 10.1523/JNEUROSCI.3481-09.2010 10.1080/1028415X.2018.1537169 10.1016/j.biopsych.2011.05.006 10.1007/BF00711092 10.1016/j.tins.2017.02.005 10.1523/JNEUROSCI.20-16-06225.2000 10.1016/j.bbi.2014.03.005 10.1002/hipo.22032 10.1523/JNEUROSCI.3122-14.2015 10.1155/2015/256389 10.1016/j.neuropharm.2011.03.010 10.1016/0304-3940(93)90241-C 10.1101/lm.042416.116 10.1038/nrn3111 10.1007/s00441-012-1375-y 10.1016/j.neubiorev.2014.04.012 10.1073/pnas.1300454110 10.1002/dneu.20974 10.1523/JNEUROSCI.3325-16.2017 10.1016/j.neuroscience.2016.11.035 10.1007/s00429-013-0508-8 10.1038/13158 10.1016/j.tins.2011.10.004 10.1001/archgenpsychiatry.2009.196 10.1002/hipo.10129 10.1093/gerona/glt177 10.1016/S0149-7634(00)00014-2 10.1016/j.physbeh.2016.01.038 10.1126/scitranslmed.aah6733 10.1038/mp.2014.162 10.3233/JAD-160804 10.1016/S0014-5793(01)02437-1 10.1007/BF00191452 10.1038/s41598-018-26631-x 10.1016/j.neubiorev.2010.10.008 10.1016/j.bbr.2013.08.020 10.1523/JNEUROSCI.2504-16.2016 10.1002/cne.23965 10.1016/j.molmed.2015.05.002 10.1096/fj.09-139691 10.1523/JNEUROSCI.3592-14.2015 10.1007/s004290000135 10.1016/0166-4328(88)90157-X 10.1016/j.biopsych.2013.05.007 10.1007/s00441-013-1581-2 10.1007/s10339-011-0430-z 10.1007/s12035-014-9040-y 10.1139/o85-039 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 7S9 L.6 |
DOI | 10.1039/c8fo02118j |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oncogenes and Growth Factors Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Oncogenes and Growth Factors Abstracts MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2042-650X |
EndPage | 1998 |
ExternalDocumentID | 30900711 10_1039_C8FO02118J c8fo02118j |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 4.4 53G 705 7~J AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3I O-G O9- P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF AAYXX AFRZK AKMSF CITATION CGR CUY CVF ECM EIF NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c436t-f351c410ef2fefa3cef0dabb3b861efa4628aeb7fff4134fd3e28879d3c5ac1d3 |
ISSN | 2042-6496 2042-650X |
IngestDate | Sun Sep 28 02:16:38 EDT 2025 Sat Sep 27 19:43:45 EDT 2025 Mon Jun 30 12:04:56 EDT 2025 Mon Jul 21 05:53:44 EDT 2025 Thu Apr 24 22:54:20 EDT 2025 Tue Jul 01 03:02:11 EDT 2025 Tue Dec 17 20:59:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-f351c410ef2fefa3cef0dabb3b861efa4628aeb7fff4134fd3e28879d3c5ac1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0637-0411 0000-0002-5922-7643 |
PMID | 30900711 |
PQID | 2210368597 |
PQPubID | 2047526 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1039_C8FO02118J rsc_primary_c8fo02118j proquest_miscellaneous_2196523578 proquest_journals_2210368597 proquest_miscellaneous_2253240380 crossref_citationtrail_10_1039_C8FO02118J pubmed_primary_30900711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190417 |
PublicationDateYYYYMMDD | 2019-04-17 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190417 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Food & function |
PublicationTitleAlternate | Food Funct |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Baker (C8FO02118J-(cit57)/*[position()=1]) 2017; 131 Hylin (C8FO02118J-(cit50)/*[position()=1]) 2013; 20 Reichelt (C8FO02118J-(cit16)/*[position()=1]) 2015; 22 Reichelt (C8FO02118J-(cit33)/*[position()=1]) 2016; 10 Massi (C8FO02118J-(cit73)/*[position()=1]) 2012; 32 Crawley (C8FO02118J-(cit39)/*[position()=1]) 2000 Gogolla (C8FO02118J-(cit49)/*[position()=1]) 2009; 325 Slaker (C8FO02118J-(cit47)/*[position()=1]) 2016; 1 Schneider (C8FO02118J-(cit52)/*[position()=1]) 2012; 9 Mauney (C8FO02118J-(cit2)/*[position()=1]) 2013; 74 Calabrese (C8FO02118J-(cit81)/*[position()=1]) 2013; 71 Nissen (C8FO02118J-(cit23)/*[position()=1]) 2010; 30 Selimbeyoglu (C8FO02118J-(cit88)/*[position()=1]) 2017; 9 Rossier (C8FO02118J-(cit103)/*[position()=1]) 2015; 20 Sandoval-Salazar (C8FO02118J-(cit106)/*[position()=1]) 2016; 49 McClung (C8FO02118J-(cit60)/*[position()=1]) 2004; 132 Kim (C8FO02118J-(cit20)/*[position()=1]) 2016; 164 Berardi (C8FO02118J-(cit94)/*[position()=1]) 2000; 10 Semple (C8FO02118J-(cit36)/*[position()=1]) 2013; 106 Marder (C8FO02118J-(cit90)/*[position()=1]) 2004; 24 Butter (C8FO02118J-(cit5)/*[position()=1]) 1972; 32 Boitard (C8FO02118J-(cit10)/*[position()=1]) 2014; 40 Quirk (C8FO02118J-(cit77)/*[position()=1]) 2000; 20 Favuzzi (C8FO02118J-(cit74)/*[position()=1]) 2019; 363 Morris (C8FO02118J-(cit58)/*[position()=1]) 2000; 12 Caballero (C8FO02118J-(cit56)/*[position()=1]) 2014; 219 Hilbig (C8FO02118J-(cit48)/*[position()=1]) 2001; 203 Robison (C8FO02118J-(cit62)/*[position()=1]) 2011; 12 Gogolla (C8FO02118J-(cit87)/*[position()=1]) 2009; 1 Horii-Hayashi (C8FO02118J-(cit26)/*[position()=1]) 2015; 2015 Staff (C8FO02118J-(cit91)/*[position()=1]) 2003; 13 Guillemot-Legris (C8FO02118J-(cit99)/*[position()=1]) 2017; 40 Boitard (C8FO02118J-(cit11)/*[position()=1]) 2012; 22 Boitard (C8FO02118J-(cit12)/*[position()=1]) 2015; 35 Kwok (C8FO02118J-(cit93)/*[position()=1]) 2011; 71 Baker (C8FO02118J-(cit17)/*[position()=1]) 2016; 136 Cabungcal (C8FO02118J-(cit67)/*[position()=1]) 2013; 73 Pantazopoulos (C8FO02118J-(cit43)/*[position()=1]) 2010; 67 Kalyan-Masih (C8FO02118J-(cit82)/*[position()=1]) 2016; 3 Cadet (C8FO02118J-(cit63)/*[position()=1]) 2016; 53 Hare (C8FO02118J-(cit108)/*[position()=1]) 2016; 139 Giedd (C8FO02118J-(cit9)/*[position()=1]) 1999; 2 Li (C8FO02118J-(cit25)/*[position()=1]) 2017; 57 Pizzorusso (C8FO02118J-(cit30)/*[position()=1]) 2002; 298 Antunes (C8FO02118J-(cit53)/*[position()=1]) 2012; 13 Alcántara (C8FO02118J-(cit65)/*[position()=1]) 1993; 188 Olsen (C8FO02118J-(cit61)/*[position()=1]) 2011; 61 Bourne (C8FO02118J-(cit64)/*[position()=1]) 2013; 256 Atlante (C8FO02118J-(cit107)/*[position()=1]) 2001; 497 Wang (C8FO02118J-(cit28)/*[position()=1]) 2012; 349 Spear (C8FO02118J-(cit1)/*[position()=1]) 2000; 24 Do (C8FO02118J-(cit101)/*[position()=1]) 2015; 41 Murray (C8FO02118J-(cit98)/*[position()=1]) 2009; 23 Dauth (C8FO02118J-(cit45)/*[position()=1]) 2016; 524 Spear (C8FO02118J-(cit35)/*[position()=1]) 2014; 45 Yang (C8FO02118J-(cit97)/*[position()=1]) 2015; 265 Van den Oever (C8FO02118J-(cit104)/*[position()=1]) 2010; 35 Xia (C8FO02118J-(cit21)/*[position()=1]) 2017; 6 Balmer (C8FO02118J-(cit31)/*[position()=1]) 2016; 3 Wells (C8FO02118J-(cit15)/*[position()=1]) 2014; 2014 Albasser (C8FO02118J-(cit55)/*[position()=1]) 2010; 17 Brenhouse (C8FO02118J-(cit66)/*[position()=1]) 2011; 70 Reichelt (C8FO02118J-(cit80)/*[position()=1]) 2016; 23 Paxinos (C8FO02118J-(cit41)/*[position()=1]) 2007 Li (C8FO02118J-(cit85)/*[position()=1]) 2008; 24 Dityatev (C8FO02118J-(cit92)/*[position()=1]) 2011; 21 Reichelt (C8FO02118J-(cit79)/*[position()=1]) 2016; 157 Labouesse (C8FO02118J-(cit13)/*[position()=1]) 2017; 22 Woodruff (C8FO02118J-(cit72)/*[position()=1]) 2011; 31 Tucsek (C8FO02118J-(cit100)/*[position()=1]) 2014; 69 McQuail (C8FO02118J-(cit19)/*[position()=1]) 2015; 21 Enwright (C8FO02118J-(cit42)/*[position()=1]) 2016; 41 Ferguson (C8FO02118J-(cit86)/*[position()=1]) 2017; 83 Young (C8FO02118J-(cit46)/*[position()=1]) 1985; 63 Butter (C8FO02118J-(cit6)/*[position()=1]) 1970; 72 Ennaceur (C8FO02118J-(cit54)/*[position()=1]) 1988; 31 Labouesse (C8FO02118J-(cit78)/*[position()=1]) 2018; 8 Donato (C8FO02118J-(cit22)/*[position()=1]) 2013; 504 Carulli (C8FO02118J-(cit95)/*[position()=1]) 2010; 133 Miyamae (C8FO02118J-(cit75)/*[position()=1]) 2017; 37 Labouesse (C8FO02118J-(cit14)/*[position()=1]) 2018; 115 Slaker (C8FO02118J-(cit32)/*[position()=1]) 2015; 35 Stevens (C8FO02118J-(cit69)/*[position()=1]) 2011; 23 Härtig (C8FO02118J-(cit51)/*[position()=1]) 1992; 3 Bicks (C8FO02118J-(cit7)/*[position()=1]) 2015; 6 Morgan (C8FO02118J-(cit76)/*[position()=1]) 1993; 163 Kolb (C8FO02118J-(cit8)/*[position()=1]) 1974; 87 Shashoua (C8FO02118J-(cit24)/*[position()=1]) 1985; 5 McClung (C8FO02118J-(cit59)/*[position()=1]) 2007; 33 Swanson (C8FO02118J-(cit37)/*[position()=1]) 2018; 526 Reichelt (C8FO02118J-(cit38)/*[position()=1]) 2018 Yamada (C8FO02118J-(cit44)/*[position()=1]) 2016; 525 Adolphs (C8FO02118J-(cit3)/*[position()=1]) 1999; 3 Ueno (C8FO02118J-(cit27)/*[position()=1]) 2017; 343 Kim (C8FO02118J-(cit70)/*[position()=1]) 2011; 31 Bitanihirwe (C8FO02118J-(cit102)/*[position()=1]) 2011; 35 Sah (C8FO02118J-(cit105)/*[position()=1]) 2002; 80 Ackerly (C8FO02118J-(cit4)/*[position()=1]) 1948; 27 Romberg (C8FO02118J-(cit96)/*[position()=1]) 2013; 33 Cabungcal (C8FO02118J-(cit68)/*[position()=1]) 2013; 110 Schneider (C8FO02118J-(cit34)/*[position()=1]) 2013; 354 Lewis (C8FO02118J-(cit18)/*[position()=1]) 2012; 35 Ronan (C8FO02118J-(cit83)/*[position()=1]) 2016; 47 Yizhar (C8FO02118J-(cit89)/*[position()=1]) 2011; 477 Dingess (C8FO02118J-(cit71)/*[position()=1]) 2018; 2018 Moy (C8FO02118J-(cit40)/*[position()=1]) 2004; 3 Stockwell (C8FO02118J-(cit109)/*[position()=1]) 2017; 171 Marqués-Iturria (C8FO02118J-(cit84)/*[position()=1]) 2013; 214 Lensjø (C8FO02118J-(cit29)/*[position()=1]) 2016; 37 |
References_xml | – issn: 2000 publication-title: What's Wrong With My Mouse?: Behavioral Phenotyping of Transgenic and Knockout Mice doi: Crawley – issn: 2007 publication-title: The Rat Brain in Stereotaxic Coordinates doi: Paxinos Watson – volume: 80 start-page: 383 year: 2002 ident: C8FO02118J-(cit105)/*[position()=1] publication-title: J. Neurochem. doi: 10.1046/j.0022-3042.2001.00706.x – volume: 477 start-page: 171 year: 2011 ident: C8FO02118J-(cit89)/*[position()=1] publication-title: Nature doi: 10.1038/nature10360 – volume: 87 start-page: 772 year: 1974 ident: C8FO02118J-(cit8)/*[position()=1] publication-title: J. Comp. Physiol. Psychol. doi: 10.1037/h0036970 – volume: 2014 start-page: 109 year: 2014 ident: C8FO02118J-(cit15)/*[position()=1] publication-title: Evol. Med. Public Health doi: 10.1093/emph/eou019 – volume: 20 start-page: 267 year: 2013 ident: C8FO02118J-(cit50)/*[position()=1] publication-title: Learn. Mem. doi: 10.1101/lm.030197.112 – volume: 73 start-page: 574 year: 2013 ident: C8FO02118J-(cit67)/*[position()=1] publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2012.09.020 – volume: 23 start-page: 121 year: 2011 ident: C8FO02118J-(cit69)/*[position()=1] publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/jnp.23.2.jnp121 – volume: 1 start-page: 54 year: 2016 ident: C8FO02118J-(cit47)/*[position()=1] publication-title: IBRO Rep. doi: 10.1016/j.ibror.2016.10.001 – volume: 83 start-page: 657 year: 2017 ident: C8FO02118J-(cit86)/*[position()=1] publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2017.11.033 – volume: 131 start-page: 289 year: 2017 ident: C8FO02118J-(cit57)/*[position()=1] publication-title: Behav. Neurosci. doi: 10.1037/bne0000203 – volume: 164 start-page: 208 year: 2016 ident: C8FO02118J-(cit20)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2015.11.038 – volume: 3 start-page: 869 year: 1992 ident: C8FO02118J-(cit51)/*[position()=1] publication-title: NeuroReport doi: 10.1097/00001756-199210000-00012 – volume: 298 start-page: 1248 year: 2002 ident: C8FO02118J-(cit30)/*[position()=1] publication-title: Science doi: 10.1126/science.1072699 – volume: 265 start-page: 48 year: 2015 ident: C8FO02118J-(cit97)/*[position()=1] publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2014.11.013 – volume: 6 start-page: a1805 year: 2015 ident: C8FO02118J-(cit7)/*[position()=1] publication-title: Front. Psychol. doi: 10.3389/fpsyg.2015.01805 – volume: 71 start-page: 196 year: 2013 ident: C8FO02118J-(cit81)/*[position()=1] publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.01.017 – volume: 32 start-page: 525 year: 1972 ident: C8FO02118J-(cit5)/*[position()=1] publication-title: Acta Neurobiol. Exp. – volume: 31 start-page: 17872 year: 2011 ident: C8FO02118J-(cit72)/*[position()=1] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3894-11.2011 – volume: 363 start-page: 413 year: 2019 ident: C8FO02118J-(cit74)/*[position()=1] publication-title: Science doi: 10.1126/science.aau8977 – volume: 525 start-page: 1234 year: 2016 ident: C8FO02118J-(cit44)/*[position()=1] publication-title: J. Comp. Neurol. doi: 10.1002/cne.24132 – volume: 139 start-page: 1026 year: 2016 ident: C8FO02118J-(cit108)/*[position()=1] publication-title: Brain doi: 10.1093/brain/aww022 – volume: 1 start-page: 172 year: 2009 ident: C8FO02118J-(cit87)/*[position()=1] publication-title: J. Neurodev. Disord. doi: 10.1007/s11689-009-9023-x – volume: 2018 start-page: 1 year: 2018 ident: C8FO02118J-(cit71)/*[position()=1] publication-title: Neural Plast. doi: 10.1155/2018/2108373 – volume: 27 start-page: 479 year: 1948 ident: C8FO02118J-(cit4)/*[position()=1] publication-title: Res. Publ. - Assoc. Res. Nerv. Ment. Dis. – volume: 31 start-page: 4771 year: 2011 ident: C8FO02118J-(cit70)/*[position()=1] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5923-10.2011 – volume: 6 start-page: e27868 year: 2017 ident: C8FO02118J-(cit21)/*[position()=1] publication-title: eLife doi: 10.7554/eLife.27868 – volume: 49 start-page: 15 year: 2016 ident: C8FO02118J-(cit106)/*[position()=1] publication-title: Biol. Res. doi: 10.1186/s40659-016-0075-6 – volume: 22 start-page: 961 year: 2017 ident: C8FO02118J-(cit13)/*[position()=1] publication-title: Mol. Psychiatry doi: 10.1038/mp.2016.193 – volume: 72 start-page: 132 year: 1970 ident: C8FO02118J-(cit6)/*[position()=1] publication-title: J. Comp. Physiol. Psychol. doi: 10.1037/h0029303 – volume-title: What's Wrong With My Mouse?: Behavioral Phenotyping of Transgenic and Knockout Mice year: 2000 ident: C8FO02118J-(cit39)/*[position()=1] – volume: 33 start-page: 3 year: 2007 ident: C8FO02118J-(cit59)/*[position()=1] publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1301544 – volume: 41 start-page: 2206 year: 2016 ident: C8FO02118J-(cit42)/*[position()=1] publication-title: Neuropsychopharmacology doi: 10.1038/npp.2016.24 – volume-title: The Rat Brain in Stereotaxic Coordinates year: 2007 ident: C8FO02118J-(cit41)/*[position()=1] – volume: 115 start-page: 201800171 year: 2018 ident: C8FO02118J-(cit14)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1800171115 – volume: 132 start-page: 146 year: 2004 ident: C8FO02118J-(cit60)/*[position()=1] publication-title: Mol. Brain Res. doi: 10.1016/j.molbrainres.2004.05.014 – volume: 214 start-page: 109 year: 2013 ident: C8FO02118J-(cit84)/*[position()=1] publication-title: Psychiatry Res., Neuroimaging doi: 10.1016/j.pscychresns.2013.06.004 – volume: 504 start-page: 272 year: 2013 ident: C8FO02118J-(cit22)/*[position()=1] publication-title: Nature doi: 10.1038/nature12866 – volume: 133 start-page: 2331 year: 2010 ident: C8FO02118J-(cit95)/*[position()=1] publication-title: Brain doi: 10.1093/brain/awq145 – volume: 12 start-page: 828 year: 2000 ident: C8FO02118J-(cit58)/*[position()=1] publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2000.00970.x – volume: 136 start-page: 127 year: 2016 ident: C8FO02118J-(cit17)/*[position()=1] publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2016.10.002 – volume: 35 start-page: 2120 year: 2010 ident: C8FO02118J-(cit104)/*[position()=1] publication-title: Neuropsychopharmacology doi: 10.1038/npp.2010.90 – volume: 17 start-page: 407 year: 2010 ident: C8FO02118J-(cit55)/*[position()=1] publication-title: Learn. Mem. doi: 10.1101/lm.1879610 – volume: 3 start-page: 469 year: 1999 ident: C8FO02118J-(cit3)/*[position()=1] publication-title: Trends Cognit. Sci. doi: 10.1016/S1364-6613(99)01399-6 – volume: 21 start-page: 353 year: 2011 ident: C8FO02118J-(cit92)/*[position()=1] publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2010.12.006 – volume: 47 start-page: 63 year: 2016 ident: C8FO02118J-(cit83)/*[position()=1] publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2016.07.010 – volume: 3 start-page: 287 year: 2004 ident: C8FO02118J-(cit40)/*[position()=1] publication-title: Genes, Brain Behav. doi: 10.1111/j.1601-1848.2004.00076.x – volume: 9 start-page: 671 year: 2012 ident: C8FO02118J-(cit52)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 171 start-page: 273 year: 2017 ident: C8FO02118J-(cit109)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2017.09.021 – volume: 3 start-page: 16 year: 2016 ident: C8FO02118J-(cit31)/*[position()=1] publication-title: eNeuro doi: 10.1523/ENEURO.0112-16.2016 – volume: 10 start-page: 138 year: 2000 ident: C8FO02118J-(cit94)/*[position()=1] publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(99)00047-1 – volume: 3 start-page: e0125 year: 2016 ident: C8FO02118J-(cit82)/*[position()=1] publication-title: eNeuro doi: 10.1523/ENEURO.0125-16.2016 – volume: 106 start-page: 1 year: 2013 ident: C8FO02118J-(cit36)/*[position()=1] publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2013.04.001 – volume: 33 start-page: 7057 year: 2013 ident: C8FO02118J-(cit96)/*[position()=1] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6267-11.2013 – volume: 22 start-page: 215 year: 2015 ident: C8FO02118J-(cit16)/*[position()=1] publication-title: Learn. Mem. doi: 10.1101/lm.038000.114 – volume: 32 start-page: 16496 year: 2012 ident: C8FO02118J-(cit73)/*[position()=1] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3475-12.2012 – volume: 24 start-page: 195 year: 2008 ident: C8FO02118J-(cit85)/*[position()=1] publication-title: Neurosci. Bull. doi: 10.1007/s12264-008-0109-3 – volume: 24 start-page: 8873 year: 2004 ident: C8FO02118J-(cit90)/*[position()=1] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2661-04.2004 – volume: 41 start-page: 835 year: 2015 ident: C8FO02118J-(cit101)/*[position()=1] publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbv065 – volume: 325 start-page: 1258 year: 2009 ident: C8FO02118J-(cit49)/*[position()=1] publication-title: Science doi: 10.1126/science.1174146 – volume: 10 start-page: a189 year: 2016 ident: C8FO02118J-(cit33)/*[position()=1] publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2016.00189 – volume: 526 start-page: 935 year: 2018 ident: C8FO02118J-(cit37)/*[position()=1] publication-title: J. Comp. Neurol. doi: 10.1002/cne.24381 – volume: 30 start-page: 1337 year: 2010 ident: C8FO02118J-(cit23)/*[position()=1] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3481-09.2010 – year: 2018 ident: C8FO02118J-(cit38)/*[position()=1] publication-title: Nutr. Neurosci. doi: 10.1080/1028415X.2018.1537169 – volume: 70 start-page: 434 year: 2011 ident: C8FO02118J-(cit66)/*[position()=1] publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2011.05.006 – volume: 5 start-page: 183 year: 1985 ident: C8FO02118J-(cit24)/*[position()=1] publication-title: Cell. Mol. Neurobiol. doi: 10.1007/BF00711092 – volume: 40 start-page: 237 year: 2017 ident: C8FO02118J-(cit99)/*[position()=1] publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.02.005 – volume: 20 start-page: 6225 year: 2000 ident: C8FO02118J-(cit77)/*[position()=1] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-16-06225.2000 – volume: 40 start-page: 9 year: 2014 ident: C8FO02118J-(cit10)/*[position()=1] publication-title: Brain, Behav., Immun. doi: 10.1016/j.bbi.2014.03.005 – volume: 22 start-page: 2095 year: 2012 ident: C8FO02118J-(cit11)/*[position()=1] publication-title: Hippocampus doi: 10.1002/hipo.22032 – volume: 35 start-page: 4092 year: 2015 ident: C8FO02118J-(cit12)/*[position()=1] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3122-14.2015 – volume: 2015 start-page: 1 year: 2015 ident: C8FO02118J-(cit26)/*[position()=1] publication-title: Neural Plast. doi: 10.1155/2015/256389 – volume: 61 start-page: 1109 year: 2011 ident: C8FO02118J-(cit61)/*[position()=1] publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.03.010 – volume: 163 start-page: 109 year: 1993 ident: C8FO02118J-(cit76)/*[position()=1] publication-title: Neurosci. Lett. doi: 10.1016/0304-3940(93)90241-C – volume: 23 start-page: 386 year: 2016 ident: C8FO02118J-(cit80)/*[position()=1] publication-title: Learn. Mem. doi: 10.1101/lm.042416.116 – volume: 12 start-page: 623 year: 2011 ident: C8FO02118J-(cit62)/*[position()=1] publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3111 – volume: 349 start-page: 147 year: 2012 ident: C8FO02118J-(cit28)/*[position()=1] publication-title: Cell Tissue Res. doi: 10.1007/s00441-012-1375-y – volume: 45 start-page: 1 year: 2014 ident: C8FO02118J-(cit35)/*[position()=1] publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2014.04.012 – volume: 110 start-page: 9130 year: 2013 ident: C8FO02118J-(cit68)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1300454110 – volume: 71 start-page: 1073 year: 2011 ident: C8FO02118J-(cit93)/*[position()=1] publication-title: Dev. Neurobiol. doi: 10.1002/dneu.20974 – volume: 37 start-page: 4883 year: 2017 ident: C8FO02118J-(cit75)/*[position()=1] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3325-16.2017 – volume: 343 start-page: 115 year: 2017 ident: C8FO02118J-(cit27)/*[position()=1] publication-title: Neuroscience doi: 10.1016/j.neuroscience.2016.11.035 – volume: 219 start-page: 395 year: 2014 ident: C8FO02118J-(cit56)/*[position()=1] publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0508-8 – volume: 2 start-page: 861 year: 1999 ident: C8FO02118J-(cit9)/*[position()=1] publication-title: Nat. Neurosci. doi: 10.1038/13158 – volume: 35 start-page: 57 year: 2012 ident: C8FO02118J-(cit18)/*[position()=1] publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.10.004 – volume: 67 start-page: 155 year: 2010 ident: C8FO02118J-(cit43)/*[position()=1] publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2009.196 – volume: 13 start-page: 801 year: 2003 ident: C8FO02118J-(cit91)/*[position()=1] publication-title: Hippocampus doi: 10.1002/hipo.10129 – volume: 69 start-page: 1212 year: 2014 ident: C8FO02118J-(cit100)/*[position()=1] publication-title: J. Gerontol., Ser. A doi: 10.1093/gerona/glt177 – volume: 24 start-page: 417 year: 2000 ident: C8FO02118J-(cit1)/*[position()=1] publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/S0149-7634(00)00014-2 – volume: 157 start-page: 13 year: 2016 ident: C8FO02118J-(cit79)/*[position()=1] publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2016.01.038 – volume: 9 start-page: eaah6733 year: 2017 ident: C8FO02118J-(cit88)/*[position()=1] publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aah6733 – volume: 20 start-page: 154 year: 2015 ident: C8FO02118J-(cit103)/*[position()=1] publication-title: Mol. Psychiatry doi: 10.1038/mp.2014.162 – volume: 57 start-page: 395 year: 2017 ident: C8FO02118J-(cit25)/*[position()=1] publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-160804 – volume: 497 start-page: 1 year: 2001 ident: C8FO02118J-(cit107)/*[position()=1] publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02437-1 – volume: 188 start-page: 63 year: 1993 ident: C8FO02118J-(cit65)/*[position()=1] publication-title: Anat. Embryol. doi: 10.1007/BF00191452 – volume: 8 start-page: 8344 year: 2018 ident: C8FO02118J-(cit78)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-26631-x – volume: 35 start-page: 878 year: 2011 ident: C8FO02118J-(cit102)/*[position()=1] publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2010.10.008 – volume: 256 start-page: 188 year: 2013 ident: C8FO02118J-(cit64)/*[position()=1] publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2013.08.020 – volume: 37 start-page: 1269 year: 2016 ident: C8FO02118J-(cit29)/*[position()=1] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2504-16.2016 – volume: 524 start-page: 1309 year: 2016 ident: C8FO02118J-(cit45)/*[position()=1] publication-title: J. Comp. Neurol. doi: 10.1002/cne.23965 – volume: 21 start-page: 450 year: 2015 ident: C8FO02118J-(cit19)/*[position()=1] publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2015.05.002 – volume: 23 start-page: 4353 year: 2009 ident: C8FO02118J-(cit98)/*[position()=1] publication-title: FASEB J. doi: 10.1096/fj.09-139691 – volume: 35 start-page: 4190 year: 2015 ident: C8FO02118J-(cit32)/*[position()=1] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3592-14.2015 – volume: 203 start-page: 45 year: 2001 ident: C8FO02118J-(cit48)/*[position()=1] publication-title: Anat. Embryol. doi: 10.1007/s004290000135 – volume: 31 start-page: 47 year: 1988 ident: C8FO02118J-(cit54)/*[position()=1] publication-title: Behav. Brain Res. doi: 10.1016/0166-4328(88)90157-X – volume: 74 start-page: 427 year: 2013 ident: C8FO02118J-(cit2)/*[position()=1] publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2013.05.007 – volume: 354 start-page: 99 year: 2013 ident: C8FO02118J-(cit34)/*[position()=1] publication-title: Cell Tissue Res. doi: 10.1007/s00441-013-1581-2 – volume: 13 start-page: 93 year: 2012 ident: C8FO02118J-(cit53)/*[position()=1] publication-title: Cogn. Process. doi: 10.1007/s10339-011-0430-z – volume: 53 start-page: 545 year: 2016 ident: C8FO02118J-(cit63)/*[position()=1] publication-title: Mol. Neurobiol. doi: 10.1007/s12035-014-9040-y – volume: 63 start-page: 268 year: 1985 ident: C8FO02118J-(cit46)/*[position()=1] publication-title: Can. J. Biochem. Cell Biol. doi: 10.1139/o85-039 |
SSID | ssj0000399898 |
Score | 2.3915124 |
Snippet | Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1985 |
SubjectTerms | Addictions adolescence Adolescents animal models Animals Brain Depletion Diet Diet, High-Fat - adverse effects Dietary Sugars - adverse effects Dietary Sugars - metabolism Emotional behavior Extracellular matrix Fluorescence GABAergic Neurons - cytology GABAergic Neurons - metabolism high carbohydrate diet High fat diet Humans Immunohistochemistry impulse control disorders Interneurons Interneurons - cytology Interneurons - metabolism Localization Memory Neuronal Plasticity Neurons Neuroplasticity obesity Organic chemistry Parvalbumin Parvalbumins - metabolism Pediatric Obesity - etiology Pediatric Obesity - metabolism Pediatric Obesity - physiopathology Pediatric Obesity - psychology Perineuronal nets Prefrontal cortex Prefrontal Cortex - cytology Prefrontal Cortex - metabolism Rats Rats, Sprague-Dawley Recognition Social Behavior Social interactions Sugar γ-Aminobutyric acid |
Title | A high-fat high-sugar diet in adolescent rats impairs social memory and alters chemical markers characteristic of atypical neuroplasticity and parvalbumin interneuron depletion in the medial prefrontal cortex |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30900711 https://www.proquest.com/docview/2210368597 https://www.proquest.com/docview/2196523578 https://www.proquest.com/docview/2253240380 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMetsb3wgvg1KAx0CISEqkB-tsljta2UaXQSaqW-RYlro6I1rdJUYvyPSPxJ3NlxnLEKDV6qyrXcqPepfbbvvsfYG9zG9jzuSkfEPHLCQAgn97Pc8T2eROjfJ9KnbOTP495oGp7Notne3s9W1NK2yt_zHzvzSv7HqtiGdqUs2X-wbDMoNuB7tC--ooXx9VY2HnRJbdiRuMlXbzbbr1nZnS-E0v23Yk1dNPNGJUQuyo05Jl9SjK1WX1JX5psuN-IBS4rZUQ1tNWcVMlBdrVUXpYO5RteborIrPcya6gzRkf-iUDIUpeqkom1J4tsGVdbpKmtcnUk_QUmUlJX43vaUhyS3TFzSytuOFvgiVPSqlktYXtljXlsL_WOWlwu6kbDxzANVM01Na_gb4EbB3kGNMn0Of7IinRVeX5TVJyGeutTRiZ96wvQp1Qg9zple23a0mRnfbZEdtqZvL9H1g26sK25Asqw8liv0ibz4m109TcTA-CIdTs_P08npbHKHHfh9dOX22cHgdPLpvDn0w2GoXicVPDTPZSRzg-SDHf66k3Rj54N-UGnq0yg_aHKf3as3MDDQND5ge6J4yDonyBy8hVpl9hLGpsjDI_ZrAIZSsJQCUQqLAiylQJRCTSloSkFTCogXaErBUAo1pXCdUlhJMJTCH5SqYVqUQotSaCilp0JKQVMKllLQlD5m0-Hp5Hjk1HVEHB4GvcqRQeTx0HOF9KWQWcCFdOdZngd53POwgdKzM5H3pZTo0oVyHggf195kHvAo4948OGT7xaoQTxmIiMso4jHuq_Iwc_0sDJM49yMhxdzt8azD3hnDpbwW2adaL5epCvYIkvQ4Hl4oI5912Oum71pLy-zsdWTsn9ZTzyb1fezVi6Ok32Gvmo9xYaDbvqwQqy32Ia1QJWb1lz5-pAQ5Y7fDnmi2mkcJ3IT2H16HHSJsTbOF9Nktvvo5u2v_qUdsvyq34gV68VX-sv5v_AYteAIn |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-fat+high-sugar+diet+in+adolescent+rats+impairs+social+memory+and+alters+chemical+markers+characteristic+of+atypical+neuroplasticity+and+parvalbumin+interneuron+depletion+in+the+medial+prefrontal+cortex&rft.jtitle=Food+%26+function&rft.au=Reichelt%2C+Amy+C&rft.au=Gibson%2C+Gabrielle+D&rft.au=Abbott%2C+Kirsten+N&rft.au=Hare%2C+Dominic+J&rft.date=2019-04-17&rft.issn=2042-650X&rft.eissn=2042-650X&rft.volume=10&rft.issue=4&rft.spage=1985&rft_id=info:doi/10.1039%2Fc8fo02118j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon |