Mixed-integer programming models for optimal constellation scheduling given cloud cover uncertainty
•We propose a simple and improved mixed-integer programming sensor scheduling model.•Stochastic variants proactively schedule against weighted cloud-cover scenarios.•Schedule utility is improved, using commercial solvers, over deterministic models.•Schedules resilient to uncertain weather are produc...
        Saved in:
      
    
          | Published in | European journal of operational research Vol. 275; no. 2; pp. 431 - 445 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier B.V
    
        01.06.2019
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0377-2217 1872-6860 1872-6860  | 
| DOI | 10.1016/j.ejor.2018.11.043 | 
Cover
| Abstract | •We propose a simple and improved mixed-integer programming sensor scheduling model.•Stochastic variants proactively schedule against weighted cloud-cover scenarios.•Schedule utility is improved, using commercial solvers, over deterministic models.•Schedules resilient to uncertain weather are produced within operational run times.
We consider the problem of scheduling observations on a constellation of remote sensors, to maximize the aggregate quality of the collections obtained. While automated tools exist to schedule remote sensors, they are often based on heuristic scheduling techniques, which typically fail to provide bounds on the quality of the resultant schedules. To address this issue, we first introduce a novel deterministic mixed-integer programming (MIP) model for scheduling a constellation of one to n satellites, which relies on extensive pre-computations associated with orbital propagators and sensor collection simulators to mitigate model size and complexity. Our MIP model captures realistic and complex constellation-target geometries, with solutions providing optimality guarantees. We then extend our base deterministic MIP model to obtain two-stage and three-stage stochastic MIP models that proactively schedule to maximize expected collection quality across a set of scenarios representing cloud cover uncertainty. Our experimental results on instances of one and two satellites demonstrate that our stochastic MIP models yield significantly improved collection quality relative to our base deterministic MIP model. We further demonstrate that commercial off-the-shelf MIP solvers can produce provably optimal or near-optimal schedules from these models in time frames suitable for sensor operations. | 
    
|---|---|
| AbstractList | We introduce the problem of scheduling observations on a constellation of remote sensors, to maximize the aggregate quality of the collections obtained. While automated tools exist to schedule remote sensors, they are often based on heuristic scheduling techniques, which typically fail to provide bounds on the quality of the resultant schedules. To address this issue, we first introduce a novel deterministic mixed-integer programming (MIP) model for scheduling a constellation of one to n satellites, which relies on extensive pre-computations associated with orbital propagators and sensor collection simulators to mitigate model size and complexity. Our MIP model captures realistic and complex constellation-target geometries, with solutions providing optimality guarantees. We then extend our base deterministic MIP model to obtain two-stage and three-stage stochastic MIP models that proactively schedule to maximize expected collection quality across a set of scenarios representing cloud cover uncertainty. Our experimental conclusions on instances of one and two satellites demonstrate that our stochastic MIP models yield significantly improved collection quality relative to our base deterministic MIP model. We further demonstrate that commercial off-the-shelf MIP solvers can produce provably optimal or near-optimal schedules from these models in time frames suitable for sensor operations. •We propose a simple and improved mixed-integer programming sensor scheduling model.•Stochastic variants proactively schedule against weighted cloud-cover scenarios.•Schedule utility is improved, using commercial solvers, over deterministic models.•Schedules resilient to uncertain weather are produced within operational run times. We consider the problem of scheduling observations on a constellation of remote sensors, to maximize the aggregate quality of the collections obtained. While automated tools exist to schedule remote sensors, they are often based on heuristic scheduling techniques, which typically fail to provide bounds on the quality of the resultant schedules. To address this issue, we first introduce a novel deterministic mixed-integer programming (MIP) model for scheduling a constellation of one to n satellites, which relies on extensive pre-computations associated with orbital propagators and sensor collection simulators to mitigate model size and complexity. Our MIP model captures realistic and complex constellation-target geometries, with solutions providing optimality guarantees. We then extend our base deterministic MIP model to obtain two-stage and three-stage stochastic MIP models that proactively schedule to maximize expected collection quality across a set of scenarios representing cloud cover uncertainty. Our experimental results on instances of one and two satellites demonstrate that our stochastic MIP models yield significantly improved collection quality relative to our base deterministic MIP model. We further demonstrate that commercial off-the-shelf MIP solvers can produce provably optimal or near-optimal schedules from these models in time frames suitable for sensor operations.  | 
    
| Author | Hackebeil, Gabriel Ntaimo, Lewis Staid, Andrea Valicka, Christopher G. Rathinam, Sivakumar Garcia, Deanna Watson, Jean-Paul  | 
    
| Author_xml | – sequence: 1 givenname: Christopher G. orcidid: 0000-0001-9849-1765 surname: Valicka fullname: Valicka, Christopher G. email: cgvalic@sandia.gov organization: Sandia National Laboratories, Albuquerque, NM, USA – sequence: 2 givenname: Deanna surname: Garcia fullname: Garcia, Deanna organization: Sandia National Laboratories, Albuquerque, NM, USA – sequence: 3 givenname: Andrea surname: Staid fullname: Staid, Andrea organization: Sandia National Laboratories, Albuquerque, NM, USA – sequence: 4 givenname: Jean-Paul surname: Watson fullname: Watson, Jean-Paul organization: Sandia National Laboratories, Albuquerque, NM, USA – sequence: 5 givenname: Gabriel surname: Hackebeil fullname: Hackebeil, Gabriel organization: The University of Michigan, Ann Arbor, MI, USA – sequence: 6 givenname: Sivakumar surname: Rathinam fullname: Rathinam, Sivakumar organization: Texas A&M University, College Station, TX, USA – sequence: 7 givenname: Lewis orcidid: 0000-0002-9114-5170 surname: Ntaimo fullname: Ntaimo, Lewis organization: Texas A&M University, College Station, TX, USA  | 
    
| BackLink | https://www.osti.gov/servlets/purl/1524209$$D View this record in Osti.gov | 
    
| BookMark | eNqNkU1rGzEQhkVJoM7HH8hp6X03Gu2HVeilhDYpJPTSnIU8ml3LyJKRZLf-99HWPeVgCgJd3udl5pkrduGDJ8bugDfAYbjfNLQJsREcZAPQ8K79wBYgl6Ie5MAv2IK3y2UtBCw_squUNpxz6KFfMHyxf8jU1meaKFa7GKaot1vrp2obDLlUjSFWYZftVrsKg0-ZnNPZBl8lXJPZuzk72QP5Cl3YmxI6lKa9R4pZl-LjDbsctUt0---_Zq_fv_16eKqffz7-ePj6XGPXDrk2WkhEWvUdcqmHQep2JVYj6B6IpICxPOzFYBC1HBGN6LpRaiybyFFQ316z9tS79zt9_K2dU7tY5o5HBVzNntRGzZ7U7EkBqOKpUJ9OVEjZqoQ2E67Lop4wK-hFJ_jnEhKnEMaQUqTx_5rlO6iU_1WXo7buPPrlhJYL0MFSnAejotTYOM9lgj2HvwEPxaZq | 
    
| CitedBy_id | crossref_primary_10_1109_TAES_2022_3146115 crossref_primary_10_1016_j_asoc_2021_107607 crossref_primary_10_1016_j_asr_2020_08_032 crossref_primary_10_1109_ACCESS_2019_2925704 crossref_primary_10_1109_JSTARS_2021_3135529 crossref_primary_10_1016_j_aei_2024_102915 crossref_primary_10_1016_j_swevo_2021_100928 crossref_primary_10_3390_s25061707 crossref_primary_10_1117_1_JATIS_5_3_037001 crossref_primary_10_1007_s10291_022_01295_3 crossref_primary_10_1109_TAES_2023_3344397 crossref_primary_10_1016_j_cor_2024_106875 crossref_primary_10_1016_j_asr_2022_07_007 crossref_primary_10_1155_2021_7819105 crossref_primary_10_1109_ACCESS_2024_3366454 crossref_primary_10_1007_s42524_023_0263_3 crossref_primary_10_1016_j_cie_2021_107292 crossref_primary_10_1287_ijoc_2023_1287 crossref_primary_10_3390_rs15225388 crossref_primary_10_1007_s40295_023_00381_z crossref_primary_10_1007_s10696_022_09444_z crossref_primary_10_1016_j_swevo_2024_101792 crossref_primary_10_1109_TAES_2023_3312626 crossref_primary_10_1109_ACCESS_2020_3040748 crossref_primary_10_1109_TSMC_2022_3220534 crossref_primary_10_3390_electronics13122374 crossref_primary_10_1016_j_asr_2024_06_067 crossref_primary_10_1109_JSYST_2020_2997050 crossref_primary_10_1109_TAES_2024_3379169 crossref_primary_10_1109_TSMC_2023_3345928 crossref_primary_10_1109_JSYST_2019_2961236 crossref_primary_10_1016_j_aei_2024_102362 crossref_primary_10_2514_1_A35736 crossref_primary_10_3390_aerospace11080643 crossref_primary_10_3390_rs15071761 crossref_primary_10_3390_rs13122377 crossref_primary_10_1016_j_eswa_2025_126771  | 
    
| Cites_doi | 10.1016/j.cor.2016.04.014 10.1007/s12532-012-0036-1 10.1287/opre.1090.0693 10.1007/s10287-010-0125-4 10.1016/j.ejor.2009.07.037 10.1007/s10898-011-9817-8 10.1155/2013/304047 10.1007/s12532-010-0019-z 10.1109/TSMCC.2007.900668 10.1364/AO.36.006895 10.1023/B:JOSH.0000013053.32600.3c 10.1287/moor.16.1.119 10.1155/2012/717658 10.1287/mnsc.46.1.148.15134 10.1287/ijoc.12.2.111.11896  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2018 Elsevier B.V. | 
    
| CorporateAuthor | Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) | 
    
| CorporateAuthor_xml | – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) | 
    
| DBID | AAYXX CITATION OIOZB OTOTI ADTOC UNPAY  | 
    
| DOI | 10.1016/j.ejor.2018.11.043 | 
    
| DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science Business  | 
    
| EISSN | 1872-6860 | 
    
| EndPage | 445 | 
    
| ExternalDocumentID | oai:osti.gov:1524209 1524209 10_1016_j_ejor_2018_11_043 S0377221718309846  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD AALMO AAPBV ABPIF ABQIS OIOZB OTOTI PQEST ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c436t-da28cceb54c08a668a3b2bf1a51ee821f21fc526dcca8fccd244f8ac0158f2e53 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0377-2217 1872-6860  | 
    
| IngestDate | Sun Oct 26 02:39:36 EDT 2025 Fri May 19 01:47:11 EDT 2023 Thu Oct 09 00:50:11 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 23 02:17:45 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Integer programming Scheduling Weather uncertainty Remote sensing Stochastic programming  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c436t-da28cceb54c08a668a3b2bf1a51ee821f21fc526dcca8fccd244f8ac0158f2e53 | 
    
| Notes | AC04-94AL85000; NA0003525 SAND-2016-9028J USDOE National Nuclear Security Administration (NNSA)  | 
    
| ORCID | 0000-0002-9114-5170 0000-0001-9849-1765 0000000198491765 0000000291145170  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1524209 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_ejor_2018_11_043 osti_scitechconnect_1524209 crossref_primary_10_1016_j_ejor_2018_11_043 crossref_citationtrail_10_1016_j_ejor_2018_11_043 elsevier_sciencedirect_doi_10_1016_j_ejor_2018_11_043  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-06-01 | 
    
| PublicationDateYYYYMMDD | 2019-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | European journal of operational research | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | A. G. Inc. (2018). Systems tool kit (STK). (Accessed: October 31 2018) Wang, Xu, Wang, Li (bib0019) 2009; Vol. 2 Niamsuwan, Tanelli, Johnson, Jacob (bib0012) 2012 Peng, Wen, Feng, Baocun, Jing (bib0015) 2011 Rockafellar, Wets (bib0017) 1991 Frank, Jónsson, Morris, Smith (bib0007) 2001 Wang, Demeulemeester, Qiu (bib0020) 2016; 74 Watson, Woodruff (bib0021) 2011; 8 Watson, Woodruff, Hart (bib0022) 2012; 4 Liao, Yang (bib0010) 2007; 37 Ntaimo (bib0013) 2010; 58 Pessoa, Uchoa, de Aragão, Rodrigues (bib0016) 2010; 2 Weinreb, Jamieson, Fulton, Chen, Johnson, Bremer (bib0023) 1997; 36 Globus, Crawford, Lohn, Pryor (bib0008) 2004 Hart, Laird, Watson, Woodruff (bib0009) 2012; Vol. 67 Mak, Morton, Wood (bib0011) 1999; 24 Ntaimo (bib0014) 2013; 55 . van den Akker, Hurkens, Savelsbergh (bib0002) 2000; 12 Birge, Louveaux (bib0005) 1997 (bib0018) 2003; vol. 10 Dishan, Chuan, Jin, Manhao (bib0006) 2013; 2013 Barbulescu, Watson, Whitley, Howe (bib0004) 2004; 7 Baptiste, Sadykov (bib0003) 2010; 203 Xhafa, Sun, Barolli, Biberaj, Barolli (bib0026) 2012; 8 Wolfe, Sorensen (bib0024) 2000; 46 Wolsey (bib0025) 1998 Watson (10.1016/j.ejor.2018.11.043_bib0022) 2012; 4 Barbulescu (10.1016/j.ejor.2018.11.043_bib0004) 2004; 7 (10.1016/j.ejor.2018.11.043_bib0018) 2003; vol. 10 Ntaimo (10.1016/j.ejor.2018.11.043_bib0014) 2013; 55 Wolsey (10.1016/j.ejor.2018.11.043_bib0025) 1998 Liao (10.1016/j.ejor.2018.11.043_bib0010) 2007; 37 Watson (10.1016/j.ejor.2018.11.043_bib0021) 2011; 8 Baptiste (10.1016/j.ejor.2018.11.043_sbref0002) 2010; 203 Weinreb (10.1016/j.ejor.2018.11.043_bib0023) 1997; 36 van den Akker (10.1016/j.ejor.2018.11.043_bib0002) 2000; 12 Niamsuwan (10.1016/j.ejor.2018.11.043_bib0012) 2012 Dishan (10.1016/j.ejor.2018.11.043_bib0006) 2013; 2013 Ntaimo (10.1016/j.ejor.2018.11.043_bib0013) 2010; 58 Peng (10.1016/j.ejor.2018.11.043_bib0015) 2011 10.1016/j.ejor.2018.11.043_bib0001 Birge (10.1016/j.ejor.2018.11.043_bib0005) 1997 Hart (10.1016/j.ejor.2018.11.043_bib0009) 2012; Vol. 67 Pessoa (10.1016/j.ejor.2018.11.043_bib0016) 2010; 2 Xhafa (10.1016/j.ejor.2018.11.043_bib0026) 2012; 8 Wang (10.1016/j.ejor.2018.11.043_sbref0019) 2016; 74 Rockafellar (10.1016/j.ejor.2018.11.043_bib0017) 1991 Wolfe (10.1016/j.ejor.2018.11.043_bib0024) 2000; 46 Wang (10.1016/j.ejor.2018.11.043_bib0019) 2009; Vol. 2 Mak (10.1016/j.ejor.2018.11.043_bib0011) 1999; 24 Frank (10.1016/j.ejor.2018.11.043_bib0007) 2001 Globus (10.1016/j.ejor.2018.11.043_bib0008) 2004  | 
    
| References_xml | – volume: 2 start-page: 259 year: 2010 end-page: 290 ident: bib0016 article-title: Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems publication-title: Mathematical Programming Computation – volume: 203 start-page: 476 year: 2010 end-page: 483 ident: bib0003 article-title: Time-indexed formulations for scheduling chains on a single machine: An application to airborne radars publication-title: European Journal of Operational Research – volume: 46 start-page: 148 year: 2000 end-page: 166 ident: bib0024 article-title: Three scheduling algorithms applied to the earth observing systems domain publication-title: Management Science – volume: 37 start-page: 794 year: 2007 end-page: 802 ident: bib0010 article-title: Imaging order scheduling of an earth observation satellite publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – year: 1998 ident: bib0025 article-title: Integer Programming – volume: 58 start-page: 229 year: 2010 end-page: 243 ident: bib0013 article-title: Disjunctive decomposition for two-stage stochastic mixed-binary programs with random recourse publication-title: Operations Research – volume: 8 year: 2011 ident: bib0021 article-title: Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems publication-title: Computational Management Science – volume: 74 start-page: 1 year: 2016 end-page: 13 ident: bib0020 article-title: A pure proactive scheduling algorithm for multiple earth observation satellites under uncertainties of clouds publication-title: Computers & Operations Research – volume: 8 start-page: 351 year: 2012 end-page: 377 ident: bib0026 article-title: Genetic algorithms for satellite scheduling problems publication-title: Mobile Information Systems – volume: 24 start-page: 47 year: 1999 end-page: 56 ident: bib0011 article-title: Monte Carlo bounding techniques for determining solution quality in stochastic programs publication-title: Annals of Operations Research – volume: 2013 year: 2013 ident: bib0006 article-title: A dynamic scheduling method of earth-observing satellites by employing rolling horizon strategy publication-title: The Scientific World Journal – volume: Vol. 67 year: 2012 ident: bib0009 article-title: Pyomo–optimization modeling in python – volume: 55 start-page: 141 year: 2013 end-page: 163 ident: bib0014 article-title: Fenchel decomposition for stochastic mixed-integer programming publication-title: Journal of Global Optimization – start-page: 836 year: 2004 end-page: 843 ident: bib0008 article-title: A comparison of techniques for scheduling earth observing satellites publication-title: Proceedings of the 2004 national conference on artificial intelligence – volume: Vol. 2 start-page: 245 year: 2009 end-page: 249 ident: bib0019 article-title: Scheduling earth observing satellites with hybrid ant colony optimization algorithm publication-title: Procedings of the international conference on artificial intelligence and computational intelligence, AICI ’09 – volume: 36 start-page: 6895 year: 1997 end-page: 6904 ident: bib0023 article-title: Operational calibration of geostationary operational environmental satellite-8 and-9 imagers and sounders publication-title: Applied Optics – volume: 12 start-page: 111 year: 2000 end-page: 124 ident: bib0002 article-title: Time-indexed formulations for machine scheduling problems: Column generation publication-title: INFORMS Journal on Computing – year: 2012 ident: bib0012 article-title: Development of nasa earth observing system simulator suite (neos3) publication-title: Proceedings of the Agu fall meeting abstracts – start-page: 547 year: 2011 end-page: 552 ident: bib0015 article-title: Simulated annealing algorithm for EOS scheduling problem with task merging publication-title: Proceedings of 2011 international conference on modelling, identification and control (ICMIC) – reference: A. G. Inc. (2018). Systems tool kit (STK). (Accessed: October 31 2018), – reference: . – start-page: 119 year: 1991 end-page: 147 ident: bib0017 article-title: Scenarios and policy aggregation in optimization under uncertainty publication-title: Mathematics of Operations Research – volume: 7 start-page: 7 year: 2004 end-page: 34 ident: bib0004 article-title: Scheduling space–ground communications for the air force satellite control network publication-title: Journal of Scheduling – volume: 4 year: 2012 ident: bib0022 article-title: Pysp: Modeling and solving stochastic programs in Python publication-title: Mathematical Programming Computation – volume: vol. 10 year: 2003 ident: bib0018 publication-title: Stochastic programming – year: 1997 ident: bib0005 article-title: Introduction to stochastic programming – year: 2001 ident: bib0007 article-title: Planning and scheduling for fleets of earth observing satellites publication-title: Proceedings of sixth international symposium on artificial intelligence, robotics, automation & space – volume: Vol. 67 year: 2012 ident: 10.1016/j.ejor.2018.11.043_bib0009 – volume: 74 start-page: 1 year: 2016 ident: 10.1016/j.ejor.2018.11.043_sbref0019 article-title: A pure proactive scheduling algorithm for multiple earth observation satellites under uncertainties of clouds publication-title: Computers & Operations Research doi: 10.1016/j.cor.2016.04.014 – start-page: 836 year: 2004 ident: 10.1016/j.ejor.2018.11.043_bib0008 article-title: A comparison of techniques for scheduling earth observing satellites – year: 2012 ident: 10.1016/j.ejor.2018.11.043_bib0012 article-title: Development of nasa earth observing system simulator suite (neos3) – volume: 4 issue: 2 year: 2012 ident: 10.1016/j.ejor.2018.11.043_bib0022 article-title: Pysp: Modeling and solving stochastic programs in Python publication-title: Mathematical Programming Computation doi: 10.1007/s12532-012-0036-1 – volume: 58 start-page: 229 year: 2010 ident: 10.1016/j.ejor.2018.11.043_bib0013 article-title: Disjunctive decomposition for two-stage stochastic mixed-binary programs with random recourse publication-title: Operations Research doi: 10.1287/opre.1090.0693 – volume: vol. 10 year: 2003 ident: 10.1016/j.ejor.2018.11.043_bib0018 – volume: 8 issue: 4 year: 2011 ident: 10.1016/j.ejor.2018.11.043_bib0021 article-title: Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems publication-title: Computational Management Science doi: 10.1007/s10287-010-0125-4 – year: 1997 ident: 10.1016/j.ejor.2018.11.043_bib0005 – volume: 203 start-page: 476 issue: 2 year: 2010 ident: 10.1016/j.ejor.2018.11.043_sbref0002 article-title: Time-indexed formulations for scheduling chains on a single machine: An application to airborne radars publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2009.07.037 – volume: 55 start-page: 141 year: 2013 ident: 10.1016/j.ejor.2018.11.043_bib0014 article-title: Fenchel decomposition for stochastic mixed-integer programming publication-title: Journal of Global Optimization doi: 10.1007/s10898-011-9817-8 – volume: 2013 year: 2013 ident: 10.1016/j.ejor.2018.11.043_bib0006 article-title: A dynamic scheduling method of earth-observing satellites by employing rolling horizon strategy publication-title: The Scientific World Journal doi: 10.1155/2013/304047 – volume: 2 start-page: 259 issue: 3 year: 2010 ident: 10.1016/j.ejor.2018.11.043_bib0016 article-title: Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems publication-title: Mathematical Programming Computation doi: 10.1007/s12532-010-0019-z – volume: 37 start-page: 794 issue: 5 year: 2007 ident: 10.1016/j.ejor.2018.11.043_bib0010 article-title: Imaging order scheduling of an earth observation satellite publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2007.900668 – volume: Vol. 2 start-page: 245 year: 2009 ident: 10.1016/j.ejor.2018.11.043_bib0019 article-title: Scheduling earth observing satellites with hybrid ant colony optimization algorithm – volume: 36 start-page: 6895 issue: 27 year: 1997 ident: 10.1016/j.ejor.2018.11.043_bib0023 article-title: Operational calibration of geostationary operational environmental satellite-8 and-9 imagers and sounders publication-title: Applied Optics doi: 10.1364/AO.36.006895 – volume: 7 start-page: 7 issue: 1 year: 2004 ident: 10.1016/j.ejor.2018.11.043_bib0004 article-title: Scheduling space–ground communications for the air force satellite control network publication-title: Journal of Scheduling doi: 10.1023/B:JOSH.0000013053.32600.3c – year: 1998 ident: 10.1016/j.ejor.2018.11.043_bib0025 – start-page: 119 year: 1991 ident: 10.1016/j.ejor.2018.11.043_bib0017 article-title: Scenarios and policy aggregation in optimization under uncertainty publication-title: Mathematics of Operations Research doi: 10.1287/moor.16.1.119 – volume: 8 start-page: 351 issue: 4 year: 2012 ident: 10.1016/j.ejor.2018.11.043_bib0026 article-title: Genetic algorithms for satellite scheduling problems publication-title: Mobile Information Systems doi: 10.1155/2012/717658 – year: 2001 ident: 10.1016/j.ejor.2018.11.043_bib0007 article-title: Planning and scheduling for fleets of earth observing satellites – volume: 24 start-page: 47 issue: 1–2 year: 1999 ident: 10.1016/j.ejor.2018.11.043_bib0011 article-title: Monte Carlo bounding techniques for determining solution quality in stochastic programs publication-title: Annals of Operations Research – start-page: 547 year: 2011 ident: 10.1016/j.ejor.2018.11.043_bib0015 article-title: Simulated annealing algorithm for EOS scheduling problem with task merging – ident: 10.1016/j.ejor.2018.11.043_bib0001 – volume: 46 start-page: 148 issue: 1 year: 2000 ident: 10.1016/j.ejor.2018.11.043_bib0024 article-title: Three scheduling algorithms applied to the earth observing systems domain publication-title: Management Science doi: 10.1287/mnsc.46.1.148.15134 – volume: 12 start-page: 111 issue: 2 year: 2000 ident: 10.1016/j.ejor.2018.11.043_bib0002 article-title: Time-indexed formulations for machine scheduling problems: Column generation publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.12.2.111.11896  | 
    
| SSID | ssj0001515 | 
    
| Score | 2.5362456 | 
    
| Snippet | •We propose a simple and improved mixed-integer programming sensor scheduling model.•Stochastic variants proactively schedule against weighted cloud-cover... We introduce the problem of scheduling observations on a constellation of remote sensors, to maximize the aggregate quality of the collections obtained. While...  | 
    
| SourceID | unpaywall osti crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 431 | 
    
| SubjectTerms | Integer programming OTHER INSTRUMENTATION Remote sensing Scheduling Stochastic programming Weather uncertainty  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLbQHHgcFhh2xfBSDnuDMk2bpukRIRBCggsgcataN0GDhukIZsRy2d--dpsCewAhpF7a2moUJ_YX9bMN8Dt1FOVtqYIwTcNAlSkGZakIyLkoc5JBu-J854tLfXajzm-T2wU47nJhmFbpfX_r0xtv7Z8M_WwOp6PR8CqMCRkSoqZFGWYURjmDXaXcxeDw7xvNgwN28ychTQOW9okzLcfL3tdcE1SaQ67kqeKPglOvpv22AkvzybR4eS7G43cx6HQNfnjwKI7a8a3Dgp30YbHjrvdhtevRIPyW7cPKu4KDG4AXoz-2CpoaESTlyVkP9E40LXGeBGFYUZMbeaDvIGNHZkex8QQdgykscfa6uGMXKXBczysSos0gKDq23ILZy0-4OT25Pj4LfJuFAFWsZ0FVRAbRlonC0BRamyIuo9LJIpHWmkg6ujCJdEXGNg6xIkTgTIE0tcZFNol_QW9ST-wmCAJXqJxGY3VFSBC563qFzmSy0lJqHIDs5jdHX4OcW2GM845sdp-zTXK2CR1OcrLJAPZfdaZtBY5PpZPObPl_6yinEPGp3jbbmHW4eC4yy4iUCN2oKMwGcPBq-i8MYuubg9iGZbrLWibaDvRmj3O7S5hnVu41i_ofBQUAiQ priority: 102 providerName: Elsevier  | 
    
| Title | Mixed-integer programming models for optimal constellation scheduling given cloud cover uncertainty | 
    
| URI | https://dx.doi.org/10.1016/j.ejor.2018.11.043 https://www.osti.gov/servlets/purl/1524209 https://www.osti.gov/biblio/1524209  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 275 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIKHN dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: ACRLP dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NVgL2wKCAVgaVJXiDlNp1HPexAqYCWsUDlcZTFF9s1JE100gF44G_nbv8mCYkBkh5iXKWE93Z91n57juAZ0mgLO-djiZJMom0SzByThOQC2oWJIN2zfXOR0uzWOl3x_HxDjztamGYVllScNecSrd2xbp8SSlGKy7S65uYAHcP-qvlh_mn-v9AkkRK1X11pU1UZKyZtKUxDYvLn5Ss-intmLU69fRP6afHk-7Cre3mLLv4lhXFlSxzuAevu_dryCVfxtvKjfHHb9KNf_mAu3CnRZli3oTFPdjxmwHc7EjuA9jrmjmIdm0PYPeKMuF9wKP1d59HtZgEWbUsrlN6JureOV8FgV1R0n5zSvMgg0ymUbGXBZ2XKX9xmbv4zHupwKLc5mREq0ZQGm1ICNXFA1gdvvn4ahG1_Rgi1FNTRXmmLKJ3scaJzYyx2dQpF2QWS--tkoEujJXJKSpsQMwJOgSbISEOG5SPpw-htyk3fh8EoTDUwaD1JifIiNyePcdgZzI3UhocguzclGIrVs49M4q0Y6WdpOzalF1Lp5iUXDuE55djzhqpjmut4877aQs2GhCRUi65dtwBu5fHsMouMh2JBrUuHsKLywj6h5d49H_mB3Cb7mYNU-0x9KrzrX9CmKhyI7gx_ilH0J-_fb9YjtoV8gu7rw3_ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3RRSpwaOm2qFv64QO3NmycOI5zrFDR0rJcAIlblEzsatGyWcGuChd-e2cSh8KhCCHlFM8olseeeVbezADspI6ivC1VEKZpGKgyxaAsFQE5F2VOMmhXnO88PtKjU_XzLDlbgb0uF4Zpld73tz698db-zdCv5nA-mQyPw5iQISFq2pRhRmH0BayqJEr5BrZ7-4_nwRG7-ZWQpgGL-8yZluRlz2suCirNLpfyVPH_olOvpgO3AWvL2by4-VNMp_eC0P4mvPLoUXxvJ_gGVuysDy878nofXndNGoQ_s33YuFdx8C3geHJtq6ApEkFSnp11QWOi6YlzJQjEipr8yAV9Bxk8Mj2KrSfoHkxxidPXxW_2kQKn9bIiIToNgsJjSy5Y3LyD0_0fJ3ujwPdZCFDFehFURWQQbZkoDE2htSniMiqdLBJprYmkoweTSFdkbeMQK4IEzhRIS2tcZJN4C3qzembfgyB0hcppNFZXBAWR265X6EwmKy2lxgHIbn1z9EXIuRfGNO_YZuc52yRnm9DtJCebDODrnc68LcHxqHTSmS1_sJFyihGP6m2zjVmHq-ci04xIieCNisJsAN_uTP-ESXx45iS-wNroZHyYHx4c_dqGdRrJWlraR-gtLpf2EwGgRfm52eB_AfVhA6w | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEB7KFdQ-WD0Vz6os6Jvuebu32ew9FrUUocUHD-pTyE525dr0UjSH1l_vTLIpRbAq5CVklk2Y2Z1vyTffALzMI2X54I2c5flMGp-j9N4QkIt6ERWDdsP1zkfH9nBpPpxkJ1vwYqiFYVplQ8HdcSr9yter5g2lGKO5SG_bZgS4R7C9PP64_7n7P5DnUuuur65yuZbW2VkqjelZXOG0YdVP5aas1Wnmf0o_I550B25v1hfl5feyrq9lmYNdeDe8X08uOZtuWj_Fn79JN_7lA-7B3YQyxX4fFvdhK6zHcGsguY9hd2jmINLaHsPONWXCB4BHqx-hkp2YBFklFtc5PRNd75xvgsCuaGi_Oad5kEEm06jYy4LOy5S_uMxdfOG9VGDdbCoyolUjKI32JIT28iEsD95_ensoUz8GiWZuW1mV2iEGnxmcudJaV8699lGVmQrBaRXpwkzbiqLCRcSKoEN0JRLicFGHbP4IRutmHR6DIBSGJlp0wVYEGZHbs1cY3UJVVimLE1CDmwpMYuXcM6MuBlbaacGuLdi1dIopyLUTeHU15qKX6rjROhu8XySw0YOIgnLJjeP22L08hlV2kelINCi5eAKvryLoH17iyf-Z78Edulv0TLWnMGq_bsIzwkStf57WxC8PCAtz | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed-integer+programming+models+for+optimal+constellation+scheduling+given+cloud+cover+uncertainty&rft.jtitle=European+journal+of+operational+research&rft.au=Valicka%2C+Christopher+G.&rft.au=Garcia%2C+Deanna&rft.au=Staid%2C+Andrea&rft.au=Watson%2C+Jean-Paul&rft.date=2019-06-01&rft.issn=0377-2217&rft.volume=275&rft.issue=2&rft.spage=431&rft.epage=445&rft_id=info:doi/10.1016%2Fj.ejor.2018.11.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2018_11_043 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |