TREGO: a trust-region framework for efficient global optimization
Efficient global optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale with dimension, and offers limited theoretical guarantees. In this work, a t...
        Saved in:
      
    
          | Published in | Journal of global optimization Vol. 86; no. 1; pp. 1 - 23 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.05.2023
     Springer Springer Nature B.V Springer Verlag  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0925-5001 1573-2916 1573-2916  | 
| DOI | 10.1007/s10898-022-01245-w | 
Cover
| Abstract | Efficient global optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale with dimension, and offers limited theoretical guarantees. In this work, a trust-region framework for EGO (TREGO) is proposed and analyzed. TREGO alternates between regular EGO steps and local steps within a trust region. By following a classical scheme for the trust region (based on a sufficient decrease condition), the proposed algorithm enjoys global convergence properties, while departing from EGO only for a subset of optimization steps. Using extensive numerical experiments based on the well-known COCO bound constrained problems, we first analyze the sensitivity of TREGO to its own parameters, then show that the resulting algorithm is consistently outperforming EGO and getting competitive with other state-of-the-art black-box optimization methods. | 
    
|---|---|
| AbstractList | Efficient global optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale with dimension, and offers limited theoretical guarantees. In this work, a trust-region framework for EGO (TREGO) is proposed and analyzed. TREGO alternates between regular EGO steps and local steps within a trust region. By following a classical scheme for the trust region (based on a sufficient decrease condition), the proposed algorithm enjoys global convergence properties, while departing from EGO only for a subset of optimization steps. Using extensive numerical experiments based on the well-known COCO bound constrained problems, we first analyze the sensitivity of TREGO to its own parameters, then show that the resulting algorithm is consistently outperforming EGO and getting competitive with other state-of-the-art black-box optimization methods. Efficient Global Optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale with dimension, and offers limited theoretical guarantees. In this work, we propose and analyze a trust-region-like EGO method (TREGO). TREGO alternates between regular EGO steps and local steps within a trust region. By following a classical scheme for the trust region (based on a sufficient decrease condition), we demonstrate that our algorithm enjoys strong global convergence properties, while departing from EGO only for a subset of optimization steps. Using extensive numerical experiments based on the well-known COCO benchmark, we first analyze the sensitivity of TREGO to its own parameters, then show that the resulting algorithm is consistently outperforming EGO and getting competitive with other state-of-the-art global optimization methods. The method is available both in the R package DiceOptim 1 and python library trieste 2 .  | 
    
| Audience | Academic | 
    
| Author | Perrotolo, Alexandre Scotto Di Diouane, Youssef Riche, Rodolophe Le Picheny, Victor  | 
    
| Author_xml | – sequence: 1 givenname: Youssef orcidid: 0000-0002-6609-7330 surname: Diouane fullname: Diouane, Youssef email: youssef.diouane@polymtl.ca organization: Department of Mathematics and Industrial Engineering, Polytechnique Montréal – sequence: 2 givenname: Victor surname: Picheny fullname: Picheny, Victor organization: Secondmind – sequence: 3 givenname: Rodolophe Le orcidid: 0000-0002-3518-2110 surname: Riche fullname: Riche, Rodolophe Le organization: CNRS LIMOS, Mines St-Etienne and UCA – sequence: 4 givenname: Alexandre Scotto Di surname: Perrotolo fullname: Perrotolo, Alexandre Scotto Di organization: ISAE-SUPAERO, Université de Toulouse  | 
    
| BackLink | https://hal.science/hal-03450072$$DView record in HAL | 
    
| BookMark | eNqNkU1rGzEQhkVJoM7HH-hpoacelI4-d9WbCWlSMARKchbjXclVul65klyT_voq2UCgh1B0EMy8j5h5dEKOpjg5Qj4wuGAA7efMoDMdBc4pMC4VPbwjC6ZaQblh-ogswHBFFQB7T05yfgAA0ym-IMu771fXt18abEra50KT24Q4NT7h1h1i-tn4mBrnfeiDm0qzGeMaxybuStiGP1hq9owcexyzO3-5T8n916u7yxu6ur3-drlc0V4KXeigOuWEUr0b6qiKe7k2vtWgEYxgwqDn2nXAQQ6oPa6ZqU10qNhgBslQnBIxv7ufdvh4wHG0uxS2mB4tA_tkwc4WbLVgny3YQ6U-zdQPfM1HDPZmubJPNRCyamn5b16zH-fsLsVfe5eLfYj7NNWlLO9AtKC1MTV1Mac2ODobJh9Lwr6ewW1DX7_Fh1pftlJLCaYVFehmoE8x5-S87UN5VlfBML49Pf8H_a-VX0TlGp42Lr2u8Qb1F8GirVE | 
    
| CitedBy_id | crossref_primary_10_1038_s41524_023_01048_x crossref_primary_10_1145_3670683 crossref_primary_10_1145_3545611 crossref_primary_10_1080_0305215X_2024_2434201 crossref_primary_10_2514_1_J063488 crossref_primary_10_1007_s00158_022_03333_7 crossref_primary_10_1016_j_strusafe_2024_102483 crossref_primary_10_1007_s00158_024_03906_8 crossref_primary_10_1007_s00158_024_03758_2 crossref_primary_10_1016_j_physd_2023_133893  | 
    
| Cites_doi | 10.1137/S1052623400378742 10.1080/0305215X.2017.1419344 10.1145/1830761.1830790 10.1007/978-3-642-25566-3_40 10.1137/070692662 10.1287/ijoo.2019.0016 10.1109/JPROC.2015.2494218 10.1201/9781420034899 10.1137/040603371 10.1137/S003614450242889 10.1023/A:1008382309369 10.18637/jss.v051.i01 10.1016/j.jspi.2010.04.018 10.1080/10556788.2020.1808977 10.1007/s10107-017-1141-8 10.1214/lnms/1215456182 10.1137/130917661 10.1007/978-3-662-03271-8 10.1007/s10107-014-0793-x 10.1016/j.ejco.2020.100001 10.1080/0305215X.2015.1082350 10.1613/jair.4806 10.1109/MLSP.2018.8516936 10.1007/s10589-020-00249-0 10.1162/evco_a_00244 10.1016/j.csda.2013.03.018 10.1137/1.9781611971309 10.1007/s10898-012-9951-y 10.1007/s10898-007-9133-5 10.1007/s10589-015-9747-3 10.1145/1916461.1916468 10.1007/s10107-010-0429-8 10.1137/1.9780898718768 10.1145/3544489 10.1111/pce.13001 10.1007/978-3-319-68913-5 10.1023/A:1008306431147 10.1007/s00158-013-0919-4 10.1137/20M1366253  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC VOOES ADTOC UNPAY  | 
    
| DOI | 10.1007/s10898-022-01245-w | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition)  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Mathematics Sciences (General) Computer Science  | 
    
| EISSN | 1573-2916 | 
    
| EndPage | 23 | 
    
| ExternalDocumentID | oai:HAL:hal-03450072v1 oai:HAL:hal-03450072v2 A746440973 10_1007_s10898_022_01245_w  | 
    
| GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U 1XC VOOES ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c436t-d585e355ced08952f4b9f7606a093139af26e80204da6fab19760aea51d9d41a3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0925-5001 1573-2916  | 
    
| IngestDate | Tue Aug 19 23:26:15 EDT 2025 Tue Oct 14 20:44:07 EDT 2025 Sat Aug 23 14:28:06 EDT 2025 Mon Oct 20 17:01:08 EDT 2025 Wed Oct 01 01:34:47 EDT 2025 Thu Apr 24 22:55:21 EDT 2025 Fri Feb 21 02:43:39 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Trust-region Bayesian optimization Non-linear optimization Black-box optimization Gaussian processes trust-region nonlinear optimization  | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c436t-d585e355ced08952f4b9f7606a093139af26e80204da6fab19760aea51d9d41a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-6609-7330 0000-0002-3518-2110  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.archives-ouvertes.fr/hal-03450072/file/2101.06808.pdf | 
    
| PQID | 2803706699 | 
    
| PQPubID | 29930 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s10898_022_01245_w hal_primary_oai_HAL_hal_03450072v2 proquest_journals_2803706699 gale_infotracacademiconefile_A746440973 crossref_citationtrail_10_1007_s10898_022_01245_w crossref_primary_10_1007_s10898_022_01245_w springer_journals_10_1007_s10898_022_01245_w  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-05-01 | 
    
| PublicationDateYYYYMMDD | 2023-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering | 
    
| PublicationTitle | Journal of global optimization | 
    
| PublicationTitleAbbrev | J Glob Optim | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer US Springer Springer Nature B.V Springer Verlag  | 
    
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V – name: Springer Verlag  | 
    
| References | AudetCDennisJEJrA progressive barrier for derivative-free nonlinear programmingSIAM J. Optim.200920445472250713110.1137/0706926621187.90266 VazquezEBectJConvergence properties of the expected improvement algorithm with fixed mean and covariance functionsJ. Stat. Plan. and Inference201014030883095265983910.1016/j.jspi.2010.04.0181419.62200 Auger, A., Finck, S., Hansen, N., Ros, R.: BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April (2010) Oh, Ch. Y., Gavves, E., Welling, M.: BOCK: Bayesian optimization with cylindrical kernels. In: International Conference on Machine Learning, pp. 3868–3877 (2018) DiouaneYA merit function approach for evolution strategiesEURO J. Comput. Optim.20219439773310.1016/j.ejco.2020.100001 Brochu, E., Cora, V. M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, (2010) MockusJBayesian Approach to Global Optimization: Theory and Applications2012BerlinSpringer Science & Business Media0693.49001 Schonlau, M., Welch, W. J., Jones, D. R.: Global versus local search in constrained optimization of computer models. Lecture Notes-Monograph Series, pp. 11–25 (1998) McLeod, M., Roberts, S., Osborne, M. A.: Optimization, fast and slow: optimally switching between local and Bayesian optimization. In: International Conference on Machine Learning, pp. 3443–3452 (2018) SteinMLInterpolation of Spatial Data: Some Theory for Kriging2012BerlinSpringer Science & Business Media FangK-TLiRSudjiantoADesign and Modeling for Computer Experiments2005LondonCRC Press10.1201/97814200348991093.62117 BergouEDiouaneYKungurtsevVRoyerCWA stochastic Levenberg-Marquardt method using random models with complexity resultsSIAM-ASA J. Uncertain. Quant.202210507536440043010.1137/20M13662531487.49035 Le Digabel, S., Wild, S.M.: A taxonomy of constraints in simulation-based optimization. Technical Report G-2015-57, Les cahiers du GERAD (2015) VazAIFVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ. Global Optim.200739197219233637110.1007/s10898-007-9133-51180.90252 BlanchetJCartisCMenickellyMScheinbergKConvergence rate analysis of a stochastic trust region method via supermartingalesINFORMS J. Optim.2019192119415131910.1287/ijoo.2019.0016 RegisRGTrust regions in Kriging-based optimization with expected improvementEng. Optim.20164810371059347381110.1080/0305215X.2015.1082350 Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization. J. Stat. Softw. 51 (2012) ForresterAIJSóbesterAKeaneAJMulti-fidelity optimization via surrogate modellingPhilos. Trans. A. Math. Phys. Eng. Sci.20074633251326923866611142.90489 WangZHutterFZoghiMMathesonDde FeitasNBayesian optimization in a billion dimensions via random embeddingsJ. Artif. Intell. Res.201655361387346601710.1613/jair.48061358.90089 Siivola, E., Vehtari, A., Vanhatalo, J., González, J., Andersen, M. R.: Correcting boundary over-exploration deficiencies in Bayesian optimization with virtual derivative sign observations. In: IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6 (2018) DiouaneYGrattonSVicenteLNGlobally convergent evolution strategies for constrained optimizationComput. Optim. Appl.201562323346340667910.1007/s10589-015-9747-31326.90079 ChenRMenickellyMScheinbergKStochastic optimization using trust-region method and random modelsMath. Program.2018169447487380086710.1007/s10107-017-1141-81401.90136 Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009. In: Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1689–1696 (2010) VicenteLNCustódioALAnalysis of direct searches for discontinuous functionsMath. Program.2012133299325292110110.1007/s10107-010-0429-81245.90127 NocedalJWrightSJNumerical Optimization20062BerlinSpringer1104.65059 Brockhoff, D.: Online description of the BBOB functions. https://coco.gforge.inria.fr/ (2006) AudetCLe DigabelSRochon MontplaisirVTribesCAlgorithm 1027: NOMAD version 4: nonlinear optimization with the mads algorithmACM Trans. Math. Softw.202248122449228610.1145/354448907668779 Anagnostidis, S.-K., Lucchi, A., Diouane, Y.: Direct-search for a class of stochastic min-max problems. In: International Conference on Artificial Intelligence and Statistics, pp. 3772–3780 (2021) JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ. Global Optim.199813455492167346010.1023/A:10083064311470917.90270 Snoek, J., Larochelle, H., Adams, R. P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012) BouhlelMABartoliNRegisRGOtsmaneAMorlierJEfficient global optimization for high-dimensional constrained problems by using the kriging models combined with the partial least squares methodEng. Optim.20185020382053386373010.1080/0305215X.2017.141934407636658 PichenyVWagnerTGinsbourgerDA benchmark of kriging-based infill criteria for noisy optimizationStruct. Multidiscipl. Optim.20134860762610.1007/s00158-013-0919-4 AudetCHareWDerivative-Free and Blackbox Optimization2017ChamSpringer10.1007/978-3-319-68913-51391.90001 KoldaTGLewisRMTorczonVOptimization by direct search: New perspectives on some classical and modern methodsSIAM Rev.200345385482204650410.1137/S0036144502428891059.90146 Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in the bandit setting: No regret and experimental design. In: International Conference on Machine Learning (2010) Frazier, P. I.: A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811 (2018) Le DigabelSAlgorithm 909: Nomad: Nonlinear optimization with the mads algorithmACM Trans. Math. Softw.20113744277483610.1145/1916461.19164681365.65172 Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reissued by SIAM, Philadelphia (1990) JahnJIntroduction to the Theory of Nonlinear Optimization1996BerlinSpringer10.1007/978-3-662-03271-80855.49001 PichenyVGinsbourgerDNoisy Kriging-based optimization methods: A unified implementation within the DiceOptim packageComput. Stat. Data Anal.20147110351053313202510.1016/j.csda.2013.03.0181471.62161 Picheny, V., Gramacy, R. B., Wild, S., Le Digabel, S.: Bayesian optimization under mixed constraints with a slack-variable augmented lagrangian. In: Advances in Neural Information Processing Systems, pp. 1435–1443 (2016) Diouane, Y., Lucchi, A., Patil, V.: A globally convergent evolutionary strategy for stochastic constrained optimization with applications to reinforcement learning. In: International Conference on Artificial Intelligence and Statistics, pp. 3772–3780 (2022) BullADConvergence rates of efficient global optimization algorithmsJ. Mach. Learn. Res.2011122879290428543511280.90094 BajerLPitraZRepickýJHolenaMGaussian process surrogate models for the CMA evolution strategyEvol. Comput.20192766569710.1162/evco_a_00244 Hutter, F., Hoos, H. H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: International Conference on Learning and Intelligent Optimization, pp. 507–523 (2011) GrattonSVicenteLNA merit function approach for direct searchSIAM J. Optim.20142419801998328128610.1137/1309176611318.90077 AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Optim.200617188217221915010.1137/0406033711112.90078 Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., Poloczek, M.: Scalable global optimization via local Bayesian optimization. In: Advances in Neural Information Processing Systems HansenNAugerARosRMersmannOTušarTBrockhoffDCOCO: a platform for comparing continuous optimizers in a black-box settingOptim. Methods Softw.202136114144420042710.1080/10556788.2020.18089771464.90001 DiouaneYGrattonSVicenteLNGlobally convergent evolution strategiesMath. Program.2015152467490336948910.1007/s10107-014-0793-x1334.90209 ConnARScheinbergKVicenteLNIntroduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization2009PhiladelphiaSIAM10.1137/1.97808987187681163.49001 AudetCDennisJEJrAnalysis of generalized pattern searchesSIAM J. Optim.200213889903197222010.1137/S10526234003787421053.90118 RasmussenCEWilliamsCKIGaussian Processes for Machine Learning2006CambridgeMIT Press1177.68165 AudetCDzahiniKJKokkolarasMLe DigabelSStochastic mesh adaptive direct search for blackbox optimization using probabilistic estimatesComput. Optim. Appl.202119134423814710.1007/s10589-020-00249-01469.90095 RiosLSahinidisNDerivative-free optimization: a review of algorithms and comparison of software implementationsJ. Global Optim.20135612471293307015410.1007/s10898-012-9951-y1272.90116 ShahriariBSwerskyKWangZAdamsRPDe FreitasNTaking the human out of the loop: A review of Bayesian optimizationProc. IEEE201510414817510.1109/JPROC.2015.2494218 BookerAJDennisJEJrFrankPDSerafiniDBTorczonVTrossetMWA rigorous framework for optimization of expensive functions by surrogatesStruct. Multidiscipl. Optim.199817113 HuyerWNeumaierAGlobal optimization by multilevel coordinate searchJ. Global Optim.199914331355170779510.1023/A:10083823093690956.90045 Kandasamy, K., Schneider, J., Póczos, B.: High dimensional Bayesian optimisation and bandits via additive models. In: International Conference on Machine Learning, pp. 295–304 (2015) PichenyVCasadebaigPTréposRFaivreRDa SilvaDVincourtPCostesEUsing numerical plant models and phenotypic correlation space to design achievable ideotypesPlant, Cell Environ.2017401926193910.1111/pce.13001 J Mockus (1245_CR40) 2012 B Shahriari (1245_CR52) 2015; 104 V Picheny (1245_CR44) 2014; 71 J Jahn (1245_CR33) 1996 1245_CR24 RG Regis (1245_CR48) 2016; 48 1245_CR23 L Bajer (1245_CR9) 2019; 27 S Le Digabel (1245_CR37) 2011; 37 1245_CR29 1245_CR27 V Picheny (1245_CR43) 2017; 40 C Audet (1245_CR2) 2006; 17 E Bergou (1245_CR10) 2022; 10 Y Diouane (1245_CR20) 2021; 9 AIJ Forrester (1245_CR26) 2007; 463 C Audet (1245_CR7) 2002; 13 1245_CR1 DR Jones (1245_CR34) 1998; 13 C Audet (1245_CR6) 2022; 48 CE Rasmussen (1245_CR47) 2006 1245_CR50 AIF Vaz (1245_CR57) 2007; 39 1245_CR8 1245_CR54 1245_CR53 1245_CR51 1245_CR14 C Audet (1245_CR3) 2009; 20 1245_CR55 1245_CR18 1245_CR15 K-T Fang (1245_CR25) 2005 Y Diouane (1245_CR21) 2015; 152 L Rios (1245_CR49) 2013; 56 Z Wang (1245_CR60) 2016; 55 1245_CR42 LN Vicente (1245_CR59) 2012; 133 MA Bouhlel (1245_CR13) 2018; 50 1245_CR45 E Vazquez (1245_CR58) 2010; 140 ML Stein (1245_CR56) 2012 Y Diouane (1245_CR22) 2015; 62 TG Kolda (1245_CR36) 2003; 45 N Hansen (1245_CR30) 2021; 36 W Huyer (1245_CR32) 1999; 14 AD Bull (1245_CR16) 2011; 12 R Chen (1245_CR17) 2018; 169 J Blanchet (1245_CR11) 2019; 1 V Picheny (1245_CR46) 2013; 48 1245_CR31 C Audet (1245_CR4) 2021; 19 AR Conn (1245_CR19) 2009 1245_CR35 J Nocedal (1245_CR41) 2006 1245_CR39 1245_CR38 C Audet (1245_CR5) 2017 AJ Booker (1245_CR12) 1998; 17 S Gratton (1245_CR28) 2014; 24  | 
    
| References_xml | – reference: Anagnostidis, S.-K., Lucchi, A., Diouane, Y.: Direct-search for a class of stochastic min-max problems. In: International Conference on Artificial Intelligence and Statistics, pp. 3772–3780 (2021) – reference: DiouaneYA merit function approach for evolution strategiesEURO J. Comput. Optim.20219439773310.1016/j.ejco.2020.100001 – reference: BullADConvergence rates of efficient global optimization algorithmsJ. Mach. Learn. Res.2011122879290428543511280.90094 – reference: Diouane, Y., Lucchi, A., Patil, V.: A globally convergent evolutionary strategy for stochastic constrained optimization with applications to reinforcement learning. In: International Conference on Artificial Intelligence and Statistics, pp. 3772–3780 (2022) – reference: Brockhoff, D.: Online description of the BBOB functions. https://coco.gforge.inria.fr/ (2006) – reference: Schonlau, M., Welch, W. J., Jones, D. R.: Global versus local search in constrained optimization of computer models. Lecture Notes-Monograph Series, pp. 11–25 (1998) – reference: BookerAJDennisJEJrFrankPDSerafiniDBTorczonVTrossetMWA rigorous framework for optimization of expensive functions by surrogatesStruct. Multidiscipl. Optim.199817113 – reference: KoldaTGLewisRMTorczonVOptimization by direct search: New perspectives on some classical and modern methodsSIAM Rev.200345385482204650410.1137/S0036144502428891059.90146 – reference: PichenyVCasadebaigPTréposRFaivreRDa SilvaDVincourtPCostesEUsing numerical plant models and phenotypic correlation space to design achievable ideotypesPlant, Cell Environ.2017401926193910.1111/pce.13001 – reference: WangZHutterFZoghiMMathesonDde FeitasNBayesian optimization in a billion dimensions via random embeddingsJ. Artif. Intell. Res.201655361387346601710.1613/jair.48061358.90089 – reference: SteinMLInterpolation of Spatial Data: Some Theory for Kriging2012BerlinSpringer Science & Business Media – reference: ForresterAIJSóbesterAKeaneAJMulti-fidelity optimization via surrogate modellingPhilos. Trans. A. Math. Phys. Eng. Sci.20074633251326923866611142.90489 – reference: HuyerWNeumaierAGlobal optimization by multilevel coordinate searchJ. Global Optim.199914331355170779510.1023/A:10083823093690956.90045 – reference: JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ. Global Optim.199813455492167346010.1023/A:10083064311470917.90270 – reference: Picheny, V., Gramacy, R. B., Wild, S., Le Digabel, S.: Bayesian optimization under mixed constraints with a slack-variable augmented lagrangian. In: Advances in Neural Information Processing Systems, pp. 1435–1443 (2016) – reference: Snoek, J., Larochelle, H., Adams, R. P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012) – reference: Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reissued by SIAM, Philadelphia (1990) – reference: RiosLSahinidisNDerivative-free optimization: a review of algorithms and comparison of software implementationsJ. Global Optim.20135612471293307015410.1007/s10898-012-9951-y1272.90116 – reference: BergouEDiouaneYKungurtsevVRoyerCWA stochastic Levenberg-Marquardt method using random models with complexity resultsSIAM-ASA J. Uncertain. Quant.202210507536440043010.1137/20M13662531487.49035 – reference: Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009. In: Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1689–1696 (2010) – reference: ShahriariBSwerskyKWangZAdamsRPDe FreitasNTaking the human out of the loop: A review of Bayesian optimizationProc. IEEE201510414817510.1109/JPROC.2015.2494218 – reference: AudetCHareWDerivative-Free and Blackbox Optimization2017ChamSpringer10.1007/978-3-319-68913-51391.90001 – reference: NocedalJWrightSJNumerical Optimization20062BerlinSpringer1104.65059 – reference: HansenNAugerARosRMersmannOTušarTBrockhoffDCOCO: a platform for comparing continuous optimizers in a black-box settingOptim. Methods Softw.202136114144420042710.1080/10556788.2020.18089771464.90001 – reference: BouhlelMABartoliNRegisRGOtsmaneAMorlierJEfficient global optimization for high-dimensional constrained problems by using the kriging models combined with the partial least squares methodEng. Optim.20185020382053386373010.1080/0305215X.2017.141934407636658 – reference: DiouaneYGrattonSVicenteLNGlobally convergent evolution strategiesMath. Program.2015152467490336948910.1007/s10107-014-0793-x1334.90209 – reference: ChenRMenickellyMScheinbergKStochastic optimization using trust-region method and random modelsMath. Program.2018169447487380086710.1007/s10107-017-1141-81401.90136 – reference: Le DigabelSAlgorithm 909: Nomad: Nonlinear optimization with the mads algorithmACM Trans. Math. Softw.20113744277483610.1145/1916461.19164681365.65172 – reference: GrattonSVicenteLNA merit function approach for direct searchSIAM J. Optim.20142419801998328128610.1137/1309176611318.90077 – reference: McLeod, M., Roberts, S., Osborne, M. A.: Optimization, fast and slow: optimally switching between local and Bayesian optimization. In: International Conference on Machine Learning, pp. 3443–3452 (2018) – reference: RasmussenCEWilliamsCKIGaussian Processes for Machine Learning2006CambridgeMIT Press1177.68165 – reference: VazAIFVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ. Global Optim.200739197219233637110.1007/s10898-007-9133-51180.90252 – reference: PichenyVGinsbourgerDNoisy Kriging-based optimization methods: A unified implementation within the DiceOptim packageComput. Stat. Data Anal.20147110351053313202510.1016/j.csda.2013.03.0181471.62161 – reference: Brochu, E., Cora, V. M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, (2010) – reference: JahnJIntroduction to the Theory of Nonlinear Optimization1996BerlinSpringer10.1007/978-3-662-03271-80855.49001 – reference: AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Optim.200617188217221915010.1137/0406033711112.90078 – reference: Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization. J. Stat. Softw. 51 (2012) – reference: Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in the bandit setting: No regret and experimental design. In: International Conference on Machine Learning (2010) – reference: VazquezEBectJConvergence properties of the expected improvement algorithm with fixed mean and covariance functionsJ. Stat. Plan. and Inference201014030883095265983910.1016/j.jspi.2010.04.0181419.62200 – reference: VicenteLNCustódioALAnalysis of direct searches for discontinuous functionsMath. Program.2012133299325292110110.1007/s10107-010-0429-81245.90127 – reference: Auger, A., Finck, S., Hansen, N., Ros, R.: BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April (2010) – reference: AudetCDzahiniKJKokkolarasMLe DigabelSStochastic mesh adaptive direct search for blackbox optimization using probabilistic estimatesComput. Optim. Appl.202119134423814710.1007/s10589-020-00249-01469.90095 – reference: FangK-TLiRSudjiantoADesign and Modeling for Computer Experiments2005LondonCRC Press10.1201/97814200348991093.62117 – reference: BajerLPitraZRepickýJHolenaMGaussian process surrogate models for the CMA evolution strategyEvol. Comput.20192766569710.1162/evco_a_00244 – reference: DiouaneYGrattonSVicenteLNGlobally convergent evolution strategies for constrained optimizationComput. Optim. Appl.201562323346340667910.1007/s10589-015-9747-31326.90079 – reference: Kandasamy, K., Schneider, J., Póczos, B.: High dimensional Bayesian optimisation and bandits via additive models. In: International Conference on Machine Learning, pp. 295–304 (2015) – reference: Siivola, E., Vehtari, A., Vanhatalo, J., González, J., Andersen, M. R.: Correcting boundary over-exploration deficiencies in Bayesian optimization with virtual derivative sign observations. In: IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6 (2018) – reference: AudetCLe DigabelSRochon MontplaisirVTribesCAlgorithm 1027: NOMAD version 4: nonlinear optimization with the mads algorithmACM Trans. Math. Softw.202248122449228610.1145/354448907668779 – reference: AudetCDennisJEJrAnalysis of generalized pattern searchesSIAM J. Optim.200213889903197222010.1137/S10526234003787421053.90118 – reference: Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., Poloczek, M.: Scalable global optimization via local Bayesian optimization. In: Advances in Neural Information Processing Systems – reference: Frazier, P. I.: A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811 (2018) – reference: AudetCDennisJEJrA progressive barrier for derivative-free nonlinear programmingSIAM J. Optim.200920445472250713110.1137/0706926621187.90266 – reference: MockusJBayesian Approach to Global Optimization: Theory and Applications2012BerlinSpringer Science & Business Media0693.49001 – reference: PichenyVWagnerTGinsbourgerDA benchmark of kriging-based infill criteria for noisy optimizationStruct. Multidiscipl. Optim.20134860762610.1007/s00158-013-0919-4 – reference: BlanchetJCartisCMenickellyMScheinbergKConvergence rate analysis of a stochastic trust region method via supermartingalesINFORMS J. Optim.2019192119415131910.1287/ijoo.2019.0016 – reference: Oh, Ch. Y., Gavves, E., Welling, M.: BOCK: Bayesian optimization with cylindrical kernels. In: International Conference on Machine Learning, pp. 3868–3877 (2018) – reference: Hutter, F., Hoos, H. H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: International Conference on Learning and Intelligent Optimization, pp. 507–523 (2011) – reference: Le Digabel, S., Wild, S.M.: A taxonomy of constraints in simulation-based optimization. Technical Report G-2015-57, Les cahiers du GERAD (2015) – reference: RegisRGTrust regions in Kriging-based optimization with expected improvementEng. Optim.20164810371059347381110.1080/0305215X.2015.1082350 – reference: ConnARScheinbergKVicenteLNIntroduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization2009PhiladelphiaSIAM10.1137/1.97808987187681163.49001 – volume: 13 start-page: 889 year: 2002 ident: 1245_CR7 publication-title: SIAM J. Optim. doi: 10.1137/S1052623400378742 – ident: 1245_CR54 – ident: 1245_CR1 – volume: 50 start-page: 2038 year: 2018 ident: 1245_CR13 publication-title: Eng. Optim. doi: 10.1080/0305215X.2017.1419344 – ident: 1245_CR29 doi: 10.1145/1830761.1830790 – ident: 1245_CR31 doi: 10.1007/978-3-642-25566-3_40 – volume: 20 start-page: 445 year: 2009 ident: 1245_CR3 publication-title: SIAM J. Optim. doi: 10.1137/070692662 – ident: 1245_CR35 – ident: 1245_CR39 – ident: 1245_CR45 – volume: 1 start-page: 92 year: 2019 ident: 1245_CR11 publication-title: INFORMS J. Optim. doi: 10.1287/ijoo.2019.0016 – volume: 104 start-page: 148 year: 2015 ident: 1245_CR52 publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2494218 – volume-title: Design and Modeling for Computer Experiments year: 2005 ident: 1245_CR25 doi: 10.1201/9781420034899 – volume: 17 start-page: 188 year: 2006 ident: 1245_CR2 publication-title: SIAM J. Optim. doi: 10.1137/040603371 – volume: 45 start-page: 385 year: 2003 ident: 1245_CR36 publication-title: SIAM Rev. doi: 10.1137/S003614450242889 – volume: 14 start-page: 331 year: 1999 ident: 1245_CR32 publication-title: J. Global Optim. doi: 10.1023/A:1008382309369 – ident: 1245_CR50 doi: 10.18637/jss.v051.i01 – volume-title: Interpolation of Spatial Data: Some Theory for Kriging year: 2012 ident: 1245_CR56 – volume: 140 start-page: 3088 year: 2010 ident: 1245_CR58 publication-title: J. Stat. Plan. and Inference doi: 10.1016/j.jspi.2010.04.018 – volume: 17 start-page: 1 year: 1998 ident: 1245_CR12 publication-title: Struct. Multidiscipl. Optim. – volume: 36 start-page: 114 year: 2021 ident: 1245_CR30 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2020.1808977 – volume: 169 start-page: 447 year: 2018 ident: 1245_CR17 publication-title: Math. Program. doi: 10.1007/s10107-017-1141-8 – ident: 1245_CR51 doi: 10.1214/lnms/1215456182 – ident: 1245_CR8 – volume: 24 start-page: 1980 year: 2014 ident: 1245_CR28 publication-title: SIAM J. Optim. doi: 10.1137/130917661 – ident: 1245_CR42 – ident: 1245_CR15 – volume-title: Bayesian Approach to Global Optimization: Theory and Applications year: 2012 ident: 1245_CR40 – volume-title: Introduction to the Theory of Nonlinear Optimization year: 1996 ident: 1245_CR33 doi: 10.1007/978-3-662-03271-8 – volume: 152 start-page: 467 year: 2015 ident: 1245_CR21 publication-title: Math. Program. doi: 10.1007/s10107-014-0793-x – volume: 463 start-page: 3251 year: 2007 ident: 1245_CR26 publication-title: Philos. Trans. A. Math. Phys. Eng. Sci. – volume: 9 year: 2021 ident: 1245_CR20 publication-title: EURO J. Comput. Optim. doi: 10.1016/j.ejco.2020.100001 – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: 1245_CR47 – volume: 48 start-page: 1037 year: 2016 ident: 1245_CR48 publication-title: Eng. Optim. doi: 10.1080/0305215X.2015.1082350 – volume: 55 start-page: 361 year: 2016 ident: 1245_CR60 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.4806 – ident: 1245_CR53 doi: 10.1109/MLSP.2018.8516936 – ident: 1245_CR14 – volume: 19 start-page: 1 year: 2021 ident: 1245_CR4 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-020-00249-0 – volume: 27 start-page: 665 year: 2019 ident: 1245_CR9 publication-title: Evol. Comput. doi: 10.1162/evco_a_00244 – volume: 71 start-page: 1035 year: 2014 ident: 1245_CR44 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2013.03.018 – ident: 1245_CR18 doi: 10.1137/1.9781611971309 – ident: 1245_CR24 – volume-title: Numerical Optimization year: 2006 ident: 1245_CR41 – volume: 56 start-page: 1247 year: 2013 ident: 1245_CR49 publication-title: J. Global Optim. doi: 10.1007/s10898-012-9951-y – volume: 39 start-page: 197 year: 2007 ident: 1245_CR57 publication-title: J. Global Optim. doi: 10.1007/s10898-007-9133-5 – volume: 62 start-page: 323 year: 2015 ident: 1245_CR22 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-015-9747-3 – volume: 12 start-page: 2879 year: 2011 ident: 1245_CR16 publication-title: J. Mach. Learn. Res. – volume: 37 start-page: 44 year: 2011 ident: 1245_CR37 publication-title: ACM Trans. Math. Softw. doi: 10.1145/1916461.1916468 – ident: 1245_CR55 – volume: 133 start-page: 299 year: 2012 ident: 1245_CR59 publication-title: Math. Program. doi: 10.1007/s10107-010-0429-8 – ident: 1245_CR38 – volume-title: Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization year: 2009 ident: 1245_CR19 doi: 10.1137/1.9780898718768 – volume: 48 start-page: 1 year: 2022 ident: 1245_CR6 publication-title: ACM Trans. Math. Softw. doi: 10.1145/3544489 – volume: 40 start-page: 1926 year: 2017 ident: 1245_CR43 publication-title: Plant, Cell Environ. doi: 10.1111/pce.13001 – ident: 1245_CR23 – volume-title: Derivative-Free and Blackbox Optimization year: 2017 ident: 1245_CR5 doi: 10.1007/978-3-319-68913-5 – volume: 13 start-page: 455 year: 1998 ident: 1245_CR34 publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – volume: 48 start-page: 607 year: 2013 ident: 1245_CR46 publication-title: Struct. Multidiscipl. Optim. doi: 10.1007/s00158-013-0919-4 – ident: 1245_CR27 – volume: 10 start-page: 507 year: 2022 ident: 1245_CR10 publication-title: SIAM-ASA J. Uncertain. Quant. doi: 10.1137/20M1366253  | 
    
| SSID | ssj0009852 | 
    
| Score | 2.509552 | 
    
| Snippet | Efficient global optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of... Efficient Global Optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of...  | 
    
| SourceID | unpaywall hal proquest gale crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Analysis Black boxes Canonical forms Computational Engineering, Finance, and Science Computer Science Design of experiments Engineering Sciences Exploitation Global optimization Mathematics Mathematics and Statistics Mechanical engineering Mechanics Operations Research/Decision Theory Optimization Optimization and Control Parameter sensitivity Real Functions  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7W7mHtw7ZmHfPWDTEG22gEsSzZ1t7MaBdKt0JpoG9CsmX2kDmBpA3773fnyE4GI3SPtmVh6359QnffAXxw3mNQkZLXcWW5zGTJ86RyXJUphg9PIaRl-_yRjify4lbdhqKwRZft3h1Jtp56q9gtp3IwQakEQiq-2oPHiui8UIsnothQ7eZtn52RFoor9MKhVObfc_wVjoJT3vtJOZFbgLM_Iz2EJ3fN3P5e2el0KwydP4enAT-yYi3wI3jkmwE863ozsGCqAzjcIhrEq-89O-tiAEdh1IJ9CqzTn19AcXN99u3qC7OsLcPg1LFh1rC6S95iiG6ZbwknME6xNZEIm6HH-RVKOY9hcn5283XMQ38FXsokXfIKtwoe8UbpK1wWJWrpdJ3hjsaOdILI0NYi9TlVz1Y2ra2LEbqMrLcqrnQlY5u8hP1m1vhXwKhPuUq1zurKSZeJ3OXeeydjnYu41HEEcbfMpgzk49QDY2o2tMkkGoOiMa1ozCqC0_6d-Zp6Y-fojyQ9Q3aJM5c2lBfg9xHDlSkyidCPyIkieI8C7qckfu1xcWno3iiRirjU70UEJ538TbDqhaFOXhliNK0jGHY6sXm86-OGvd484F9e_9_sb-BAIPRap2GewD6qiX-LUGnp3rWW8QcQVwTk priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6x7gH2AGyAyBjIQkiAmLvacX7xFqGNCqGB0CrBk2UntiZR0mprqeCv5y5xusLDBOI1ji07d777Trn7DuCZdQ6dilLci9pwlamK53FteVKl6D4cuZCW7fM0HU_Uu89Jn01ItTDniDhN4FzlsyX1JMaA0V_QAB_FKiGq6yPiLDrCYEUM29YRw3ntt2A7TRCOD2B7cvqx_NJy7MmE44SOMzWjnmUiDYUzoXwupwIzSckJUiV89ZtzCiZ665wyJDfg5_qP6Q7cXDZz82NlptMNp3RyB2x_nC4X5etwubDD6ucfTI__dd67cDtAVlZ2OrYLN1yzBzsbRIZ7sBtMxCV7EXisX96D8uzT8dsPr5lhbWEHpx4Qs4b5Ph2MIV5mrqWwQM_HOmoSNkMb9i0Uh96Hycnx2ZsxDx0beKXidMFrDD4cIpjK1fhpE-mVLXyGMZIZFTFiTeNl6nKqx61N6o0VCIZGxplE1EWthIkfwKCZNe4hMOp8nqRFkfnaKpvJ3ObOOatEkUtRFSIC0YtKV4HOnLpqTPUVETOJV6N4dStevYrg1XrOvCPzuPbt56QBmm46rlyZULCA-yN56DJTCCaJ7iiCpyiu9ZLE2D0u32t61ovwu4zgoNchHezEpabeYBmivqKI4LDXq6vh6zZ3uNa9vzjL_r-9_ghuSQRzXWLnAQxQTdxjBF8L-yRcr1_X6CGw priority: 102 providerName: Unpaywall  | 
    
| Title | TREGO: a trust-region framework for efficient global optimization | 
    
| URI | https://link.springer.com/article/10.1007/s10898-022-01245-w https://www.proquest.com/docview/2803706699 https://hal.science/hal-03450072 https://hal.archives-ouvertes.fr/hal-03450072/file/2101.06808.pdf  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 86 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1573-2916 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009852 issn: 1573-2916 databaseCode: AMVHM dateStart: 20080329 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009852 issn: 1573-2916 databaseCode: AFBBN dateStart: 19910301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-2916 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009852 issn: 1573-2916 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-2916 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009852 issn: 1573-2916 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009852 issn: 1573-2916 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-2916 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009852 issn: 1573-2916 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-t7QPsAbEBImNUFkICxCwax_lCQiigfghQmaZV2p4sO3bEQ0k7bVDx33OXOm15qXjMt3N3vjsnd78fwEvjHAYVKXkVWs1lKkueRdbwuEwwfDgKIQ3a5zSZzOSXq_jqAKZtLwyVVbY-sXHUdlHSN_J3xKKUYnzM84_LG06sUfR3taXQ0J5awX5oIMY60BOEjNWF3qfh9PxiC8ObNRw8g1zEPEYP7dtofDNdRu1mgkoVhIz56p9Q5R125wfVS-4ko5v_p4dw71e91H9Wej7fCVGjh_DA55asWBvDERy4-hgOdxAHj-HIz-Vb9toDTr95BMXlxXD8_T3TrOnA4ETWsKhZ1dZtMUxsmWuwJjBEsTWGCFugs_npuzgfw2w0vPw84Z5agZcySu64xVWCw1SjdBbfOhaVNHmV4mJGD_IIk0JdicRl1DhrdVJpE2LWMtBOx6HNrQx19AS69aJ2T4ERRXmMakkra6RJRWYy55yRYZ6JsMzDAMJWiqr0uONEfzFXW8RkkrxCyatG8moVwNvNNcs16sbes1-RchRNSbxzqX1nAY6PwK1UkUrM-giXKIAXqL_NLQlae1J8U7RvEMmYYNR_iwBOW_UqP6Fv1db8AjhrVb49vG9wZxuz-I93Odn_8Gdwn_ju1xWXp9BFs3DPMSu6M33oZKNxH3rF-PrrsO8NH_fORIFbs-l5cf0XREAIQQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB3141B6qGgBYVpghUCA6Ip4vf5CqlCAlJSGgKpU6m3Z9a7FITip0hL1z_HbmHHWSbhEXHp1nI09M5k3a897A_DcOIegIiUvQ6u5TGXBs8gaHhcJwocjCKnVPvtJ91x-uYgv1uBPw4WhtsomJ9aJ2o4Kekb-lqYopYiPef5-fMlpahS9XW1GaGg_WsEe1RJjnthx6m6muIWbHJ18Qn-_EOK4M_jY5X7KAC9klFxxiwWzQ9QtnG1leSxKafIyxbpe42Yf6yNdisRlxCG1Oim1CRHAW9rpOLS5laGOcN112JSRzHHzt_mh0_9-tpD9zeqZP61cxDxGRPC0HU_ey4jeJqg1QsiYT_-BRg8Q6z-pP3Op-J2_r92GretqrG-mejhcgsTju7Dja1nWngXfLqy5ag-2lxQO92DX544Je-UFrl_fg_bgrPP52zumWc344DQcYlSxsukTY1hIM1drWyAksplmCRthcvvlWaP34fxWjPwANqpR5R4Co5HoMYZBWlojTSoykznnjAzzTIRFHgYQNlZUhdc5p3EbQ7VQaCbLK7S8qi2vpgG8mX9nPFP5WHn2S3KOohSAKxfaMxnw-khMS7VTiVUm6SAF8Az9N1-SpLy77Z6iY61IxiTb_lsEcNC4V_kEMlGLcA_gsHH54uNVF3c4D4v_uJdHq3_8KWx1B197qnfSP92HOwIrvFm35wFsYIi4x1iRXZknPuwZ_Ljtf9pf8S4_jg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tQwL2gNhgIjDAQiCYNmuNa-cHEkIVW9exaaBpk_Zm7NgRDyUt6qDav8Zfx13itOWl4mWvTeukd-f7Lsl93wG8tt4jqEjJy9gZLlNZ8KzrLFdFgvDhCUJqtc-zZHApP1-pqxX403JhqK2yzYl1onajgp6R79MUpRTxMc_3y9AW8fWg_3H8k9MEKXrT2o7TaELkxN9M8fZt8uH4AH39Roj-4cWnAQ8TBnghu8k1d1gse0TcwrtOlitRSpuXKdb0Bm_0sTYypUh8RvxRZ5LS2BjBu2O8UbHLnYxNF9ddhTspqbgTS71_NBf8zeppP51cKK4QCwJhJ9D2MiK2CWqKEFLx6T-gGKBh9Tt1Zi6UvbM3tetw71c1NjdTMxwugGH_ITwIVSzrNWG3ASu-2oT1BW3DTdgIWWPC3gVp651H0Ls4Pzz68p4ZVnM9OI2FGFWsbDvEGJbQzNeqFgiGrFErYSNMaz8CX_QxXN6KibdgrRpV_gkwGoauMADS0llpU5HZzHtvZZxnIi7yOIK4taIugsI5DdoY6rk2M1leo-V1bXk9jWB39ptxo--x9NtvyTmaNj-uXJjAYcDrIxkt3Usl1pekgBTBK_TfbEkS8R70TjV91ulKRYLtv0UE2617dUgdEz0P9Aj2WpfPDy-7uL1ZWPzHf3m6_OQv4S7uL316fHbyDO4LLO2aNs9tWMMI8c-xFLu2L-qYZ_DttjfZXxEMPSg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6x7gH2AGyAyBjIQkiAmLvacX7xFqGNCqGB0CrBk2UntiZR0mprqeCv5y5xusLDBOI1ji07d777Trn7DuCZdQ6dilLci9pwlamK53FteVKl6D4cuZCW7fM0HU_Uu89Jn01ItTDniDhN4FzlsyX1JMaA0V_QAB_FKiGq6yPiLDrCYEUM29YRw3ntt2A7TRCOD2B7cvqx_NJy7MmE44SOMzWjnmUiDYUzoXwupwIzSckJUiV89ZtzCiZ665wyJDfg5_qP6Q7cXDZz82NlptMNp3RyB2x_nC4X5etwubDD6ucfTI__dd67cDtAVlZ2OrYLN1yzBzsbRIZ7sBtMxCV7EXisX96D8uzT8dsPr5lhbWEHpx4Qs4b5Ph2MIV5mrqWwQM_HOmoSNkMb9i0Uh96Hycnx2ZsxDx0beKXidMFrDD4cIpjK1fhpE-mVLXyGMZIZFTFiTeNl6nKqx61N6o0VCIZGxplE1EWthIkfwKCZNe4hMOp8nqRFkfnaKpvJ3ObOOatEkUtRFSIC0YtKV4HOnLpqTPUVETOJV6N4dStevYrg1XrOvCPzuPbt56QBmm46rlyZULCA-yN56DJTCCaJ7iiCpyiu9ZLE2D0u32t61ovwu4zgoNchHezEpabeYBmivqKI4LDXq6vh6zZ3uNa9vzjL_r-9_ghuSQRzXWLnAQxQTdxjBF8L-yRcr1_X6CGw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TREGO%3A+a+trust-region+framework+for+efficient+global+optimization&rft.jtitle=Journal+of+global+optimization&rft.au=Diouane%2C+Youssef&rft.au=Picheny%2C+Victor&rft.au=Riche%2C+Rodolophe+Le&rft.au=Perrotolo%2C+Alexandre+Scotto+Di&rft.date=2023-05-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=86&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1007%2Fs10898-022-01245-w&rft.externalDocID=A746440973 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |