TREGO: a trust-region framework for efficient global optimization

Efficient global optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale with dimension, and offers limited theoretical guarantees. In this work, a t...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 86; no. 1; pp. 1 - 23
Main Authors Diouane, Youssef, Picheny, Victor, Riche, Rodolophe Le, Perrotolo, Alexandre Scotto Di
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2023
Springer
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0925-5001
1573-2916
1573-2916
DOI10.1007/s10898-022-01245-w

Cover

Abstract Efficient global optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale with dimension, and offers limited theoretical guarantees. In this work, a trust-region framework for EGO (TREGO) is proposed and analyzed. TREGO alternates between regular EGO steps and local steps within a trust region. By following a classical scheme for the trust region (based on a sufficient decrease condition), the proposed algorithm enjoys global convergence properties, while departing from EGO only for a subset of optimization steps. Using extensive numerical experiments based on the well-known COCO bound constrained problems, we first analyze the sensitivity of TREGO to its own parameters, then show that the resulting algorithm is consistently outperforming EGO and getting competitive with other state-of-the-art black-box optimization methods.
AbstractList Efficient global optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale with dimension, and offers limited theoretical guarantees. In this work, a trust-region framework for EGO (TREGO) is proposed and analyzed. TREGO alternates between regular EGO steps and local steps within a trust region. By following a classical scheme for the trust region (based on a sufficient decrease condition), the proposed algorithm enjoys global convergence properties, while departing from EGO only for a subset of optimization steps. Using extensive numerical experiments based on the well-known COCO bound constrained problems, we first analyze the sensitivity of TREGO to its own parameters, then show that the resulting algorithm is consistently outperforming EGO and getting competitive with other state-of-the-art black-box optimization methods.
Efficient Global Optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale with dimension, and offers limited theoretical guarantees. In this work, we propose and analyze a trust-region-like EGO method (TREGO). TREGO alternates between regular EGO steps and local steps within a trust region. By following a classical scheme for the trust region (based on a sufficient decrease condition), we demonstrate that our algorithm enjoys strong global convergence properties, while departing from EGO only for a subset of optimization steps. Using extensive numerical experiments based on the well-known COCO benchmark, we first analyze the sensitivity of TREGO to its own parameters, then show that the resulting algorithm is consistently outperforming EGO and getting competitive with other state-of-the-art global optimization methods. The method is available both in the R package DiceOptim 1 and python library trieste 2 .
Audience Academic
Author Perrotolo, Alexandre Scotto Di
Diouane, Youssef
Riche, Rodolophe Le
Picheny, Victor
Author_xml – sequence: 1
  givenname: Youssef
  orcidid: 0000-0002-6609-7330
  surname: Diouane
  fullname: Diouane, Youssef
  email: youssef.diouane@polymtl.ca
  organization: Department of Mathematics and Industrial Engineering, Polytechnique Montréal
– sequence: 2
  givenname: Victor
  surname: Picheny
  fullname: Picheny, Victor
  organization: Secondmind
– sequence: 3
  givenname: Rodolophe Le
  orcidid: 0000-0002-3518-2110
  surname: Riche
  fullname: Riche, Rodolophe Le
  organization: CNRS LIMOS, Mines St-Etienne and UCA
– sequence: 4
  givenname: Alexandre Scotto Di
  surname: Perrotolo
  fullname: Perrotolo, Alexandre Scotto Di
  organization: ISAE-SUPAERO, Université de Toulouse
BackLink https://hal.science/hal-03450072$$DView record in HAL
BookMark eNqNkU1rGzEQhkVJoM7HH-hpoacelI4-d9WbCWlSMARKchbjXclVul65klyT_voq2UCgh1B0EMy8j5h5dEKOpjg5Qj4wuGAA7efMoDMdBc4pMC4VPbwjC6ZaQblh-ogswHBFFQB7T05yfgAA0ym-IMu771fXt18abEra50KT24Q4NT7h1h1i-tn4mBrnfeiDm0qzGeMaxybuStiGP1hq9owcexyzO3-5T8n916u7yxu6ur3-drlc0V4KXeigOuWEUr0b6qiKe7k2vtWgEYxgwqDn2nXAQQ6oPa6ZqU10qNhgBslQnBIxv7ufdvh4wHG0uxS2mB4tA_tkwc4WbLVgny3YQ6U-zdQPfM1HDPZmubJPNRCyamn5b16zH-fsLsVfe5eLfYj7NNWlLO9AtKC1MTV1Mac2ODobJh9Lwr6ewW1DX7_Fh1pftlJLCaYVFehmoE8x5-S87UN5VlfBML49Pf8H_a-VX0TlGp42Lr2u8Qb1F8GirVE
CitedBy_id crossref_primary_10_1038_s41524_023_01048_x
crossref_primary_10_1145_3670683
crossref_primary_10_1145_3545611
crossref_primary_10_1080_0305215X_2024_2434201
crossref_primary_10_2514_1_J063488
crossref_primary_10_1007_s00158_022_03333_7
crossref_primary_10_1016_j_strusafe_2024_102483
crossref_primary_10_1007_s00158_024_03906_8
crossref_primary_10_1007_s00158_024_03758_2
crossref_primary_10_1016_j_physd_2023_133893
Cites_doi 10.1137/S1052623400378742
10.1080/0305215X.2017.1419344
10.1145/1830761.1830790
10.1007/978-3-642-25566-3_40
10.1137/070692662
10.1287/ijoo.2019.0016
10.1109/JPROC.2015.2494218
10.1201/9781420034899
10.1137/040603371
10.1137/S003614450242889
10.1023/A:1008382309369
10.18637/jss.v051.i01
10.1016/j.jspi.2010.04.018
10.1080/10556788.2020.1808977
10.1007/s10107-017-1141-8
10.1214/lnms/1215456182
10.1137/130917661
10.1007/978-3-662-03271-8
10.1007/s10107-014-0793-x
10.1016/j.ejco.2020.100001
10.1080/0305215X.2015.1082350
10.1613/jair.4806
10.1109/MLSP.2018.8516936
10.1007/s10589-020-00249-0
10.1162/evco_a_00244
10.1016/j.csda.2013.03.018
10.1137/1.9781611971309
10.1007/s10898-012-9951-y
10.1007/s10898-007-9133-5
10.1007/s10589-015-9747-3
10.1145/1916461.1916468
10.1007/s10107-010-0429-8
10.1137/1.9780898718768
10.1145/3544489
10.1111/pce.13001
10.1007/978-3-319-68913-5
10.1023/A:1008306431147
10.1007/s00158-013-0919-4
10.1137/20M1366253
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
VOOES
ADTOC
UNPAY
DOI 10.1007/s10898-022-01245-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 23
ExternalDocumentID oai:HAL:hal-03450072v1
oai:HAL:hal-03450072v2
A746440973
10_1007_s10898_022_01245_w
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c436t-d585e355ced08952f4b9f7606a093139af26e80204da6fab19760aea51d9d41a3
IEDL.DBID BENPR
ISSN 0925-5001
1573-2916
IngestDate Tue Aug 19 23:26:15 EDT 2025
Tue Oct 14 20:44:07 EDT 2025
Sat Aug 23 14:28:06 EDT 2025
Mon Oct 20 17:01:08 EDT 2025
Wed Oct 01 01:34:47 EDT 2025
Thu Apr 24 22:55:21 EDT 2025
Fri Feb 21 02:43:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Trust-region
Bayesian optimization
Non-linear optimization
Black-box optimization
Gaussian processes
trust-region
nonlinear optimization
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-d585e355ced08952f4b9f7606a093139af26e80204da6fab19760aea51d9d41a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6609-7330
0000-0002-3518-2110
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.archives-ouvertes.fr/hal-03450072/file/2101.06808.pdf
PQID 2803706699
PQPubID 29930
PageCount 23
ParticipantIDs unpaywall_primary_10_1007_s10898_022_01245_w
hal_primary_oai_HAL_hal_03450072v2
proquest_journals_2803706699
gale_infotracacademiconefile_A746440973
crossref_citationtrail_10_1007_s10898_022_01245_w
crossref_primary_10_1007_s10898_022_01245_w
springer_journals_10_1007_s10898_022_01245_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2023
Publisher Springer US
Springer
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag
References AudetCDennisJEJrA progressive barrier for derivative-free nonlinear programmingSIAM J. Optim.200920445472250713110.1137/0706926621187.90266
VazquezEBectJConvergence properties of the expected improvement algorithm with fixed mean and covariance functionsJ. Stat. Plan. and Inference201014030883095265983910.1016/j.jspi.2010.04.0181419.62200
Auger, A., Finck, S., Hansen, N., Ros, R.: BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April (2010)
Oh, Ch. Y., Gavves, E., Welling, M.: BOCK: Bayesian optimization with cylindrical kernels. In: International Conference on Machine Learning, pp. 3868–3877 (2018)
DiouaneYA merit function approach for evolution strategiesEURO J. Comput. Optim.20219439773310.1016/j.ejco.2020.100001
Brochu, E., Cora, V. M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, (2010)
MockusJBayesian Approach to Global Optimization: Theory and Applications2012BerlinSpringer Science & Business Media0693.49001
Schonlau, M., Welch, W. J., Jones, D. R.: Global versus local search in constrained optimization of computer models. Lecture Notes-Monograph Series, pp. 11–25 (1998)
McLeod, M., Roberts, S., Osborne, M. A.: Optimization, fast and slow: optimally switching between local and Bayesian optimization. In: International Conference on Machine Learning, pp. 3443–3452 (2018)
SteinMLInterpolation of Spatial Data: Some Theory for Kriging2012BerlinSpringer Science & Business Media
FangK-TLiRSudjiantoADesign and Modeling for Computer Experiments2005LondonCRC Press10.1201/97814200348991093.62117
BergouEDiouaneYKungurtsevVRoyerCWA stochastic Levenberg-Marquardt method using random models with complexity resultsSIAM-ASA J. Uncertain. Quant.202210507536440043010.1137/20M13662531487.49035
Le Digabel, S., Wild, S.M.: A taxonomy of constraints in simulation-based optimization. Technical Report G-2015-57, Les cahiers du GERAD (2015)
VazAIFVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ. Global Optim.200739197219233637110.1007/s10898-007-9133-51180.90252
BlanchetJCartisCMenickellyMScheinbergKConvergence rate analysis of a stochastic trust region method via supermartingalesINFORMS J. Optim.2019192119415131910.1287/ijoo.2019.0016
RegisRGTrust regions in Kriging-based optimization with expected improvementEng. Optim.20164810371059347381110.1080/0305215X.2015.1082350
Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization. J. Stat. Softw. 51 (2012)
ForresterAIJSóbesterAKeaneAJMulti-fidelity optimization via surrogate modellingPhilos. Trans. A. Math. Phys. Eng. Sci.20074633251326923866611142.90489
WangZHutterFZoghiMMathesonDde FeitasNBayesian optimization in a billion dimensions via random embeddingsJ. Artif. Intell. Res.201655361387346601710.1613/jair.48061358.90089
Siivola, E., Vehtari, A., Vanhatalo, J., González, J., Andersen, M. R.: Correcting boundary over-exploration deficiencies in Bayesian optimization with virtual derivative sign observations. In: IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6 (2018)
DiouaneYGrattonSVicenteLNGlobally convergent evolution strategies for constrained optimizationComput. Optim. Appl.201562323346340667910.1007/s10589-015-9747-31326.90079
ChenRMenickellyMScheinbergKStochastic optimization using trust-region method and random modelsMath. Program.2018169447487380086710.1007/s10107-017-1141-81401.90136
Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009. In: Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1689–1696 (2010)
VicenteLNCustódioALAnalysis of direct searches for discontinuous functionsMath. Program.2012133299325292110110.1007/s10107-010-0429-81245.90127
NocedalJWrightSJNumerical Optimization20062BerlinSpringer1104.65059
Brockhoff, D.: Online description of the BBOB functions. https://coco.gforge.inria.fr/ (2006)
AudetCLe DigabelSRochon MontplaisirVTribesCAlgorithm 1027: NOMAD version 4: nonlinear optimization with the mads algorithmACM Trans. Math. Softw.202248122449228610.1145/354448907668779
Anagnostidis, S.-K., Lucchi, A., Diouane, Y.: Direct-search for a class of stochastic min-max problems. In: International Conference on Artificial Intelligence and Statistics, pp. 3772–3780 (2021)
JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ. Global Optim.199813455492167346010.1023/A:10083064311470917.90270
Snoek, J., Larochelle, H., Adams, R. P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)
BouhlelMABartoliNRegisRGOtsmaneAMorlierJEfficient global optimization for high-dimensional constrained problems by using the kriging models combined with the partial least squares methodEng. Optim.20185020382053386373010.1080/0305215X.2017.141934407636658
PichenyVWagnerTGinsbourgerDA benchmark of kriging-based infill criteria for noisy optimizationStruct. Multidiscipl. Optim.20134860762610.1007/s00158-013-0919-4
AudetCHareWDerivative-Free and Blackbox Optimization2017ChamSpringer10.1007/978-3-319-68913-51391.90001
KoldaTGLewisRMTorczonVOptimization by direct search: New perspectives on some classical and modern methodsSIAM Rev.200345385482204650410.1137/S0036144502428891059.90146
Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in the bandit setting: No regret and experimental design. In: International Conference on Machine Learning (2010)
Frazier, P. I.: A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811 (2018)
Le DigabelSAlgorithm 909: Nomad: Nonlinear optimization with the mads algorithmACM Trans. Math. Softw.20113744277483610.1145/1916461.19164681365.65172
Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reissued by SIAM, Philadelphia (1990)
JahnJIntroduction to the Theory of Nonlinear Optimization1996BerlinSpringer10.1007/978-3-662-03271-80855.49001
PichenyVGinsbourgerDNoisy Kriging-based optimization methods: A unified implementation within the DiceOptim packageComput. Stat. Data Anal.20147110351053313202510.1016/j.csda.2013.03.0181471.62161
Picheny, V., Gramacy, R. B., Wild, S., Le Digabel, S.: Bayesian optimization under mixed constraints with a slack-variable augmented lagrangian. In: Advances in Neural Information Processing Systems, pp. 1435–1443 (2016)
Diouane, Y., Lucchi, A., Patil, V.: A globally convergent evolutionary strategy for stochastic constrained optimization with applications to reinforcement learning. In: International Conference on Artificial Intelligence and Statistics, pp. 3772–3780 (2022)
BullADConvergence rates of efficient global optimization algorithmsJ. Mach. Learn. Res.2011122879290428543511280.90094
BajerLPitraZRepickýJHolenaMGaussian process surrogate models for the CMA evolution strategyEvol. Comput.20192766569710.1162/evco_a_00244
Hutter, F., Hoos, H. H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: International Conference on Learning and Intelligent Optimization, pp. 507–523 (2011)
GrattonSVicenteLNA merit function approach for direct searchSIAM J. Optim.20142419801998328128610.1137/1309176611318.90077
AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Optim.200617188217221915010.1137/0406033711112.90078
Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., Poloczek, M.: Scalable global optimization via local Bayesian optimization. In: Advances in Neural Information Processing Systems
HansenNAugerARosRMersmannOTušarTBrockhoffDCOCO: a platform for comparing continuous optimizers in a black-box settingOptim. Methods Softw.202136114144420042710.1080/10556788.2020.18089771464.90001
DiouaneYGrattonSVicenteLNGlobally convergent evolution strategiesMath. Program.2015152467490336948910.1007/s10107-014-0793-x1334.90209
ConnARScheinbergKVicenteLNIntroduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization2009PhiladelphiaSIAM10.1137/1.97808987187681163.49001
AudetCDennisJEJrAnalysis of generalized pattern searchesSIAM J. Optim.200213889903197222010.1137/S10526234003787421053.90118
RasmussenCEWilliamsCKIGaussian Processes for Machine Learning2006CambridgeMIT Press1177.68165
AudetCDzahiniKJKokkolarasMLe DigabelSStochastic mesh adaptive direct search for blackbox optimization using probabilistic estimatesComput. Optim. Appl.202119134423814710.1007/s10589-020-00249-01469.90095
RiosLSahinidisNDerivative-free optimization: a review of algorithms and comparison of software implementationsJ. Global Optim.20135612471293307015410.1007/s10898-012-9951-y1272.90116
ShahriariBSwerskyKWangZAdamsRPDe FreitasNTaking the human out of the loop: A review of Bayesian optimizationProc. IEEE201510414817510.1109/JPROC.2015.2494218
BookerAJDennisJEJrFrankPDSerafiniDBTorczonVTrossetMWA rigorous framework for optimization of expensive functions by surrogatesStruct. Multidiscipl. Optim.199817113
HuyerWNeumaierAGlobal optimization by multilevel coordinate searchJ. Global Optim.199914331355170779510.1023/A:10083823093690956.90045
Kandasamy, K., Schneider, J., Póczos, B.: High dimensional Bayesian optimisation and bandits via additive models. In: International Conference on Machine Learning, pp. 295–304 (2015)
PichenyVCasadebaigPTréposRFaivreRDa SilvaDVincourtPCostesEUsing numerical plant models and phenotypic correlation space to design achievable ideotypesPlant, Cell Environ.2017401926193910.1111/pce.13001
J Mockus (1245_CR40) 2012
B Shahriari (1245_CR52) 2015; 104
V Picheny (1245_CR44) 2014; 71
J Jahn (1245_CR33) 1996
1245_CR24
RG Regis (1245_CR48) 2016; 48
1245_CR23
L Bajer (1245_CR9) 2019; 27
S Le Digabel (1245_CR37) 2011; 37
1245_CR29
1245_CR27
V Picheny (1245_CR43) 2017; 40
C Audet (1245_CR2) 2006; 17
E Bergou (1245_CR10) 2022; 10
Y Diouane (1245_CR20) 2021; 9
AIJ Forrester (1245_CR26) 2007; 463
C Audet (1245_CR7) 2002; 13
1245_CR1
DR Jones (1245_CR34) 1998; 13
C Audet (1245_CR6) 2022; 48
CE Rasmussen (1245_CR47) 2006
1245_CR50
AIF Vaz (1245_CR57) 2007; 39
1245_CR8
1245_CR54
1245_CR53
1245_CR51
1245_CR14
C Audet (1245_CR3) 2009; 20
1245_CR55
1245_CR18
1245_CR15
K-T Fang (1245_CR25) 2005
Y Diouane (1245_CR21) 2015; 152
L Rios (1245_CR49) 2013; 56
Z Wang (1245_CR60) 2016; 55
1245_CR42
LN Vicente (1245_CR59) 2012; 133
MA Bouhlel (1245_CR13) 2018; 50
1245_CR45
E Vazquez (1245_CR58) 2010; 140
ML Stein (1245_CR56) 2012
Y Diouane (1245_CR22) 2015; 62
TG Kolda (1245_CR36) 2003; 45
N Hansen (1245_CR30) 2021; 36
W Huyer (1245_CR32) 1999; 14
AD Bull (1245_CR16) 2011; 12
R Chen (1245_CR17) 2018; 169
J Blanchet (1245_CR11) 2019; 1
V Picheny (1245_CR46) 2013; 48
1245_CR31
C Audet (1245_CR4) 2021; 19
AR Conn (1245_CR19) 2009
1245_CR35
J Nocedal (1245_CR41) 2006
1245_CR39
1245_CR38
C Audet (1245_CR5) 2017
AJ Booker (1245_CR12) 1998; 17
S Gratton (1245_CR28) 2014; 24
References_xml – reference: Anagnostidis, S.-K., Lucchi, A., Diouane, Y.: Direct-search for a class of stochastic min-max problems. In: International Conference on Artificial Intelligence and Statistics, pp. 3772–3780 (2021)
– reference: DiouaneYA merit function approach for evolution strategiesEURO J. Comput. Optim.20219439773310.1016/j.ejco.2020.100001
– reference: BullADConvergence rates of efficient global optimization algorithmsJ. Mach. Learn. Res.2011122879290428543511280.90094
– reference: Diouane, Y., Lucchi, A., Patil, V.: A globally convergent evolutionary strategy for stochastic constrained optimization with applications to reinforcement learning. In: International Conference on Artificial Intelligence and Statistics, pp. 3772–3780 (2022)
– reference: Brockhoff, D.: Online description of the BBOB functions. https://coco.gforge.inria.fr/ (2006)
– reference: Schonlau, M., Welch, W. J., Jones, D. R.: Global versus local search in constrained optimization of computer models. Lecture Notes-Monograph Series, pp. 11–25 (1998)
– reference: BookerAJDennisJEJrFrankPDSerafiniDBTorczonVTrossetMWA rigorous framework for optimization of expensive functions by surrogatesStruct. Multidiscipl. Optim.199817113
– reference: KoldaTGLewisRMTorczonVOptimization by direct search: New perspectives on some classical and modern methodsSIAM Rev.200345385482204650410.1137/S0036144502428891059.90146
– reference: PichenyVCasadebaigPTréposRFaivreRDa SilvaDVincourtPCostesEUsing numerical plant models and phenotypic correlation space to design achievable ideotypesPlant, Cell Environ.2017401926193910.1111/pce.13001
– reference: WangZHutterFZoghiMMathesonDde FeitasNBayesian optimization in a billion dimensions via random embeddingsJ. Artif. Intell. Res.201655361387346601710.1613/jair.48061358.90089
– reference: SteinMLInterpolation of Spatial Data: Some Theory for Kriging2012BerlinSpringer Science & Business Media
– reference: ForresterAIJSóbesterAKeaneAJMulti-fidelity optimization via surrogate modellingPhilos. Trans. A. Math. Phys. Eng. Sci.20074633251326923866611142.90489
– reference: HuyerWNeumaierAGlobal optimization by multilevel coordinate searchJ. Global Optim.199914331355170779510.1023/A:10083823093690956.90045
– reference: JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ. Global Optim.199813455492167346010.1023/A:10083064311470917.90270
– reference: Picheny, V., Gramacy, R. B., Wild, S., Le Digabel, S.: Bayesian optimization under mixed constraints with a slack-variable augmented lagrangian. In: Advances in Neural Information Processing Systems, pp. 1435–1443 (2016)
– reference: Snoek, J., Larochelle, H., Adams, R. P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)
– reference: Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reissued by SIAM, Philadelphia (1990)
– reference: RiosLSahinidisNDerivative-free optimization: a review of algorithms and comparison of software implementationsJ. Global Optim.20135612471293307015410.1007/s10898-012-9951-y1272.90116
– reference: BergouEDiouaneYKungurtsevVRoyerCWA stochastic Levenberg-Marquardt method using random models with complexity resultsSIAM-ASA J. Uncertain. Quant.202210507536440043010.1137/20M13662531487.49035
– reference: Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009. In: Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1689–1696 (2010)
– reference: ShahriariBSwerskyKWangZAdamsRPDe FreitasNTaking the human out of the loop: A review of Bayesian optimizationProc. IEEE201510414817510.1109/JPROC.2015.2494218
– reference: AudetCHareWDerivative-Free and Blackbox Optimization2017ChamSpringer10.1007/978-3-319-68913-51391.90001
– reference: NocedalJWrightSJNumerical Optimization20062BerlinSpringer1104.65059
– reference: HansenNAugerARosRMersmannOTušarTBrockhoffDCOCO: a platform for comparing continuous optimizers in a black-box settingOptim. Methods Softw.202136114144420042710.1080/10556788.2020.18089771464.90001
– reference: BouhlelMABartoliNRegisRGOtsmaneAMorlierJEfficient global optimization for high-dimensional constrained problems by using the kriging models combined with the partial least squares methodEng. Optim.20185020382053386373010.1080/0305215X.2017.141934407636658
– reference: DiouaneYGrattonSVicenteLNGlobally convergent evolution strategiesMath. Program.2015152467490336948910.1007/s10107-014-0793-x1334.90209
– reference: ChenRMenickellyMScheinbergKStochastic optimization using trust-region method and random modelsMath. Program.2018169447487380086710.1007/s10107-017-1141-81401.90136
– reference: Le DigabelSAlgorithm 909: Nomad: Nonlinear optimization with the mads algorithmACM Trans. Math. Softw.20113744277483610.1145/1916461.19164681365.65172
– reference: GrattonSVicenteLNA merit function approach for direct searchSIAM J. Optim.20142419801998328128610.1137/1309176611318.90077
– reference: McLeod, M., Roberts, S., Osborne, M. A.: Optimization, fast and slow: optimally switching between local and Bayesian optimization. In: International Conference on Machine Learning, pp. 3443–3452 (2018)
– reference: RasmussenCEWilliamsCKIGaussian Processes for Machine Learning2006CambridgeMIT Press1177.68165
– reference: VazAIFVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ. Global Optim.200739197219233637110.1007/s10898-007-9133-51180.90252
– reference: PichenyVGinsbourgerDNoisy Kriging-based optimization methods: A unified implementation within the DiceOptim packageComput. Stat. Data Anal.20147110351053313202510.1016/j.csda.2013.03.0181471.62161
– reference: Brochu, E., Cora, V. M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, (2010)
– reference: JahnJIntroduction to the Theory of Nonlinear Optimization1996BerlinSpringer10.1007/978-3-662-03271-80855.49001
– reference: AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Optim.200617188217221915010.1137/0406033711112.90078
– reference: Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization. J. Stat. Softw. 51 (2012)
– reference: Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in the bandit setting: No regret and experimental design. In: International Conference on Machine Learning (2010)
– reference: VazquezEBectJConvergence properties of the expected improvement algorithm with fixed mean and covariance functionsJ. Stat. Plan. and Inference201014030883095265983910.1016/j.jspi.2010.04.0181419.62200
– reference: VicenteLNCustódioALAnalysis of direct searches for discontinuous functionsMath. Program.2012133299325292110110.1007/s10107-010-0429-81245.90127
– reference: Auger, A., Finck, S., Hansen, N., Ros, R.: BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April (2010)
– reference: AudetCDzahiniKJKokkolarasMLe DigabelSStochastic mesh adaptive direct search for blackbox optimization using probabilistic estimatesComput. Optim. Appl.202119134423814710.1007/s10589-020-00249-01469.90095
– reference: FangK-TLiRSudjiantoADesign and Modeling for Computer Experiments2005LondonCRC Press10.1201/97814200348991093.62117
– reference: BajerLPitraZRepickýJHolenaMGaussian process surrogate models for the CMA evolution strategyEvol. Comput.20192766569710.1162/evco_a_00244
– reference: DiouaneYGrattonSVicenteLNGlobally convergent evolution strategies for constrained optimizationComput. Optim. Appl.201562323346340667910.1007/s10589-015-9747-31326.90079
– reference: Kandasamy, K., Schneider, J., Póczos, B.: High dimensional Bayesian optimisation and bandits via additive models. In: International Conference on Machine Learning, pp. 295–304 (2015)
– reference: Siivola, E., Vehtari, A., Vanhatalo, J., González, J., Andersen, M. R.: Correcting boundary over-exploration deficiencies in Bayesian optimization with virtual derivative sign observations. In: IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6 (2018)
– reference: AudetCLe DigabelSRochon MontplaisirVTribesCAlgorithm 1027: NOMAD version 4: nonlinear optimization with the mads algorithmACM Trans. Math. Softw.202248122449228610.1145/354448907668779
– reference: AudetCDennisJEJrAnalysis of generalized pattern searchesSIAM J. Optim.200213889903197222010.1137/S10526234003787421053.90118
– reference: Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., Poloczek, M.: Scalable global optimization via local Bayesian optimization. In: Advances in Neural Information Processing Systems
– reference: Frazier, P. I.: A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811 (2018)
– reference: AudetCDennisJEJrA progressive barrier for derivative-free nonlinear programmingSIAM J. Optim.200920445472250713110.1137/0706926621187.90266
– reference: MockusJBayesian Approach to Global Optimization: Theory and Applications2012BerlinSpringer Science & Business Media0693.49001
– reference: PichenyVWagnerTGinsbourgerDA benchmark of kriging-based infill criteria for noisy optimizationStruct. Multidiscipl. Optim.20134860762610.1007/s00158-013-0919-4
– reference: BlanchetJCartisCMenickellyMScheinbergKConvergence rate analysis of a stochastic trust region method via supermartingalesINFORMS J. Optim.2019192119415131910.1287/ijoo.2019.0016
– reference: Oh, Ch. Y., Gavves, E., Welling, M.: BOCK: Bayesian optimization with cylindrical kernels. In: International Conference on Machine Learning, pp. 3868–3877 (2018)
– reference: Hutter, F., Hoos, H. H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: International Conference on Learning and Intelligent Optimization, pp. 507–523 (2011)
– reference: Le Digabel, S., Wild, S.M.: A taxonomy of constraints in simulation-based optimization. Technical Report G-2015-57, Les cahiers du GERAD (2015)
– reference: RegisRGTrust regions in Kriging-based optimization with expected improvementEng. Optim.20164810371059347381110.1080/0305215X.2015.1082350
– reference: ConnARScheinbergKVicenteLNIntroduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization2009PhiladelphiaSIAM10.1137/1.97808987187681163.49001
– volume: 13
  start-page: 889
  year: 2002
  ident: 1245_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400378742
– ident: 1245_CR54
– ident: 1245_CR1
– volume: 50
  start-page: 2038
  year: 2018
  ident: 1245_CR13
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2017.1419344
– ident: 1245_CR29
  doi: 10.1145/1830761.1830790
– ident: 1245_CR31
  doi: 10.1007/978-3-642-25566-3_40
– volume: 20
  start-page: 445
  year: 2009
  ident: 1245_CR3
  publication-title: SIAM J. Optim.
  doi: 10.1137/070692662
– ident: 1245_CR35
– ident: 1245_CR39
– ident: 1245_CR45
– volume: 1
  start-page: 92
  year: 2019
  ident: 1245_CR11
  publication-title: INFORMS J. Optim.
  doi: 10.1287/ijoo.2019.0016
– volume: 104
  start-page: 148
  year: 2015
  ident: 1245_CR52
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume-title: Design and Modeling for Computer Experiments
  year: 2005
  ident: 1245_CR25
  doi: 10.1201/9781420034899
– volume: 17
  start-page: 188
  year: 2006
  ident: 1245_CR2
  publication-title: SIAM J. Optim.
  doi: 10.1137/040603371
– volume: 45
  start-page: 385
  year: 2003
  ident: 1245_CR36
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450242889
– volume: 14
  start-page: 331
  year: 1999
  ident: 1245_CR32
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008382309369
– ident: 1245_CR50
  doi: 10.18637/jss.v051.i01
– volume-title: Interpolation of Spatial Data: Some Theory for Kriging
  year: 2012
  ident: 1245_CR56
– volume: 140
  start-page: 3088
  year: 2010
  ident: 1245_CR58
  publication-title: J. Stat. Plan. and Inference
  doi: 10.1016/j.jspi.2010.04.018
– volume: 17
  start-page: 1
  year: 1998
  ident: 1245_CR12
  publication-title: Struct. Multidiscipl. Optim.
– volume: 36
  start-page: 114
  year: 2021
  ident: 1245_CR30
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2020.1808977
– volume: 169
  start-page: 447
  year: 2018
  ident: 1245_CR17
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1141-8
– ident: 1245_CR51
  doi: 10.1214/lnms/1215456182
– ident: 1245_CR8
– volume: 24
  start-page: 1980
  year: 2014
  ident: 1245_CR28
  publication-title: SIAM J. Optim.
  doi: 10.1137/130917661
– ident: 1245_CR42
– ident: 1245_CR15
– volume-title: Bayesian Approach to Global Optimization: Theory and Applications
  year: 2012
  ident: 1245_CR40
– volume-title: Introduction to the Theory of Nonlinear Optimization
  year: 1996
  ident: 1245_CR33
  doi: 10.1007/978-3-662-03271-8
– volume: 152
  start-page: 467
  year: 2015
  ident: 1245_CR21
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0793-x
– volume: 463
  start-page: 3251
  year: 2007
  ident: 1245_CR26
  publication-title: Philos. Trans. A. Math. Phys. Eng. Sci.
– volume: 9
  year: 2021
  ident: 1245_CR20
  publication-title: EURO J. Comput. Optim.
  doi: 10.1016/j.ejco.2020.100001
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: 1245_CR47
– volume: 48
  start-page: 1037
  year: 2016
  ident: 1245_CR48
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2015.1082350
– volume: 55
  start-page: 361
  year: 2016
  ident: 1245_CR60
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.4806
– ident: 1245_CR53
  doi: 10.1109/MLSP.2018.8516936
– ident: 1245_CR14
– volume: 19
  start-page: 1
  year: 2021
  ident: 1245_CR4
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00249-0
– volume: 27
  start-page: 665
  year: 2019
  ident: 1245_CR9
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00244
– volume: 71
  start-page: 1035
  year: 2014
  ident: 1245_CR44
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2013.03.018
– ident: 1245_CR18
  doi: 10.1137/1.9781611971309
– ident: 1245_CR24
– volume-title: Numerical Optimization
  year: 2006
  ident: 1245_CR41
– volume: 56
  start-page: 1247
  year: 2013
  ident: 1245_CR49
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9951-y
– volume: 39
  start-page: 197
  year: 2007
  ident: 1245_CR57
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9133-5
– volume: 62
  start-page: 323
  year: 2015
  ident: 1245_CR22
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-015-9747-3
– volume: 12
  start-page: 2879
  year: 2011
  ident: 1245_CR16
  publication-title: J. Mach. Learn. Res.
– volume: 37
  start-page: 44
  year: 2011
  ident: 1245_CR37
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1916461.1916468
– ident: 1245_CR55
– volume: 133
  start-page: 299
  year: 2012
  ident: 1245_CR59
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0429-8
– ident: 1245_CR38
– volume-title: Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization
  year: 2009
  ident: 1245_CR19
  doi: 10.1137/1.9780898718768
– volume: 48
  start-page: 1
  year: 2022
  ident: 1245_CR6
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/3544489
– volume: 40
  start-page: 1926
  year: 2017
  ident: 1245_CR43
  publication-title: Plant, Cell Environ.
  doi: 10.1111/pce.13001
– ident: 1245_CR23
– volume-title: Derivative-Free and Blackbox Optimization
  year: 2017
  ident: 1245_CR5
  doi: 10.1007/978-3-319-68913-5
– volume: 13
  start-page: 455
  year: 1998
  ident: 1245_CR34
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 48
  start-page: 607
  year: 2013
  ident: 1245_CR46
  publication-title: Struct. Multidiscipl. Optim.
  doi: 10.1007/s00158-013-0919-4
– ident: 1245_CR27
– volume: 10
  start-page: 507
  year: 2022
  ident: 1245_CR10
  publication-title: SIAM-ASA J. Uncertain. Quant.
  doi: 10.1137/20M1366253
SSID ssj0009852
Score 2.509552
Snippet Efficient global optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of...
Efficient Global Optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of...
SourceID unpaywall
hal
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Black boxes
Canonical forms
Computational Engineering, Finance, and Science
Computer Science
Design of experiments
Engineering Sciences
Exploitation
Global optimization
Mathematics
Mathematics and Statistics
Mechanical engineering
Mechanics
Operations Research/Decision Theory
Optimization
Optimization and Control
Parameter sensitivity
Real Functions
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7W7mHtw7ZmHfPWDTEG22gEsSzZ1t7MaBdKt0JpoG9CsmX2kDmBpA3773fnyE4GI3SPtmVh6359QnffAXxw3mNQkZLXcWW5zGTJ86RyXJUphg9PIaRl-_yRjify4lbdhqKwRZft3h1Jtp56q9gtp3IwQakEQiq-2oPHiui8UIsnothQ7eZtn52RFoor9MKhVObfc_wVjoJT3vtJOZFbgLM_Iz2EJ3fN3P5e2el0KwydP4enAT-yYi3wI3jkmwE863ozsGCqAzjcIhrEq-89O-tiAEdh1IJ9CqzTn19AcXN99u3qC7OsLcPg1LFh1rC6S95iiG6ZbwknME6xNZEIm6HH-RVKOY9hcn5283XMQ38FXsokXfIKtwoe8UbpK1wWJWrpdJ3hjsaOdILI0NYi9TlVz1Y2ra2LEbqMrLcqrnQlY5u8hP1m1vhXwKhPuUq1zurKSZeJ3OXeeydjnYu41HEEcbfMpgzk49QDY2o2tMkkGoOiMa1ozCqC0_6d-Zp6Y-fojyQ9Q3aJM5c2lBfg9xHDlSkyidCPyIkieI8C7qckfu1xcWno3iiRirjU70UEJ538TbDqhaFOXhliNK0jGHY6sXm86-OGvd484F9e_9_sb-BAIPRap2GewD6qiX-LUGnp3rWW8QcQVwTk
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6x7gH2AGyAyBjIQkiAmLvacX7xFqGNCqGB0CrBk2UntiZR0mprqeCv5y5xusLDBOI1ji07d777Trn7DuCZdQ6dilLci9pwlamK53FteVKl6D4cuZCW7fM0HU_Uu89Jn01ItTDniDhN4FzlsyX1JMaA0V_QAB_FKiGq6yPiLDrCYEUM29YRw3ntt2A7TRCOD2B7cvqx_NJy7MmE44SOMzWjnmUiDYUzoXwupwIzSckJUiV89ZtzCiZ665wyJDfg5_qP6Q7cXDZz82NlptMNp3RyB2x_nC4X5etwubDD6ucfTI__dd67cDtAVlZ2OrYLN1yzBzsbRIZ7sBtMxCV7EXisX96D8uzT8dsPr5lhbWEHpx4Qs4b5Ph2MIV5mrqWwQM_HOmoSNkMb9i0Uh96Hycnx2ZsxDx0beKXidMFrDD4cIpjK1fhpE-mVLXyGMZIZFTFiTeNl6nKqx61N6o0VCIZGxplE1EWthIkfwKCZNe4hMOp8nqRFkfnaKpvJ3ObOOatEkUtRFSIC0YtKV4HOnLpqTPUVETOJV6N4dStevYrg1XrOvCPzuPbt56QBmm46rlyZULCA-yN56DJTCCaJ7iiCpyiu9ZLE2D0u32t61ovwu4zgoNchHezEpabeYBmivqKI4LDXq6vh6zZ3uNa9vzjL_r-9_ghuSQRzXWLnAQxQTdxjBF8L-yRcr1_X6CGw
  priority: 102
  providerName: Unpaywall
Title TREGO: a trust-region framework for efficient global optimization
URI https://link.springer.com/article/10.1007/s10898-022-01245-w
https://www.proquest.com/docview/2803706699
https://hal.science/hal-03450072
https://hal.archives-ouvertes.fr/hal-03450072/file/2101.06808.pdf
UnpaywallVersion submittedVersion
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 1573-2916
  databaseCode: AMVHM
  dateStart: 20080329
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 1573-2916
  databaseCode: AFBBN
  dateStart: 19910301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-2916
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009852
  issn: 1573-2916
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009852
  issn: 1573-2916
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 1573-2916
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009852
  issn: 1573-2916
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-t7QPsAbEBImNUFkICxCwax_lCQiigfghQmaZV2p4sO3bEQ0k7bVDx33OXOm15qXjMt3N3vjsnd78fwEvjHAYVKXkVWs1lKkueRdbwuEwwfDgKIQ3a5zSZzOSXq_jqAKZtLwyVVbY-sXHUdlHSN_J3xKKUYnzM84_LG06sUfR3taXQ0J5awX5oIMY60BOEjNWF3qfh9PxiC8ObNRw8g1zEPEYP7dtofDNdRu1mgkoVhIz56p9Q5R125wfVS-4ko5v_p4dw71e91H9Wej7fCVGjh_DA55asWBvDERy4-hgOdxAHj-HIz-Vb9toDTr95BMXlxXD8_T3TrOnA4ETWsKhZ1dZtMUxsmWuwJjBEsTWGCFugs_npuzgfw2w0vPw84Z5agZcySu64xVWCw1SjdBbfOhaVNHmV4mJGD_IIk0JdicRl1DhrdVJpE2LWMtBOx6HNrQx19AS69aJ2T4ERRXmMakkra6RJRWYy55yRYZ6JsMzDAMJWiqr0uONEfzFXW8RkkrxCyatG8moVwNvNNcs16sbes1-RchRNSbxzqX1nAY6PwK1UkUrM-giXKIAXqL_NLQlae1J8U7RvEMmYYNR_iwBOW_UqP6Fv1db8AjhrVb49vG9wZxuz-I93Odn_8Gdwn_ju1xWXp9BFs3DPMSu6M33oZKNxH3rF-PrrsO8NH_fORIFbs-l5cf0XREAIQQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB3141B6qGgBYVpghUCA6Ip4vf5CqlCAlJSGgKpU6m3Z9a7FITip0hL1z_HbmHHWSbhEXHp1nI09M5k3a897A_DcOIegIiUvQ6u5TGXBs8gaHhcJwocjCKnVPvtJ91x-uYgv1uBPw4WhtsomJ9aJ2o4Kekb-lqYopYiPef5-fMlpahS9XW1GaGg_WsEe1RJjnthx6m6muIWbHJ18Qn-_EOK4M_jY5X7KAC9klFxxiwWzQ9QtnG1leSxKafIyxbpe42Yf6yNdisRlxCG1Oim1CRHAW9rpOLS5laGOcN112JSRzHHzt_mh0_9-tpD9zeqZP61cxDxGRPC0HU_ey4jeJqg1QsiYT_-BRg8Q6z-pP3Op-J2_r92GretqrG-mejhcgsTju7Dja1nWngXfLqy5ag-2lxQO92DX544Je-UFrl_fg_bgrPP52zumWc344DQcYlSxsukTY1hIM1drWyAksplmCRthcvvlWaP34fxWjPwANqpR5R4Co5HoMYZBWlojTSoykznnjAzzTIRFHgYQNlZUhdc5p3EbQ7VQaCbLK7S8qi2vpgG8mX9nPFP5WHn2S3KOohSAKxfaMxnw-khMS7VTiVUm6SAF8Az9N1-SpLy77Z6iY61IxiTb_lsEcNC4V_kEMlGLcA_gsHH54uNVF3c4D4v_uJdHq3_8KWx1B197qnfSP92HOwIrvFm35wFsYIi4x1iRXZknPuwZ_Ljtf9pf8S4_jg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tQwL2gNhgIjDAQiCYNmuNa-cHEkIVW9exaaBpk_Zm7NgRDyUt6qDav8Zfx13itOWl4mWvTeukd-f7Lsl93wG8tt4jqEjJy9gZLlNZ8KzrLFdFgvDhCUJqtc-zZHApP1-pqxX403JhqK2yzYl1onajgp6R79MUpRTxMc_3y9AW8fWg_3H8k9MEKXrT2o7TaELkxN9M8fZt8uH4AH39Roj-4cWnAQ8TBnghu8k1d1gse0TcwrtOlitRSpuXKdb0Bm_0sTYypUh8RvxRZ5LS2BjBu2O8UbHLnYxNF9ddhTspqbgTS71_NBf8zeppP51cKK4QCwJhJ9D2MiK2CWqKEFLx6T-gGKBh9Tt1Zi6UvbM3tetw71c1NjdTMxwugGH_ITwIVSzrNWG3ASu-2oT1BW3DTdgIWWPC3gVp651H0Ls4Pzz68p4ZVnM9OI2FGFWsbDvEGJbQzNeqFgiGrFErYSNMaz8CX_QxXN6KibdgrRpV_gkwGoauMADS0llpU5HZzHtvZZxnIi7yOIK4taIugsI5DdoY6rk2M1leo-V1bXk9jWB39ptxo--x9NtvyTmaNj-uXJjAYcDrIxkt3Usl1pekgBTBK_TfbEkS8R70TjV91ulKRYLtv0UE2617dUgdEz0P9Aj2WpfPDy-7uL1ZWPzHf3m6_OQv4S7uL316fHbyDO4LLO2aNs9tWMMI8c-xFLu2L-qYZ_DttjfZXxEMPSg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6x7gH2AGyAyBjIQkiAmLvacX7xFqGNCqGB0CrBk2UntiZR0mprqeCv5y5xusLDBOI1ji07d777Trn7DuCZdQ6dilLci9pwlamK53FteVKl6D4cuZCW7fM0HU_Uu89Jn01ItTDniDhN4FzlsyX1JMaA0V_QAB_FKiGq6yPiLDrCYEUM29YRw3ntt2A7TRCOD2B7cvqx_NJy7MmE44SOMzWjnmUiDYUzoXwupwIzSckJUiV89ZtzCiZ665wyJDfg5_qP6Q7cXDZz82NlptMNp3RyB2x_nC4X5etwubDD6ucfTI__dd67cDtAVlZ2OrYLN1yzBzsbRIZ7sBtMxCV7EXisX96D8uzT8dsPr5lhbWEHpx4Qs4b5Ph2MIV5mrqWwQM_HOmoSNkMb9i0Uh96Hycnx2ZsxDx0beKXidMFrDD4cIpjK1fhpE-mVLXyGMZIZFTFiTeNl6nKqx61N6o0VCIZGxplE1EWthIkfwKCZNe4hMOp8nqRFkfnaKpvJ3ObOOatEkUtRFSIC0YtKV4HOnLpqTPUVETOJV6N4dStevYrg1XrOvCPzuPbt56QBmm46rlyZULCA-yN56DJTCCaJ7iiCpyiu9ZLE2D0u32t61ovwu4zgoNchHezEpabeYBmivqKI4LDXq6vh6zZ3uNa9vzjL_r-9_ghuSQRzXWLnAQxQTdxjBF8L-yRcr1_X6CGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TREGO%3A+a+trust-region+framework+for+efficient+global+optimization&rft.jtitle=Journal+of+global+optimization&rft.au=Diouane%2C+Youssef&rft.au=Picheny%2C+Victor&rft.au=Riche%2C+Rodolophe+Le&rft.au=Perrotolo%2C+Alexandre+Scotto+Di&rft.date=2023-05-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=86&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1007%2Fs10898-022-01245-w&rft.externalDocID=A746440973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon