Secretary bird optimization algorithm based on quantum computing and multiple strategies improvement for KELM diabetes classification
The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the...
Saved in:
| Published in | Scientific reports Vol. 15; no. 1; pp. 3774 - 24 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
30.01.2025
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-025-87285-0 |
Cover
| Abstract | The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter
and bandwidth
of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes. |
|---|---|
| AbstractList | The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter and bandwidth of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes. The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter [Formula: see text] and bandwidth [Formula: see text] of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes. Abstract The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter $$\:C$$ and bandwidth $$\:c$$ of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes. The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter and bandwidth of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes. The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter [Formula: see text] and bandwidth [Formula: see text] of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes.The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter [Formula: see text] and bandwidth [Formula: see text] of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes. The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter $$\:C$$ and bandwidth $$\:c$$ of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes. |
| ArticleNumber | 3774 |
| Author | Zhu, Yu Wu, Xianbo Wan, Li Huang, Qinchuan Huang, Ju Zhang, Mingxu |
| Author_xml | – sequence: 1 givenname: Yu surname: Zhu fullname: Zhu, Yu organization: School of Sports Medicine and Health, Chengdu Sport University – sequence: 2 givenname: Mingxu surname: Zhang fullname: Zhang, Mingxu organization: Hospital of Chengdu University of Traditional Chinese Medicine – sequence: 3 givenname: Qinchuan surname: Huang fullname: Huang, Qinchuan organization: Hospital of Chengdu University of Traditional Chinese Medicine – sequence: 4 givenname: Xianbo surname: Wu fullname: Wu, Xianbo organization: School of Sports Medicine and Health, Chengdu Sport University – sequence: 5 givenname: Li surname: Wan fullname: Wan, Li organization: School of Sports Medicine and Health, Chengdu Sport University – sequence: 6 givenname: Ju surname: Huang fullname: Huang, Ju email: huangju0777@163.com organization: Hospital of Chengdu University of Traditional Chinese Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39885224$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkclu1TAUhiNUREvpC7BAltiwCXhM4iWqClRcxILuLcdD8FVsp7ZTVPa8N74DBbFAeGPL5zv_Gf6nzUmIwTTNcwRfI0iGN5kixocWYtYOPR5YCx81ZxhS1mKC8ckf79PmIuctrIdhThF_0pwSPgwMY3rW_PhiVDJFpnswuqRBXIrz7rssLgYg5ykmV756MMpsajCA21WGsnqgol_W4sIEZNDAr3Nxy2xALkkWMzmTgfNLinfGm1CAjQl8vNp8AtrJ0ZQaVbPM2Vmn9pWeNY-tnLO5ON7nzc27q5vLD-3m8_vry7ebVlHSlVZjYunQy74bKZSEKkg501wT1enOcjViJTvY9ZpQaLGFauxph5g1eOB0ZOS8uT7I6ii3YknO17lFlE7sP2KahEzFqdkICSnkCulOIUoZsRwxaHpFJba2KpKqRQ5aa1jk_Tc5zw-CCIqdReJgkagWib1FAtasV4esupvb1eQivMvKzLMMJq5ZENQhvsvCFX35F7qNawp1PXuqw7Tvd9SLI7WO3uiHHn45XAF8AFSKOSdj_6_N43C5wmEy6Xftf2T9BNSzygw |
| Cites_doi | 10.1016/j.compeleceng.2013.07.003 10.1016/j.heliyon.2024.e37819 10.1007/s00500-018-3102-4 10.1016/j.knosys.2023.111257 10.3390/sym12101651 10.1007/s00432-024-05968-z 10.1007/s11042-024-20146-6 10.1007/s10462-024-10729-y 10.1007/s10462-024-10723-4 10.1016/j.neucom.2018.08.082 10.1016/j.microc.2024.111280 10.1063/1.5113555 10.1109/ICNN.1995.488968 10.3390/lubricants12010010 10.1016/j.cmpb.2013.07.009 10.1007/s12293-016-0182-5 10.1016/j.eswa.2023.122147 10.1016/j.knosys.2020.105648 10.1111/hsc.13522 10.1109/4235.585893 10.1016/S0925-2312(02)00599-4 10.1016/j.ijhydene.2023.10.019 10.2174/9789815196320124030010 10.1109/TSMCB.2008.923529 10.1016/j.eswa.2022.119421 10.1155/2017/9512741 10.1007/s13042-020-01094-7 10.1080/0954898X.2018.1535721 10.1016/j.knosys.2018.10.029 10.1038/s41598-024-82918-2 10.1007/s44196-021-00013-0 10.1016/j.eswa.2023.121219 10.1016/j.neucom.2017.04.060 10.1016/j.knosys.2021.107638 10.1016/j.eswa.2020.113377 10.1038/s41598-024-53064-6 10.1007/s11227-022-04959-6 10.1016/j.csite.2022.102504 10.1016/j.cma.2024.116915 10.1007/s13755-019-0095-z 10.1007/s42835-022-01000-x 10.1016/j.procs.2018.05.122 10.1016/j.eswa.2006.09.012 10.5815/ijmecs.2011.05.03 10.1016/j.egyr.2023.05.162 10.1016/j.metabol.2023.155657 10.1016/j.engappai.2021.104314 10.1016/j.advengsoft.2013.12.007 10.1016/j.swevo.2018.02.020 10.1016/j.asoc.2020.106266 10.1016/j.engappai.2017.05.003 10.1016/j.compbiomed.2021.105137 10.1109/ECTI-CON54298.2022.9795535 10.1109/CEC.2000.870809 10.1109/CEC.2017.7969336 10.1097/MD.0000000000040412 10.1007/s00262-024-03843-x 10.1016/j.eswa.2022.116924 10.1007/s10462-024-10821-3 10.1016/j.cviu.2020.103003 10.1002/int.22844 10.3390/biomimetics8030306 10.1016/B978-0-12-813314-9.00010-4 10.1051/matecconf/202133605021 10.1155/2024/5546940 10.1016/j.advengsoft.2016.01.008 10.1016/j.eswa.2008.10.053 10.1900/RDS.2010.7.252 10.1007/s11042-023-16371-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-025-87285-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Public Health |
| EISSN | 2045-2322 |
| EndPage | 24 |
| ExternalDocumentID | oai_doaj_org_article_a0409c1d6c14453f9150e7c4a2ff15f3 10.1038/s41598-025-87285-0 39885224 10_1038_s41598_025_87285_0 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: School of Sports Medicine and Health 2024-2025 Research Excellence Program grantid: [grant number: ZYRC2406] – fundername: Sports Medicine Key Laboratory of Sichuan Province grantid: [grant number: 2023-A034] |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO AARCD CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c436t-d23f487a76b40a34c0495d9d3c6d6f9cb2ca6067d340f2f0cb74615fe2894b53 |
| IEDL.DBID | M48 |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:08:26 EDT 2025 Sun Oct 26 04:15:14 EDT 2025 Thu Oct 02 05:39:39 EDT 2025 Tue Oct 07 07:56:17 EDT 2025 Sat Aug 09 01:32:20 EDT 2025 Wed Oct 01 02:46:07 EDT 2025 Fri Feb 21 02:36:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Secretary bird optimization algorithm Quantum computing Parameter optimization Diabetes classification prediction Kernel extreme learning machine |
| Language | English |
| License | 2025. The Author(s). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-d23f487a76b40a34c0495d9d3c6d6f9cb2ca6067d340f2f0cb74615fe2894b53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-025-87285-0 |
| PMID | 39885224 |
| PQID | 3161624772 |
| PQPubID | 2041939 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a0409c1d6c14453f9150e7c4a2ff15f3 unpaywall_primary_10_1038_s41598_025_87285_0 proquest_miscellaneous_3161915982 proquest_journals_3161624772 pubmed_primary_39885224 crossref_primary_10_1038_s41598_025_87285_0 springer_journals_10_1038_s41598_025_87285_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-30 |
| PublicationDateYYYYMMDD | 2025-01-30 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 87285_CR19 87285_CR17 87285_CR16 87285_CR15 87285_CR59 87285_CR14 87285_CR58 87285_CR13 87285_CR57 87285_CR23 87285_CR67 87285_CR22 87285_CR66 87285_CR21 87285_CR65 87285_CR20 87285_CR64 87285_CR63 87285_CR62 CM He (87285_CR18) 2018; 29 87285_CR61 87285_CR60 87285_CR49 87285_CR48 87285_CR47 87285_CR12 87285_CR56 87285_CR11 87285_CR55 87285_CR10 87285_CR54 87285_CR53 87285_CR52 87285_CR51 87285_CR50 87285_CR4 87285_CR5 87285_CR2 87285_CR3 87285_CR39 87285_CR1 87285_CR37 87285_CR36 87285_CR8 87285_CR9 87285_CR6 87285_CR7 DH Wolpert (87285_CR35) 1997; 1 87285_CR45 87285_CR44 87285_CR43 87285_CR42 H Zamani (87285_CR38) 2021; 104 87285_CR41 87285_CR40 87285_CR29 87285_CR28 87285_CR27 87285_CR26 87285_CR25 87285_CR69 87285_CR24 87285_CR68 B Chandra (87285_CR46) 2009; 36 M Abdel-Basset (87285_CR71) 2024; 284 87285_CR70 87285_CR34 87285_CR78 87285_CR33 87285_CR77 87285_CR32 87285_CR76 87285_CR31 87285_CR75 87285_CR30 87285_CR74 87285_CR73 87285_CR72 |
| References_xml | – ident: 87285_CR4 doi: 10.1016/j.compeleceng.2013.07.003 – ident: 87285_CR64 doi: 10.1016/j.heliyon.2024.e37819 – ident: 87285_CR49 – ident: 87285_CR34 doi: 10.1007/s00500-018-3102-4 – volume: 284 start-page: 111257 year: 2024 ident: 87285_CR71 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.111257 – ident: 87285_CR5 – ident: 87285_CR20 doi: 10.3390/sym12101651 – ident: 87285_CR2 – ident: 87285_CR23 doi: 10.1007/s00432-024-05968-z – ident: 87285_CR26 doi: 10.1007/s11042-024-20146-6 – ident: 87285_CR44 doi: 10.1007/s10462-024-10729-y – ident: 87285_CR70 doi: 10.1007/s10462-024-10723-4 – ident: 87285_CR73 doi: 10.1016/j.neucom.2018.08.082 – ident: 87285_CR25 doi: 10.1016/j.microc.2024.111280 – ident: 87285_CR29 doi: 10.1063/1.5113555 – ident: 87285_CR66 doi: 10.1109/ICNN.1995.488968 – ident: 87285_CR17 doi: 10.3390/lubricants12010010 – ident: 87285_CR50 doi: 10.1016/j.cmpb.2013.07.009 – ident: 87285_CR16 doi: 10.1007/s12293-016-0182-5 – ident: 87285_CR37 doi: 10.1016/j.eswa.2023.122147 – ident: 87285_CR75 doi: 10.1016/j.knosys.2020.105648 – ident: 87285_CR3 doi: 10.1111/hsc.13522 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 87285_CR35 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – ident: 87285_CR48 doi: 10.1016/S0925-2312(02)00599-4 – ident: 87285_CR30 doi: 10.1016/j.ijhydene.2023.10.019 – ident: 87285_CR14 doi: 10.1016/j.cmpb.2013.07.009 – ident: 87285_CR28 doi: 10.2174/9789815196320124030010 – ident: 87285_CR8 – ident: 87285_CR45 doi: 10.1109/TSMCB.2008.923529 – ident: 87285_CR59 doi: 10.1016/j.eswa.2022.119421 – ident: 87285_CR78 doi: 10.1155/2017/9512741 – ident: 87285_CR53 doi: 10.1007/s13042-020-01094-7 – volume: 29 start-page: 1 year: 2018 ident: 87285_CR18 publication-title: Network-Computation Neural Syst. doi: 10.1080/0954898X.2018.1535721 – ident: 87285_CR76 doi: 10.1016/j.knosys.2018.10.029 – ident: 87285_CR40 doi: 10.1038/s41598-024-82918-2 – ident: 87285_CR51 doi: 10.1007/s44196-021-00013-0 – ident: 87285_CR60 doi: 10.1016/j.eswa.2023.121219 – ident: 87285_CR74 doi: 10.1016/j.neucom.2017.04.060 – ident: 87285_CR52 doi: 10.1016/j.knosys.2021.107638 – ident: 87285_CR43 doi: 10.1016/j.eswa.2020.113377 – ident: 87285_CR55 doi: 10.1038/s41598-024-53064-6 – ident: 87285_CR68 doi: 10.1007/s11227-022-04959-6 – ident: 87285_CR31 doi: 10.1016/j.csite.2022.102504 – ident: 87285_CR56 doi: 10.1016/j.cma.2024.116915 – ident: 87285_CR7 doi: 10.1007/s13755-019-0095-z – ident: 87285_CR15 doi: 10.1007/s42835-022-01000-x – ident: 87285_CR6 doi: 10.1016/j.procs.2018.05.122 – ident: 87285_CR13 doi: 10.1016/j.eswa.2006.09.012 – ident: 87285_CR47 doi: 10.5815/ijmecs.2011.05.03 – ident: 87285_CR32 doi: 10.1016/j.egyr.2023.05.162 – ident: 87285_CR1 doi: 10.1016/j.metabol.2023.155657 – volume: 104 start-page: 104314 year: 2021 ident: 87285_CR38 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104314 – ident: 87285_CR67 doi: 10.1016/j.advengsoft.2013.12.007 – ident: 87285_CR62 doi: 10.1016/j.swevo.2018.02.020 – ident: 87285_CR72 doi: 10.1016/j.asoc.2020.106266 – ident: 87285_CR22 doi: 10.1016/j.engappai.2017.05.003 – ident: 87285_CR57 doi: 10.1016/j.heliyon.2024.e37819 – ident: 87285_CR21 doi: 10.1016/j.compbiomed.2021.105137 – ident: 87285_CR61 doi: 10.1109/ECTI-CON54298.2022.9795535 – ident: 87285_CR10 doi: 10.1016/j.compeleceng.2013.07.003 – ident: 87285_CR58 doi: 10.1109/CEC.2000.870809 – ident: 87285_CR65 doi: 10.1109/CEC.2017.7969336 – ident: 87285_CR12 doi: 10.1097/MD.0000000000040412 – ident: 87285_CR24 doi: 10.1007/s00262-024-03843-x – ident: 87285_CR69 doi: 10.1016/j.eswa.2022.116924 – ident: 87285_CR54 doi: 10.1007/s10462-024-10821-3 – ident: 87285_CR77 doi: 10.1016/j.cviu.2020.103003 – ident: 87285_CR11 doi: 10.1002/int.22844 – ident: 87285_CR63 – ident: 87285_CR33 doi: 10.3390/biomimetics8030306 – ident: 87285_CR36 doi: 10.1016/B978-0-12-813314-9.00010-4 – ident: 87285_CR19 doi: 10.1051/matecconf/202133605021 – ident: 87285_CR39 doi: 10.1155/2024/5546940 – ident: 87285_CR41 doi: 10.1016/j.advengsoft.2016.01.008 – volume: 36 start-page: 8549 issue: 4 year: 2009 ident: 87285_CR46 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.10.053 – ident: 87285_CR42 – ident: 87285_CR9 doi: 10.1900/RDS.2010.7.252 – ident: 87285_CR27 doi: 10.1007/s11042-023-16371-0 |
| SSID | ssj0000529419 |
| Score | 2.4847713 |
| Snippet | The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning... Abstract The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine... |
| SourceID | doaj unpaywall proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 3774 |
| SubjectTerms | 631/1647 692/163 692/499 Algorithms Birds Chronic illnesses Classification Correlation coefficient Diabetes Diabetes classification prediction Diabetes mellitus Diabetes Mellitus - classification Diabetes Mellitus - diagnosis Humanities and Social Sciences Humans Kernel extreme learning machine Learning algorithms Machine Learning multidisciplinary Optimization algorithms Parameter optimization Prediction models Public health Quantum computing Science Science (multidisciplinary) Secretary bird optimization algorithm |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLaqSqhwQEBZAgUZqTca1eMt8RGqVhXbpa3Um-V4gZFmMmUmEZofwP_m2U6mg4SAA9fYipf32e_7vDwjdAiiIVAfQhn1Rckr60vQIa5sakGN8xZ8fIr2-VmeX_H31-J666mveCYshwfOHXdsAGXKTpy0QP0FCwoYjK8sNzSEiQgpziep1ZaYylG9qeITNdySIaw-XoGnirfJqIAJgNaiJL94ohSw_3csc2uH9B7a69sbs_5uZrMtJ3T2AN0f2CN-m2v9EO349hG6k9-TXO-jHxeRBHZmucbNdOnwAuaD-XDREpvZl8Vy2n2d4-i5ILHF33ro136ObXraAUrHpnV4PGOIV90YRwJP09pDWkrEQHPxh9OPn_C4bottpODxzFEq6TG6PDu9PDkvh3cWSsuZ7EpHWQDdYirZcGIYt6AahFOOWelkULah1oDOqRzjJNBAbFNxIELBg1jjjWBP0G67aP0zhJmvpeGOhaAID0waYB9SOSGaIAwIrQK9Gbtc3-RoGjrtgrNaZwNpMJBOBtKkQO-iVTY5YyTs9AHwoQd86L_ho0AHo031MDxXmgHPlZSDsijQ600yDKy4W2Jav-hzHhWrBHmeZixsasJUDVimvEBHIzhuf_6nBh1tAPQP7X_-P9r_At2lEfQkLjMeoN1u2fuXwKO65lUaMj8BbvEXjw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_qFVER0fqKVlnBbzY03d1skg8iVq4UH4dohX5bNvuohbvkepcg9wf4fzu7ebSCFL8my2X2ZnbmNzM7MwCv0Wlw1DoXe_8i5pm2MfohJi7zlCpjNdr40O1zJo5_8I-n6ekWzIZaGH-tctCJQVGbWvsY-T5DaCIoRzD4bnkR-6lRPrs6jNBQ_WgF8za0GLsB29R3xprA9uF09vXbGHXxeS1-UPTVMwnL99dowXyVGU1RMdA8jZO_LFRo5P8v9Hklc3oHbrXVUm1-qfn8inE6ug_3elRJ3ndi8AC2bLUDN7s5k5sduNsF50hXc_QQfn_3YLFRqw0pz1eG1Kg3Fn1BJlHzM9x383NBvIXDlxW5aPH_bxdEhxEQSA1RlSHDXUSyboZ-E-Q8xChCyJEgHCafpp-_kCG-S7SH6v5uUvjSIzg5mp58OI77eQyx5kw0saHMoX-jMlHyRDGu0btITWGYFka4QpdUK_SHMsN44qhLdJlxBEzOolPHy5Q9hklVV_YpEGZzobhhzhUJd0woRCmiMGlaulShQxbBm4EFctl13ZAhW85y2TFMIsNkYJhMIjj0XBpX-o7Z4UG9OpP9AZQKtVWhD4zQ6EKmzBWIhG2muaLOIY0sgt2Bx7I_xmt5KXQRvBpf4wH0WRVV2brt1hSeJFzzpJONkRJW5CjzlEewNwjL5Y9ft6G9UaD-Y__Prif9OdymXrwTH2jchUmzau0LRFJN-bI_Hn8A_GYa3w priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VWyHggMqzgYKMxI2NSP1KclxQq2p5XFqk3izHD6i0m213E6H9Afxvxs6DVlQIromT2J6ZzPfN2GOAN0gaPHXep4FfpDw3LkUeYtOqEFRbZ9DHx2qfX-TJVz4_F-c7MB32wtzI38fS3Rt0MWEbGBVoubQQKRL03QIVs5jA7mw2P52PMZWQteKHZb83Bh9_9-fDN_xPLNN_G7a8lhe9D3fb-lJvf-jF4prrOd6DBz1mJLNOyA9hx9WP4E53iuT2Mfw8DdCv0estqS7WlqzwL7Dst1cSvfi2Qv7_fUmCv8KbNblqcTbbJTHxQAf8OtG1JcPKQrJphuoR5CJGHGIAkSC4JR-PPn0mQ7SWmAC8w0qj-KUncHZ8dPbhJO1PV0gNZ7JJLWUe2YrOZcUzzbhBriBsaZmRVvrSVNRoZDe5ZTzz1GemyjnCH--QovFKsKcwqVe12wfCXCE1t8z7MuOeSY2YQ5ZWiMoLjfQqgbfDlKvLroaGirlvVqhOQAoFpKKAVJbA-yCVsWWofx0voFqo3pyUxn9PaQ6tNEgIBfMl4lqXG66p99hHlsDBIFPVG-VGMUS3knLkEwm8Hm-jOYUcia7dqu3alKFL2OZZpwtjT1hZoAZTnsB0UI7fL__bgKajAv3D-J__39tfwD2KOCssi6PyACbNunUvESc11avePH4Bj40KOw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgg4UN4ECjISN-o2-JXk2KJWFY8KiVYqJ8tPWLGbLbuJqu2d_83YSZYWVahcYyfx2DOe7_NjBqHXQBoC9SGQyC8IL6wnwEMcMaWg2nkLPj5F-zyUB8f8_Yk46cPkxLswl_bvWbm9AAcTL4FRAXZLS0GAnq9JAbh7hNaODz_vfI3Z4wCXEIAGtL8Vc_WLlzxPCtB_Faq8sCN6B91q61O9PNOTyQWns7_eZS9apFiF8azJj622MVv2_K9IjteT5x6622NPvNMpy310w9cP0M0uG-XyIfr1JULIRs-X2IznDs9gNpn21zSxnnybzcfN9ymOfg8Ka_yzhVFpp9imxBAgC9a1w8MJRbxohigUeJxWLtJCJAaQjD_sffyEh1VfbCOAjyeW0p8eoaP9vaN3B6TP0kAsZ7IhjrIArEcX0vBcM26BcwhXOWalk6GyhloNLKlwjOeBhtyaggOMCh6oHjeCPUajelb7pwgzX0rNHQuhynlgUgN2kZUTwgShgaZl6M0wgOq0i8Wh0h46K1XXrwr6VaV-VXmGduMYr2rGONrpAQyH6s1SaZjDKvvWSQvEUrBQAT72heWahgBtZBnaGDRE9ca9UAxQsqQceEmGXq2KwSzjXouu_azt6lSxSVDnSadZq5awqgRLoDxDm4Oq_fn4vwTaXKnjNeR_9n_Vn6PbNGplHpcjN9Combf-BeCtxrzsDe03Xp8gMg priority: 102 providerName: Unpaywall |
| Title | Secretary bird optimization algorithm based on quantum computing and multiple strategies improvement for KELM diabetes classification |
| URI | https://link.springer.com/article/10.1038/s41598-025-87285-0 https://www.ncbi.nlm.nih.gov/pubmed/39885224 https://www.proquest.com/docview/3161624772 https://www.proquest.com/docview/3161915982 https://doi.org/10.1038/s41598-025-87285-0 https://doaj.org/article/a0409c1d6c14453f9150e7c4a2ff15f3 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTcB4QPymMCoj8cYCme048QNCXdVpKqya2CqNp8ix41GpTbc0FfQP4P_m7CRlSAXxVCl2asd3l_u-c3wH8AZJg6W5tYHjFwGPdR4gDzFBlkRUmVyjj_fZPkfieMyHF9HFFrTljpoFXGykdq6e1LicvvtxvfqIBv-hPjKevF-gE3IHxWiEtk2TKEAKv4OeSrpSDicN3K9zfVPJD2Rzdmbzrbtwh8kEZ0r5H67KZ_TfBENvbKHeg7vL4kqtvqvp9IaXOnoA9xt4SXq1PjyErbx4BLfrgpOrx_DzzKHESpUrkk1KQ-b4wpg1JzGJml7Oy0n1bUaca8PGglwvceGXM6J97QccnajCkPYjRLKo2kQTZOKDEz7WSBAHk0-DzyekDewS7TC6-yjJj_QEzo8G5_3joCnEEGjORBUYyiwSGxWLjIeKcY20IjLSMC2MsFJnVCskQrFhPLTUhjqLOSIlmyOb41nEnsJ2MS_y50BYngjFDbNWhtwyoRCeCGmiKLORQibWgbftkqdXdbqN1G-TsyStZZWirFIvqzTswKGTyrqnS5XtL8zLy7SxvFTha0rqAyM0cseIWYkQOI81V9RanCPrwF4r07RVv5QhEBaUI_XowOt1M1qe205RRT5f1n2kmxL2eVbrwnomrQp1YL9Vjt9__q8H2l8r0H88_4u_jvsSdqlT6tAFF_dguyqX-StET1XWhVvxRdyFnV5veDbE38PB6PQLXu2LftdHJLreaLBlPDrtff0FhC0aFQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9Ki1QR0Wo1WnUFfbJHr7t7l7uHIlZTUpMG0Qh9W_b2oxaSS5rcUfIH-Gf5vzm799EKUnzpa25J5jJfv5nZmQF4i0GDpcbawMUXAe8qE2AcooMsiajURqGP99M-R3H_B_9yGp2uwe-mF8Zdq2xsojfUeqZcjnyPITSJKUcw-GF-EbitUa662qzQkPVqBX3gR4zVjR0Ds7rEEG55cPwZ-f2O0qPe-FM_qLcMBIqzuAg0ZRZRu-zGGQ8l4woxc6RTzVSsY5uqjCqJKL-rGQ8ttaHKuhxhgDUYqvDMLY1AD7DBGU8x9ts47I2-fmuTPK6MxvfTulknZMneEh2ma2qjEdohmkRB-JdD9HsD_gV2rxVq78Fmmc_l6lJOJtd84dFDeFCDWPKxkrpHsGbyLbhTrbVcbcH9KhdIqhanx_Dru8OmhVysSHa-0GSGZmpa938SOTnDv7n4OSXOoeLDnFyUyO5ySpTfOIHUEJlr0lx9JMuiGW9Bzn1KxGc4CaJvMugNT0iTTibKRQbuKpT_pScwvg3GbMN6PsvNMyDMJLHkmlmbhtyyWCIoilMdRZmNJMZ_HXjfsEDMqyEfwhfnWSIqhglkmPAME2EHDh2X2pNuQLf_YLY4E7W-C4nGMVX7OlYYsUbMpgi8TVdxSa1FGlkHdhoei9pqLMWVjHfgTfsY9d0VcWRuZmV1JnUk4ZmnlWy0lLA0QRWjvAO7jbBcfflNL7TbCtR_vP_zm0l_DZv98clQDI9HgxdwlzpRD12OcwfWi0VpXiKIK7JXtaoQELesnH8A2e1W3Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD6UijdEtFZdrTqCPtkl25nZ24OI2obW1CJYIW_D7FxqIdlNk11KfoA_yn_nmdndtIIUX_qaHZKzObfv3OYAvMGgwVJjbejii5CnyoQYh-iwyGIqtVHo4_1tn0fJ_g_-ZRyP1-B3Pwvj2ip7m-gNta6Uy5EPGEKThHIEgwPbtUV82x1-mJ2FboOUq7T26zRaERmZ5TmGb4v3B7vI67eUDveOP--H3YaBUHGW1KGmzCJil2lS8EgyrhAvxzrXTCU6sbkqqJKI8FPNeGSpjVSRcoQA1mCYwgu3MAKt_42Usdx1E6bjdJXecQU0vpN3YzoRywYLdJVunI3GaIFoFofRX67Qbwz4F8y9VKK9C7ebciaX53IyueQFhw_gfgdfycdW3h7Cmik34Ga70HK5AffaLCBph5sewa_vDpXWcr4kxelckwoN1LSb_CRycoJ_av1zSpwrxYclOWuQ0c2UKL9rAqkhstSkb3oki7q_2IKc-mSIz20SxN1ktHf4lfSJZKJcTOCaoPwvbcLxdbDlMayXVWmeAmEmSyTXzNo84pYlEuFQkus4LmwsMfIL4F3PAjFrr_cQvizPMtEyTCDDhGeYiAL45Li0Oumu5vYfVPMT0Wm6kGgWc7WjE4WxasxsjpDbpIpLai3SyALY6nksOnuxEBfSHcDr1WPUdFe-kaWpmvZM7kjCM09a2VhRwvIMlYvyALZ7Ybn48qteaHslUP_x_s-uJv0V3EKVFIcHR6PncIc6SY9ccnML1ut5Y14gequLl15PCIhr1ss_bOlUdw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgg4UN4ECjISN-o2-JXk2KJWFY8KiVYqJ8tPWLGbLbuJqu2d_83YSZYWVahcYyfx2DOe7_NjBqHXQBoC9SGQyC8IL6wnwEMcMaWg2nkLPj5F-zyUB8f8_Yk46cPkxLswl_bvWbm9AAcTL4FRAXZLS0GAnq9JAbh7hNaODz_vfI3Z4wCXEIAGtL8Vc_WLlzxPCtB_Faq8sCN6B91q61O9PNOTyQWns7_eZS9apFiF8azJj622MVv2_K9IjteT5x6622NPvNMpy310w9cP0M0uG-XyIfr1JULIRs-X2IznDs9gNpn21zSxnnybzcfN9ymOfg8Ka_yzhVFpp9imxBAgC9a1w8MJRbxohigUeJxWLtJCJAaQjD_sffyEh1VfbCOAjyeW0p8eoaP9vaN3B6TP0kAsZ7IhjrIArEcX0vBcM26BcwhXOWalk6GyhloNLKlwjOeBhtyaggOMCh6oHjeCPUajelb7pwgzX0rNHQuhynlgUgN2kZUTwgShgaZl6M0wgOq0i8Wh0h46K1XXrwr6VaV-VXmGduMYr2rGONrpAQyH6s1SaZjDKvvWSQvEUrBQAT72heWahgBtZBnaGDRE9ca9UAxQsqQceEmGXq2KwSzjXouu_azt6lSxSVDnSadZq5awqgRLoDxDm4Oq_fn4vwTaXKnjNeR_9n_Vn6PbNGplHpcjN9Combf-BeCtxrzsDe03Xp8gMg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secretary+bird+optimization+algorithm+based+on+quantum+computing+and+multiple+strategies+improvement+for+KELM+diabetes+classification&rft.jtitle=Scientific+reports&rft.au=Zhu%2C+Yu&rft.au=Zhang%2C+Mingxu&rft.au=Huang%2C+Qinchuan&rft.au=Wu%2C+Xianbo&rft.date=2025-01-30&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=3774&rft_id=info:doi/10.1038%2Fs41598-025-87285-0&rft_id=info%3Apmid%2F39885224&rft.externalDocID=39885224 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |