Secretary bird optimization algorithm based on quantum computing and multiple strategies improvement for KELM diabetes classification

The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 3774 - 24
Main Authors Zhu, Yu, Zhang, Mingxu, Huang, Qinchuan, Wu, Xianbo, Wan, Li, Huang, Ju
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.01.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-87285-0

Cover

Abstract The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter and bandwidth of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes.
AbstractList The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter and bandwidth of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes.
The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter [Formula: see text] and bandwidth [Formula: see text] of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes.
Abstract The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter $$\:C$$ and bandwidth $$\:c$$ of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes.
The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter and bandwidth of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes.
The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter [Formula: see text] and bandwidth [Formula: see text] of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes.The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter [Formula: see text] and bandwidth [Formula: see text] of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes.
The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter $$\:C$$ and bandwidth $$\:c$$ of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes.
ArticleNumber 3774
Author Zhu, Yu
Wu, Xianbo
Wan, Li
Huang, Qinchuan
Huang, Ju
Zhang, Mingxu
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhu
  fullname: Zhu, Yu
  organization: School of Sports Medicine and Health, Chengdu Sport University
– sequence: 2
  givenname: Mingxu
  surname: Zhang
  fullname: Zhang, Mingxu
  organization: Hospital of Chengdu University of Traditional Chinese Medicine
– sequence: 3
  givenname: Qinchuan
  surname: Huang
  fullname: Huang, Qinchuan
  organization: Hospital of Chengdu University of Traditional Chinese Medicine
– sequence: 4
  givenname: Xianbo
  surname: Wu
  fullname: Wu, Xianbo
  organization: School of Sports Medicine and Health, Chengdu Sport University
– sequence: 5
  givenname: Li
  surname: Wan
  fullname: Wan, Li
  organization: School of Sports Medicine and Health, Chengdu Sport University
– sequence: 6
  givenname: Ju
  surname: Huang
  fullname: Huang, Ju
  email: huangju0777@163.com
  organization: Hospital of Chengdu University of Traditional Chinese Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39885224$$D View this record in MEDLINE/PubMed
BookMark eNqNkclu1TAUhiNUREvpC7BAltiwCXhM4iWqClRcxILuLcdD8FVsp7ZTVPa8N74DBbFAeGPL5zv_Gf6nzUmIwTTNcwRfI0iGN5kixocWYtYOPR5YCx81ZxhS1mKC8ckf79PmIuctrIdhThF_0pwSPgwMY3rW_PhiVDJFpnswuqRBXIrz7rssLgYg5ykmV756MMpsajCA21WGsnqgol_W4sIEZNDAr3Nxy2xALkkWMzmTgfNLinfGm1CAjQl8vNp8AtrJ0ZQaVbPM2Vmn9pWeNY-tnLO5ON7nzc27q5vLD-3m8_vry7ebVlHSlVZjYunQy74bKZSEKkg501wT1enOcjViJTvY9ZpQaLGFauxph5g1eOB0ZOS8uT7I6ii3YknO17lFlE7sP2KahEzFqdkICSnkCulOIUoZsRwxaHpFJba2KpKqRQ5aa1jk_Tc5zw-CCIqdReJgkagWib1FAtasV4esupvb1eQivMvKzLMMJq5ZENQhvsvCFX35F7qNawp1PXuqw7Tvd9SLI7WO3uiHHn45XAF8AFSKOSdj_6_N43C5wmEy6Xftf2T9BNSzygw
Cites_doi 10.1016/j.compeleceng.2013.07.003
10.1016/j.heliyon.2024.e37819
10.1007/s00500-018-3102-4
10.1016/j.knosys.2023.111257
10.3390/sym12101651
10.1007/s00432-024-05968-z
10.1007/s11042-024-20146-6
10.1007/s10462-024-10729-y
10.1007/s10462-024-10723-4
10.1016/j.neucom.2018.08.082
10.1016/j.microc.2024.111280
10.1063/1.5113555
10.1109/ICNN.1995.488968
10.3390/lubricants12010010
10.1016/j.cmpb.2013.07.009
10.1007/s12293-016-0182-5
10.1016/j.eswa.2023.122147
10.1016/j.knosys.2020.105648
10.1111/hsc.13522
10.1109/4235.585893
10.1016/S0925-2312(02)00599-4
10.1016/j.ijhydene.2023.10.019
10.2174/9789815196320124030010
10.1109/TSMCB.2008.923529
10.1016/j.eswa.2022.119421
10.1155/2017/9512741
10.1007/s13042-020-01094-7
10.1080/0954898X.2018.1535721
10.1016/j.knosys.2018.10.029
10.1038/s41598-024-82918-2
10.1007/s44196-021-00013-0
10.1016/j.eswa.2023.121219
10.1016/j.neucom.2017.04.060
10.1016/j.knosys.2021.107638
10.1016/j.eswa.2020.113377
10.1038/s41598-024-53064-6
10.1007/s11227-022-04959-6
10.1016/j.csite.2022.102504
10.1016/j.cma.2024.116915
10.1007/s13755-019-0095-z
10.1007/s42835-022-01000-x
10.1016/j.procs.2018.05.122
10.1016/j.eswa.2006.09.012
10.5815/ijmecs.2011.05.03
10.1016/j.egyr.2023.05.162
10.1016/j.metabol.2023.155657
10.1016/j.engappai.2021.104314
10.1016/j.advengsoft.2013.12.007
10.1016/j.swevo.2018.02.020
10.1016/j.asoc.2020.106266
10.1016/j.engappai.2017.05.003
10.1016/j.compbiomed.2021.105137
10.1109/ECTI-CON54298.2022.9795535
10.1109/CEC.2000.870809
10.1109/CEC.2017.7969336
10.1097/MD.0000000000040412
10.1007/s00262-024-03843-x
10.1016/j.eswa.2022.116924
10.1007/s10462-024-10821-3
10.1016/j.cviu.2020.103003
10.1002/int.22844
10.3390/biomimetics8030306
10.1016/B978-0-12-813314-9.00010-4
10.1051/matecconf/202133605021
10.1155/2024/5546940
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2008.10.053
10.1900/RDS.2010.7.252
10.1007/s11042-023-16371-0
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-87285-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Public Health
EISSN 2045-2322
EndPage 24
ExternalDocumentID oai_doaj_org_article_a0409c1d6c14453f9150e7c4a2ff15f3
10.1038/s41598-025-87285-0
39885224
10_1038_s41598_025_87285_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: School of Sports Medicine and Health 2024-2025 Research Excellence Program
  grantid: [grant number: ZYRC2406]
– fundername: Sports Medicine Key Laboratory of Sichuan Province
  grantid: [grant number: 2023-A034]
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
AARCD
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c436t-d23f487a76b40a34c0495d9d3c6d6f9cb2ca6067d340f2f0cb74615fe2894b53
IEDL.DBID M48
ISSN 2045-2322
IngestDate Tue Oct 14 19:08:26 EDT 2025
Sun Oct 26 04:15:14 EDT 2025
Thu Oct 02 05:39:39 EDT 2025
Tue Oct 07 07:56:17 EDT 2025
Sat Aug 09 01:32:20 EDT 2025
Wed Oct 01 02:46:07 EDT 2025
Fri Feb 21 02:36:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Secretary bird optimization algorithm
Quantum computing
Parameter optimization
Diabetes classification prediction
Kernel extreme learning machine
Language English
License 2025. The Author(s).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-d23f487a76b40a34c0495d9d3c6d6f9cb2ca6067d340f2f0cb74615fe2894b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-025-87285-0
PMID 39885224
PQID 3161624772
PQPubID 2041939
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_a0409c1d6c14453f9150e7c4a2ff15f3
unpaywall_primary_10_1038_s41598_025_87285_0
proquest_miscellaneous_3161915982
proquest_journals_3161624772
pubmed_primary_39885224
crossref_primary_10_1038_s41598_025_87285_0
springer_journals_10_1038_s41598_025_87285_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-30
PublicationDateYYYYMMDD 2025-01-30
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 87285_CR19
87285_CR17
87285_CR16
87285_CR15
87285_CR59
87285_CR14
87285_CR58
87285_CR13
87285_CR57
87285_CR23
87285_CR67
87285_CR22
87285_CR66
87285_CR21
87285_CR65
87285_CR20
87285_CR64
87285_CR63
87285_CR62
CM He (87285_CR18) 2018; 29
87285_CR61
87285_CR60
87285_CR49
87285_CR48
87285_CR47
87285_CR12
87285_CR56
87285_CR11
87285_CR55
87285_CR10
87285_CR54
87285_CR53
87285_CR52
87285_CR51
87285_CR50
87285_CR4
87285_CR5
87285_CR2
87285_CR3
87285_CR39
87285_CR1
87285_CR37
87285_CR36
87285_CR8
87285_CR9
87285_CR6
87285_CR7
DH Wolpert (87285_CR35) 1997; 1
87285_CR45
87285_CR44
87285_CR43
87285_CR42
H Zamani (87285_CR38) 2021; 104
87285_CR41
87285_CR40
87285_CR29
87285_CR28
87285_CR27
87285_CR26
87285_CR25
87285_CR69
87285_CR24
87285_CR68
B Chandra (87285_CR46) 2009; 36
M Abdel-Basset (87285_CR71) 2024; 284
87285_CR70
87285_CR34
87285_CR78
87285_CR33
87285_CR77
87285_CR32
87285_CR76
87285_CR31
87285_CR75
87285_CR30
87285_CR74
87285_CR73
87285_CR72
References_xml – ident: 87285_CR4
  doi: 10.1016/j.compeleceng.2013.07.003
– ident: 87285_CR64
  doi: 10.1016/j.heliyon.2024.e37819
– ident: 87285_CR49
– ident: 87285_CR34
  doi: 10.1007/s00500-018-3102-4
– volume: 284
  start-page: 111257
  year: 2024
  ident: 87285_CR71
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.111257
– ident: 87285_CR5
– ident: 87285_CR20
  doi: 10.3390/sym12101651
– ident: 87285_CR2
– ident: 87285_CR23
  doi: 10.1007/s00432-024-05968-z
– ident: 87285_CR26
  doi: 10.1007/s11042-024-20146-6
– ident: 87285_CR44
  doi: 10.1007/s10462-024-10729-y
– ident: 87285_CR70
  doi: 10.1007/s10462-024-10723-4
– ident: 87285_CR73
  doi: 10.1016/j.neucom.2018.08.082
– ident: 87285_CR25
  doi: 10.1016/j.microc.2024.111280
– ident: 87285_CR29
  doi: 10.1063/1.5113555
– ident: 87285_CR66
  doi: 10.1109/ICNN.1995.488968
– ident: 87285_CR17
  doi: 10.3390/lubricants12010010
– ident: 87285_CR50
  doi: 10.1016/j.cmpb.2013.07.009
– ident: 87285_CR16
  doi: 10.1007/s12293-016-0182-5
– ident: 87285_CR37
  doi: 10.1016/j.eswa.2023.122147
– ident: 87285_CR75
  doi: 10.1016/j.knosys.2020.105648
– ident: 87285_CR3
  doi: 10.1111/hsc.13522
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 87285_CR35
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– ident: 87285_CR48
  doi: 10.1016/S0925-2312(02)00599-4
– ident: 87285_CR30
  doi: 10.1016/j.ijhydene.2023.10.019
– ident: 87285_CR14
  doi: 10.1016/j.cmpb.2013.07.009
– ident: 87285_CR28
  doi: 10.2174/9789815196320124030010
– ident: 87285_CR8
– ident: 87285_CR45
  doi: 10.1109/TSMCB.2008.923529
– ident: 87285_CR59
  doi: 10.1016/j.eswa.2022.119421
– ident: 87285_CR78
  doi: 10.1155/2017/9512741
– ident: 87285_CR53
  doi: 10.1007/s13042-020-01094-7
– volume: 29
  start-page: 1
  year: 2018
  ident: 87285_CR18
  publication-title: Network-Computation Neural Syst.
  doi: 10.1080/0954898X.2018.1535721
– ident: 87285_CR76
  doi: 10.1016/j.knosys.2018.10.029
– ident: 87285_CR40
  doi: 10.1038/s41598-024-82918-2
– ident: 87285_CR51
  doi: 10.1007/s44196-021-00013-0
– ident: 87285_CR60
  doi: 10.1016/j.eswa.2023.121219
– ident: 87285_CR74
  doi: 10.1016/j.neucom.2017.04.060
– ident: 87285_CR52
  doi: 10.1016/j.knosys.2021.107638
– ident: 87285_CR43
  doi: 10.1016/j.eswa.2020.113377
– ident: 87285_CR55
  doi: 10.1038/s41598-024-53064-6
– ident: 87285_CR68
  doi: 10.1007/s11227-022-04959-6
– ident: 87285_CR31
  doi: 10.1016/j.csite.2022.102504
– ident: 87285_CR56
  doi: 10.1016/j.cma.2024.116915
– ident: 87285_CR7
  doi: 10.1007/s13755-019-0095-z
– ident: 87285_CR15
  doi: 10.1007/s42835-022-01000-x
– ident: 87285_CR6
  doi: 10.1016/j.procs.2018.05.122
– ident: 87285_CR13
  doi: 10.1016/j.eswa.2006.09.012
– ident: 87285_CR47
  doi: 10.5815/ijmecs.2011.05.03
– ident: 87285_CR32
  doi: 10.1016/j.egyr.2023.05.162
– ident: 87285_CR1
  doi: 10.1016/j.metabol.2023.155657
– volume: 104
  start-page: 104314
  year: 2021
  ident: 87285_CR38
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104314
– ident: 87285_CR67
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 87285_CR62
  doi: 10.1016/j.swevo.2018.02.020
– ident: 87285_CR72
  doi: 10.1016/j.asoc.2020.106266
– ident: 87285_CR22
  doi: 10.1016/j.engappai.2017.05.003
– ident: 87285_CR57
  doi: 10.1016/j.heliyon.2024.e37819
– ident: 87285_CR21
  doi: 10.1016/j.compbiomed.2021.105137
– ident: 87285_CR61
  doi: 10.1109/ECTI-CON54298.2022.9795535
– ident: 87285_CR10
  doi: 10.1016/j.compeleceng.2013.07.003
– ident: 87285_CR58
  doi: 10.1109/CEC.2000.870809
– ident: 87285_CR65
  doi: 10.1109/CEC.2017.7969336
– ident: 87285_CR12
  doi: 10.1097/MD.0000000000040412
– ident: 87285_CR24
  doi: 10.1007/s00262-024-03843-x
– ident: 87285_CR69
  doi: 10.1016/j.eswa.2022.116924
– ident: 87285_CR54
  doi: 10.1007/s10462-024-10821-3
– ident: 87285_CR77
  doi: 10.1016/j.cviu.2020.103003
– ident: 87285_CR11
  doi: 10.1002/int.22844
– ident: 87285_CR63
– ident: 87285_CR33
  doi: 10.3390/biomimetics8030306
– ident: 87285_CR36
  doi: 10.1016/B978-0-12-813314-9.00010-4
– ident: 87285_CR19
  doi: 10.1051/matecconf/202133605021
– ident: 87285_CR39
  doi: 10.1155/2024/5546940
– ident: 87285_CR41
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 36
  start-page: 8549
  issue: 4
  year: 2009
  ident: 87285_CR46
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.10.053
– ident: 87285_CR42
– ident: 87285_CR9
  doi: 10.1900/RDS.2010.7.252
– ident: 87285_CR27
  doi: 10.1007/s11042-023-16371-0
SSID ssj0000529419
Score 2.4847713
Snippet The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning...
Abstract The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine...
SourceID doaj
unpaywall
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3774
SubjectTerms 631/1647
692/163
692/499
Algorithms
Birds
Chronic illnesses
Classification
Correlation coefficient
Diabetes
Diabetes classification prediction
Diabetes mellitus
Diabetes Mellitus - classification
Diabetes Mellitus - diagnosis
Humanities and Social Sciences
Humans
Kernel extreme learning machine
Learning algorithms
Machine Learning
multidisciplinary
Optimization algorithms
Parameter optimization
Prediction models
Public health
Quantum computing
Science
Science (multidisciplinary)
Secretary bird optimization algorithm
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLaqSqhwQEBZAgUZqTca1eMt8RGqVhXbpa3Um-V4gZFmMmUmEZofwP_m2U6mg4SAA9fYipf32e_7vDwjdAiiIVAfQhn1Rckr60vQIa5sakGN8xZ8fIr2-VmeX_H31-J666mveCYshwfOHXdsAGXKTpy0QP0FCwoYjK8sNzSEiQgpziep1ZaYylG9qeITNdySIaw-XoGnirfJqIAJgNaiJL94ohSw_3csc2uH9B7a69sbs_5uZrMtJ3T2AN0f2CN-m2v9EO349hG6k9-TXO-jHxeRBHZmucbNdOnwAuaD-XDREpvZl8Vy2n2d4-i5ILHF33ro136ObXraAUrHpnV4PGOIV90YRwJP09pDWkrEQHPxh9OPn_C4bottpODxzFEq6TG6PDu9PDkvh3cWSsuZ7EpHWQDdYirZcGIYt6AahFOOWelkULah1oDOqRzjJNBAbFNxIELBg1jjjWBP0G67aP0zhJmvpeGOhaAID0waYB9SOSGaIAwIrQK9Gbtc3-RoGjrtgrNaZwNpMJBOBtKkQO-iVTY5YyTs9AHwoQd86L_ho0AHo031MDxXmgHPlZSDsijQ600yDKy4W2Jav-hzHhWrBHmeZixsasJUDVimvEBHIzhuf_6nBh1tAPQP7X_-P9r_At2lEfQkLjMeoN1u2fuXwKO65lUaMj8BbvEXjw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_qFVER0fqKVlnBbzY03d1skg8iVq4UH4dohX5bNvuohbvkepcg9wf4fzu7ebSCFL8my2X2ZnbmNzM7MwCv0Wlw1DoXe_8i5pm2MfohJi7zlCpjNdr40O1zJo5_8I-n6ekWzIZaGH-tctCJQVGbWvsY-T5DaCIoRzD4bnkR-6lRPrs6jNBQ_WgF8za0GLsB29R3xprA9uF09vXbGHXxeS1-UPTVMwnL99dowXyVGU1RMdA8jZO_LFRo5P8v9Hklc3oHbrXVUm1-qfn8inE6ug_3elRJ3ndi8AC2bLUDN7s5k5sduNsF50hXc_QQfn_3YLFRqw0pz1eG1Kg3Fn1BJlHzM9x383NBvIXDlxW5aPH_bxdEhxEQSA1RlSHDXUSyboZ-E-Q8xChCyJEgHCafpp-_kCG-S7SH6v5uUvjSIzg5mp58OI77eQyx5kw0saHMoX-jMlHyRDGu0btITWGYFka4QpdUK_SHMsN44qhLdJlxBEzOolPHy5Q9hklVV_YpEGZzobhhzhUJd0woRCmiMGlaulShQxbBm4EFctl13ZAhW85y2TFMIsNkYJhMIjj0XBpX-o7Z4UG9OpP9AZQKtVWhD4zQ6EKmzBWIhG2muaLOIY0sgt2Bx7I_xmt5KXQRvBpf4wH0WRVV2brt1hSeJFzzpJONkRJW5CjzlEewNwjL5Y9ft6G9UaD-Y__Prif9OdymXrwTH2jchUmzau0LRFJN-bI_Hn8A_GYa3w
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VWyHggMqzgYKMxI2NSP1KclxQq2p5XFqk3izHD6i0m213E6H9Afxvxs6DVlQIromT2J6ZzPfN2GOAN0gaPHXep4FfpDw3LkUeYtOqEFRbZ9DHx2qfX-TJVz4_F-c7MB32wtzI38fS3Rt0MWEbGBVoubQQKRL03QIVs5jA7mw2P52PMZWQteKHZb83Bh9_9-fDN_xPLNN_G7a8lhe9D3fb-lJvf-jF4prrOd6DBz1mJLNOyA9hx9WP4E53iuT2Mfw8DdCv0estqS7WlqzwL7Dst1cSvfi2Qv7_fUmCv8KbNblqcTbbJTHxQAf8OtG1JcPKQrJphuoR5CJGHGIAkSC4JR-PPn0mQ7SWmAC8w0qj-KUncHZ8dPbhJO1PV0gNZ7JJLWUe2YrOZcUzzbhBriBsaZmRVvrSVNRoZDe5ZTzz1GemyjnCH--QovFKsKcwqVe12wfCXCE1t8z7MuOeSY2YQ5ZWiMoLjfQqgbfDlKvLroaGirlvVqhOQAoFpKKAVJbA-yCVsWWofx0voFqo3pyUxn9PaQ6tNEgIBfMl4lqXG66p99hHlsDBIFPVG-VGMUS3knLkEwm8Hm-jOYUcia7dqu3alKFL2OZZpwtjT1hZoAZTnsB0UI7fL__bgKajAv3D-J__39tfwD2KOCssi6PyACbNunUvESc11avePH4Bj40KOw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgg4UN4ECjISN-o2-JXk2KJWFY8KiVYqJ8tPWLGbLbuJqu2d_83YSZYWVahcYyfx2DOe7_NjBqHXQBoC9SGQyC8IL6wnwEMcMaWg2nkLPj5F-zyUB8f8_Yk46cPkxLswl_bvWbm9AAcTL4FRAXZLS0GAnq9JAbh7hNaODz_vfI3Z4wCXEIAGtL8Vc_WLlzxPCtB_Faq8sCN6B91q61O9PNOTyQWns7_eZS9apFiF8azJj622MVv2_K9IjteT5x6622NPvNMpy310w9cP0M0uG-XyIfr1JULIRs-X2IznDs9gNpn21zSxnnybzcfN9ymOfg8Ka_yzhVFpp9imxBAgC9a1w8MJRbxohigUeJxWLtJCJAaQjD_sffyEh1VfbCOAjyeW0p8eoaP9vaN3B6TP0kAsZ7IhjrIArEcX0vBcM26BcwhXOWalk6GyhloNLKlwjOeBhtyaggOMCh6oHjeCPUajelb7pwgzX0rNHQuhynlgUgN2kZUTwgShgaZl6M0wgOq0i8Wh0h46K1XXrwr6VaV-VXmGduMYr2rGONrpAQyH6s1SaZjDKvvWSQvEUrBQAT72heWahgBtZBnaGDRE9ca9UAxQsqQceEmGXq2KwSzjXouu_azt6lSxSVDnSadZq5awqgRLoDxDm4Oq_fn4vwTaXKnjNeR_9n_Vn6PbNGplHpcjN9Combf-BeCtxrzsDe03Xp8gMg
  priority: 102
  providerName: Unpaywall
Title Secretary bird optimization algorithm based on quantum computing and multiple strategies improvement for KELM diabetes classification
URI https://link.springer.com/article/10.1038/s41598-025-87285-0
https://www.ncbi.nlm.nih.gov/pubmed/39885224
https://www.proquest.com/docview/3161624772
https://www.proquest.com/docview/3161915982
https://doi.org/10.1038/s41598-025-87285-0
https://doaj.org/article/a0409c1d6c14453f9150e7c4a2ff15f3
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTcB4QPymMCoj8cYCme048QNCXdVpKqya2CqNp8ix41GpTbc0FfQP4P_m7CRlSAXxVCl2asd3l_u-c3wH8AZJg6W5tYHjFwGPdR4gDzFBlkRUmVyjj_fZPkfieMyHF9HFFrTljpoFXGykdq6e1LicvvtxvfqIBv-hPjKevF-gE3IHxWiEtk2TKEAKv4OeSrpSDicN3K9zfVPJD2Rzdmbzrbtwh8kEZ0r5H67KZ_TfBENvbKHeg7vL4kqtvqvp9IaXOnoA9xt4SXq1PjyErbx4BLfrgpOrx_DzzKHESpUrkk1KQ-b4wpg1JzGJml7Oy0n1bUaca8PGglwvceGXM6J97QccnajCkPYjRLKo2kQTZOKDEz7WSBAHk0-DzyekDewS7TC6-yjJj_QEzo8G5_3joCnEEGjORBUYyiwSGxWLjIeKcY20IjLSMC2MsFJnVCskQrFhPLTUhjqLOSIlmyOb41nEnsJ2MS_y50BYngjFDbNWhtwyoRCeCGmiKLORQibWgbftkqdXdbqN1G-TsyStZZWirFIvqzTswKGTyrqnS5XtL8zLy7SxvFTha0rqAyM0cseIWYkQOI81V9RanCPrwF4r07RVv5QhEBaUI_XowOt1M1qe205RRT5f1n2kmxL2eVbrwnomrQp1YL9Vjt9__q8H2l8r0H88_4u_jvsSdqlT6tAFF_dguyqX-StET1XWhVvxRdyFnV5veDbE38PB6PQLXu2LftdHJLreaLBlPDrtff0FhC0aFQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9Ki1QR0Wo1WnUFfbJHr7t7l7uHIlZTUpMG0Qh9W_b2oxaSS5rcUfIH-Gf5vzm799EKUnzpa25J5jJfv5nZmQF4i0GDpcbawMUXAe8qE2AcooMsiajURqGP99M-R3H_B_9yGp2uwe-mF8Zdq2xsojfUeqZcjnyPITSJKUcw-GF-EbitUa662qzQkPVqBX3gR4zVjR0Ds7rEEG55cPwZ-f2O0qPe-FM_qLcMBIqzuAg0ZRZRu-zGGQ8l4woxc6RTzVSsY5uqjCqJKL-rGQ8ttaHKuhxhgDUYqvDMLY1AD7DBGU8x9ts47I2-fmuTPK6MxvfTulknZMneEh2ma2qjEdohmkRB-JdD9HsD_gV2rxVq78Fmmc_l6lJOJtd84dFDeFCDWPKxkrpHsGbyLbhTrbVcbcH9KhdIqhanx_Dru8OmhVysSHa-0GSGZmpa938SOTnDv7n4OSXOoeLDnFyUyO5ySpTfOIHUEJlr0lx9JMuiGW9Bzn1KxGc4CaJvMugNT0iTTibKRQbuKpT_pScwvg3GbMN6PsvNMyDMJLHkmlmbhtyyWCIoilMdRZmNJMZ_HXjfsEDMqyEfwhfnWSIqhglkmPAME2EHDh2X2pNuQLf_YLY4E7W-C4nGMVX7OlYYsUbMpgi8TVdxSa1FGlkHdhoei9pqLMWVjHfgTfsY9d0VcWRuZmV1JnUk4ZmnlWy0lLA0QRWjvAO7jbBcfflNL7TbCtR_vP_zm0l_DZv98clQDI9HgxdwlzpRD12OcwfWi0VpXiKIK7JXtaoQELesnH8A2e1W3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD6UijdEtFZdrTqCPtkl25nZ24OI2obW1CJYIW_D7FxqIdlNk11KfoA_yn_nmdndtIIUX_qaHZKzObfv3OYAvMGgwVJjbejii5CnyoQYh-iwyGIqtVHo4_1tn0fJ_g_-ZRyP1-B3Pwvj2ip7m-gNta6Uy5EPGEKThHIEgwPbtUV82x1-mJ2FboOUq7T26zRaERmZ5TmGb4v3B7vI67eUDveOP--H3YaBUHGW1KGmzCJil2lS8EgyrhAvxzrXTCU6sbkqqJKI8FPNeGSpjVSRcoQA1mCYwgu3MAKt_42Usdx1E6bjdJXecQU0vpN3YzoRywYLdJVunI3GaIFoFofRX67Qbwz4F8y9VKK9C7ebciaX53IyueQFhw_gfgdfycdW3h7Cmik34Ga70HK5AffaLCBph5sewa_vDpXWcr4kxelckwoN1LSb_CRycoJ_av1zSpwrxYclOWuQ0c2UKL9rAqkhstSkb3oki7q_2IKc-mSIz20SxN1ktHf4lfSJZKJcTOCaoPwvbcLxdbDlMayXVWmeAmEmSyTXzNo84pYlEuFQkus4LmwsMfIL4F3PAjFrr_cQvizPMtEyTCDDhGeYiAL45Li0Oumu5vYfVPMT0Wm6kGgWc7WjE4WxasxsjpDbpIpLai3SyALY6nksOnuxEBfSHcDr1WPUdFe-kaWpmvZM7kjCM09a2VhRwvIMlYvyALZ7Ybn48qteaHslUP_x_s-uJv0V3EKVFIcHR6PncIc6SY9ccnML1ut5Y14gequLl15PCIhr1ss_bOlUdw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgg4UN4ECjISN-o2-JXk2KJWFY8KiVYqJ8tPWLGbLbuJqu2d_83YSZYWVahcYyfx2DOe7_NjBqHXQBoC9SGQyC8IL6wnwEMcMaWg2nkLPj5F-zyUB8f8_Yk46cPkxLswl_bvWbm9AAcTL4FRAXZLS0GAnq9JAbh7hNaODz_vfI3Z4wCXEIAGtL8Vc_WLlzxPCtB_Faq8sCN6B91q61O9PNOTyQWns7_eZS9apFiF8azJj622MVv2_K9IjteT5x6622NPvNMpy310w9cP0M0uG-XyIfr1JULIRs-X2IznDs9gNpn21zSxnnybzcfN9ymOfg8Ka_yzhVFpp9imxBAgC9a1w8MJRbxohigUeJxWLtJCJAaQjD_sffyEh1VfbCOAjyeW0p8eoaP9vaN3B6TP0kAsZ7IhjrIArEcX0vBcM26BcwhXOWalk6GyhloNLKlwjOeBhtyaggOMCh6oHjeCPUajelb7pwgzX0rNHQuhynlgUgN2kZUTwgShgaZl6M0wgOq0i8Wh0h46K1XXrwr6VaV-VXmGduMYr2rGONrpAQyH6s1SaZjDKvvWSQvEUrBQAT72heWahgBtZBnaGDRE9ca9UAxQsqQceEmGXq2KwSzjXouu_azt6lSxSVDnSadZq5awqgRLoDxDm4Oq_fn4vwTaXKnjNeR_9n_Vn6PbNGplHpcjN9Combf-BeCtxrzsDe03Xp8gMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secretary+bird+optimization+algorithm+based+on+quantum+computing+and+multiple+strategies+improvement+for+KELM+diabetes+classification&rft.jtitle=Scientific+reports&rft.au=Zhu%2C+Yu&rft.au=Zhang%2C+Mingxu&rft.au=Huang%2C+Qinchuan&rft.au=Wu%2C+Xianbo&rft.date=2025-01-30&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=3774&rft_id=info:doi/10.1038%2Fs41598-025-87285-0&rft_id=info%3Apmid%2F39885224&rft.externalDocID=39885224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon