Aggregate-data estimation of an individual patient data linear random effects meta-analysis with a patient covariate-treatment interaction term

Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 14; no. 2; pp. 273 - 283
Main Author Kovalchik, Stephanie A.
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 01.04.2013
Oxford University Press
Subjects
Online AccessGet full text
ISSN1465-4644
1468-4357
1468-4357
DOI10.1093/biostatistics/kxs035

Cover

Abstract Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this paper, I show that the maximum likelihood estimates of a participant-level linear random effects meta-analysis with a patient covariate-treatment interaction can be determined exactly from aggregate data when the model's variance components are known. I provide an equivalent aggregate-data EM algorithm and supporting software with the R package ipdmeta for the estimation of the "interaction meta-analysis" when the variance components are unknown. The properties of the methodology are assessed with simulation studies. The usefulness of the methods is illustrated with analyses of the effect modification of cholesterol and age on pravastatin in the multicenter placebo-controlled regression growth evaluation statin study. When a participant-level meta-analysis cannot be performed, aggregate-data interaction meta-analysis is a useful alternative for exploring individual-level sources of treatment effect heterogeneity.
AbstractList Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this paper, I show that the maximum likelihood estimates of a participant-level linear random effects meta-analysis with a patient covariate-treatment interaction can be determined exactly from aggregate data when the model's variance components are known. I provide an equivalent aggregate-data EM algorithm and supporting software with the R package ipdmeta for the estimation of the "interaction meta-analysis" when the variance components are unknown. The properties of the methodology are assessed with simulation studies. The usefulness of the methods is illustrated with analyses of the effect modification of cholesterol and age on pravastatin in the multicenter placebo-controlled regression growth evaluation statin study. When a participant-level meta-analysis cannot be performed, aggregate-data interaction meta-analysis is a useful alternative for exploring individual-level sources of treatment effect heterogeneity. [PUBLICATION ABSTRACT]
Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this paper, I show that the maximum likelihood estimates of a participant-level linear random effects meta-analysis with a patient covariate-treatment interaction can be determined exactly from aggregate data when the model's variance components are known. I provide an equivalent aggregate-data EM algorithm and supporting software with the R package ipdmeta for the estimation of the “interaction meta-analysis” when the variance components are unknown. The properties of the methodology are assessed with simulation studies. The usefulness of the methods is illustrated with analyses of the effect modification of cholesterol and age on pravastatin in the multicenter placebo-controlled regression growth evaluation statin study. When a participant-level meta-analysis cannot be performed, aggregate-data interaction meta-analysis is a useful alternative for exploring individual-level sources of treatment effect heterogeneity.
Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this paper, I show that the maximum likelihood estimates of a participant-level linear random effects meta-analysis with a patient covariate-treatment interaction can be determined exactly from aggregate data when the model's variance components are known. I provide an equivalent aggregate-data EM algorithm and supporting software with the R package ipdmeta for the estimation of the "interaction meta-analysis" when the variance components are unknown. The properties of the methodology are assessed with simulation studies. The usefulness of the methods is illustrated with analyses of the effect modification of cholesterol and age on pravastatin in the multicenter placebo-controlled regression growth evaluation statin study. When a participant-level meta-analysis cannot be performed, aggregate-data interaction meta-analysis is a useful alternative for exploring individual-level sources of treatment effect heterogeneity.Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this paper, I show that the maximum likelihood estimates of a participant-level linear random effects meta-analysis with a patient covariate-treatment interaction can be determined exactly from aggregate data when the model's variance components are known. I provide an equivalent aggregate-data EM algorithm and supporting software with the R package ipdmeta for the estimation of the "interaction meta-analysis" when the variance components are unknown. The properties of the methodology are assessed with simulation studies. The usefulness of the methods is illustrated with analyses of the effect modification of cholesterol and age on pravastatin in the multicenter placebo-controlled regression growth evaluation statin study. When a participant-level meta-analysis cannot be performed, aggregate-data interaction meta-analysis is a useful alternative for exploring individual-level sources of treatment effect heterogeneity.
Author Kovalchik, Stephanie A.
AuthorAffiliation Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd., EPS 8047, Rockville, MD 20892, USA
AuthorAffiliation_xml – name: Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd., EPS 8047, Rockville, MD 20892, USA
Author_xml – sequence: 1
  givenname: Stephanie A.
  surname: Kovalchik
  fullname: Kovalchik, Stephanie A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23001065$$D View this record in MEDLINE/PubMed
BookMark eNqNUctuFDEQtFAQecAfIGSJC5dJPGOPd8wBKYp4RIrEBc5Wj92zcZixF9uzYb-CX8a7GwLJBU5utauqq6uPyYEPHgl5WbPTmil-1ruQMmSXsjPp7NuPxHj7hBzVQnaV4O3iYFe3lZBCHJLjlG4Yaxou-TNy2HDGaibbI_LzfLmMuISMlYUMFIvcVFSDp2Gg4Knz1q2dnWGkq9JHn-kOODqPEGkEb8NEcRjQ5EQnzFCBh3GTXKK3Ll9TuOeZsIbotqNyRMjTtud8xghmN7BU03PydIAx4Yu794R8_fD-y8Wn6urzx8uL86vKCC5zJUEJWQ8t54wjKrRd2_fNopgYGmWl7ITskXeGW9n1QhV7jTTGLmyPqjes4Sek3evOfgWbWxhHvYpl87jRNdPbgPWDgPU-4MJ7t-et5n5Ca8oOEf5wAzj98Me7a70Ma81bxVQjisCbO4EYvs8lbj25ZHAcwWOYk6553UredGLr8fUj6E2YYwl3j1IdaxaqoF797ejeyu8bF8DbPcDEkFLEQRuXdycuBt34r33FI_J_xfQLulLc3Q
CitedBy_id crossref_primary_10_1080_02664763_2015_1125867
crossref_primary_10_1002_sim_9101
crossref_primary_10_1080_01621459_2015_1044090
crossref_primary_10_1002_gepi_21810
crossref_primary_10_1186_s13075_015_0533_5
crossref_primary_10_1214_23_STS890
crossref_primary_10_1186_1471_2431_14_225
crossref_primary_10_1186_s12874_018_0492_z
crossref_primary_10_1080_10543406_2024_2444242
Cites_doi 10.1002/1097-0258(20000715)19:13<1707::AID-SIM491>3.0.CO;2-P
10.1093/biomet/54.1-2.93
10.1093/biomet/asq006
10.2307/2529876
10.1016/j.jclinepi.2003.12.001
10.1016/j.jclinepi.2010.11.016
10.1016/S0140-6736(05)17709-5
10.1002/bimj.201100167
10.1111/j.0006-341X.1999.01221.x
10.1002/sim.1023
10.3310/hta5330
10.2307/2534018
10.1371/journal.pgen.1000167
10.1002/sim.3165
10.1016/S0895-4356(01)00414-0
10.1002/sim.2768
10.1007/978-1-4419-0318-1
10.1002/sim.1187
10.1002/sim.1186
10.1056/NEJMp068070
10.1017/S0266462308080471
10.18637/jss.v036.i03
10.1056/NEJMsr077003
10.1161/01.CIR.91.10.2528
10.1016/j.jclinepi.2006.09.009
10.7326/0003-4819-152-11-201006010-00232
10.1016/j.jclinepi.2012.07.010
ContentType Journal Article
Copyright Copyright Oxford Publishing Limited(England) Apr 2013
The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2012
Copyright_xml – notice: Copyright Oxford Publishing Limited(England) Apr 2013
– notice: The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/biostatistics/kxs035
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1468-4357
EndPage 283
ExternalDocumentID 10.1093/biostatistics/kxs035
PMC3590924
2914221751
23001065
10_1093_biostatistics_kxs035
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5VS
5WA
6PF
70D
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
AAYXX
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFS
ACIPB
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NMDNZ
NOMLY
NTWIH
NU-
O0~
O9-
ODMLO
OJQWA
OJZSN
OK1
OVD
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RNI
ROL
ROX
RUSNO
RW1
RXO
RZO
SV3
TEORI
TJP
TN5
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
ABQTQ
CGR
CUY
CVF
ECM
EIF
M49
NPM
RIG
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c436t-6a9461f53303ee9ed85bb27fecf29d66846be38c3d68b49eff26ccd7dbe9bc023
IEDL.DBID UNPAY
ISSN 1465-4644
1468-4357
IngestDate Sun Oct 26 04:08:00 EDT 2025
Tue Sep 30 16:11:25 EDT 2025
Sun Sep 28 11:12:47 EDT 2025
Fri Oct 03 03:11:20 EDT 2025
Thu Apr 03 07:08:48 EDT 2025
Wed Oct 01 04:23:31 EDT 2025
Thu Apr 24 23:13:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-6a9461f53303ee9ed85bb27fecf29d66846be38c3d68b49eff26ccd7dbe9bc023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/biostatistics/article-pdf/14/2/273/17731145/kxs035.pdf
PMID 23001065
PQID 1315980279
PQPubID 26167
PageCount 11
ParticipantIDs unpaywall_primary_10_1093_biostatistics_kxs035
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3590924
proquest_miscellaneous_1315632842
proquest_journals_1315980279
pubmed_primary_23001065
crossref_citationtrail_10_1093_biostatistics_kxs035
crossref_primary_10_1093_biostatistics_kxs035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biostatistics (Oxford, England)
PublicationTitleAlternate Biostatistics
PublicationYear 2013
Publisher Oxford Publishing Limited (England)
Oxford University Press
Publisher_xml – name: Oxford Publishing Limited (England)
– name: Oxford University Press
References Koopman ( key 20170619052544_KXS035C9) 2008; 24
Simmonds ( key 20170619052544_KXS035C24) 2007; 26
Berlin ( key 20170619052544_KXS035C1) 2002; 21
Kovalchik ( key 20170619052544_KXS035C11) 2012; 54
Viechtbauer ( key 20170619052544_KXS035C26) 2010; 36
Lambert ( key 20170619052544_KXS035C14) 2002; 55
Hartley ( key 20170619052544_KXS035C5) 1967; 54
Riley ( key 20170619052544_KXS035C20) 2007; 60
Engels ( key 20170619052544_KXS035C3) 2000; 19
Rothwell ( key 20170619052544_KXS035C21) 2005; 365
Schmid ( key 20170619052544_KXS035C22) 2004; 57
Mathew ( key 20170619052544_KXS035C16) 1999; 55
Riley ( key 20170619052544_KXS035C19) 2008; 27
Homer ( key 20170619052544_KXS035C7) 2008; 4
Schulz ( key 20170619052544_KXS035C23) 2010; 152
Pinheiro ( key 20170619052544_KXS035C18) 2000
Lagakos ( key 20170619052544_KXS035C12) 2006; 354
Laird ( key 20170619052544_KXS035C13) 1982; 38
Fisher ( key 20170619052544_KXS035C4) 2011; 64
Kovalchik ( key 20170619052544_KXS035C10) 2012
Olkin ( key 20170619052544_KXS035C17) 1998; 54
Brookes ( key 20170619052544_KXS035C2) 2001; 5
Thompson ( key 20170619052544_KXS035C25) 2002; 21
Higgins ( key 20170619052544_KXS035C6) 2002; 21
Wang ( key 20170619052544_KXS035C27) 2007; 357
Jukema ( key 20170619052544_KXS035C8) 1995; 91
Lin ( key 20170619052544_KXS035C15) 2010; 97
12111920 - Stat Med. 2002 Jun 15;21(11):1559-73
9544524 - Biometrics. 1998 Mar;54(1):317-22
12111919 - Stat Med. 2002 Jun 15;21(11):1539-58
11701102 - Health Technol Assess. 2001;5(33):1-56
11315071 - Biometrics. 1999 Dec;55(4):1221-3
21411280 - J Clin Epidemiol. 2011 Sep;64(9):949-67
7168798 - Biometrics. 1982 Dec;38(4):963-74
18601805 - Int J Technol Assess Health Care. 2008 Summer;24(3):358-61
18032770 - N Engl J Med. 2007 Nov 22;357(21):2189-94
18769715 - PLoS Genet. 2008 Aug;4(8):e1000167
20335313 - Ann Intern Med. 2010 Jun 1;152(11):726-32
11813224 - Stat Med. 2002 Feb 15;21(3):371-87
23049122 - Biometrika. 2010 Jun;97(2):321-332
16625007 - N Engl J Med. 2006 Apr 20;354(16):1667-9
15358396 - J Clin Epidemiol. 2004 Jul;57(7):683-97
7743614 - Circulation. 1995 May 15;91(10):2528-40
17195960 - Stat Med. 2007 Jul 10;26(15):2982-99
22981246 - J Clin Epidemiol. 2012 Dec;65(12):1296-9
18069721 - Stat Med. 2008 May 20;27(11):1870-93
11781126 - J Clin Epidemiol. 2002 Jan;55(1):86-94
10861773 - Stat Med. 2000 Jul 15;19(13):1707-28
22685003 - Biom J. 2012 May;54(3):370-84
15639301 - Lancet. 2005 Jan 8-14;365(9454):176-86
6049561 - Biometrika. 1967 Jun;54(1):93-108
17419953 - J Clin Epidemiol. 2007 May;60(5):431-9
References_xml – volume: 19
  start-page: 1707
  year: 2000
  ident: key 20170619052544_KXS035C3
  article-title: Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses
  publication-title: Statistics in Medicine
  doi: 10.1002/1097-0258(20000715)19:13<1707::AID-SIM491>3.0.CO;2-P
– volume: 54
  start-page: 93
  year: 1967
  ident: key 20170619052544_KXS035C5
  article-title: Maximum-likelihood estimation for mixed analysis of variance model
  publication-title: Biometrika
  doi: 10.1093/biomet/54.1-2.93
– volume: 97
  start-page: 321
  year: 2010
  ident: key 20170619052544_KXS035C15
  article-title: On the relative efficiency of using summary statistics versus individual-level data in meta-analysis
  publication-title: Biometrika
  doi: 10.1093/biomet/asq006
– volume: 38
  start-page: 963
  year: 1982
  ident: key 20170619052544_KXS035C13
  article-title: Random-effects models for longitudinal data
  publication-title: Biometrics
  doi: 10.2307/2529876
– volume: 57
  start-page: 683
  year: 2004
  ident: key 20170619052544_KXS035C22
  article-title: Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/j.jclinepi.2003.12.001
– volume: 64
  start-page: 949
  year: 2011
  ident: key 20170619052544_KXS035C4
  article-title: A critical review of methods for the assessment of patient-level interactions in individual participant data meta-analysis of randomized trials, and guidance for practitioners
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/j.jclinepi.2010.11.016
– volume: 365
  start-page: 176
  year: 2005
  ident: key 20170619052544_KXS035C21
  article-title: Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)17709-5
– volume: 54
  start-page: 370
  year: 2012
  ident: key 20170619052544_KXS035C11
  article-title: Using aggregate data to estimate the standard error of a treatment-covariate interaction in an individual patient data meta-analysis
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.201100167
– volume: 55
  start-page: 1221
  year: 1999
  ident: key 20170619052544_KXS035C16
  article-title: On the equivalence of meta-analysis using literature and using individual patient data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.01221.x
– volume: 21
  start-page: 371
  year: 2002
  ident: key 20170619052544_KXS035C1
  article-title: Anti-Lymphocyte Antibody Induction Therapy Study Group. Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.1023
– volume: 5
  start-page: 1
  year: 2001
  ident: key 20170619052544_KXS035C2
  article-title: Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives
  publication-title: Health Technology Assessment
  doi: 10.3310/hta5330
– volume: 54
  start-page: 317
  year: 1998
  ident: key 20170619052544_KXS035C17
  article-title: Comparison of meta-analysis versus analysis of variance of individual patient data
  publication-title: Biometrics
  doi: 10.2307/2534018
– volume: 4
  start-page: e1000167
  year: 2008
  ident: key 20170619052544_KXS035C7
  article-title: Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays
  publication-title: PloS Genetics
  doi: 10.1371/journal.pgen.1000167
– volume: 27
  start-page: 1870
  year: 2008
  ident: key 20170619052544_KXS035C19
  article-title: Meta-analysis of continuous outcomes combining individual patient data and aggregate data
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3165
– volume: 55
  start-page: 86
  year: 2002
  ident: key 20170619052544_KXS035C14
  article-title: A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/S0895-4356(01)00414-0
– volume: 26
  start-page: 2982
  year: 2007
  ident: key 20170619052544_KXS035C24
  article-title: Covariate heterogeneity in meta-analysis: criteria for deciding between meta-regression and individual patient data
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.2768
– volume-title: Mixed-effects Models in S and S-PLUS
  year: 2000
  ident: key 20170619052544_KXS035C18
  doi: 10.1007/978-1-4419-0318-1
– volume: 21
  start-page: 1559
  year: 2002
  ident: key 20170619052544_KXS035C25
  article-title: How should meta-regression analyses be undertaken and interpreted?
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.1187
– volume: 21
  start-page: 1539
  year: 2002
  ident: key 20170619052544_KXS035C6
  article-title: Quantifying heterogeneity in a meta-analysis
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.1186
– volume: 354
  start-page: 1667
  year: 2006
  ident: key 20170619052544_KXS035C12
  article-title: The challenge of subgroup analyses–reporting without distorting
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMp068070
– volume: 24
  start-page: 358
  year: 2008
  ident: key 20170619052544_KXS035C9
  article-title: Empirical comparison of subgroup effects in conventional and individual patient data meta-analyses
  publication-title: International Journal of Technology Assessment in Health Care
  doi: 10.1017/S0266462308080471
– volume: 36
  start-page: 1
  year: 2010
  ident: key 20170619052544_KXS035C26
  article-title: Conducting meta-analyses in R with the metafor package
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v036.i03
– volume: 357
  start-page: 2189
  year: 2007
  ident: key 20170619052544_KXS035C27
  article-title: Statistics in medicine–reporting of subgroup analyses in clinical trials
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMsr077003
– volume: 91
  start-page: 2528
  year: 1995
  ident: key 20170619052544_KXS035C8
  article-title: Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS)
  publication-title: Circulation
  doi: 10.1161/01.CIR.91.10.2528
– volume: 60
  start-page: 431
  year: 2007
  ident: key 20170619052544_KXS035C20
  article-title: Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/j.jclinepi.2006.09.009
– volume: 152
  start-page: 726
  year: 2010
  ident: key 20170619052544_KXS035C23
  article-title: the CONSORT Group. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomized trials
  publication-title: Annals of Internal Medicine
  doi: 10.7326/0003-4819-152-11-201006010-00232
– year: 2012
  ident: key 20170619052544_KXS035C10
  article-title: Survey finds that most meta-analysts do not attempt to collect individual patient data
  publication-title: Journal of Clinical Epidemiology (in press)
  doi: 10.1016/j.jclinepi.2012.07.010
– reference: 18069721 - Stat Med. 2008 May 20;27(11):1870-93
– reference: 11781126 - J Clin Epidemiol. 2002 Jan;55(1):86-94
– reference: 17419953 - J Clin Epidemiol. 2007 May;60(5):431-9
– reference: 23049122 - Biometrika. 2010 Jun;97(2):321-332
– reference: 7743614 - Circulation. 1995 May 15;91(10):2528-40
– reference: 16625007 - N Engl J Med. 2006 Apr 20;354(16):1667-9
– reference: 18769715 - PLoS Genet. 2008 Aug;4(8):e1000167
– reference: 18601805 - Int J Technol Assess Health Care. 2008 Summer;24(3):358-61
– reference: 9544524 - Biometrics. 1998 Mar;54(1):317-22
– reference: 22981246 - J Clin Epidemiol. 2012 Dec;65(12):1296-9
– reference: 15639301 - Lancet. 2005 Jan 8-14;365(9454):176-86
– reference: 6049561 - Biometrika. 1967 Jun;54(1):93-108
– reference: 17195960 - Stat Med. 2007 Jul 10;26(15):2982-99
– reference: 11813224 - Stat Med. 2002 Feb 15;21(3):371-87
– reference: 21411280 - J Clin Epidemiol. 2011 Sep;64(9):949-67
– reference: 11701102 - Health Technol Assess. 2001;5(33):1-56
– reference: 12111920 - Stat Med. 2002 Jun 15;21(11):1559-73
– reference: 12111919 - Stat Med. 2002 Jun 15;21(11):1539-58
– reference: 7168798 - Biometrics. 1982 Dec;38(4):963-74
– reference: 22685003 - Biom J. 2012 May;54(3):370-84
– reference: 11315071 - Biometrics. 1999 Dec;55(4):1221-3
– reference: 18032770 - N Engl J Med. 2007 Nov 22;357(21):2189-94
– reference: 15358396 - J Clin Epidemiol. 2004 Jul;57(7):683-97
– reference: 10861773 - Stat Med. 2000 Jul 15;19(13):1707-28
– reference: 20335313 - Ann Intern Med. 2010 Jun 1;152(11):726-32
SSID ssj0022363
Score 2.0398955
Snippet Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 273
SubjectTerms Algorithms
Analysis of Variance
Bayes Theorem
Biostatistics
Cholesterol
Cholesterol - blood
Clinical trials
Coronary Artery Disease - blood
Coronary Artery Disease - drug therapy
Coronary Artery Disease - pathology
Data Interpretation, Statistical
Humans
Hydroxymethylglutaryl-CoA Reductase Inhibitors - therapeutic use
Likelihood Functions
Linear Models
Male
Meta-analysis
Meta-Analysis as Topic
Pravastatin - therapeutic use
Randomized Controlled Trials as Topic - statistics & numerical data
Simulation
Software
Treatment Outcome
Title Aggregate-data estimation of an individual patient data linear random effects meta-analysis with a patient covariate-treatment interaction term
URI https://www.ncbi.nlm.nih.gov/pubmed/23001065
https://www.proquest.com/docview/1315980279
https://www.proquest.com/docview/1315632842
https://pubmed.ncbi.nlm.nih.gov/PMC3590924
https://academic.oup.com/biostatistics/article-pdf/14/2/273/17731145/kxs035.pdf
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1468-4357
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022363
  issn: 1465-4644
  databaseCode: KQ8
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1468-4357
  dateEnd: 20231101
  omitProxy: true
  ssIdentifier: ssj0022363
  issn: 1465-4644
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB21WyG48A0NlMpIXJ1s4thJjitEVYFUQGKlcor8FVh1m6y22UL5E_xlxnESse0BkDh7bCeOk3njvHkD8Ap9cpXZKadC84KmueC0kCylumJxrNSUK9kRZE_E8Tx9e8pPd-D9kAsje1Z4OKQ0qEXjUmu8anHULyddmSqK0yiJ0PtGcZbhwCmPzr5fTBkPsXEX9gRHcD6BvfnJh9lnn2PEaSq68q5dvhEChWxIpivYtYn8UNvO6gYCvUmkvL2pV_Lqm1wuf_NSR_dgNdyfJ6echZtWhfrHNenH_7gA9-Fuj2jJzHd5ADu2fgi3fI3Lq0fwc_YFQ3p3WEcdG5U4VQ-fLkmaisiaLMaUMNKLvJLO0OFfuSboS01zTnreCTm3raSyV1Ih7hSZyLGfbi4x9HdTjfx54vQw1j57gzg39BjmR28-vT6mfRUIqlMmWipkkYq4cixYZm1hTc6VSjKctEoKIwQCKGVZrpkRuUoLvJxEaG0yo2yhNEKSJzCpm9ruA8kMmuEXPksNjq2MZImMWSV0pWWcVyYANjzuUvcS6a5Sx7L0v-pZufUwSr_cAdCx18pLhPzB_mDYSWX_wbgoY4a4Mp8mWRHAy7EZX3X3_0bWttl4G8EQTyQBPPUbb5wQI0kX3ePg2daWHA2cjPh2S7342smJM15MMQoPIBw371_dx7N_7fAc7iRdMRHHezqASbve2BcI6Vp1CLvvPuaH_cv6C-sPWPw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKVgguvKGBgozE1Xn5keS4QlQVh8KBlcop8iuw6jZZbbOU8if4y4xjJ2LbAyBx9thOHCfzjfPNNwi9AZ_cFDblRGheEVYKTipJGdENzTKlUq7kQJA9EccL9v6Un-6hD2MujAys8HhMaVDLzqXWeNXiJCwnWZsmyViSJ-B9k6woYGDGk7PvFynlMTTeQvuCAzifof3Fycf5Z59jxAkTQ3nXId8IgEIxJtNV9NpEfqhdZ3UDgd4kUt7Ztmt5dSlXq9-81NF9tB7vz5NTzuJtr2L945r0439cgAfoXkC0eO67PER7tn2Ebvsal1eP0c_5Fwjp3WEdcWxU7FQ9fLok7hosW7ycUsJwEHnFg6HDv3KDwZea7hwH3gk-t70kMiipYHeKjOXUT3ffIPR3U038eez0MDY-ewM7N_QELY7efXp7TEIVCKIZFT0RsmIiaxwLllpbWVNypfICJm3yyggBAEpZWmpqRKlYBZeTC61NYZStlAZI8hTN2q61BwgXBszgC18wA2MrI2kuM9oI3WiZlY2JEB0fd62DRLqr1LGq_a96Wu88jNovd4TI1GvtJUL-YH847qQ6fDAu6owCrizTvKgi9Hpqhlfd_b-Rre223kZQwBN5hJ75jTdNCJGki-5h8GJnS04GTkZ8t6Vdfh3kxCmvUojCIxRPm_ev7uP5v3Z4ge7mQzERx3s6RLN-s7UvAdL16lV4TX8B2sRYBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aggregate-data+estimation+of+an+individual+patient+data+linear+random+effects+meta-analysis+with+a+patient+covariate-treatment+interaction+term&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Kovalchik%2C+Stephanie+A.&rft.date=2013-04-01&rft.pub=Oxford+University+Press&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=14&rft.issue=2&rft.spage=273&rft.epage=283&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxs035&rft_id=info%3Apmid%2F23001065&rft.externalDocID=PMC3590924
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon