Aggregate-data estimation of an individual patient data linear random effects meta-analysis with a patient covariate-treatment interaction term
Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this...
Saved in:
| Published in | Biostatistics (Oxford, England) Vol. 14; no. 2; pp. 273 - 283 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford Publishing Limited (England)
01.04.2013
Oxford University Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1465-4644 1468-4357 1468-4357 |
| DOI | 10.1093/biostatistics/kxs035 |
Cover
| Abstract | Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this paper, I show that the maximum likelihood estimates of a participant-level linear random effects meta-analysis with a patient covariate-treatment interaction can be determined exactly from aggregate data when the model's variance components are known. I provide an equivalent aggregate-data EM algorithm and supporting software with the R package ipdmeta for the estimation of the "interaction meta-analysis" when the variance components are unknown. The properties of the methodology are assessed with simulation studies. The usefulness of the methods is illustrated with analyses of the effect modification of cholesterol and age on pravastatin in the multicenter placebo-controlled regression growth evaluation statin study. When a participant-level meta-analysis cannot be performed, aggregate-data interaction meta-analysis is a useful alternative for exploring individual-level sources of treatment effect heterogeneity. |
|---|---|
| AbstractList | Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this paper, I show that the maximum likelihood estimates of a participant-level linear random effects meta-analysis with a patient covariate-treatment interaction can be determined exactly from aggregate data when the model's variance components are known. I provide an equivalent aggregate-data EM algorithm and supporting software with the R package ipdmeta for the estimation of the "interaction meta-analysis" when the variance components are unknown. The properties of the methodology are assessed with simulation studies. The usefulness of the methods is illustrated with analyses of the effect modification of cholesterol and age on pravastatin in the multicenter placebo-controlled regression growth evaluation statin study. When a participant-level meta-analysis cannot be performed, aggregate-data interaction meta-analysis is a useful alternative for exploring individual-level sources of treatment effect heterogeneity. [PUBLICATION ABSTRACT] Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this paper, I show that the maximum likelihood estimates of a participant-level linear random effects meta-analysis with a patient covariate-treatment interaction can be determined exactly from aggregate data when the model's variance components are known. I provide an equivalent aggregate-data EM algorithm and supporting software with the R package ipdmeta for the estimation of the “interaction meta-analysis” when the variance components are unknown. The properties of the methodology are assessed with simulation studies. The usefulness of the methods is illustrated with analyses of the effect modification of cholesterol and age on pravastatin in the multicenter placebo-controlled regression growth evaluation statin study. When a participant-level meta-analysis cannot be performed, aggregate-data interaction meta-analysis is a useful alternative for exploring individual-level sources of treatment effect heterogeneity. Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this paper, I show that the maximum likelihood estimates of a participant-level linear random effects meta-analysis with a patient covariate-treatment interaction can be determined exactly from aggregate data when the model's variance components are known. I provide an equivalent aggregate-data EM algorithm and supporting software with the R package ipdmeta for the estimation of the "interaction meta-analysis" when the variance components are unknown. The properties of the methodology are assessed with simulation studies. The usefulness of the methods is illustrated with analyses of the effect modification of cholesterol and age on pravastatin in the multicenter placebo-controlled regression growth evaluation statin study. When a participant-level meta-analysis cannot be performed, aggregate-data interaction meta-analysis is a useful alternative for exploring individual-level sources of treatment effect heterogeneity.Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of treatment. Because participant data from primary studies might not be available, reliable alternatives using published data are needed. In this paper, I show that the maximum likelihood estimates of a participant-level linear random effects meta-analysis with a patient covariate-treatment interaction can be determined exactly from aggregate data when the model's variance components are known. I provide an equivalent aggregate-data EM algorithm and supporting software with the R package ipdmeta for the estimation of the "interaction meta-analysis" when the variance components are unknown. The properties of the methodology are assessed with simulation studies. The usefulness of the methods is illustrated with analyses of the effect modification of cholesterol and age on pravastatin in the multicenter placebo-controlled regression growth evaluation statin study. When a participant-level meta-analysis cannot be performed, aggregate-data interaction meta-analysis is a useful alternative for exploring individual-level sources of treatment effect heterogeneity. |
| Author | Kovalchik, Stephanie A. |
| AuthorAffiliation | Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd., EPS 8047, Rockville, MD 20892, USA |
| AuthorAffiliation_xml | – name: Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd., EPS 8047, Rockville, MD 20892, USA |
| Author_xml | – sequence: 1 givenname: Stephanie A. surname: Kovalchik fullname: Kovalchik, Stephanie A. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23001065$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUctuFDEQtFAQecAfIGSJC5dJPGOPd8wBKYp4RIrEBc5Wj92zcZixF9uzYb-CX8a7GwLJBU5utauqq6uPyYEPHgl5WbPTmil-1ruQMmSXsjPp7NuPxHj7hBzVQnaV4O3iYFe3lZBCHJLjlG4Yaxou-TNy2HDGaibbI_LzfLmMuISMlYUMFIvcVFSDp2Gg4Knz1q2dnWGkq9JHn-kOODqPEGkEb8NEcRjQ5EQnzFCBh3GTXKK3Ll9TuOeZsIbotqNyRMjTtud8xghmN7BU03PydIAx4Yu794R8_fD-y8Wn6urzx8uL86vKCC5zJUEJWQ8t54wjKrRd2_fNopgYGmWl7ITskXeGW9n1QhV7jTTGLmyPqjes4Sek3evOfgWbWxhHvYpl87jRNdPbgPWDgPU-4MJ7t-et5n5Ca8oOEf5wAzj98Me7a70Ma81bxVQjisCbO4EYvs8lbj25ZHAcwWOYk6553UredGLr8fUj6E2YYwl3j1IdaxaqoF797ejeyu8bF8DbPcDEkFLEQRuXdycuBt34r33FI_J_xfQLulLc3Q |
| CitedBy_id | crossref_primary_10_1080_02664763_2015_1125867 crossref_primary_10_1002_sim_9101 crossref_primary_10_1080_01621459_2015_1044090 crossref_primary_10_1002_gepi_21810 crossref_primary_10_1186_s13075_015_0533_5 crossref_primary_10_1214_23_STS890 crossref_primary_10_1186_1471_2431_14_225 crossref_primary_10_1186_s12874_018_0492_z crossref_primary_10_1080_10543406_2024_2444242 |
| Cites_doi | 10.1002/1097-0258(20000715)19:13<1707::AID-SIM491>3.0.CO;2-P 10.1093/biomet/54.1-2.93 10.1093/biomet/asq006 10.2307/2529876 10.1016/j.jclinepi.2003.12.001 10.1016/j.jclinepi.2010.11.016 10.1016/S0140-6736(05)17709-5 10.1002/bimj.201100167 10.1111/j.0006-341X.1999.01221.x 10.1002/sim.1023 10.3310/hta5330 10.2307/2534018 10.1371/journal.pgen.1000167 10.1002/sim.3165 10.1016/S0895-4356(01)00414-0 10.1002/sim.2768 10.1007/978-1-4419-0318-1 10.1002/sim.1187 10.1002/sim.1186 10.1056/NEJMp068070 10.1017/S0266462308080471 10.18637/jss.v036.i03 10.1056/NEJMsr077003 10.1161/01.CIR.91.10.2528 10.1016/j.jclinepi.2006.09.009 10.7326/0003-4819-152-11-201006010-00232 10.1016/j.jclinepi.2012.07.010 |
| ContentType | Journal Article |
| Copyright | Copyright Oxford Publishing Limited(England) Apr 2013 The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2012 |
| Copyright_xml | – notice: Copyright Oxford Publishing Limited(England) Apr 2013 – notice: The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2012 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1093/biostatistics/kxs035 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Nursing & Allied Health Premium MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1468-4357 |
| EndPage | 283 |
| ExternalDocumentID | 10.1093/biostatistics/kxs035 PMC3590924 2914221751 23001065 10_1093_biostatistics_kxs035 |
| Genre | Journal Article Research Support, N.I.H., Intramural |
| GrantInformation_xml | – fundername: Intramural NIH HHS |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5VS 5WA 6PF 70D AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL AAYXX ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABZBJ ACGFS ACIPB ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHXPO AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APWMN ATGXG AXUDD AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN C1A C45 CAG CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EE~ EJD EMOBN F5P F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NMDNZ NOMLY NTWIH NU- O0~ O9- ODMLO OJQWA OJZSN OK1 OVD P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 RNI ROL ROX RUSNO RW1 RXO RZO SV3 TEORI TJP TN5 TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ABQTQ CGR CUY CVF ECM EIF M49 NPM RIG 7QO 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c436t-6a9461f53303ee9ed85bb27fecf29d66846be38c3d68b49eff26ccd7dbe9bc023 |
| IEDL.DBID | UNPAY |
| ISSN | 1465-4644 1468-4357 |
| IngestDate | Sun Oct 26 04:08:00 EDT 2025 Tue Sep 30 16:11:25 EDT 2025 Sun Sep 28 11:12:47 EDT 2025 Fri Oct 03 03:11:20 EDT 2025 Thu Apr 03 07:08:48 EDT 2025 Wed Oct 01 04:23:31 EDT 2025 Thu Apr 24 23:13:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-6a9461f53303ee9ed85bb27fecf29d66846be38c3d68b49eff26ccd7dbe9bc023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/biostatistics/article-pdf/14/2/273/17731145/kxs035.pdf |
| PMID | 23001065 |
| PQID | 1315980279 |
| PQPubID | 26167 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1093_biostatistics_kxs035 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3590924 proquest_miscellaneous_1315632842 proquest_journals_1315980279 pubmed_primary_23001065 crossref_citationtrail_10_1093_biostatistics_kxs035 crossref_primary_10_1093_biostatistics_kxs035 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-04-01 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Biostatistics (Oxford, England) |
| PublicationTitleAlternate | Biostatistics |
| PublicationYear | 2013 |
| Publisher | Oxford Publishing Limited (England) Oxford University Press |
| Publisher_xml | – name: Oxford Publishing Limited (England) – name: Oxford University Press |
| References | Koopman ( key 20170619052544_KXS035C9) 2008; 24 Simmonds ( key 20170619052544_KXS035C24) 2007; 26 Berlin ( key 20170619052544_KXS035C1) 2002; 21 Kovalchik ( key 20170619052544_KXS035C11) 2012; 54 Viechtbauer ( key 20170619052544_KXS035C26) 2010; 36 Lambert ( key 20170619052544_KXS035C14) 2002; 55 Hartley ( key 20170619052544_KXS035C5) 1967; 54 Riley ( key 20170619052544_KXS035C20) 2007; 60 Engels ( key 20170619052544_KXS035C3) 2000; 19 Rothwell ( key 20170619052544_KXS035C21) 2005; 365 Schmid ( key 20170619052544_KXS035C22) 2004; 57 Mathew ( key 20170619052544_KXS035C16) 1999; 55 Riley ( key 20170619052544_KXS035C19) 2008; 27 Homer ( key 20170619052544_KXS035C7) 2008; 4 Schulz ( key 20170619052544_KXS035C23) 2010; 152 Pinheiro ( key 20170619052544_KXS035C18) 2000 Lagakos ( key 20170619052544_KXS035C12) 2006; 354 Laird ( key 20170619052544_KXS035C13) 1982; 38 Fisher ( key 20170619052544_KXS035C4) 2011; 64 Kovalchik ( key 20170619052544_KXS035C10) 2012 Olkin ( key 20170619052544_KXS035C17) 1998; 54 Brookes ( key 20170619052544_KXS035C2) 2001; 5 Thompson ( key 20170619052544_KXS035C25) 2002; 21 Higgins ( key 20170619052544_KXS035C6) 2002; 21 Wang ( key 20170619052544_KXS035C27) 2007; 357 Jukema ( key 20170619052544_KXS035C8) 1995; 91 Lin ( key 20170619052544_KXS035C15) 2010; 97 12111920 - Stat Med. 2002 Jun 15;21(11):1559-73 9544524 - Biometrics. 1998 Mar;54(1):317-22 12111919 - Stat Med. 2002 Jun 15;21(11):1539-58 11701102 - Health Technol Assess. 2001;5(33):1-56 11315071 - Biometrics. 1999 Dec;55(4):1221-3 21411280 - J Clin Epidemiol. 2011 Sep;64(9):949-67 7168798 - Biometrics. 1982 Dec;38(4):963-74 18601805 - Int J Technol Assess Health Care. 2008 Summer;24(3):358-61 18032770 - N Engl J Med. 2007 Nov 22;357(21):2189-94 18769715 - PLoS Genet. 2008 Aug;4(8):e1000167 20335313 - Ann Intern Med. 2010 Jun 1;152(11):726-32 11813224 - Stat Med. 2002 Feb 15;21(3):371-87 23049122 - Biometrika. 2010 Jun;97(2):321-332 16625007 - N Engl J Med. 2006 Apr 20;354(16):1667-9 15358396 - J Clin Epidemiol. 2004 Jul;57(7):683-97 7743614 - Circulation. 1995 May 15;91(10):2528-40 17195960 - Stat Med. 2007 Jul 10;26(15):2982-99 22981246 - J Clin Epidemiol. 2012 Dec;65(12):1296-9 18069721 - Stat Med. 2008 May 20;27(11):1870-93 11781126 - J Clin Epidemiol. 2002 Jan;55(1):86-94 10861773 - Stat Med. 2000 Jul 15;19(13):1707-28 22685003 - Biom J. 2012 May;54(3):370-84 15639301 - Lancet. 2005 Jan 8-14;365(9454):176-86 6049561 - Biometrika. 1967 Jun;54(1):93-108 17419953 - J Clin Epidemiol. 2007 May;60(5):431-9 |
| References_xml | – volume: 19 start-page: 1707 year: 2000 ident: key 20170619052544_KXS035C3 article-title: Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses publication-title: Statistics in Medicine doi: 10.1002/1097-0258(20000715)19:13<1707::AID-SIM491>3.0.CO;2-P – volume: 54 start-page: 93 year: 1967 ident: key 20170619052544_KXS035C5 article-title: Maximum-likelihood estimation for mixed analysis of variance model publication-title: Biometrika doi: 10.1093/biomet/54.1-2.93 – volume: 97 start-page: 321 year: 2010 ident: key 20170619052544_KXS035C15 article-title: On the relative efficiency of using summary statistics versus individual-level data in meta-analysis publication-title: Biometrika doi: 10.1093/biomet/asq006 – volume: 38 start-page: 963 year: 1982 ident: key 20170619052544_KXS035C13 article-title: Random-effects models for longitudinal data publication-title: Biometrics doi: 10.2307/2529876 – volume: 57 start-page: 683 year: 2004 ident: key 20170619052544_KXS035C22 article-title: Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors publication-title: Journal of Clinical Epidemiology doi: 10.1016/j.jclinepi.2003.12.001 – volume: 64 start-page: 949 year: 2011 ident: key 20170619052544_KXS035C4 article-title: A critical review of methods for the assessment of patient-level interactions in individual participant data meta-analysis of randomized trials, and guidance for practitioners publication-title: Journal of Clinical Epidemiology doi: 10.1016/j.jclinepi.2010.11.016 – volume: 365 start-page: 176 year: 2005 ident: key 20170619052544_KXS035C21 article-title: Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation publication-title: Lancet doi: 10.1016/S0140-6736(05)17709-5 – volume: 54 start-page: 370 year: 2012 ident: key 20170619052544_KXS035C11 article-title: Using aggregate data to estimate the standard error of a treatment-covariate interaction in an individual patient data meta-analysis publication-title: Biometrical Journal doi: 10.1002/bimj.201100167 – volume: 55 start-page: 1221 year: 1999 ident: key 20170619052544_KXS035C16 article-title: On the equivalence of meta-analysis using literature and using individual patient data publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.01221.x – volume: 21 start-page: 371 year: 2002 ident: key 20170619052544_KXS035C1 article-title: Anti-Lymphocyte Antibody Induction Therapy Study Group. Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head publication-title: Statistics in Medicine doi: 10.1002/sim.1023 – volume: 5 start-page: 1 year: 2001 ident: key 20170619052544_KXS035C2 article-title: Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives publication-title: Health Technology Assessment doi: 10.3310/hta5330 – volume: 54 start-page: 317 year: 1998 ident: key 20170619052544_KXS035C17 article-title: Comparison of meta-analysis versus analysis of variance of individual patient data publication-title: Biometrics doi: 10.2307/2534018 – volume: 4 start-page: e1000167 year: 2008 ident: key 20170619052544_KXS035C7 article-title: Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays publication-title: PloS Genetics doi: 10.1371/journal.pgen.1000167 – volume: 27 start-page: 1870 year: 2008 ident: key 20170619052544_KXS035C19 article-title: Meta-analysis of continuous outcomes combining individual patient data and aggregate data publication-title: Statistics in Medicine doi: 10.1002/sim.3165 – volume: 55 start-page: 86 year: 2002 ident: key 20170619052544_KXS035C14 article-title: A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis publication-title: Journal of Clinical Epidemiology doi: 10.1016/S0895-4356(01)00414-0 – volume: 26 start-page: 2982 year: 2007 ident: key 20170619052544_KXS035C24 article-title: Covariate heterogeneity in meta-analysis: criteria for deciding between meta-regression and individual patient data publication-title: Statistics in Medicine doi: 10.1002/sim.2768 – volume-title: Mixed-effects Models in S and S-PLUS year: 2000 ident: key 20170619052544_KXS035C18 doi: 10.1007/978-1-4419-0318-1 – volume: 21 start-page: 1559 year: 2002 ident: key 20170619052544_KXS035C25 article-title: How should meta-regression analyses be undertaken and interpreted? publication-title: Statistics in Medicine doi: 10.1002/sim.1187 – volume: 21 start-page: 1539 year: 2002 ident: key 20170619052544_KXS035C6 article-title: Quantifying heterogeneity in a meta-analysis publication-title: Statistics in Medicine doi: 10.1002/sim.1186 – volume: 354 start-page: 1667 year: 2006 ident: key 20170619052544_KXS035C12 article-title: The challenge of subgroup analyses–reporting without distorting publication-title: New England Journal of Medicine doi: 10.1056/NEJMp068070 – volume: 24 start-page: 358 year: 2008 ident: key 20170619052544_KXS035C9 article-title: Empirical comparison of subgroup effects in conventional and individual patient data meta-analyses publication-title: International Journal of Technology Assessment in Health Care doi: 10.1017/S0266462308080471 – volume: 36 start-page: 1 year: 2010 ident: key 20170619052544_KXS035C26 article-title: Conducting meta-analyses in R with the metafor package publication-title: Journal of Statistical Software doi: 10.18637/jss.v036.i03 – volume: 357 start-page: 2189 year: 2007 ident: key 20170619052544_KXS035C27 article-title: Statistics in medicine–reporting of subgroup analyses in clinical trials publication-title: New England Journal of Medicine doi: 10.1056/NEJMsr077003 – volume: 91 start-page: 2528 year: 1995 ident: key 20170619052544_KXS035C8 article-title: Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS) publication-title: Circulation doi: 10.1161/01.CIR.91.10.2528 – volume: 60 start-page: 431 year: 2007 ident: key 20170619052544_KXS035C20 article-title: Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods publication-title: Journal of Clinical Epidemiology doi: 10.1016/j.jclinepi.2006.09.009 – volume: 152 start-page: 726 year: 2010 ident: key 20170619052544_KXS035C23 article-title: the CONSORT Group. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomized trials publication-title: Annals of Internal Medicine doi: 10.7326/0003-4819-152-11-201006010-00232 – year: 2012 ident: key 20170619052544_KXS035C10 article-title: Survey finds that most meta-analysts do not attempt to collect individual patient data publication-title: Journal of Clinical Epidemiology (in press) doi: 10.1016/j.jclinepi.2012.07.010 – reference: 18069721 - Stat Med. 2008 May 20;27(11):1870-93 – reference: 11781126 - J Clin Epidemiol. 2002 Jan;55(1):86-94 – reference: 17419953 - J Clin Epidemiol. 2007 May;60(5):431-9 – reference: 23049122 - Biometrika. 2010 Jun;97(2):321-332 – reference: 7743614 - Circulation. 1995 May 15;91(10):2528-40 – reference: 16625007 - N Engl J Med. 2006 Apr 20;354(16):1667-9 – reference: 18769715 - PLoS Genet. 2008 Aug;4(8):e1000167 – reference: 18601805 - Int J Technol Assess Health Care. 2008 Summer;24(3):358-61 – reference: 9544524 - Biometrics. 1998 Mar;54(1):317-22 – reference: 22981246 - J Clin Epidemiol. 2012 Dec;65(12):1296-9 – reference: 15639301 - Lancet. 2005 Jan 8-14;365(9454):176-86 – reference: 6049561 - Biometrika. 1967 Jun;54(1):93-108 – reference: 17195960 - Stat Med. 2007 Jul 10;26(15):2982-99 – reference: 11813224 - Stat Med. 2002 Feb 15;21(3):371-87 – reference: 21411280 - J Clin Epidemiol. 2011 Sep;64(9):949-67 – reference: 11701102 - Health Technol Assess. 2001;5(33):1-56 – reference: 12111920 - Stat Med. 2002 Jun 15;21(11):1559-73 – reference: 12111919 - Stat Med. 2002 Jun 15;21(11):1539-58 – reference: 7168798 - Biometrics. 1982 Dec;38(4):963-74 – reference: 22685003 - Biom J. 2012 May;54(3):370-84 – reference: 11315071 - Biometrics. 1999 Dec;55(4):1221-3 – reference: 18032770 - N Engl J Med. 2007 Nov 22;357(21):2189-94 – reference: 15358396 - J Clin Epidemiol. 2004 Jul;57(7):683-97 – reference: 10861773 - Stat Med. 2000 Jul 15;19(13):1707-28 – reference: 20335313 - Ann Intern Med. 2010 Jun 1;152(11):726-32 |
| SSID | ssj0022363 |
| Score | 2.0398955 |
| Snippet | Individual patient-data meta-analysis of randomized controlled trials is the gold standard for investigating how patient factors modify the effectiveness of... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 273 |
| SubjectTerms | Algorithms Analysis of Variance Bayes Theorem Biostatistics Cholesterol Cholesterol - blood Clinical trials Coronary Artery Disease - blood Coronary Artery Disease - drug therapy Coronary Artery Disease - pathology Data Interpretation, Statistical Humans Hydroxymethylglutaryl-CoA Reductase Inhibitors - therapeutic use Likelihood Functions Linear Models Male Meta-analysis Meta-Analysis as Topic Pravastatin - therapeutic use Randomized Controlled Trials as Topic - statistics & numerical data Simulation Software Treatment Outcome |
| Title | Aggregate-data estimation of an individual patient data linear random effects meta-analysis with a patient covariate-treatment interaction term |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23001065 https://www.proquest.com/docview/1315980279 https://www.proquest.com/docview/1315632842 https://pubmed.ncbi.nlm.nih.gov/PMC3590924 https://academic.oup.com/biostatistics/article-pdf/14/2/273/17731145/kxs035.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1468-4357 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022363 issn: 1465-4644 databaseCode: KQ8 dateStart: 20000301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1468-4357 dateEnd: 20231101 omitProxy: true ssIdentifier: ssj0022363 issn: 1465-4644 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB21WyG48A0NlMpIXJ1s4thJjitEVYFUQGKlcor8FVh1m6y22UL5E_xlxnESse0BkDh7bCeOk3njvHkD8Ap9cpXZKadC84KmueC0kCylumJxrNSUK9kRZE_E8Tx9e8pPd-D9kAsje1Z4OKQ0qEXjUmu8anHULyddmSqK0yiJ0PtGcZbhwCmPzr5fTBkPsXEX9gRHcD6BvfnJh9lnn2PEaSq68q5dvhEChWxIpivYtYn8UNvO6gYCvUmkvL2pV_Lqm1wuf_NSR_dgNdyfJ6echZtWhfrHNenH_7gA9-Fuj2jJzHd5ADu2fgi3fI3Lq0fwc_YFQ3p3WEcdG5U4VQ-fLkmaisiaLMaUMNKLvJLO0OFfuSboS01zTnreCTm3raSyV1Ih7hSZyLGfbi4x9HdTjfx54vQw1j57gzg39BjmR28-vT6mfRUIqlMmWipkkYq4cixYZm1hTc6VSjKctEoKIwQCKGVZrpkRuUoLvJxEaG0yo2yhNEKSJzCpm9ruA8kMmuEXPksNjq2MZImMWSV0pWWcVyYANjzuUvcS6a5Sx7L0v-pZufUwSr_cAdCx18pLhPzB_mDYSWX_wbgoY4a4Mp8mWRHAy7EZX3X3_0bWttl4G8EQTyQBPPUbb5wQI0kX3ePg2daWHA2cjPh2S7342smJM15MMQoPIBw371_dx7N_7fAc7iRdMRHHezqASbve2BcI6Vp1CLvvPuaH_cv6C-sPWPw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKVgguvKGBgozE1Xn5keS4QlQVh8KBlcop8iuw6jZZbbOU8if4y4xjJ2LbAyBx9thOHCfzjfPNNwi9AZ_cFDblRGheEVYKTipJGdENzTKlUq7kQJA9EccL9v6Un-6hD2MujAys8HhMaVDLzqXWeNXiJCwnWZsmyViSJ-B9k6woYGDGk7PvFynlMTTeQvuCAzifof3Fycf5Z59jxAkTQ3nXId8IgEIxJtNV9NpEfqhdZ3UDgd4kUt7Ztmt5dSlXq9-81NF9tB7vz5NTzuJtr2L945r0439cgAfoXkC0eO67PER7tn2Ebvsal1eP0c_5Fwjp3WEdcWxU7FQ9fLok7hosW7ycUsJwEHnFg6HDv3KDwZea7hwH3gk-t70kMiipYHeKjOXUT3ffIPR3U038eez0MDY-ewM7N_QELY7efXp7TEIVCKIZFT0RsmIiaxwLllpbWVNypfICJm3yyggBAEpZWmpqRKlYBZeTC61NYZStlAZI8hTN2q61BwgXBszgC18wA2MrI2kuM9oI3WiZlY2JEB0fd62DRLqr1LGq_a96Wu88jNovd4TI1GvtJUL-YH847qQ6fDAu6owCrizTvKgi9Hpqhlfd_b-Rre223kZQwBN5hJ75jTdNCJGki-5h8GJnS04GTkZ8t6Vdfh3kxCmvUojCIxRPm_ev7uP5v3Z4ge7mQzERx3s6RLN-s7UvAdL16lV4TX8B2sRYBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aggregate-data+estimation+of+an+individual+patient+data+linear+random+effects+meta-analysis+with+a+patient+covariate-treatment+interaction+term&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Kovalchik%2C+Stephanie+A.&rft.date=2013-04-01&rft.pub=Oxford+University+Press&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=14&rft.issue=2&rft.spage=273&rft.epage=283&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxs035&rft_id=info%3Apmid%2F23001065&rft.externalDocID=PMC3590924 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon |