A novel feature based algorithm for soil type classification

Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it...

Full description

Saved in:
Bibliographic Details
Published inComplex & intelligent systems Vol. 8; no. 4; pp. 3377 - 3393
Main Authors Uddin, Machbah, Hassan, Md. Rakib
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2199-4536
2198-6053
2198-6053
DOI10.1007/s40747-022-00682-0

Cover

Abstract Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it is essential to identify and select the appropriate type of soil because different crops need different soil types. Currently, there are two types of methods available to determine the soil type, namely chemical and image analysis. Although the first one is accurate, it is expensive and time consuming. On the other hand, image based soil classification is much cheaper and faster but its accuracy level is low. In this study, we present a novel feature based algorithm that combines quartile histogram oriented gradients (Q-HOG), most frequent φ -Pixels and a new feature selection method for classifying soil types. We have used four machine learning algorithms and evaluated the performance with different sets of features. We have also compared our work with two prominent and recent works on image-based soil classification systems. The experimental results show that the performance of our proposed method in terms of four standard evaluation metrics, namely accuracy, precision, F1_score, and recall scores are higher than the existing image-based soil classification systems.
AbstractList Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it is essential to identify and select the appropriate type of soil because different crops need different soil types. Currently, there are two types of methods available to determine the soil type, namely chemical and image analysis. Although the first one is accurate, it is expensive and time consuming. On the other hand, image based soil classification is much cheaper and faster but its accuracy level is low. In this study, we present a novel feature based algorithm that combines quartile histogram oriented gradients (Q-HOG), most frequent $$\varphi $$ φ -Pixels and a new feature selection method for classifying soil types. We have used four machine learning algorithms and evaluated the performance with different sets of features. We have also compared our work with two prominent and recent works on image-based soil classification systems. The experimental results show that the performance of our proposed method in terms of four standard evaluation metrics, namely accuracy, precision, F1_score, and recall scores are higher than the existing image-based soil classification systems.
Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it is essential to identify and select the appropriate type of soil because different crops need different soil types. Currently, there are two types of methods available to determine the soil type, namely chemical and image analysis. Although the first one is accurate, it is expensive and time consuming. On the other hand, image based soil classification is much cheaper and faster but its accuracy level is low. In this study, we present a novel feature based algorithm that combines quartile histogram oriented gradients (Q-HOG), most frequent φ -Pixels and a new feature selection method for classifying soil types. We have used four machine learning algorithms and evaluated the performance with different sets of features. We have also compared our work with two prominent and recent works on image-based soil classification systems. The experimental results show that the performance of our proposed method in terms of four standard evaluation metrics, namely accuracy, precision, F1_score, and recall scores are higher than the existing image-based soil classification systems.
Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it is essential to identify and select the appropriate type of soil because different crops need different soil types. Currently, there are two types of methods available to determine the soil type, namely chemical and image analysis. Although the first one is accurate, it is expensive and time consuming. On the other hand, image based soil classification is much cheaper and faster but its accuracy level is low. In this study, we present a novel feature based algorithm that combines quartile histogram oriented gradients (Q-HOG), most frequent φ-Pixels and a new feature selection method for classifying soil types. We have used four machine learning algorithms and evaluated the performance with different sets of features. We have also compared our work with two prominent and recent works on image-based soil classification systems. The experimental results show that the performance of our proposed method in terms of four standard evaluation metrics, namely accuracy, precision, F1_score, and recall scores are higher than the existing image-based soil classification systems.
Author Hassan, Md. Rakib
Uddin, Machbah
Author_xml – sequence: 1
  givenname: Machbah
  orcidid: 0000-0002-1572-8606
  surname: Uddin
  fullname: Uddin, Machbah
  email: machbah.csm@bau.edu.bd
  organization: Department of Computer Science and Mathematics, Bangladesh Agricultural University
– sequence: 2
  givenname: Md. Rakib
  orcidid: 0000-0001-9368-6942
  surname: Hassan
  fullname: Hassan, Md. Rakib
  organization: Department of Computer Science and Mathematics, Bangladesh Agricultural University
BookMark eNqNkEtLAzEQgINUsNb-AU8LnlezSTYP8FKKLxC86Dlk09makm7WZFfpv3ftFgQPxcvMHOabx3eOJk1oAKHLAl8XGIubxLBgIseE5BhzOcQTNCWFkjnHJZ3sa5WzkvIzNE9pgzEuhJAUkym6XWRN-ASf1WC6PkJWmQSrzPh1iK5732Z1iFkKzmfdroXMepOSq501nQvNBTqtjU8wP-QZeru_e10-5s8vD0_LxXNuGeVdXoKsjFQVcFqCBSiMMEQKwJRaybigyipCrDSGM2ktZ5aplS1A8aqiopJ0hug4t29as_sy3us2uq2JO11g_eNAjw704EDvHWg8UFcj1cbw0UPq9Cb0sRkO1YQrUZJSCTZ0kbHLxpBShPp_o-UfyLpur6SLxvnj6OGXNOxp1hB_rzpCfQM7744y
CitedBy_id crossref_primary_10_1016_j_eswa_2023_122185
crossref_primary_10_1007_s42107_023_00786_z
crossref_primary_10_1109_ACCESS_2023_3290907
crossref_primary_10_1007_s11760_024_03016_4
crossref_primary_10_1007_s12145_024_01521_1
crossref_primary_10_22399_ijcesen_572
crossref_primary_10_1109_LGRS_2024_3459930
crossref_primary_10_1117_1_JRS_17_044513
crossref_primary_10_1007_s41870_023_01404_6
crossref_primary_10_1007_s11042_024_19140_9
Cites_doi 10.1007/s10489-020-01831-z
10.1016/j.ins.2019.01.064
10.1016/j.neucom.2017.07.044
10.1016/j.jtbi.2018.12.010
10.1016/j.biosystemseng.2018.08.011
10.1007/s11042-019-07750-7
10.1016/j.biosystemseng.2013.07.013
10.1016/j.geoderma.2015.11.014
10.3390/s18082674
10.1109/ICSCC.2019.8843650
10.1016/j.compag.2008.12.003
10.1016/j.geoderma.2019.114039
10.1016/j.compag.2016.01.020
10.1007/978-3-319-63754-9_1
10.1016/j.still.2016.04.012
10.1016/j.knosys.2019.02.021
10.1016/j.compag.2015.11.014
10.2136/sssaj2017.01.0009
10.1016/j.jclepro.2018.07.164
10.1109/ACCESS.2020.2989267
10.1016/j.geoderma.2016.10.027
10.1109/PROC.1979.11328
10.1016/j.geoderma.2017.02.018
10.1007/s00500-020-04734-w
10.1016/j.geoderma.2010.03.019
10.1016/j.compag.2016.02.024
10.1016/j.geoderma.2020.114562
10.1038/s41598-018-24926-7
10.1016/B978-0-444-63522-8.00015-2
10.1016/j.biosystemseng.2008.02.007
10.5109/25196
10.1007/978-3-319-09339-0_38
10.1016/j.geoderma.2009.11.005
10.1109/MAMI.2015.7456607
10.1016/j.compag.2013.10.002
10.1109/LGRS.2005.851752
10.1016/j.catena.2018.06.027
10.1109/ICIP.2015.7351681
10.1007/s00366-009-0140-7
10.1002/col.22277
10.1109/ICSTC.2017.8011843
10.1007/978-3-319-68548-9_60
10.1016/j.microc.2019.03.070
10.1016/j.patcog.2018.11.011
10.1016/j.microc.2019.01.009
10.1016/j.still.2015.07.006
10.1007/s00371-019-01749-9
10.1109/DICTA.2015.7371274
10.1109/CVPRW.2009.5204297
10.1016/j.eswa.2017.06.021
10.1109/ACCT.2014.74
10.3390/app8020212
10.1111/j.1365-2389.2011.01356.x
10.1016/j.biosystemseng.2006.11.001
10.1016/j.jneumeth.2017.12.010
10.1109/ICITACEE.2018.8576956
10.1016/j.geoderma.2005.07.017
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1007/s40747-022-00682-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerNature - open access journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 3393
ExternalDocumentID 10.1007/s40747-022-00682-0
10_1007_s40747_022_00682_0
GeographicLocations Bangladesh
GeographicLocations_xml – name: Bangladesh
GrantInformation_xml – fundername: BAURES
  grantid: BAU/369/2018
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c436t-5e8ba89be635ecee1a7a287e033c846739c922c8aa648cc64c49dc1e96bb37b83
IEDL.DBID C6C
ISSN 2199-4536
2198-6053
IngestDate Wed Oct 01 16:30:10 EDT 2025
Wed Oct 08 14:12:00 EDT 2025
Wed Oct 01 04:22:17 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Fri Feb 21 02:45:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Haralick feature
Soil classification
Automated soil analysis
Quartile HOG feature
Pixels feature
Machine learning
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-5e8ba89be635ecee1a7a287e033c846739c922c8aa648cc64c49dc1e96bb37b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1572-8606
0000-0001-9368-6942
OpenAccessLink https://doi.org/10.1007/s40747-022-00682-0
PQID 2697525974
PQPubID 2044308
PageCount 17
ParticipantIDs unpaywall_primary_10_1007_s40747_022_00682_0
proquest_journals_2697525974
crossref_primary_10_1007_s40747_022_00682_0
crossref_citationtrail_10_1007_s40747_022_00682_0
springer_journals_10_1007_s40747_022_00682_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220800
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 8
  year: 2022
  text: 20220800
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Hernández-Hernández, García-Mateos, González-Esquiva, Escarabajal-Henarejos, Ruiz-Canales, Molina-Martínez (CR24) 2016; 122
Marqués-Mateu, Moreno-Ramón, Balasch, Ibáñez-Asensio (CR35) 2018; 171
Dimitriadis, Liparas, Tsolaki, Initiative (CR17) 2018; 302
Tan, Lee, Gan, Wang (CR55) 2018; 176
Stiglitz, Mikhailova, Post, Schlautman, Sharp (CR51) 2016; 121
CR36
CR34
Cao, Bernard, Sabourin, Heutte (CR7) 2019; 88
CR31
Liakos, Busato, Moshou, Pearson, Bochtis (CR32) 2018; 18
Chiew, Tan, Wong, Yong, Tiong (CR11) 2019; 484
Ghaffari, Soleimani, Li, Capson (CR19) 2020; 8
Rossel, Fouad, Walter (CR45) 2008; 100
Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (CR25) 2016; 265
Zendehboudi, Baseer, Saidur (CR61) 2018; 199
Milotta, Stanco, Tanasi, Gueli (CR37) 2018; 11
Viscarra Rossel, Webster (CR58) 2011; 62
Cie (CR13) 1932
Ajdadi, Gilandeh, Mollazade, Hasanzadeh (CR1) 2016; 162
CR3
Swetha, Bende, Singh, Gorthi, Biswas, Li, Weindorf, Chakraborty (CR54) 2020; 376
CR8
CR9
Milotta, Tanasi, Stanco, Pasquale, Stella, Gueli (CR38) 2018; 43
CR47
CR46
CR42
CR40
de Oliveira Morais, de Souza, de Melo Carvalho, Madari, de Oliveira (CR16) 2019; 146
Haralick (CR22) 1979; 67
Stiglitz, Mikhailova, Post, Schlautman, Sharp, Pargas, Glover, Mooney (CR53) 2017; 296
Bogrekci, Lee (CR6) 2007; 96
Kovačević, Bajat, Gajić (CR30) 2010; 154
CR15
CR59
CR14
CR57
O’Donnell, Goyne, Miles, Baffaut, Anderson, Sudduth (CR39) 2010; 157
CR56
Qiu, Chen, Zhao, Zhu, He, Zhang (CR43) 2018; 8
CR50
Chung, Cho, Cho, Jung, Yamakawa (CR12) 2012; 57
Fan, Herrick, Saltzman, Matteis, Yudina, Nocella, Crawford, Parker, Van Zee (CR18) 2017; 81
Chen, Zhang, Ding, Zhang, Luo (CR10) 2019; 173
Pare, Bhandari, Kumar, Singh (CR41) 2017; 87
Ishak, Hussain, Mustafa (CR27) 2009; 66
Ibáñez-Asensio, Marques-Mateu, Moreno-Ramón, Balasch (CR26) 2013; 116
CR28
Alavi, Gandomi, Sahab, Gandomi (CR2) 2010; 26
Liu, Wang, Zhang, Liber (CR33) 2016; 155
Gómez-Robledo, López-Ruiz, Melgosa, Palma, Capitán-Vallvey, Sánchez-Marañón (CR20) 2013; 99
Han, Dong, Zhao, Jiao, Lang (CR21) 2016; 123
CR23
Stiglitz, Mikhailova, Post, Schlautman, Sharp (CR52) 2017; 286
Rossel, Minasny, Roudier, McBratney (CR44) 2006; 133
CR60
Barman, Choudhury (CR4) 2020; 7
Kang, Huo, Xin, Tian, Yu (CR29) 2019; 463
Simon, Zhang, Hartemink, Huang, Walter, Yost (CR48) 2020; 361
Bisgin, Bera, Ding, Semey, Wu, Liu, Barnes, Langley, Pava-Ripoll, Vyas (CR5) 2018; 8
Sofou, Evangelopoulos, Maragos (CR49) 2005; 2
C Kang (682_CR29) 2019; 463
682_CR14
682_CR57
I Bogrekci (682_CR6) 2007; 96
682_CR15
682_CR59
PA de Oliveira Morais (682_CR16) 2019; 146
U Barman (682_CR4) 2020; 7
S Ibáñez-Asensio (682_CR26) 2013; 116
RV Rossel (682_CR44) 2006; 133
682_CR60
AH Alavi (682_CR2) 2010; 26
A Sofou (682_CR49) 2005; 2
682_CR8
S Chung (682_CR12) 2012; 57
682_CR23
682_CR9
T Simon (682_CR48) 2020; 361
682_CR3
M Kovačević (682_CR30) 2010; 154
FR Ajdadi (682_CR1) 2016; 162
L Gómez-Robledo (682_CR20) 2013; 99
R Viscarra Rossel (682_CR58) 2011; 62
SI Dimitriadis (682_CR17) 2018; 302
S Ghaffari (682_CR19) 2020; 8
S Pare (682_CR41) 2017; 87
Z Qiu (682_CR43) 2018; 8
682_CR28
Y Liu (682_CR33) 2016; 155
J Hernández-Hernández (682_CR24) 2016; 122
H Cao (682_CR7) 2019; 88
Á Marqués-Mateu (682_CR35) 2018; 171
682_CR31
682_CR34
R Swetha (682_CR54) 2020; 376
R Stiglitz (682_CR52) 2017; 286
SB Chen (682_CR10) 2019; 173
C Cie (682_CR13) 1932
K Tan (682_CR55) 2018; 176
R Stiglitz (682_CR53) 2017; 296
682_CR36
TK O’Donnell (682_CR39) 2010; 157
KL Chiew (682_CR11) 2019; 484
B Heung (682_CR25) 2016; 265
AJ Ishak (682_CR27) 2009; 66
A Zendehboudi (682_CR61) 2018; 199
682_CR40
682_CR42
R Stiglitz (682_CR51) 2016; 121
Z Fan (682_CR18) 2017; 81
FLM Milotta (682_CR38) 2018; 43
P Han (682_CR21) 2016; 123
682_CR47
682_CR46
RM Haralick (682_CR22) 1979; 67
682_CR50
H Bisgin (682_CR5) 2018; 8
682_CR56
KG Liakos (682_CR32) 2018; 18
FL Milotta (682_CR37) 2018; 11
RV Rossel (682_CR45) 2008; 100
References_xml – volume: 484
  start-page: 153
  year: 2019
  end-page: 166
  ident: CR11
  article-title: A new hybrid ensemble feature selection framework for machine learning-based phishing detection system
  publication-title: Inform Sci
– volume: 67
  start-page: 786
  issue: 5
  year: 1979
  end-page: 804
  ident: CR22
  article-title: Statistical and structural approaches to texture
  publication-title: Proc IEEE
– volume: 296
  start-page: 108
  year: 2017
  end-page: 114
  ident: CR53
  article-title: Soil color sensor data collection using a gps-enabled smartphone application
  publication-title: Geoderma
– volume: 286
  start-page: 98
  year: 2017
  end-page: 103
  ident: CR52
  article-title: Using an inexpensive color sensor for rapid assessment of soil organic carbon
  publication-title: Geoderma
– volume: 7
  start-page: 318
  issue: 2
  year: 2020
  end-page: 332
  ident: CR4
  article-title: Soil texture classification using multi class support vector machine
  publication-title: Inform Process Agric
– volume: 26
  start-page: 111
  issue: 2
  year: 2010
  end-page: 118
  ident: CR2
  article-title: Multi expression programming: a new approach to formulation of soil classification
  publication-title: Eng Comput
– volume: 302
  start-page: 14
  year: 2018
  end-page: 23
  ident: CR17
  article-title: Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological mri measures to discriminate among healhy elderly, mci, cmci and alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (adni) database
  publication-title: Journal of Neurosci Methods
– volume: 171
  start-page: 44
  year: 2018
  end-page: 53
  ident: CR35
  article-title: Quantifying the uncertainty of soil colour measurements with munsell charts using a modified attribute agreement analysis
  publication-title: Catena
– ident: CR8
– volume: 463
  start-page: 77
  year: 2019
  end-page: 91
  ident: CR29
  article-title: Feature selection and tumor classification for microarray data using relaxed lasso and generalized multi-class support vector machine
  publication-title: J Theor Biol
– volume: 18
  start-page: 2674
  issue: 8
  year: 2018
  ident: CR32
  article-title: Machine learning in agriculture: a review
  publication-title: Sensors
– volume: 157
  start-page: 86
  issue: 3–4
  year: 2010
  end-page: 96
  ident: CR39
  article-title: Identification and quantification of soil redoximorphic features by digital image processing
  publication-title: Geoderma
– volume: 2
  start-page: 394
  issue: 4
  year: 2005
  end-page: 398
  ident: CR49
  article-title: Soil image segmentation and texture analysis: a computer vision approach
  publication-title: IEEE Geosci Remote Sens Lett
– ident: CR42
– volume: 121
  start-page: 141
  year: 2016
  end-page: 148
  ident: CR51
  article-title: Evaluation of an inexpensive sensor to measure soil color
  publication-title: Comput Electron Agric
– volume: 87
  start-page: 335
  year: 2017
  end-page: 362
  ident: CR41
  article-title: An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix
  publication-title: Expert Syst Appl
– volume: 62
  start-page: 637
  issue: 4
  year: 2011
  end-page: 647
  ident: CR58
  article-title: Discrimination of Australian soil horizons and classes from their visible-near infrared spectra
  publication-title: Eur J Soil Sci
– volume: 8
  start-page: 79920
  year: 2020
  end-page: 79934
  ident: CR19
  article-title: Analysis and comparison of fpga-based histogram of oriented gradients implementations
  publication-title: IEEE Access
– ident: CR46
– volume: 116
  start-page: 120
  issue: 2
  year: 2013
  end-page: 129
  ident: CR26
  article-title: Statistical relationships between soil colour and soil attributes in semiarid areas
  publication-title: Biosyst Eng
– ident: CR15
– ident: CR50
– volume: 265
  start-page: 62
  year: 2016
  end-page: 77
  ident: CR25
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
– ident: CR9
– ident: CR57
– volume: 146
  start-page: 455
  year: 2019
  end-page: 463
  ident: CR16
  article-title: Predicting soil texture using image analysis
  publication-title: Microchem J
– ident: CR60
– ident: CR36
– volume: 11
  start-page: 17
  issue: 4
  year: 2018
  ident: CR37
  article-title: Munsell color specification using arca (automatic recognition of color for archaeology)
  publication-title: J Comput Cul Herit (JOCCH)
– volume: 81
  start-page: 1139
  issue: 5
  year: 2017
  end-page: 1146
  ident: CR18
  article-title: Measurement of soil color: a comparison between smartphone camera and the munsell color charts
  publication-title: Soil Sci Soc Am J
– volume: 99
  start-page: 200
  year: 2013
  end-page: 208
  ident: CR20
  article-title: Using the mobile phone as munsell soil-colour sensor: an experiment under controlled illumination conditions
  publication-title: Comput Electron Agric
– volume: 162
  start-page: 8
  year: 2016
  end-page: 17
  ident: CR1
  article-title: Application of machine vision for classification of soil aggregate size
  publication-title: Soil Tillage Res
– volume: 57
  start-page: 393
  issue: 2
  year: 2012
  end-page: 397
  ident: CR12
  article-title: Soil texture classification algorithm using rgb characteristics of soil images
  publication-title: J Facul Agric Kyushu Univ
– volume: 154
  start-page: 340
  issue: 3–4
  year: 2010
  end-page: 347
  ident: CR30
  article-title: Soil type classification and estimation of soil properties using support vector machines
  publication-title: Geoderma
– volume: 155
  start-page: 19
  year: 2016
  end-page: 26
  ident: CR33
  article-title: A comprehensive support vector machine-based classification model for soil quality assessment
  publication-title: Soil Tillage Res
– volume: 88
  start-page: 185
  year: 2019
  end-page: 197
  ident: CR7
  article-title: Random forest dissimilarity based multi-view learning for radiomics application
  publication-title: Pattern Recogn
– volume: 96
  start-page: 293
  issue: 2
  year: 2007
  end-page: 299
  ident: CR6
  article-title: Comparison of ultraviolet, visible, and near infrared sensing for soil phosphorus
  publication-title: Biosys Eng
– ident: CR47
– ident: CR14
– volume: 176
  start-page: 59
  year: 2018
  end-page: 72
  ident: CR55
  article-title: Recognising blueberry fruit of different maturity using histogram oriented gradients and colour features in outdoor scenes
  publication-title: Biosyst Eng
– volume: 376
  start-page: 114562
  year: 2020
  ident: CR54
  article-title: Predicting soil texture from smartphone-captured digital images and an application
  publication-title: Geoderma
– volume: 66
  start-page: 53
  issue: 1
  year: 2009
  end-page: 61
  ident: CR27
  article-title: Weed image classification using gabor wavelet and gradient field distribution
  publication-title: Comput Electron Agric
– ident: CR56
– volume: 199
  start-page: 272
  year: 2018
  end-page: 285
  ident: CR61
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: a review
  publication-title: J Clean Prod
– ident: CR40
– volume: 122
  start-page: 124
  year: 2016
  end-page: 132
  ident: CR24
  article-title: Optimal color space selection method for plant/soil segmentation in agriculture
  publication-title: Comput Electron Agric
– volume: 100
  start-page: 149
  issue: 2
  year: 2008
  end-page: 159
  ident: CR45
  article-title: Using a digital camera to measure soil organic carbon and iron contents
  publication-title: Biosyst Eng
– ident: CR23
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  ident: CR5
  article-title: Comparing svm and ann based machine learning methods for species identification of food contaminating beetles
  publication-title: Sci Rep
– volume: 133
  start-page: 320
  issue: 3–4
  year: 2006
  end-page: 337
  ident: CR44
  article-title: Colour space models for soil science
  publication-title: Geoderma
– volume: 8
  start-page: 212
  issue: 2
  year: 2018
  ident: CR43
  article-title: Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network
  publication-title: Appl Sci
– volume: 173
  start-page: 28
  year: 2019
  end-page: 36
  ident: CR10
  article-title: Extended adaptive lasso for multi-class and multi-label feature selection
  publication-title: Knowl Based Syst
– year: 1932
  ident: CR13
  publication-title: Commission internationale de l’eclairage proceedings
– ident: CR3
– volume: 123
  start-page: 232
  year: 2016
  end-page: 241
  ident: CR21
  article-title: A smartphone-based soil color sensor: for soil type classification
  publication-title: Comput Electron Agric
– ident: CR31
– volume: 43
  start-page: 929
  issue: 6
  year: 2018
  end-page: 938
  ident: CR38
  article-title: Automatic color classification via munsell system for archaeology
  publication-title: Color Res Appl
– volume: 361
  start-page: 114039
  year: 2020
  ident: CR48
  article-title: Predicting the color of sandy soils from wisconsin, USA
  publication-title: Geoderma
– ident: CR34
– ident: CR59
– ident: CR28
– ident: 682_CR42
  doi: 10.1007/s10489-020-01831-z
– volume: 484
  start-page: 153
  year: 2019
  ident: 682_CR11
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2019.01.064
– ident: 682_CR59
  doi: 10.1016/j.neucom.2017.07.044
– volume: 463
  start-page: 77
  year: 2019
  ident: 682_CR29
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2018.12.010
– volume: 176
  start-page: 59
  year: 2018
  ident: 682_CR55
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2018.08.011
– ident: 682_CR3
  doi: 10.1007/s11042-019-07750-7
– volume: 116
  start-page: 120
  issue: 2
  year: 2013
  ident: 682_CR26
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2013.07.013
– volume: 265
  start-page: 62
  year: 2016
  ident: 682_CR25
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.11.014
– volume: 18
  start-page: 2674
  issue: 8
  year: 2018
  ident: 682_CR32
  publication-title: Sensors
  doi: 10.3390/s18082674
– ident: 682_CR28
  doi: 10.1109/ICSCC.2019.8843650
– ident: 682_CR8
– volume: 66
  start-page: 53
  issue: 1
  year: 2009
  ident: 682_CR27
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2008.12.003
– volume: 361
  start-page: 114039
  year: 2020
  ident: 682_CR48
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114039
– volume: 122
  start-page: 124
  year: 2016
  ident: 682_CR24
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.01.020
– ident: 682_CR9
  doi: 10.1007/978-3-319-63754-9_1
– volume: 162
  start-page: 8
  year: 2016
  ident: 682_CR1
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2016.04.012
– volume: 173
  start-page: 28
  year: 2019
  ident: 682_CR10
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.02.021
– volume: 121
  start-page: 141
  year: 2016
  ident: 682_CR51
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2015.11.014
– volume: 81
  start-page: 1139
  issue: 5
  year: 2017
  ident: 682_CR18
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2017.01.0009
– volume: 199
  start-page: 272
  year: 2018
  ident: 682_CR61
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.07.164
– volume: 8
  start-page: 79920
  year: 2020
  ident: 682_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989267
– volume: 286
  start-page: 98
  year: 2017
  ident: 682_CR52
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.10.027
– volume: 67
  start-page: 786
  issue: 5
  year: 1979
  ident: 682_CR22
  publication-title: Proc IEEE
  doi: 10.1109/PROC.1979.11328
– volume: 296
  start-page: 108
  year: 2017
  ident: 682_CR53
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.02.018
– ident: 682_CR14
  doi: 10.1007/s00500-020-04734-w
– volume: 11
  start-page: 17
  issue: 4
  year: 2018
  ident: 682_CR37
  publication-title: J Comput Cul Herit (JOCCH)
– volume: 157
  start-page: 86
  issue: 3–4
  year: 2010
  ident: 682_CR39
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.019
– volume: 123
  start-page: 232
  year: 2016
  ident: 682_CR21
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.02.024
– volume: 376
  start-page: 114562
  year: 2020
  ident: 682_CR54
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114562
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 682_CR5
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24926-7
– ident: 682_CR56
  doi: 10.1016/B978-0-444-63522-8.00015-2
– volume: 100
  start-page: 149
  issue: 2
  year: 2008
  ident: 682_CR45
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2008.02.007
– volume: 57
  start-page: 393
  issue: 2
  year: 2012
  ident: 682_CR12
  publication-title: J Facul Agric Kyushu Univ
  doi: 10.5109/25196
– ident: 682_CR60
  doi: 10.1007/978-3-319-09339-0_38
– volume: 154
  start-page: 340
  issue: 3–4
  year: 2010
  ident: 682_CR30
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.11.005
– ident: 682_CR57
  doi: 10.1109/MAMI.2015.7456607
– volume: 99
  start-page: 200
  year: 2013
  ident: 682_CR20
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2013.10.002
– volume: 2
  start-page: 394
  issue: 4
  year: 2005
  ident: 682_CR49
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2005.851752
– volume: 171
  start-page: 44
  year: 2018
  ident: 682_CR35
  publication-title: Catena
  doi: 10.1016/j.catena.2018.06.027
– ident: 682_CR47
  doi: 10.1109/ICIP.2015.7351681
– volume: 26
  start-page: 111
  issue: 2
  year: 2010
  ident: 682_CR2
  publication-title: Eng Comput
  doi: 10.1007/s00366-009-0140-7
– volume: 43
  start-page: 929
  issue: 6
  year: 2018
  ident: 682_CR38
  publication-title: Color Res Appl
  doi: 10.1002/col.22277
– ident: 682_CR23
  doi: 10.1109/ICSTC.2017.8011843
– ident: 682_CR36
  doi: 10.1007/978-3-319-68548-9_60
– volume-title: Commission internationale de l’eclairage proceedings
  year: 1932
  ident: 682_CR13
– ident: 682_CR15
  doi: 10.1016/j.microc.2019.03.070
– volume: 88
  start-page: 185
  year: 2019
  ident: 682_CR7
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.11.011
– volume: 146
  start-page: 455
  year: 2019
  ident: 682_CR16
  publication-title: Microchem J
  doi: 10.1016/j.microc.2019.01.009
– volume: 155
  start-page: 19
  year: 2016
  ident: 682_CR33
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2015.07.006
– ident: 682_CR50
  doi: 10.1007/s00371-019-01749-9
– ident: 682_CR40
  doi: 10.1109/DICTA.2015.7371274
– ident: 682_CR34
  doi: 10.1109/CVPRW.2009.5204297
– volume: 87
  start-page: 335
  year: 2017
  ident: 682_CR41
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.06.021
– ident: 682_CR31
  doi: 10.1109/ACCT.2014.74
– volume: 8
  start-page: 212
  issue: 2
  year: 2018
  ident: 682_CR43
  publication-title: Appl Sci
  doi: 10.3390/app8020212
– volume: 62
  start-page: 637
  issue: 4
  year: 2011
  ident: 682_CR58
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2011.01356.x
– volume: 96
  start-page: 293
  issue: 2
  year: 2007
  ident: 682_CR6
  publication-title: Biosys Eng
  doi: 10.1016/j.biosystemseng.2006.11.001
– volume: 302
  start-page: 14
  year: 2018
  ident: 682_CR17
  publication-title: Journal of Neurosci Methods
  doi: 10.1016/j.jneumeth.2017.12.010
– volume: 7
  start-page: 318
  issue: 2
  year: 2020
  ident: 682_CR4
  publication-title: Inform Process Agric
– ident: 682_CR46
  doi: 10.1109/ICITACEE.2018.8576956
– volume: 133
  start-page: 320
  issue: 3–4
  year: 2006
  ident: 682_CR44
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.07.017
SSID ssj0001778302
ssib044733412
ssib045327741
Score 2.3400912
Snippet Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3377
SubjectTerms Algorithms
Classification
Complexity
Computational Intelligence
Crop production
Data Structures and Information Theory
Engineering
Histograms
Image analysis
Image classification
Machine learning
Original Article
Performance evaluation
Soil chemistry
Soil classification
Soils
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PSxwxFH7oelAPUrXStduSgzcN3UkyyQQqokVZhF1EFPY2JJlUhens6u4q_e-bF2dm28vSyzAwPwIvL3lf8vK-D-DIKKVkisytScGpkC6lSCtOrbYGGQGFkVg7PBzJwb24HqfjNRg1tTB4rLKZE-NEXUwc7pF_Y1KrlCH8PZs-U1SNwuxqI6FhammF4jRSjK3DBkNmrA5sXFyObm4bDxNCcS6WAV2knKlGeybuyiiFhFioSJdoTUXMbR629XYC6eYpHoDH0opw_TeaLSFqm1Xdhs1FNTW_30xZ_hW4rj7ATo04yfm7i-zCmq_2YHvY0rXO9uH7Oakmr74kP33k-SQY2wpiyodggfnjLxKQLZlNnkqCO7bEIeLGI0axVz_C_dXl3Y8BrWUVqBNczmnqM2sybX3AGj7EyMQoE9ZNvs-5QzTCtdOMucwYKTLnpHBCFy7xWlrLlc34AXSqSeU_AbEBPTEtmffCCm2tUalJwwKKuXAvM96FpDFP7mrOcZS-KPOWLTmaNA8mzaNJ834Xjttvpu-MGyvf7jVWz-vRN8uXvtKFk6Ynlo9X_e2k7a3_aPxwdeOfYYtFX8GR0IPO_GXhvwQIM7dfa7_8Azd35XQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60PUgPvsWKSg7ebPrYZLMb8FLUUoQWDxbqaUnSVIvrtrRbRX-9yb58gKJ4WQLJZklmlvkmmfkG4ER4nsdcy9zaGhFMmXKxpRXHkkthGQGpYDZ3uNdn3QG9GrrDFbjIc2GSaPf8SjLNabAsTVHcmI3GjSLxjVred2wj0W2Og3nWTfcqlJlrEHkJyoP-dfvW1pUzPjU2iJ2kbY5pclt58P1En-3TO-gs7kkrsLaMZuLlWYThB1PU2QCdLyKNQHmoL2NZV69f-B3_u8pNWM-wKmqnyrUFKzrahkqvIHpd7MBZG0XTJx2isU4YQpG1iiMkwrvpfBLfPyKDidFiOgmRPetFymJ1G5yU6MMuDDqXN-ddnBVkwIoSFmNX-1L4XGqDUrSxri3hCeNx6SYhyuIYwhV3HOULwaivFKOK8pFqac6kJJ70yR6Uommk9wFJg7sczhytqaRcSuG5wsiOOcq0mU-q0MrFEKiMrdwWzQiDgmc52Z3A7E6Q7E7QrMJp8c4s5er4cfRhLt0g-28XgcO45zrWyapCLRfQe_dPs9UKrfjFxw_-NvwQSvF8qY8M_onlcabebxgh-lc
  priority: 102
  providerName: Unpaywall
Title A novel feature based algorithm for soil type classification
URI https://link.springer.com/article/10.1007/s40747-022-00682-0
https://www.proquest.com/docview/2697525974
https://link.springer.com/content/pdf/10.1007/s40747-022-00682-0.pdf
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: ADMLS
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044733412
  issn: 2199-4536
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: 8FG
  dateStart: 20180601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: AAJSJ
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: C24
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerNature - open access journals
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: C6C
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VOFAOiAJVl8fKh94gKrEdO5a4hBULWonVCroSPUW218BKaYL20Yp_j8dkA63UFb3k5diRZiaabzz2NwBftZRSJMjcGo9YxIVNIqQVj4wyGhkBuRa4d_iqLy6HvHeb3NY0ObgX5q_8_bcpR4b3CNec424Gf1yBNe-kREjMis7CdjiXjPHaVYf5FSmR2gpry8VKRTxkKff-PeyffukVbDb50Q1Yn5eP-um3Loo3Lqi7BZs1diTZi7I_wQdXbsPGG0ZBf3fV0LBOd-A0I2X1yxXkzgX-ToI-a0R0cV9NxrOHn8QjVjKtxgXBmVhiEUnj0qGgrV0Yds-_dy6julxCZDkTsyhxqdGpMs5jCOd9X6yl9vGQO2HMIspgyipKbaq14Km1gluuRjZ2ShjDpEnZZ1gtq9J9AWI8KqJKUOe44coYLROd-MCIWn8tUtaCeCGs3NZc4ljSosgbFuQg4NwLOA8Czk9acNT0eXxh0lj69sFCB3n9V01zKpRMKIZALThe6OW1edlox43u3vHxvf8bfR8-0mBJaPEHsDqbzN2hhyoz04aVtHvRhrUs6930_PnsvD-49k87lLeD_bbDJIBvGfYH2Y9nqBHgAg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9lB6QHyKLQV8gBO1aOyJHUtUqECrLe2uEGql3oLtmA8pZBd2S9U_x2_D4yZZuKy49BJFSuJI47Hnje15D-CZ1VqrnJhbs0pyVD7nRCvOnXGWGAHRKqodHo3V8BTfn-VnK_C7q4WhY5XdnJgm6mriaY38pVBG54Lg7-vpD06qUbS72klo2FZaodpNFGNtYcdRuLyIKdxs9_Bd7O_nQhzsn7wd8lZlgHuUas7zUDhbGBdi6A0xZGRW25hGhB0pPQVnabwRwhfWKiy8V-jRVD4LRjkntStkbPcGrKFEE5O_tTf74w8fO49G1FLiAkBgLoXutG7SKpDWRMBFCniZMRzTXupmX9-HRG_P6cA9lXLE67_RcwGJ-13cDVg_b6b28sLW9V-B8uA23GoRLtu7csk7sBKau7Ax6ulhZ_fg1R5rJr9CzT6HxCvKKJZWzNZfosXnX7-ziKTZbPKtZrRCzDwhfDrSlLzoPpxei4EfwGozacJDYC6iNWGUCAEdGueszm0eEzbh470q5ACyzjylbznOSWqjLnt25mTSMpq0TCYtdwbwov9mesXwsfTtrc7qZTvaZ-XCNwew3fXE4vGy1rb73vqPn28u__lTWB-ejI7L48Px0SO4KZLf0CjcgtX5z_PwOMKnuXvS-iiDT9c9LP4Aj8sjNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gLoH8Ym7vnLwpkXbpEkDXmR18Y0HBW8lyWZVqN3FrYr_3ky2retB0UtpaTuBmQnzTZL5BmBHCSF4jMytYZcGjJs4QFrxQEutkBGQKY61w1fX_PSOnd_H92NV_P60e7UlOappQJamvNgfdHv7deEbQ973AE-iY42Du07CNHPRDXsYtHm78ijGBKWsDOB-1UUIJLzCjnOhlAHze5etn8V-j1ZfELTeNW3A7Gs-UB_vKsvGAlNnAeZLREmORi6wCBM2X4LGGM-ge7qqyVmHy3B4RPL-m81Iz3pWT4KRrEtU9tB_eSoen4nDsWTYf8oIrs8Sg_gaDxR5G67AXefktn0alE0UAsMoL4LYJlolUluHLKyLiKESymVJ9oBSg9iDSiOjyCRKcZYYw5lhsmtCK7nWVOiErsJU3s_tGhDtsFIkeWQt00xqrUSsYpcuRcbd84Q2IayUlZqSYRwbXWRpzY3sFZw6BadewelBE3brfwYjfo1fv96obJCWc22YRlyKOMLEqAl7lV2-Xv8mba-23R8Gb_1P-jbM3Bx30suz64t1mIu8U-GU2ICp4uXVbjosU-gt766feyvjvQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60PUgPvsWKSg7ebPrYZLMb8FLUUoQWDxbqaUnSVIvrtrRbRX-9yb58gKJ4WQLJZklmlvkmmfkG4ER4nsdcy9zaGhFMmXKxpRXHkkthGQGpYDZ3uNdn3QG9GrrDFbjIc2GSaPf8SjLNabAsTVHcmI3GjSLxjVred2wj0W2Og3nWTfcqlJlrEHkJyoP-dfvW1pUzPjU2iJ2kbY5pclt58P1En-3TO-gs7kkrsLaMZuLlWYThB1PU2QCdLyKNQHmoL2NZV69f-B3_u8pNWM-wKmqnyrUFKzrahkqvIHpd7MBZG0XTJx2isU4YQpG1iiMkwrvpfBLfPyKDidFiOgmRPetFymJ1G5yU6MMuDDqXN-ddnBVkwIoSFmNX-1L4XGqDUrSxri3hCeNx6SYhyuIYwhV3HOULwaivFKOK8pFqac6kJJ70yR6Uommk9wFJg7sczhytqaRcSuG5wsiOOcq0mU-q0MrFEKiMrdwWzQiDgmc52Z3A7E6Q7E7QrMJp8c4s5er4cfRhLt0g-28XgcO45zrWyapCLRfQe_dPs9UKrfjFxw_-NvwQSvF8qY8M_onlcabebxgh-lc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+feature+based+algorithm+for+soil+type+classification&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Uddin%2C+Machbah&rft.au=Hassan%2C+Md.+Rakib&rft.date=2022-08-01&rft.pub=Springer+International+Publishing&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=8&rft.issue=4&rft.spage=3377&rft.epage=3393&rft_id=info:doi/10.1007%2Fs40747-022-00682-0&rft.externalDocID=10_1007_s40747_022_00682_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon