A novel feature based algorithm for soil type classification
Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it...
        Saved in:
      
    
          | Published in | Complex & intelligent systems Vol. 8; no. 4; pp. 3377 - 3393 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.08.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2199-4536 2198-6053 2198-6053  | 
| DOI | 10.1007/s40747-022-00682-0 | 
Cover
| Abstract | Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it is essential to identify and select the appropriate type of soil because different crops need different soil types. Currently, there are two types of methods available to determine the soil type, namely chemical and image analysis. Although the first one is accurate, it is expensive and time consuming. On the other hand, image based soil classification is much cheaper and faster but its accuracy level is low. In this study, we present a novel feature based algorithm that combines quartile histogram oriented gradients (Q-HOG), most frequent
φ
-Pixels and a new feature selection method for classifying soil types. We have used four machine learning algorithms and evaluated the performance with different sets of features. We have also compared our work with two prominent and recent works on image-based soil classification systems. The experimental results show that the performance of our proposed method in terms of four standard evaluation metrics, namely accuracy, precision, F1_score, and recall scores are higher than the existing image-based soil classification systems. | 
    
|---|---|
| AbstractList | Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it is essential to identify and select the appropriate type of soil because different crops need different soil types. Currently, there are two types of methods available to determine the soil type, namely chemical and image analysis. Although the first one is accurate, it is expensive and time consuming. On the other hand, image based soil classification is much cheaper and faster but its accuracy level is low. In this study, we present a novel feature based algorithm that combines quartile histogram oriented gradients (Q-HOG), most frequent
$$\varphi $$
φ
-Pixels and a new feature selection method for classifying soil types. We have used four machine learning algorithms and evaluated the performance with different sets of features. We have also compared our work with two prominent and recent works on image-based soil classification systems. The experimental results show that the performance of our proposed method in terms of four standard evaluation metrics, namely accuracy, precision, F1_score, and recall scores are higher than the existing image-based soil classification systems. Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it is essential to identify and select the appropriate type of soil because different crops need different soil types. Currently, there are two types of methods available to determine the soil type, namely chemical and image analysis. Although the first one is accurate, it is expensive and time consuming. On the other hand, image based soil classification is much cheaper and faster but its accuracy level is low. In this study, we present a novel feature based algorithm that combines quartile histogram oriented gradients (Q-HOG), most frequent φ -Pixels and a new feature selection method for classifying soil types. We have used four machine learning algorithms and evaluated the performance with different sets of features. We have also compared our work with two prominent and recent works on image-based soil classification systems. The experimental results show that the performance of our proposed method in terms of four standard evaluation metrics, namely accuracy, precision, F1_score, and recall scores are higher than the existing image-based soil classification systems. Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it is essential to identify and select the appropriate type of soil because different crops need different soil types. Currently, there are two types of methods available to determine the soil type, namely chemical and image analysis. Although the first one is accurate, it is expensive and time consuming. On the other hand, image based soil classification is much cheaper and faster but its accuracy level is low. In this study, we present a novel feature based algorithm that combines quartile histogram oriented gradients (Q-HOG), most frequent φ-Pixels and a new feature selection method for classifying soil types. We have used four machine learning algorithms and evaluated the performance with different sets of features. We have also compared our work with two prominent and recent works on image-based soil classification systems. The experimental results show that the performance of our proposed method in terms of four standard evaluation metrics, namely accuracy, precision, F1_score, and recall scores are higher than the existing image-based soil classification systems.  | 
    
| Author | Hassan, Md. Rakib Uddin, Machbah  | 
    
| Author_xml | – sequence: 1 givenname: Machbah orcidid: 0000-0002-1572-8606 surname: Uddin fullname: Uddin, Machbah email: machbah.csm@bau.edu.bd organization: Department of Computer Science and Mathematics, Bangladesh Agricultural University – sequence: 2 givenname: Md. Rakib orcidid: 0000-0001-9368-6942 surname: Hassan fullname: Hassan, Md. Rakib organization: Department of Computer Science and Mathematics, Bangladesh Agricultural University  | 
    
| BookMark | eNqNkEtLAzEQgINUsNb-AU8LnlezSTYP8FKKLxC86Dlk09makm7WZFfpv3ftFgQPxcvMHOabx3eOJk1oAKHLAl8XGIubxLBgIseE5BhzOcQTNCWFkjnHJZ3sa5WzkvIzNE9pgzEuhJAUkym6XWRN-ASf1WC6PkJWmQSrzPh1iK5732Z1iFkKzmfdroXMepOSq501nQvNBTqtjU8wP-QZeru_e10-5s8vD0_LxXNuGeVdXoKsjFQVcFqCBSiMMEQKwJRaybigyipCrDSGM2ktZ5aplS1A8aqiopJ0hug4t29as_sy3us2uq2JO11g_eNAjw704EDvHWg8UFcj1cbw0UPq9Cb0sRkO1YQrUZJSCTZ0kbHLxpBShPp_o-UfyLpur6SLxvnj6OGXNOxp1hB_rzpCfQM7744y | 
    
| CitedBy_id | crossref_primary_10_1016_j_eswa_2023_122185 crossref_primary_10_1007_s42107_023_00786_z crossref_primary_10_1109_ACCESS_2023_3290907 crossref_primary_10_1007_s11760_024_03016_4 crossref_primary_10_1007_s12145_024_01521_1 crossref_primary_10_22399_ijcesen_572 crossref_primary_10_1109_LGRS_2024_3459930 crossref_primary_10_1117_1_JRS_17_044513 crossref_primary_10_1007_s41870_023_01404_6 crossref_primary_10_1007_s11042_024_19140_9  | 
    
| Cites_doi | 10.1007/s10489-020-01831-z 10.1016/j.ins.2019.01.064 10.1016/j.neucom.2017.07.044 10.1016/j.jtbi.2018.12.010 10.1016/j.biosystemseng.2018.08.011 10.1007/s11042-019-07750-7 10.1016/j.biosystemseng.2013.07.013 10.1016/j.geoderma.2015.11.014 10.3390/s18082674 10.1109/ICSCC.2019.8843650 10.1016/j.compag.2008.12.003 10.1016/j.geoderma.2019.114039 10.1016/j.compag.2016.01.020 10.1007/978-3-319-63754-9_1 10.1016/j.still.2016.04.012 10.1016/j.knosys.2019.02.021 10.1016/j.compag.2015.11.014 10.2136/sssaj2017.01.0009 10.1016/j.jclepro.2018.07.164 10.1109/ACCESS.2020.2989267 10.1016/j.geoderma.2016.10.027 10.1109/PROC.1979.11328 10.1016/j.geoderma.2017.02.018 10.1007/s00500-020-04734-w 10.1016/j.geoderma.2010.03.019 10.1016/j.compag.2016.02.024 10.1016/j.geoderma.2020.114562 10.1038/s41598-018-24926-7 10.1016/B978-0-444-63522-8.00015-2 10.1016/j.biosystemseng.2008.02.007 10.5109/25196 10.1007/978-3-319-09339-0_38 10.1016/j.geoderma.2009.11.005 10.1109/MAMI.2015.7456607 10.1016/j.compag.2013.10.002 10.1109/LGRS.2005.851752 10.1016/j.catena.2018.06.027 10.1109/ICIP.2015.7351681 10.1007/s00366-009-0140-7 10.1002/col.22277 10.1109/ICSTC.2017.8011843 10.1007/978-3-319-68548-9_60 10.1016/j.microc.2019.03.070 10.1016/j.patcog.2018.11.011 10.1016/j.microc.2019.01.009 10.1016/j.still.2015.07.006 10.1007/s00371-019-01749-9 10.1109/DICTA.2015.7371274 10.1109/CVPRW.2009.5204297 10.1016/j.eswa.2017.06.021 10.1109/ACCT.2014.74 10.3390/app8020212 10.1111/j.1365-2389.2011.01356.x 10.1016/j.biosystemseng.2006.11.001 10.1016/j.jneumeth.2017.12.010 10.1109/ICITACEE.2018.8576956 10.1016/j.geoderma.2005.07.017  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.1007/s40747-022-00682-0 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: SpringerNature - open access journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Mathematics  | 
    
| EISSN | 2198-6053 | 
    
| EndPage | 3393 | 
    
| ExternalDocumentID | 10.1007/s40747-022-00682-0 10_1007_s40747_022_00682_0  | 
    
| GeographicLocations | Bangladesh | 
    
| GeographicLocations_xml | – name: Bangladesh | 
    
| GrantInformation_xml | – fundername: BAURES grantid: BAU/369/2018  | 
    
| GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX CITATION PHGZM PHGZT PQGLB PUEGO ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c436t-5e8ba89be635ecee1a7a287e033c846739c922c8aa648cc64c49dc1e96bb37b83 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 2199-4536 2198-6053  | 
    
| IngestDate | Wed Oct 01 16:30:10 EDT 2025 Wed Oct 08 14:12:00 EDT 2025 Wed Oct 01 04:22:17 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Fri Feb 21 02:45:03 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Haralick feature Soil classification Automated soil analysis Quartile HOG feature Pixels feature Machine learning  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c436t-5e8ba89be635ecee1a7a287e033c846739c922c8aa648cc64c49dc1e96bb37b83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-1572-8606 0000-0001-9368-6942  | 
    
| OpenAccessLink | https://doi.org/10.1007/s40747-022-00682-0 | 
    
| PQID | 2697525974 | 
    
| PQPubID | 2044308 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s40747_022_00682_0 proquest_journals_2697525974 crossref_primary_10_1007_s40747_022_00682_0 crossref_citationtrail_10_1007_s40747_022_00682_0 springer_journals_10_1007_s40747_022_00682_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220800 2022-08-00 20220801  | 
    
| PublicationDateYYYYMMDD | 2022-08-01 | 
    
| PublicationDate_xml | – month: 8 year: 2022 text: 20220800  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Heidelberg  | 
    
| PublicationTitle | Complex & intelligent systems | 
    
| PublicationTitleAbbrev | Complex Intell. Syst | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | Hernández-Hernández, García-Mateos, González-Esquiva, Escarabajal-Henarejos, Ruiz-Canales, Molina-Martínez (CR24) 2016; 122 Marqués-Mateu, Moreno-Ramón, Balasch, Ibáñez-Asensio (CR35) 2018; 171 Dimitriadis, Liparas, Tsolaki, Initiative (CR17) 2018; 302 Tan, Lee, Gan, Wang (CR55) 2018; 176 Stiglitz, Mikhailova, Post, Schlautman, Sharp (CR51) 2016; 121 CR36 CR34 Cao, Bernard, Sabourin, Heutte (CR7) 2019; 88 CR31 Liakos, Busato, Moshou, Pearson, Bochtis (CR32) 2018; 18 Chiew, Tan, Wong, Yong, Tiong (CR11) 2019; 484 Ghaffari, Soleimani, Li, Capson (CR19) 2020; 8 Rossel, Fouad, Walter (CR45) 2008; 100 Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (CR25) 2016; 265 Zendehboudi, Baseer, Saidur (CR61) 2018; 199 Milotta, Stanco, Tanasi, Gueli (CR37) 2018; 11 Viscarra Rossel, Webster (CR58) 2011; 62 Cie (CR13) 1932 Ajdadi, Gilandeh, Mollazade, Hasanzadeh (CR1) 2016; 162 CR3 Swetha, Bende, Singh, Gorthi, Biswas, Li, Weindorf, Chakraborty (CR54) 2020; 376 CR8 CR9 Milotta, Tanasi, Stanco, Pasquale, Stella, Gueli (CR38) 2018; 43 CR47 CR46 CR42 CR40 de Oliveira Morais, de Souza, de Melo Carvalho, Madari, de Oliveira (CR16) 2019; 146 Haralick (CR22) 1979; 67 Stiglitz, Mikhailova, Post, Schlautman, Sharp, Pargas, Glover, Mooney (CR53) 2017; 296 Bogrekci, Lee (CR6) 2007; 96 Kovačević, Bajat, Gajić (CR30) 2010; 154 CR15 CR59 CR14 CR57 O’Donnell, Goyne, Miles, Baffaut, Anderson, Sudduth (CR39) 2010; 157 CR56 Qiu, Chen, Zhao, Zhu, He, Zhang (CR43) 2018; 8 CR50 Chung, Cho, Cho, Jung, Yamakawa (CR12) 2012; 57 Fan, Herrick, Saltzman, Matteis, Yudina, Nocella, Crawford, Parker, Van Zee (CR18) 2017; 81 Chen, Zhang, Ding, Zhang, Luo (CR10) 2019; 173 Pare, Bhandari, Kumar, Singh (CR41) 2017; 87 Ishak, Hussain, Mustafa (CR27) 2009; 66 Ibáñez-Asensio, Marques-Mateu, Moreno-Ramón, Balasch (CR26) 2013; 116 CR28 Alavi, Gandomi, Sahab, Gandomi (CR2) 2010; 26 Liu, Wang, Zhang, Liber (CR33) 2016; 155 Gómez-Robledo, López-Ruiz, Melgosa, Palma, Capitán-Vallvey, Sánchez-Marañón (CR20) 2013; 99 Han, Dong, Zhao, Jiao, Lang (CR21) 2016; 123 CR23 Stiglitz, Mikhailova, Post, Schlautman, Sharp (CR52) 2017; 286 Rossel, Minasny, Roudier, McBratney (CR44) 2006; 133 CR60 Barman, Choudhury (CR4) 2020; 7 Kang, Huo, Xin, Tian, Yu (CR29) 2019; 463 Simon, Zhang, Hartemink, Huang, Walter, Yost (CR48) 2020; 361 Bisgin, Bera, Ding, Semey, Wu, Liu, Barnes, Langley, Pava-Ripoll, Vyas (CR5) 2018; 8 Sofou, Evangelopoulos, Maragos (CR49) 2005; 2 C Kang (682_CR29) 2019; 463 682_CR14 682_CR57 I Bogrekci (682_CR6) 2007; 96 682_CR15 682_CR59 PA de Oliveira Morais (682_CR16) 2019; 146 U Barman (682_CR4) 2020; 7 S Ibáñez-Asensio (682_CR26) 2013; 116 RV Rossel (682_CR44) 2006; 133 682_CR60 AH Alavi (682_CR2) 2010; 26 A Sofou (682_CR49) 2005; 2 682_CR8 S Chung (682_CR12) 2012; 57 682_CR23 682_CR9 T Simon (682_CR48) 2020; 361 682_CR3 M Kovačević (682_CR30) 2010; 154 FR Ajdadi (682_CR1) 2016; 162 L Gómez-Robledo (682_CR20) 2013; 99 R Viscarra Rossel (682_CR58) 2011; 62 SI Dimitriadis (682_CR17) 2018; 302 S Ghaffari (682_CR19) 2020; 8 S Pare (682_CR41) 2017; 87 Z Qiu (682_CR43) 2018; 8 682_CR28 Y Liu (682_CR33) 2016; 155 J Hernández-Hernández (682_CR24) 2016; 122 H Cao (682_CR7) 2019; 88 Á Marqués-Mateu (682_CR35) 2018; 171 682_CR31 682_CR34 R Swetha (682_CR54) 2020; 376 R Stiglitz (682_CR52) 2017; 286 SB Chen (682_CR10) 2019; 173 C Cie (682_CR13) 1932 K Tan (682_CR55) 2018; 176 R Stiglitz (682_CR53) 2017; 296 682_CR36 TK O’Donnell (682_CR39) 2010; 157 KL Chiew (682_CR11) 2019; 484 B Heung (682_CR25) 2016; 265 AJ Ishak (682_CR27) 2009; 66 A Zendehboudi (682_CR61) 2018; 199 682_CR40 682_CR42 R Stiglitz (682_CR51) 2016; 121 Z Fan (682_CR18) 2017; 81 FLM Milotta (682_CR38) 2018; 43 P Han (682_CR21) 2016; 123 682_CR47 682_CR46 RM Haralick (682_CR22) 1979; 67 682_CR50 H Bisgin (682_CR5) 2018; 8 682_CR56 KG Liakos (682_CR32) 2018; 18 FL Milotta (682_CR37) 2018; 11 RV Rossel (682_CR45) 2008; 100  | 
    
| References_xml | – volume: 484 start-page: 153 year: 2019 end-page: 166 ident: CR11 article-title: A new hybrid ensemble feature selection framework for machine learning-based phishing detection system publication-title: Inform Sci – volume: 67 start-page: 786 issue: 5 year: 1979 end-page: 804 ident: CR22 article-title: Statistical and structural approaches to texture publication-title: Proc IEEE – volume: 296 start-page: 108 year: 2017 end-page: 114 ident: CR53 article-title: Soil color sensor data collection using a gps-enabled smartphone application publication-title: Geoderma – volume: 286 start-page: 98 year: 2017 end-page: 103 ident: CR52 article-title: Using an inexpensive color sensor for rapid assessment of soil organic carbon publication-title: Geoderma – volume: 7 start-page: 318 issue: 2 year: 2020 end-page: 332 ident: CR4 article-title: Soil texture classification using multi class support vector machine publication-title: Inform Process Agric – volume: 26 start-page: 111 issue: 2 year: 2010 end-page: 118 ident: CR2 article-title: Multi expression programming: a new approach to formulation of soil classification publication-title: Eng Comput – volume: 302 start-page: 14 year: 2018 end-page: 23 ident: CR17 article-title: Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological mri measures to discriminate among healhy elderly, mci, cmci and alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (adni) database publication-title: Journal of Neurosci Methods – volume: 171 start-page: 44 year: 2018 end-page: 53 ident: CR35 article-title: Quantifying the uncertainty of soil colour measurements with munsell charts using a modified attribute agreement analysis publication-title: Catena – ident: CR8 – volume: 463 start-page: 77 year: 2019 end-page: 91 ident: CR29 article-title: Feature selection and tumor classification for microarray data using relaxed lasso and generalized multi-class support vector machine publication-title: J Theor Biol – volume: 18 start-page: 2674 issue: 8 year: 2018 ident: CR32 article-title: Machine learning in agriculture: a review publication-title: Sensors – volume: 157 start-page: 86 issue: 3–4 year: 2010 end-page: 96 ident: CR39 article-title: Identification and quantification of soil redoximorphic features by digital image processing publication-title: Geoderma – volume: 2 start-page: 394 issue: 4 year: 2005 end-page: 398 ident: CR49 article-title: Soil image segmentation and texture analysis: a computer vision approach publication-title: IEEE Geosci Remote Sens Lett – ident: CR42 – volume: 121 start-page: 141 year: 2016 end-page: 148 ident: CR51 article-title: Evaluation of an inexpensive sensor to measure soil color publication-title: Comput Electron Agric – volume: 87 start-page: 335 year: 2017 end-page: 362 ident: CR41 article-title: An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix publication-title: Expert Syst Appl – volume: 62 start-page: 637 issue: 4 year: 2011 end-page: 647 ident: CR58 article-title: Discrimination of Australian soil horizons and classes from their visible-near infrared spectra publication-title: Eur J Soil Sci – volume: 8 start-page: 79920 year: 2020 end-page: 79934 ident: CR19 article-title: Analysis and comparison of fpga-based histogram of oriented gradients implementations publication-title: IEEE Access – ident: CR46 – volume: 116 start-page: 120 issue: 2 year: 2013 end-page: 129 ident: CR26 article-title: Statistical relationships between soil colour and soil attributes in semiarid areas publication-title: Biosyst Eng – ident: CR15 – ident: CR50 – volume: 265 start-page: 62 year: 2016 end-page: 77 ident: CR25 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma – ident: CR9 – ident: CR57 – volume: 146 start-page: 455 year: 2019 end-page: 463 ident: CR16 article-title: Predicting soil texture using image analysis publication-title: Microchem J – ident: CR60 – ident: CR36 – volume: 11 start-page: 17 issue: 4 year: 2018 ident: CR37 article-title: Munsell color specification using arca (automatic recognition of color for archaeology) publication-title: J Comput Cul Herit (JOCCH) – volume: 81 start-page: 1139 issue: 5 year: 2017 end-page: 1146 ident: CR18 article-title: Measurement of soil color: a comparison between smartphone camera and the munsell color charts publication-title: Soil Sci Soc Am J – volume: 99 start-page: 200 year: 2013 end-page: 208 ident: CR20 article-title: Using the mobile phone as munsell soil-colour sensor: an experiment under controlled illumination conditions publication-title: Comput Electron Agric – volume: 162 start-page: 8 year: 2016 end-page: 17 ident: CR1 article-title: Application of machine vision for classification of soil aggregate size publication-title: Soil Tillage Res – volume: 57 start-page: 393 issue: 2 year: 2012 end-page: 397 ident: CR12 article-title: Soil texture classification algorithm using rgb characteristics of soil images publication-title: J Facul Agric Kyushu Univ – volume: 154 start-page: 340 issue: 3–4 year: 2010 end-page: 347 ident: CR30 article-title: Soil type classification and estimation of soil properties using support vector machines publication-title: Geoderma – volume: 155 start-page: 19 year: 2016 end-page: 26 ident: CR33 article-title: A comprehensive support vector machine-based classification model for soil quality assessment publication-title: Soil Tillage Res – volume: 88 start-page: 185 year: 2019 end-page: 197 ident: CR7 article-title: Random forest dissimilarity based multi-view learning for radiomics application publication-title: Pattern Recogn – volume: 96 start-page: 293 issue: 2 year: 2007 end-page: 299 ident: CR6 article-title: Comparison of ultraviolet, visible, and near infrared sensing for soil phosphorus publication-title: Biosys Eng – ident: CR47 – ident: CR14 – volume: 176 start-page: 59 year: 2018 end-page: 72 ident: CR55 article-title: Recognising blueberry fruit of different maturity using histogram oriented gradients and colour features in outdoor scenes publication-title: Biosyst Eng – volume: 376 start-page: 114562 year: 2020 ident: CR54 article-title: Predicting soil texture from smartphone-captured digital images and an application publication-title: Geoderma – volume: 66 start-page: 53 issue: 1 year: 2009 end-page: 61 ident: CR27 article-title: Weed image classification using gabor wavelet and gradient field distribution publication-title: Comput Electron Agric – ident: CR56 – volume: 199 start-page: 272 year: 2018 end-page: 285 ident: CR61 article-title: Application of support vector machine models for forecasting solar and wind energy resources: a review publication-title: J Clean Prod – ident: CR40 – volume: 122 start-page: 124 year: 2016 end-page: 132 ident: CR24 article-title: Optimal color space selection method for plant/soil segmentation in agriculture publication-title: Comput Electron Agric – volume: 100 start-page: 149 issue: 2 year: 2008 end-page: 159 ident: CR45 article-title: Using a digital camera to measure soil organic carbon and iron contents publication-title: Biosyst Eng – ident: CR23 – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 12 ident: CR5 article-title: Comparing svm and ann based machine learning methods for species identification of food contaminating beetles publication-title: Sci Rep – volume: 133 start-page: 320 issue: 3–4 year: 2006 end-page: 337 ident: CR44 article-title: Colour space models for soil science publication-title: Geoderma – volume: 8 start-page: 212 issue: 2 year: 2018 ident: CR43 article-title: Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network publication-title: Appl Sci – volume: 173 start-page: 28 year: 2019 end-page: 36 ident: CR10 article-title: Extended adaptive lasso for multi-class and multi-label feature selection publication-title: Knowl Based Syst – year: 1932 ident: CR13 publication-title: Commission internationale de l’eclairage proceedings – ident: CR3 – volume: 123 start-page: 232 year: 2016 end-page: 241 ident: CR21 article-title: A smartphone-based soil color sensor: for soil type classification publication-title: Comput Electron Agric – ident: CR31 – volume: 43 start-page: 929 issue: 6 year: 2018 end-page: 938 ident: CR38 article-title: Automatic color classification via munsell system for archaeology publication-title: Color Res Appl – volume: 361 start-page: 114039 year: 2020 ident: CR48 article-title: Predicting the color of sandy soils from wisconsin, USA publication-title: Geoderma – ident: CR34 – ident: CR59 – ident: CR28 – ident: 682_CR42 doi: 10.1007/s10489-020-01831-z – volume: 484 start-page: 153 year: 2019 ident: 682_CR11 publication-title: Inform Sci doi: 10.1016/j.ins.2019.01.064 – ident: 682_CR59 doi: 10.1016/j.neucom.2017.07.044 – volume: 463 start-page: 77 year: 2019 ident: 682_CR29 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2018.12.010 – volume: 176 start-page: 59 year: 2018 ident: 682_CR55 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2018.08.011 – ident: 682_CR3 doi: 10.1007/s11042-019-07750-7 – volume: 116 start-page: 120 issue: 2 year: 2013 ident: 682_CR26 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2013.07.013 – volume: 265 start-page: 62 year: 2016 ident: 682_CR25 publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.014 – volume: 18 start-page: 2674 issue: 8 year: 2018 ident: 682_CR32 publication-title: Sensors doi: 10.3390/s18082674 – ident: 682_CR28 doi: 10.1109/ICSCC.2019.8843650 – ident: 682_CR8 – volume: 66 start-page: 53 issue: 1 year: 2009 ident: 682_CR27 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2008.12.003 – volume: 361 start-page: 114039 year: 2020 ident: 682_CR48 publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114039 – volume: 122 start-page: 124 year: 2016 ident: 682_CR24 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.01.020 – ident: 682_CR9 doi: 10.1007/978-3-319-63754-9_1 – volume: 162 start-page: 8 year: 2016 ident: 682_CR1 publication-title: Soil Tillage Res doi: 10.1016/j.still.2016.04.012 – volume: 173 start-page: 28 year: 2019 ident: 682_CR10 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.02.021 – volume: 121 start-page: 141 year: 2016 ident: 682_CR51 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2015.11.014 – volume: 81 start-page: 1139 issue: 5 year: 2017 ident: 682_CR18 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2017.01.0009 – volume: 199 start-page: 272 year: 2018 ident: 682_CR61 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.07.164 – volume: 8 start-page: 79920 year: 2020 ident: 682_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989267 – volume: 286 start-page: 98 year: 2017 ident: 682_CR52 publication-title: Geoderma doi: 10.1016/j.geoderma.2016.10.027 – volume: 67 start-page: 786 issue: 5 year: 1979 ident: 682_CR22 publication-title: Proc IEEE doi: 10.1109/PROC.1979.11328 – volume: 296 start-page: 108 year: 2017 ident: 682_CR53 publication-title: Geoderma doi: 10.1016/j.geoderma.2017.02.018 – ident: 682_CR14 doi: 10.1007/s00500-020-04734-w – volume: 11 start-page: 17 issue: 4 year: 2018 ident: 682_CR37 publication-title: J Comput Cul Herit (JOCCH) – volume: 157 start-page: 86 issue: 3–4 year: 2010 ident: 682_CR39 publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.019 – volume: 123 start-page: 232 year: 2016 ident: 682_CR21 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.02.024 – volume: 376 start-page: 114562 year: 2020 ident: 682_CR54 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114562 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 682_CR5 publication-title: Sci Rep doi: 10.1038/s41598-018-24926-7 – ident: 682_CR56 doi: 10.1016/B978-0-444-63522-8.00015-2 – volume: 100 start-page: 149 issue: 2 year: 2008 ident: 682_CR45 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2008.02.007 – volume: 57 start-page: 393 issue: 2 year: 2012 ident: 682_CR12 publication-title: J Facul Agric Kyushu Univ doi: 10.5109/25196 – ident: 682_CR60 doi: 10.1007/978-3-319-09339-0_38 – volume: 154 start-page: 340 issue: 3–4 year: 2010 ident: 682_CR30 publication-title: Geoderma doi: 10.1016/j.geoderma.2009.11.005 – ident: 682_CR57 doi: 10.1109/MAMI.2015.7456607 – volume: 99 start-page: 200 year: 2013 ident: 682_CR20 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2013.10.002 – volume: 2 start-page: 394 issue: 4 year: 2005 ident: 682_CR49 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2005.851752 – volume: 171 start-page: 44 year: 2018 ident: 682_CR35 publication-title: Catena doi: 10.1016/j.catena.2018.06.027 – ident: 682_CR47 doi: 10.1109/ICIP.2015.7351681 – volume: 26 start-page: 111 issue: 2 year: 2010 ident: 682_CR2 publication-title: Eng Comput doi: 10.1007/s00366-009-0140-7 – volume: 43 start-page: 929 issue: 6 year: 2018 ident: 682_CR38 publication-title: Color Res Appl doi: 10.1002/col.22277 – ident: 682_CR23 doi: 10.1109/ICSTC.2017.8011843 – ident: 682_CR36 doi: 10.1007/978-3-319-68548-9_60 – volume-title: Commission internationale de l’eclairage proceedings year: 1932 ident: 682_CR13 – ident: 682_CR15 doi: 10.1016/j.microc.2019.03.070 – volume: 88 start-page: 185 year: 2019 ident: 682_CR7 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.11.011 – volume: 146 start-page: 455 year: 2019 ident: 682_CR16 publication-title: Microchem J doi: 10.1016/j.microc.2019.01.009 – volume: 155 start-page: 19 year: 2016 ident: 682_CR33 publication-title: Soil Tillage Res doi: 10.1016/j.still.2015.07.006 – ident: 682_CR50 doi: 10.1007/s00371-019-01749-9 – ident: 682_CR40 doi: 10.1109/DICTA.2015.7371274 – ident: 682_CR34 doi: 10.1109/CVPRW.2009.5204297 – volume: 87 start-page: 335 year: 2017 ident: 682_CR41 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.06.021 – ident: 682_CR31 doi: 10.1109/ACCT.2014.74 – volume: 8 start-page: 212 issue: 2 year: 2018 ident: 682_CR43 publication-title: Appl Sci doi: 10.3390/app8020212 – volume: 62 start-page: 637 issue: 4 year: 2011 ident: 682_CR58 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2011.01356.x – volume: 96 start-page: 293 issue: 2 year: 2007 ident: 682_CR6 publication-title: Biosys Eng doi: 10.1016/j.biosystemseng.2006.11.001 – volume: 302 start-page: 14 year: 2018 ident: 682_CR17 publication-title: Journal of Neurosci Methods doi: 10.1016/j.jneumeth.2017.12.010 – volume: 7 start-page: 318 issue: 2 year: 2020 ident: 682_CR4 publication-title: Inform Process Agric – ident: 682_CR46 doi: 10.1109/ICITACEE.2018.8576956 – volume: 133 start-page: 320 issue: 3–4 year: 2006 ident: 682_CR44 publication-title: Geoderma doi: 10.1016/j.geoderma.2005.07.017  | 
    
| SSID | ssj0001778302 ssib044733412 ssib045327741  | 
    
| Score | 2.3400912 | 
    
| Snippet | Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3377 | 
    
| SubjectTerms | Algorithms Classification Complexity Computational Intelligence Crop production Data Structures and Information Theory Engineering Histograms Image analysis Image classification Machine learning Original Article Performance evaluation Soil chemistry Soil classification Soils  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PSxwxFH7oelAPUrXStduSgzcN3UkyyQQqokVZhF1EFPY2JJlUhens6u4q_e-bF2dm28vSyzAwPwIvL3lf8vK-D-DIKKVkisytScGpkC6lSCtOrbYGGQGFkVg7PBzJwb24HqfjNRg1tTB4rLKZE-NEXUwc7pF_Y1KrlCH8PZs-U1SNwuxqI6FhammF4jRSjK3DBkNmrA5sXFyObm4bDxNCcS6WAV2knKlGeybuyiiFhFioSJdoTUXMbR629XYC6eYpHoDH0opw_TeaLSFqm1Xdhs1FNTW_30xZ_hW4rj7ATo04yfm7i-zCmq_2YHvY0rXO9uH7Oakmr74kP33k-SQY2wpiyodggfnjLxKQLZlNnkqCO7bEIeLGI0axVz_C_dXl3Y8BrWUVqBNczmnqM2sybX3AGj7EyMQoE9ZNvs-5QzTCtdOMucwYKTLnpHBCFy7xWlrLlc34AXSqSeU_AbEBPTEtmffCCm2tUalJwwKKuXAvM96FpDFP7mrOcZS-KPOWLTmaNA8mzaNJ834Xjttvpu-MGyvf7jVWz-vRN8uXvtKFk6Ynlo9X_e2k7a3_aPxwdeOfYYtFX8GR0IPO_GXhvwQIM7dfa7_8Azd35XQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60PUgPvsWKSg7ebPrYZLMb8FLUUoQWDxbqaUnSVIvrtrRbRX-9yb58gKJ4WQLJZklmlvkmmfkG4ER4nsdcy9zaGhFMmXKxpRXHkkthGQGpYDZ3uNdn3QG9GrrDFbjIc2GSaPf8SjLNabAsTVHcmI3GjSLxjVred2wj0W2Og3nWTfcqlJlrEHkJyoP-dfvW1pUzPjU2iJ2kbY5pclt58P1En-3TO-gs7kkrsLaMZuLlWYThB1PU2QCdLyKNQHmoL2NZV69f-B3_u8pNWM-wKmqnyrUFKzrahkqvIHpd7MBZG0XTJx2isU4YQpG1iiMkwrvpfBLfPyKDidFiOgmRPetFymJ1G5yU6MMuDDqXN-ddnBVkwIoSFmNX-1L4XGqDUrSxri3hCeNx6SYhyuIYwhV3HOULwaivFKOK8pFqac6kJJ70yR6Uommk9wFJg7sczhytqaRcSuG5wsiOOcq0mU-q0MrFEKiMrdwWzQiDgmc52Z3A7E6Q7E7QrMJp8c4s5er4cfRhLt0g-28XgcO45zrWyapCLRfQe_dPs9UKrfjFxw_-NvwQSvF8qY8M_onlcabebxgh-lc priority: 102 providerName: Unpaywall  | 
    
| Title | A novel feature based algorithm for soil type classification | 
    
| URI | https://link.springer.com/article/10.1007/s40747-022-00682-0 https://www.proquest.com/docview/2697525974 https://link.springer.com/content/pdf/10.1007/s40747-022-00682-0.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: ADMLS dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044733412 issn: 2199-4536 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: 8FG dateStart: 20180601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: AAJSJ dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: C24 dateStart: 20151201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerNature - open access journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: C6C dateStart: 20151201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VOFAOiAJVl8fKh94gKrEdO5a4hBULWonVCroSPUW218BKaYL20Yp_j8dkA63UFb3k5diRZiaabzz2NwBftZRSJMjcGo9YxIVNIqQVj4wyGhkBuRa4d_iqLy6HvHeb3NY0ObgX5q_8_bcpR4b3CNec424Gf1yBNe-kREjMis7CdjiXjPHaVYf5FSmR2gpry8VKRTxkKff-PeyffukVbDb50Q1Yn5eP-um3Loo3Lqi7BZs1diTZi7I_wQdXbsPGG0ZBf3fV0LBOd-A0I2X1yxXkzgX-ToI-a0R0cV9NxrOHn8QjVjKtxgXBmVhiEUnj0qGgrV0Yds-_dy6julxCZDkTsyhxqdGpMs5jCOd9X6yl9vGQO2HMIspgyipKbaq14Km1gluuRjZ2ShjDpEnZZ1gtq9J9AWI8KqJKUOe44coYLROd-MCIWn8tUtaCeCGs3NZc4ljSosgbFuQg4NwLOA8Czk9acNT0eXxh0lj69sFCB3n9V01zKpRMKIZALThe6OW1edlox43u3vHxvf8bfR8-0mBJaPEHsDqbzN2hhyoz04aVtHvRhrUs6930_PnsvD-49k87lLeD_bbDJIBvGfYH2Y9nqBHgAg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9lB6QHyKLQV8gBO1aOyJHUtUqECrLe2uEGql3oLtmA8pZBd2S9U_x2_D4yZZuKy49BJFSuJI47Hnje15D-CZ1VqrnJhbs0pyVD7nRCvOnXGWGAHRKqodHo3V8BTfn-VnK_C7q4WhY5XdnJgm6mriaY38pVBG54Lg7-vpD06qUbS72klo2FZaodpNFGNtYcdRuLyIKdxs9_Bd7O_nQhzsn7wd8lZlgHuUas7zUDhbGBdi6A0xZGRW25hGhB0pPQVnabwRwhfWKiy8V-jRVD4LRjkntStkbPcGrKFEE5O_tTf74w8fO49G1FLiAkBgLoXutG7SKpDWRMBFCniZMRzTXupmX9-HRG_P6cA9lXLE67_RcwGJ-13cDVg_b6b28sLW9V-B8uA23GoRLtu7csk7sBKau7Ax6ulhZ_fg1R5rJr9CzT6HxCvKKJZWzNZfosXnX7-ziKTZbPKtZrRCzDwhfDrSlLzoPpxei4EfwGozacJDYC6iNWGUCAEdGueszm0eEzbh470q5ACyzjylbznOSWqjLnt25mTSMpq0TCYtdwbwov9mesXwsfTtrc7qZTvaZ-XCNwew3fXE4vGy1rb73vqPn28u__lTWB-ejI7L48Px0SO4KZLf0CjcgtX5z_PwOMKnuXvS-iiDT9c9LP4Aj8sjNQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gLoH8Ym7vnLwpkXbpEkDXmR18Y0HBW8lyWZVqN3FrYr_3ky2retB0UtpaTuBmQnzTZL5BmBHCSF4jMytYZcGjJs4QFrxQEutkBGQKY61w1fX_PSOnd_H92NV_P60e7UlOappQJamvNgfdHv7deEbQ973AE-iY42Du07CNHPRDXsYtHm78ijGBKWsDOB-1UUIJLzCjnOhlAHze5etn8V-j1ZfELTeNW3A7Gs-UB_vKsvGAlNnAeZLREmORi6wCBM2X4LGGM-ge7qqyVmHy3B4RPL-m81Iz3pWT4KRrEtU9tB_eSoen4nDsWTYf8oIrs8Sg_gaDxR5G67AXefktn0alE0UAsMoL4LYJlolUluHLKyLiKESymVJ9oBSg9iDSiOjyCRKcZYYw5lhsmtCK7nWVOiErsJU3s_tGhDtsFIkeWQt00xqrUSsYpcuRcbd84Q2IayUlZqSYRwbXWRpzY3sFZw6BadewelBE3brfwYjfo1fv96obJCWc22YRlyKOMLEqAl7lV2-Xv8mba-23R8Gb_1P-jbM3Bx30suz64t1mIu8U-GU2ICp4uXVbjosU-gt766feyvjvQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60PUgPvsWKSg7ebPrYZLMb8FLUUoQWDxbqaUnSVIvrtrRbRX-9yb58gKJ4WQLJZklmlvkmmfkG4ER4nsdcy9zaGhFMmXKxpRXHkkthGQGpYDZ3uNdn3QG9GrrDFbjIc2GSaPf8SjLNabAsTVHcmI3GjSLxjVred2wj0W2Og3nWTfcqlJlrEHkJyoP-dfvW1pUzPjU2iJ2kbY5pclt58P1En-3TO-gs7kkrsLaMZuLlWYThB1PU2QCdLyKNQHmoL2NZV69f-B3_u8pNWM-wKmqnyrUFKzrahkqvIHpd7MBZG0XTJx2isU4YQpG1iiMkwrvpfBLfPyKDidFiOgmRPetFymJ1G5yU6MMuDDqXN-ddnBVkwIoSFmNX-1L4XGqDUrSxri3hCeNx6SYhyuIYwhV3HOULwaivFKOK8pFqac6kJJ70yR6Uommk9wFJg7sczhytqaRcSuG5wsiOOcq0mU-q0MrFEKiMrdwWzQiDgmc52Z3A7E6Q7E7QrMJp8c4s5er4cfRhLt0g-28XgcO45zrWyapCLRfQe_dPs9UKrfjFxw_-NvwQSvF8qY8M_onlcabebxgh-lc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+feature+based+algorithm+for+soil+type+classification&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Uddin%2C+Machbah&rft.au=Hassan%2C+Md.+Rakib&rft.date=2022-08-01&rft.pub=Springer+International+Publishing&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=8&rft.issue=4&rft.spage=3377&rft.epage=3393&rft_id=info:doi/10.1007%2Fs40747-022-00682-0&rft.externalDocID=10_1007_s40747_022_00682_0 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |