Thrombosis-on-a-chip: Prospective impact of microphysiological models of vascular thrombosis

The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investig...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in biomedical engineering Vol. 5; pp. 29 - 34
Main Authors Pandian, Navaneeth K.R., Mannino, Robert G., Lam, Wilbur A., Jain, Abhishek
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2018
Subjects
Online AccessGet full text
ISSN2468-4511
2468-4511
DOI10.1016/j.cobme.2017.12.001

Cover

Abstract The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investigated with animal models, its exact pathobiology in different blood vessels is not yet fully understood and drug assessment remains unpredictable. This is primarily because the cause for thrombus formation is multifactorial and depends on the interplay of flow patterns within the blood vessel, the vessel wall or endothelium, extracellular matrix, parenchymal tissue, and the cellular and plasma components of the blood. Current in vitro and animal models do not mimic or dissect this organ-level complexity faithfully. However, microfluidic technology has recently been deployed to effectively recapitulate blood-endothelial–epithelial interactions in the onset of thrombosis in blood vessels. This technology is promising because it permits inclusion of primary human cells and blood obtained from patients, which is currently lacking in other in vitro models of thrombosis. In this review, we summarize the current state-of-the-art and practices in microfluidics and expected improvements in this field that will impact basic understanding of thrombosis, drug discovery and personalized medicine. •Thrombus functions as a living organ that constantly interacts with its environment.•Current models are inefficient in predicting thrombogenesis and for drug analysis.•3D co-culture microfluidic assays can assess organ-level thrombus regulation.•Study of patient-specific physiology possible with thrombosis-on-a-chip technology.
AbstractList The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investigated with animal models, its exact pathobiology in different blood vessels is not yet fully understood and drug assessment remains unpredictable. This is primarily because the cause for thrombus formation is multifactorial and depends on the interplay of flow patterns within the blood vessel, the vessel wall or endothelium, extracellular matrix, parenchymal tissue, and the cellular and plasma components of the blood. Current in vitro and animal models do not mimic or dissect this organ-level complexity faithfully. However, microfluidic technology has recently been deployed to effectively recapitulate blood-endothelial-epithelial interactions in the onset of thrombosis in blood vessels. This technology is promising because it permits inclusion of primary human cells and blood obtained from patients, which is currently lacking in other in vitro models of thrombosis. In this review, we summarize the current state-of-the-art and practices in microfluidics and expected improvements in this field that will impact basic understanding of thrombosis, drug discovery and personalized medicine.The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investigated with animal models, its exact pathobiology in different blood vessels is not yet fully understood and drug assessment remains unpredictable. This is primarily because the cause for thrombus formation is multifactorial and depends on the interplay of flow patterns within the blood vessel, the vessel wall or endothelium, extracellular matrix, parenchymal tissue, and the cellular and plasma components of the blood. Current in vitro and animal models do not mimic or dissect this organ-level complexity faithfully. However, microfluidic technology has recently been deployed to effectively recapitulate blood-endothelial-epithelial interactions in the onset of thrombosis in blood vessels. This technology is promising because it permits inclusion of primary human cells and blood obtained from patients, which is currently lacking in other in vitro models of thrombosis. In this review, we summarize the current state-of-the-art and practices in microfluidics and expected improvements in this field that will impact basic understanding of thrombosis, drug discovery and personalized medicine.
The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investigated with animal models, its exact pathobiology in different blood vessels is not yet fully understood and drug assessment remains unpredictable. This is primarily because the cause for thrombus formation is multifactorial and depends on the interplay of flow patterns within the blood vessel, the vessel wall or endothelium, extracellular matrix, parenchymal tissue, and the cellular and plasma components of the blood. Current in vitro and animal models do not mimic or dissect this organ-level complexity faithfully. However, microfluidic technology has recently been deployed to effectively recapitulate blood-endothelial–epithelial interactions in the onset of thrombosis in blood vessels. This technology is promising because it permits inclusion of primary human cells and blood obtained from patients, which is currently lacking in other in vitro models of thrombosis. In this review, we summarize the current state-of-the-art and practices in microfluidics and expected improvements in this field that will impact basic understanding of thrombosis, drug discovery and personalized medicine.
The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investigated with animal models, its exact pathobiology in different blood vessels is not yet fully understood and drug assessment remains unpredictable. This is primarily because the cause for thrombus formation is multifactorial and depends on the interplay of flow patterns within the blood vessel, the vessel wall or endothelium, extracellular matrix, parenchymal tissue, and the cellular and plasma components of the blood. Current in vitro and animal models do not mimic or dissect this organ-level complexity faithfully. However, microfluidic technology has recently been deployed to effectively recapitulate blood-endothelial–epithelial interactions in the onset of thrombosis in blood vessels. This technology is promising because it permits inclusion of primary human cells and blood obtained from patients, which is currently lacking in other in vitro models of thrombosis. In this review, we summarize the current state-of-the-art and practices in microfluidics and expected improvements in this field that will impact basic understanding of thrombosis, drug discovery and personalized medicine. •Thrombus functions as a living organ that constantly interacts with its environment.•Current models are inefficient in predicting thrombogenesis and for drug analysis.•3D co-culture microfluidic assays can assess organ-level thrombus regulation.•Study of patient-specific physiology possible with thrombosis-on-a-chip technology.
Author Jain, Abhishek
Mannino, Robert G.
Pandian, Navaneeth K.R.
Lam, Wilbur A.
AuthorAffiliation 5 Children’s Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, USA
6 Institute of Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
3 The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
2 The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA, USA
4 Emory University School of Medicine, Department of Pediatrics, Division of Pediatric Hematology/Oncology, Atlanta, GA, USA
1 Department of Biomedical Engineering, College of Engineering, Texas A&M University, USA
AuthorAffiliation_xml – name: 1 Department of Biomedical Engineering, College of Engineering, Texas A&M University, USA
– name: 3 The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
– name: 6 Institute of Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
– name: 4 Emory University School of Medicine, Department of Pediatrics, Division of Pediatric Hematology/Oncology, Atlanta, GA, USA
– name: 5 Children’s Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, USA
– name: 2 The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA, USA
Author_xml – sequence: 1
  givenname: Navaneeth K.R.
  surname: Pandian
  fullname: Pandian, Navaneeth K.R.
  organization: Department of Biomedical Engineering, College of Engineering, Texas A&M University, USA
– sequence: 2
  givenname: Robert G.
  surname: Mannino
  fullname: Mannino, Robert G.
  organization: The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA, USA
– sequence: 3
  givenname: Wilbur A.
  surname: Lam
  fullname: Lam, Wilbur A.
  organization: The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA, USA
– sequence: 4
  givenname: Abhishek
  surname: Jain
  fullname: Jain, Abhishek
  email: a.jain@tamu.edu
  organization: Department of Biomedical Engineering, College of Engineering, Texas A&M University, USA
BookMark eNp9kc1rFEEQxRuJmLjmL_AyRy8z9vf0CAoS_IKAHuJNaHp6arK19EyP3bML-e_T60ZRDzlVQdX78XjvOTmb4wyEvGS0YZTp17vGx36ChlPWNow3lLIn5IJLbWqpGDv7az8nlznvaPkwikqjnpFzIVutjOwuyI-bbYpTHzPmOs61q_0WlzfVtxTzAn7FA1Q4Lc6vVRyrCX2Ky_YuYwzxFr0L1RQHCPl4PLjs98Glav1DfEGeji5kuHyYG_L944ebq8_19ddPX67eX9deCr3WigvXc-M6rvwIuu_1KBQFPg7F5Cg85WB4qzsOLZNyFB11ho1yUEbzrlVUbMi7E3fZl0wGD_OaXLBLwsmlOxsd2n8vM27tbTxYowxloi2AVw-AFH_uIa92wuwhBDdD3GfLVddKo7vidEO602uJIucEo_W4uhXjkYzBMmqPBdmd_VWQPRZkGbcl_qIV_2l_W3xc9fakKkHDASHZ7BFmDwOmUpEdIj6qvwfuha2Q
CitedBy_id crossref_primary_10_1161_CIRCRESAHA_122_321877
crossref_primary_10_1152_ajpcell_00026_2020
crossref_primary_10_1038_s41467_020_19197_8
crossref_primary_10_1364_BOE_500434
crossref_primary_10_3389_fcvm_2023_1167884
crossref_primary_10_1039_C8LC00827B
crossref_primary_10_1039_D0TB00544D
crossref_primary_10_14797_mdcvj_1044
crossref_primary_10_1002_adhm_201901255
crossref_primary_10_12688_f1000research_158910_1
crossref_primary_10_3390_bioengineering9110685
crossref_primary_10_1002_admi_201900940
crossref_primary_10_1039_D4LC00216D
crossref_primary_10_1039_D1LC00347J
crossref_primary_10_1002_admt_202201778
crossref_primary_10_1109_ACCESS_2022_3184123
crossref_primary_10_1161_ATVBAHA_123_318233
crossref_primary_10_3390_gels9060477
crossref_primary_10_1016_j_addr_2018_06_007
crossref_primary_10_1016_j_bioactmat_2024_08_040
crossref_primary_10_1177_17474930241242266
crossref_primary_10_1007_s10544_023_00684_w
crossref_primary_10_1097_MOH_0000000000000731
crossref_primary_10_3390_molecules25040833
crossref_primary_10_1016_j_cobme_2018_04_002
crossref_primary_10_1021_acssensors_4c02764
crossref_primary_10_1080_09537104_2022_2153823
crossref_primary_10_3390_mi13020326
crossref_primary_10_1016_j_biomaterials_2018_09_036
crossref_primary_10_1021_acsbiomaterials_0c01226
crossref_primary_10_1039_D0LC01283A
crossref_primary_10_1002_advs_202307627
crossref_primary_10_1063_5_0094650
crossref_primary_10_20517_microstructures_2023_106
crossref_primary_10_1063_5_0011583
Cites_doi 10.1111/jth.12646
10.1161/CIRCRESAHA.115.306823
10.1111/j.1365-2141.2008.07323.x
10.1182/blood.V128.22.3835.3835
10.1080/09537104.2017.1316483
10.1016/j.blre.2009.07.002
10.1586/17434440.5.2.167
10.1111/j.1538-7836.2008.03188.x
10.1111/j.1538-7836.2007.02515.x
10.12998/wjcc.v2.i5.126
10.1161/ATVBAHA.108.179705
10.1146/annurev-physiol-012110-142305
10.1177/0192623310378866
10.1063/1.3608137
10.1172/JCI58753
10.1073/pnas.1209905110
10.1039/C6LC00163G
10.1073/pnas.1201240109
10.4103/0019-5049.144643
10.1182/blood-2015-02-628594
10.1038/ncomms10176
10.1161/CIRCRESAHA.115.306824
10.1084/jem.20060217
10.1186/1756-0500-6-10
10.1017/S0963180115000079
10.4137/CMO.S18991
10.3233/BIR-130648
10.1111/j.1365-2141.2004.05057.x
10.1038/nm.1955
10.3109/09537104.2011.630848
10.1021/ja076301r
10.1007/s10544-016-0095-6
10.1038/srep12401
10.1152/physrev.00047.2009
10.21037/cdt.2017.08.10
10.1007/s00772-016-0227-6
10.1016/S0049-3848(16)30094-9
10.1039/C7LC00202E
10.1063/1.4789751
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.cobme.2017.12.001
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


DeliveryMethod fulltext_linktorsrc
EISSN 2468-4511
EndPage 34
ExternalDocumentID PMC8580137
10_1016_j_cobme_2017_12_001
S2468451117300739
GroupedDBID --M
53G
AABXZ
AACTN
AADPK
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABLVK
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BJAXD
BKOJK
BNPGV
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
ROL
SPC
SPCBC
SSH
SSM
SSN
SST
SSZ
T5K
~G-
0R~
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACIEU
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
7X8
ACLOT
EFKBS
5PM
ID FETCH-LOGICAL-c436t-523ab28a925cfe6bb6f350e2fd658f3c02e827692e7144f390a81f4d586297503
IEDL.DBID AIKHN
ISSN 2468-4511
IngestDate Thu Aug 21 13:50:19 EDT 2025
Sun Sep 28 10:57:54 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
Tue Jul 01 00:39:25 EDT 2025
Fri Feb 23 02:32:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Organ-on-a-chip
Microphysiological systems
Hemostasis
Thrombosis
Endothelium
Disease model
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-523ab28a925cfe6bb6f350e2fd658f3c02e827692e7144f390a81f4d586297503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8580137
PMID 34765849
PQID 2597486952
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8580137
proquest_miscellaneous_2597486952
crossref_citationtrail_10_1016_j_cobme_2017_12_001
crossref_primary_10_1016_j_cobme_2017_12_001
elsevier_sciencedirect_doi_10_1016_j_cobme_2017_12_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Current opinion in biomedical engineering
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Akhtar (bib20) 2015; 24
Rennier, Ji (bib21) 2013; 6
Jain, Barrile, van der Meer, Mammoto, Mammoto, De Ceunynck, Aisiku, Otieno, Louden, Hamilton (bib26) 2017
Elyamany, Alzahrani, Bukhary (bib38) 2014; 8
Rumbaut (bib33) 2010
Ciciliano, Sakurai, Myers, Fay, Hechler, Meeks, Li, Dixon, Lyon, Gachet (bib18) 2015; 126
Nesbitt, Westein, Tovar-Lopez, Tolouei, Mitchell, Fu, Carberry, Fouras, Jackson (bib29) 2009; 15
Zheng, Chen, Craven, Choi, Totorica, Diaz-Santana, Kermani, Hempstead, Fischbach-Teschl, Lopez (bib37) 2012; 109
Costa, Albers, Linssen, Middelkamp, van der Hout, Passier, van den Berg, Malda, van der Meer (bib32) 2017
Bovill, van der Vliet (bib34) 2011; 73
Mannino, Myers, Ahn, Wang, Margo, Gole, Lin, Guldberg, Giddens, Timmins (bib10) 2015; 5
Vilahur, Padro, Badimon (bib13) 2011; 2011
Jain, Graveline, Waterhouse, Vernet, Flaumenhaft, Ingber (bib30) 2016; 7
De Ceunynck, Peters, Chaudhry, Jain, Higgins, Aisiku, Fitch-Tewfik, Dockendorff, Parikh, Ingber (bib40) 2016; 128
Streets, Huang (bib11) 2013; 7
Schonfelder, Jackel, Wenzel (bib15) 2017; 22
Van Kruchten, Cosemans, Heemskerk (bib23) 2012; 23
Diamond (bib25) 2016; 118
Chiu, Chien (bib28) 2011; 91
Bagot, Arya (bib2) 2008; 143
Estrada, Giridharan, Nguyen, Prabhu, Sethu (bib9) 2011; 5
Hastings, Griffin, Ku (bib42) 2017; 28
Violi, Cangemi, Calvieri (bib39) 2014; 12
Zhang, Defelice, Hanig, Colatsky (bib5) 2010; 38
Aird (bib6) 2007; 5
Albadawi, Witting, Pershad, Wallace, Fleck, Hoang, Khademhosseini, Oklu (bib14) 2017
Westein, van der Meer, Kuijpers, Frimat, van den Berg, Heemskerk (bib31) 2013; 110
Jagadeeswaran, Cooley, Gross, Mackman (bib12) 2016; 118
Mege, Mezouar, Dignat-George, Panicot-Dubois, Dubois (bib16) 2016; 140
Skilbeck, Walker, David, Nash (bib22) 2004; 126
Libby (bib27) 2012; 32
Neeves, Maloney, Fong, Schmaier, Kahn, Brass, Diamond (bib36) 2008; 6
Palta, Saroa, Palta (bib3) 2014; 58
Colman (bib1) 2006; 203
Tsai, Kita, Leach, Rounsevell, Huang, Moake, Ware, Fletcher, Lam (bib8) 2012; 122
Runyon, Kastrup, Johnson-Kerner, Ha, Ismagilov (bib35) 2008; 130
Bhattacharjee, Urrios, Kang, Folch (bib41) 2016; 16
Esmon (bib4) 2009; 23
Wang, Lindsey, Chen, Diacovo, King (bib17) 2014; 51
Jain, van der Meer, Papa, Barrile, Lai, Schlechter, Otieno, Louden, Hamilton, Michelson (bib7) 2016; 18
Kapourchali, Surendiran, Chen, Uitz, Bahadori, Moghadasian (bib19) 2014; 2
Girdhar, Bluestein (bib24) 2008; 5
Rennier (10.1016/j.cobme.2017.12.001_bib21) 2013; 6
Esmon (10.1016/j.cobme.2017.12.001_bib4) 2009; 23
Tsai (10.1016/j.cobme.2017.12.001_sref8) 2012; 122
Vilahur (10.1016/j.cobme.2017.12.001_bib13) 2011; 2011
Jagadeeswaran (10.1016/j.cobme.2017.12.001_bib12) 2016; 118
Chiu (10.1016/j.cobme.2017.12.001_bib28) 2011; 91
Palta (10.1016/j.cobme.2017.12.001_bib3) 2014; 58
Wang (10.1016/j.cobme.2017.12.001_bib17) 2014; 51
Bovill (10.1016/j.cobme.2017.12.001_bib34) 2011; 73
Schonfelder (10.1016/j.cobme.2017.12.001_bib15) 2017; 22
Costa (10.1016/j.cobme.2017.12.001_bib32) 2017
Runyon (10.1016/j.cobme.2017.12.001_bib35) 2008; 130
Colman (10.1016/j.cobme.2017.12.001_bib1) 2006; 203
Jain (10.1016/j.cobme.2017.12.001_sref30) 2016; 7
Estrada (10.1016/j.cobme.2017.12.001_bib9) 2011; 5
Kapourchali (10.1016/j.cobme.2017.12.001_bib19) 2014; 2
Diamond (10.1016/j.cobme.2017.12.001_bib25) 2016; 118
Albadawi (10.1016/j.cobme.2017.12.001_bib14) 2017
Rumbaut (10.1016/j.cobme.2017.12.001_bib33) 2010
Neeves (10.1016/j.cobme.2017.12.001_bib36) 2008; 6
Akhtar (10.1016/j.cobme.2017.12.001_bib20) 2015; 24
Streets (10.1016/j.cobme.2017.12.001_bib11) 2013; 7
Jain (10.1016/j.cobme.2017.12.001_bib7) 2016; 18
Skilbeck (10.1016/j.cobme.2017.12.001_bib22) 2004; 126
De Ceunynck (10.1016/j.cobme.2017.12.001_bib40) 2016; 128
Nesbitt (10.1016/j.cobme.2017.12.001_sref29) 2009; 15
Elyamany (10.1016/j.cobme.2017.12.001_bib38) 2014; 8
Mannino (10.1016/j.cobme.2017.12.001_bib10) 2015; 5
Mege (10.1016/j.cobme.2017.12.001_bib16) 2016; 140
Aird (10.1016/j.cobme.2017.12.001_bib6) 2007; 5
Girdhar (10.1016/j.cobme.2017.12.001_bib24) 2008; 5
Libby (10.1016/j.cobme.2017.12.001_bib27) 2012; 32
Zheng (10.1016/j.cobme.2017.12.001_bib37) 2012; 109
Jain (10.1016/j.cobme.2017.12.001_sref26) 2017
Zhang (10.1016/j.cobme.2017.12.001_bib5) 2010; 38
Violi (10.1016/j.cobme.2017.12.001_bib39) 2014; 12
Bhattacharjee (10.1016/j.cobme.2017.12.001_bib41) 2016; 16
Ciciliano (10.1016/j.cobme.2017.12.001_bib18) 2015; 126
Van Kruchten (10.1016/j.cobme.2017.12.001_bib23) 2012; 23
Bagot (10.1016/j.cobme.2017.12.001_bib2) 2008; 143
Westein (10.1016/j.cobme.2017.12.001_sref31) 2013; 110
Hastings (10.1016/j.cobme.2017.12.001_bib42) 2017; 28
References_xml – volume: 24
  start-page: 407
  year: 2015
  end-page: 419
  ident: bib20
  article-title: The flaws and human harms of animal experimentation
  publication-title: Camb Q Healthc Ethics
– volume: 6
  start-page: 10
  year: 2013
  ident: bib21
  article-title: Effect of shear stress and substrate on endothelial DAPK expression, caspase activity, and apoptosis
  publication-title: BMC Res Notes
– volume: 7
  start-page: 10176
  year: 2016
  ident: bib30
  article-title: A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function
  publication-title: Nat Commun
– year: 2010
  ident: bib33
  article-title: TP: chapter 6, arterial, venous, and microvascular hemostasis/thrombosis
  publication-title: Platelet-Vessel Wall Interact Hemost Thromb
– volume: 7
  start-page: 11302
  year: 2013
  ident: bib11
  article-title: Chip in a lab: microfluidics for next generation life science research
  publication-title: Biomicrofluidics
– volume: 38
  start-page: 856
  year: 2010
  end-page: 871
  ident: bib5
  article-title: Biomarkers of endothelial cell activation serve as potential surrogate markers for drug-induced vascular injury
  publication-title: Toxicol Pathol
– volume: 118
  start-page: 1363
  year: 2016
  end-page: 1379
  ident: bib12
  article-title: Animal models of thrombosis from Zebrafish to nonhuman primates: use in the elucidation of new pathologic pathways and the development of antithrombotic drugs
  publication-title: Circ Res
– volume: 6
  start-page: 2193
  year: 2008
  end-page: 2201
  ident: bib36
  article-title: Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates
  publication-title: J Thromb Haemost
– volume: 2
  start-page: 126
  year: 2014
  end-page: 132
  ident: bib19
  article-title: Animal models of atherosclerosis
  publication-title: World J Clin Cases
– volume: 23
  start-page: 229
  year: 2012
  end-page: 242
  ident: bib23
  article-title: Measurement of whole blood thrombus formation using parallel-plate flow chambers – a practical guide
  publication-title: Platelets
– volume: 110
  start-page: 1357
  year: 2013
  end-page: 1362
  ident: bib31
  article-title: Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner
  publication-title: Proc Natl Acad Sci USA
– volume: 122
  start-page: 408
  year: 2012
  end-page: 418
  ident: bib8
  article-title: In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology
  publication-title: J Clin Invest
– volume: 23
  start-page: 225
  year: 2009
  end-page: 229
  ident: bib4
  article-title: Basic mechanisms and pathogenesis of venous thrombosis
  publication-title: Blood Rev
– volume: 16
  start-page: 1720
  year: 2016
  end-page: 1742
  ident: bib41
  article-title: The upcoming 3D-printing revolution in microfluidics
  publication-title: Lab a Chip
– volume: 5
  start-page: 167
  year: 2008
  end-page: 181
  ident: bib24
  article-title: Biological effects of dynamic shear stress in cardiovascular pathologies and devices
  publication-title: Expet Rev Med Dev
– volume: 203
  start-page: 493
  year: 2006
  end-page: 495
  ident: bib1
  article-title: Are hemostasis and thrombosis two sides of the same coin?
  publication-title: J Exp Med
– volume: 32
  start-page: 2045
  year: 2012
  end-page: 2051
  ident: bib27
  article-title: Inflammation in atherosclerosis
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 118
  start-page: 1348
  year: 2016
  end-page: 1362
  ident: bib25
  article-title: Systems analysis of thrombus formation
  publication-title: Circ Res
– volume: 28
  start-page: 427
  year: 2017
  end-page: 433
  ident: bib42
  article-title: Hemodynamic studies of platelet thrombosis using microfluidics
  publication-title: Platelets
– volume: 143
  start-page: 180
  year: 2008
  end-page: 190
  ident: bib2
  article-title: Virchow and his triad: a question of attribution
  publication-title: Br J Haematol
– volume: 91
  start-page: 327
  year: 2011
  end-page: 387
  ident: bib28
  article-title: Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives
  publication-title: Physiol Rev
– volume: 12
  start-page: 1391
  year: 2014
  end-page: 1400
  ident: bib39
  article-title: Pneumonia, thrombosis and vascular disease
  publication-title: J Thromb Haemost
– volume: 58
  start-page: 515
  year: 2014
  end-page: 523
  ident: bib3
  article-title: Overview of the coagulation system
  publication-title: Indian J Anaesth
– volume: 109
  start-page: 9342
  year: 2012
  end-page: 9347
  ident: bib37
  article-title: In vitro microvessels for the study of angiogenesis and thrombosis
  publication-title: Proc Natl Acad Sci USA
– volume: 73
  start-page: 527
  year: 2011
  end-page: 545
  ident: bib34
  article-title: Venous valvular stasis-associated hypoxia and thrombosis: what is the link?
  publication-title: Annu Rev Physiol
– volume: 18
  start-page: 73
  year: 2016
  ident: bib7
  article-title: Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium
  publication-title: Biomed Microdevices
– volume: 126
  start-page: 418
  year: 2004
  end-page: 427
  ident: bib22
  article-title: Disturbed flow promotes deposition of leucocytes from flowing whole blood in a model of a damaged vessel wall
  publication-title: Br J Haematol
– volume: 22
  start-page: 28
  year: 2017
  end-page: 33
  ident: bib15
  article-title: Mouse models of deep vein thrombosis
  publication-title: Gefässchirurgie
– volume: 128
  year: 2016
  ident: bib40
  article-title: A chemical APC mimetic protects endothelium from thromboinflammatory injury
  publication-title: Blood
– volume: 5
  start-page: 283
  year: 2007
  end-page: 291
  ident: bib6
  article-title: Vascular bed-specific thrombosis
  publication-title: J Thromb Haemost
– volume: 140
  start-page: S21
  year: 2016
  end-page: S26
  ident: bib16
  article-title: Microparticles and cancer thrombosis in animal models
  publication-title: Thromb Res
– volume: 51
  start-page: 3
  year: 2014
  end-page: 14
  ident: bib17
  article-title: Analysis of early thrombus dynamics in a humanized mouse laser injury model
  publication-title: Biorheology
– volume: 126
  start-page: 817
  year: 2015
  end-page: 824
  ident: bib18
  article-title: Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach
  publication-title: Blood
– volume: 130
  start-page: 3458
  year: 2008
  end-page: 3464
  ident: bib35
  article-title: Effects of shear rate on propagation of blood clotting determined using microfluidics and numerical simulations
  publication-title: J Am Chem Soc
– volume: 15
  start-page: 665
  year: 2009
  end-page: 673
  ident: bib29
  article-title: A shear gradient-dependent platelet aggregation mechanism drives thrombus formation
  publication-title: Nat Med
– volume: 5
  start-page: 32006
  year: 2011
  end-page: 3200611
  ident: bib9
  article-title: Microfluidic endothelial cell culture model to replicate disturbed flow conditions seen in atherosclerosis susceptible regions
  publication-title: Biomicrofluidics
– volume: 2011
  start-page: 907575
  year: 2011
  ident: bib13
  article-title: Atherosclerosis and thrombosis: insights from large animal models
  publication-title: J Biomed Biotechnol
– year: 2017
  ident: bib26
  article-title: Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics
  publication-title: Clin Pharmacol Therapeut
– year: 2017
  ident: bib32
  article-title: Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data
  publication-title: Lab a Chip
– start-page: S197
  year: 2017
  end-page: S206
  ident: bib14
  article-title: Animal models of venous thrombosis
  publication-title: Cardiovasc Diagn Ther
– volume: 5
  start-page: 12401
  year: 2015
  ident: bib10
  article-title: Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions
  publication-title: Sci Rep
– volume: 8
  start-page: 129
  year: 2014
  end-page: 137
  ident: bib38
  article-title: Cancer-associated thrombosis: an overview
  publication-title: Clin Med Insights Oncol
– volume: 12
  start-page: 1391
  year: 2014
  ident: 10.1016/j.cobme.2017.12.001_bib39
  article-title: Pneumonia, thrombosis and vascular disease
  publication-title: J Thromb Haemost
  doi: 10.1111/jth.12646
– volume: 118
  start-page: 1363
  year: 2016
  ident: 10.1016/j.cobme.2017.12.001_bib12
  article-title: Animal models of thrombosis from Zebrafish to nonhuman primates: use in the elucidation of new pathologic pathways and the development of antithrombotic drugs
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.115.306823
– volume: 2011
  start-page: 907575
  year: 2011
  ident: 10.1016/j.cobme.2017.12.001_bib13
  article-title: Atherosclerosis and thrombosis: insights from large animal models
  publication-title: J Biomed Biotechnol
– volume: 143
  start-page: 180
  year: 2008
  ident: 10.1016/j.cobme.2017.12.001_bib2
  article-title: Virchow and his triad: a question of attribution
  publication-title: Br J Haematol
  doi: 10.1111/j.1365-2141.2008.07323.x
– volume: 128
  year: 2016
  ident: 10.1016/j.cobme.2017.12.001_bib40
  article-title: A chemical APC mimetic protects endothelium from thromboinflammatory injury
  publication-title: Blood
  doi: 10.1182/blood.V128.22.3835.3835
– volume: 28
  start-page: 427
  year: 2017
  ident: 10.1016/j.cobme.2017.12.001_bib42
  article-title: Hemodynamic studies of platelet thrombosis using microfluidics
  publication-title: Platelets
  doi: 10.1080/09537104.2017.1316483
– volume: 23
  start-page: 225
  year: 2009
  ident: 10.1016/j.cobme.2017.12.001_bib4
  article-title: Basic mechanisms and pathogenesis of venous thrombosis
  publication-title: Blood Rev
  doi: 10.1016/j.blre.2009.07.002
– volume: 5
  start-page: 167
  year: 2008
  ident: 10.1016/j.cobme.2017.12.001_bib24
  article-title: Biological effects of dynamic shear stress in cardiovascular pathologies and devices
  publication-title: Expet Rev Med Dev
  doi: 10.1586/17434440.5.2.167
– volume: 6
  start-page: 2193
  year: 2008
  ident: 10.1016/j.cobme.2017.12.001_bib36
  article-title: Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2008.03188.x
– volume: 5
  start-page: 283
  issue: Suppl 1
  year: 2007
  ident: 10.1016/j.cobme.2017.12.001_bib6
  article-title: Vascular bed-specific thrombosis
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2007.02515.x
– volume: 2
  start-page: 126
  year: 2014
  ident: 10.1016/j.cobme.2017.12.001_bib19
  article-title: Animal models of atherosclerosis
  publication-title: World J Clin Cases
  doi: 10.12998/wjcc.v2.i5.126
– volume: 32
  start-page: 2045
  year: 2012
  ident: 10.1016/j.cobme.2017.12.001_bib27
  article-title: Inflammation in atherosclerosis
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.108.179705
– volume: 73
  start-page: 527
  year: 2011
  ident: 10.1016/j.cobme.2017.12.001_bib34
  article-title: Venous valvular stasis-associated hypoxia and thrombosis: what is the link?
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev-physiol-012110-142305
– year: 2010
  ident: 10.1016/j.cobme.2017.12.001_bib33
  article-title: TP: chapter 6, arterial, venous, and microvascular hemostasis/thrombosis
  publication-title: Platelet-Vessel Wall Interact Hemost Thromb
– volume: 38
  start-page: 856
  year: 2010
  ident: 10.1016/j.cobme.2017.12.001_bib5
  article-title: Biomarkers of endothelial cell activation serve as potential surrogate markers for drug-induced vascular injury
  publication-title: Toxicol Pathol
  doi: 10.1177/0192623310378866
– volume: 5
  start-page: 32006
  year: 2011
  ident: 10.1016/j.cobme.2017.12.001_bib9
  article-title: Microfluidic endothelial cell culture model to replicate disturbed flow conditions seen in atherosclerosis susceptible regions
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3608137
– volume: 122
  start-page: 408
  year: 2012
  ident: 10.1016/j.cobme.2017.12.001_sref8
  article-title: In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology
  publication-title: J Clin Invest
  doi: 10.1172/JCI58753
– volume: 110
  start-page: 1357
  year: 2013
  ident: 10.1016/j.cobme.2017.12.001_sref31
  article-title: Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1209905110
– volume: 16
  start-page: 1720
  year: 2016
  ident: 10.1016/j.cobme.2017.12.001_bib41
  article-title: The upcoming 3D-printing revolution in microfluidics
  publication-title: Lab a Chip
  doi: 10.1039/C6LC00163G
– volume: 109
  start-page: 9342
  year: 2012
  ident: 10.1016/j.cobme.2017.12.001_bib37
  article-title: In vitro microvessels for the study of angiogenesis and thrombosis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1201240109
– volume: 58
  start-page: 515
  year: 2014
  ident: 10.1016/j.cobme.2017.12.001_bib3
  article-title: Overview of the coagulation system
  publication-title: Indian J Anaesth
  doi: 10.4103/0019-5049.144643
– volume: 126
  start-page: 817
  year: 2015
  ident: 10.1016/j.cobme.2017.12.001_bib18
  article-title: Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach
  publication-title: Blood
  doi: 10.1182/blood-2015-02-628594
– volume: 7
  start-page: 10176
  year: 2016
  ident: 10.1016/j.cobme.2017.12.001_sref30
  article-title: A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function
  publication-title: Nat Commun
  doi: 10.1038/ncomms10176
– volume: 118
  start-page: 1348
  year: 2016
  ident: 10.1016/j.cobme.2017.12.001_bib25
  article-title: Systems analysis of thrombus formation
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.115.306824
– volume: 203
  start-page: 493
  year: 2006
  ident: 10.1016/j.cobme.2017.12.001_bib1
  article-title: Are hemostasis and thrombosis two sides of the same coin?
  publication-title: J Exp Med
  doi: 10.1084/jem.20060217
– volume: 6
  start-page: 10
  year: 2013
  ident: 10.1016/j.cobme.2017.12.001_bib21
  article-title: Effect of shear stress and substrate on endothelial DAPK expression, caspase activity, and apoptosis
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-6-10
– volume: 24
  start-page: 407
  year: 2015
  ident: 10.1016/j.cobme.2017.12.001_bib20
  article-title: The flaws and human harms of animal experimentation
  publication-title: Camb Q Healthc Ethics
  doi: 10.1017/S0963180115000079
– volume: 8
  start-page: 129
  year: 2014
  ident: 10.1016/j.cobme.2017.12.001_bib38
  article-title: Cancer-associated thrombosis: an overview
  publication-title: Clin Med Insights Oncol
  doi: 10.4137/CMO.S18991
– volume: 51
  start-page: 3
  year: 2014
  ident: 10.1016/j.cobme.2017.12.001_bib17
  article-title: Analysis of early thrombus dynamics in a humanized mouse laser injury model
  publication-title: Biorheology
  doi: 10.3233/BIR-130648
– volume: 126
  start-page: 418
  year: 2004
  ident: 10.1016/j.cobme.2017.12.001_bib22
  article-title: Disturbed flow promotes deposition of leucocytes from flowing whole blood in a model of a damaged vessel wall
  publication-title: Br J Haematol
  doi: 10.1111/j.1365-2141.2004.05057.x
– volume: 15
  start-page: 665
  year: 2009
  ident: 10.1016/j.cobme.2017.12.001_sref29
  article-title: A shear gradient-dependent platelet aggregation mechanism drives thrombus formation
  publication-title: Nat Med
  doi: 10.1038/nm.1955
– volume: 23
  start-page: 229
  year: 2012
  ident: 10.1016/j.cobme.2017.12.001_bib23
  article-title: Measurement of whole blood thrombus formation using parallel-plate flow chambers – a practical guide
  publication-title: Platelets
  doi: 10.3109/09537104.2011.630848
– volume: 130
  start-page: 3458
  year: 2008
  ident: 10.1016/j.cobme.2017.12.001_bib35
  article-title: Effects of shear rate on propagation of blood clotting determined using microfluidics and numerical simulations
  publication-title: J Am Chem Soc
  doi: 10.1021/ja076301r
– year: 2017
  ident: 10.1016/j.cobme.2017.12.001_sref26
  article-title: Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics
  publication-title: Clin Pharmacol Therapeut
– volume: 18
  start-page: 73
  year: 2016
  ident: 10.1016/j.cobme.2017.12.001_bib7
  article-title: Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium
  publication-title: Biomed Microdevices
  doi: 10.1007/s10544-016-0095-6
– volume: 5
  start-page: 12401
  year: 2015
  ident: 10.1016/j.cobme.2017.12.001_bib10
  article-title: Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions
  publication-title: Sci Rep
  doi: 10.1038/srep12401
– volume: 91
  start-page: 327
  year: 2011
  ident: 10.1016/j.cobme.2017.12.001_bib28
  article-title: Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00047.2009
– start-page: S197
  year: 2017
  ident: 10.1016/j.cobme.2017.12.001_bib14
  article-title: Animal models of venous thrombosis
  publication-title: Cardiovasc Diagn Ther
  doi: 10.21037/cdt.2017.08.10
– volume: 22
  start-page: 28
  year: 2017
  ident: 10.1016/j.cobme.2017.12.001_bib15
  article-title: Mouse models of deep vein thrombosis
  publication-title: Gefässchirurgie
  doi: 10.1007/s00772-016-0227-6
– volume: 140
  start-page: S21
  issue: Suppl 1
  year: 2016
  ident: 10.1016/j.cobme.2017.12.001_bib16
  article-title: Microparticles and cancer thrombosis in animal models
  publication-title: Thromb Res
  doi: 10.1016/S0049-3848(16)30094-9
– year: 2017
  ident: 10.1016/j.cobme.2017.12.001_bib32
  article-title: Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data
  publication-title: Lab a Chip
  doi: 10.1039/C7LC00202E
– volume: 7
  start-page: 11302
  year: 2013
  ident: 10.1016/j.cobme.2017.12.001_bib11
  article-title: Chip in a lab: microfluidics for next generation life science research
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4789751
SSID ssj0001850485
Score 2.2421525
SecondaryResourceType review_article
Snippet The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25%...
SourceID pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms Disease model
Endothelium
Hemostasis
Microphysiological systems
Organ-on-a-chip
Thrombosis
Title Thrombosis-on-a-chip: Prospective impact of microphysiological models of vascular thrombosis
URI https://dx.doi.org/10.1016/j.cobme.2017.12.001
https://www.proquest.com/docview/2597486952
https://pubmed.ncbi.nlm.nih.gov/PMC8580137
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7revEiiorriwoeDdumbZp4W0RZFUVwBQ9CaF5sxW2Xffx_M22zuiAePPYxJUzSeSTffIPQhTI6tVLnOExM4hIUrTGXRuNYU261Ui4ngeLkxyc6fE3u39K3Drr2tTAAq2xtf2PTa2vd3um32uxPi6L_QhLKgF0rAsr1LOYbaJM4b8-6aHNw9zB8-t5qYalbpwBmBBEMMp5_qEZ6qcp5HkB5ZfXOYNsf5hcf9SMGXUdQ_nBJtztou40lg0Ez3F3UMeUeeh-NZ9VEVvNijqsS51iNi-lV8DyrfFFl0FRGBpUNJgDHqzc3vA0M6tY4c3joQarBYvXFffR6ezO6HuK2hQJWSUwXkGbmkrCck1RZQ6WkNk5DQ6x2kYeNVUgMIxnlxGQus7IxD3MW2USnLtHhcMR5gLplVZpDFGSaRIm0nCjpvD6L8kSFzMRZHhEjZUZ7iHilCdXyi0Obi0_hgWQfota0AE2LiACcrocuV0LThl7j79epnw2xtkqEcwB_C577uRPu_4FDkbw01XIuCGRUjPKU9FC2NqmrAQED9_qTshjXTNwsZUDZePTfYR2jLXfFGkzbCeouZktz6oKchTxrF_EX03z-bQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzaG9lJa0dNu0daDHirVlWZZ6C6Fh81oK3UAOBWG9WIfGXnY3_z8a29pmoeSQq-UxYiTPQ_rmG4BvxtnCa1uRlDkWEhRridTOktxy6a0xISfB4uSrGZ9es_Ob4mYPTmItDMIqB9vf2_TOWg9PJoM2J8u6nvymjAtk18qQcr3M5QvYZ9jUegT7x2cX09m_oxZRhH2KYEYUISgT-Yc6pJdpg-dBlFfZnQwO_WH-46MexaC7CMpHLun0DbweYsnkuJ_uW9hzzQH8mS9W7Z1u1_WatA2piFnUyx_Jr1UbiyqTvjIyaX1yh3C87nAj2sCka42zxsEIUk022y--g-vTn_OTKRlaKBDDcr7BNLPSVFSSFsY7rjX3eZE66m2IPHxuUuoELbmkrgyZlc9lWonMM1uEREfiFed7GDVt4z5AUlqaMe0lNTp4fZFVzKTC5WWVUad1ycdAo9KUGfjFsc3FXxWBZLeq07RCTauMIpxuDN-3QsueXuPp13lcDbWzS1RwAE8LHsW1U-H_wUuRqnHt_VpRzKgElwUdQ7mzqNsJIQP37khTLzomblEIpGz8-NxpfYWX0_nVpbo8m118gldhRPT4tkMYbVb37nMIeDb6y7ChHwDQGQFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thrombosis-on-a-chip%3A+Prospective+impact+of+microphysiological+models+of+vascular+thrombosis&rft.jtitle=Current+opinion+in+biomedical+engineering&rft.au=Pandian%2C+Navaneeth+K.+R.&rft.au=Mannino%2C+Robert+G.&rft.au=Lam%2C+Wilbur+A.&rft.au=Jain%2C+Abhishek&rft.date=2018-03-01&rft.eissn=2468-4511&rft.volume=5&rft.spage=29&rft.epage=34&rft_id=info:doi/10.1016%2Fj.cobme.2017.12.001&rft_id=info%3Apmid%2F34765849&rft.externalDocID=PMC8580137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-4511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-4511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-4511&client=summon