Thrombosis-on-a-chip: Prospective impact of microphysiological models of vascular thrombosis
The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investig...
Saved in:
Published in | Current opinion in biomedical engineering Vol. 5; pp. 29 - 34 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2468-4511 2468-4511 |
DOI | 10.1016/j.cobme.2017.12.001 |
Cover
Abstract | The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investigated with animal models, its exact pathobiology in different blood vessels is not yet fully understood and drug assessment remains unpredictable. This is primarily because the cause for thrombus formation is multifactorial and depends on the interplay of flow patterns within the blood vessel, the vessel wall or endothelium, extracellular matrix, parenchymal tissue, and the cellular and plasma components of the blood. Current in vitro and animal models do not mimic or dissect this organ-level complexity faithfully. However, microfluidic technology has recently been deployed to effectively recapitulate blood-endothelial–epithelial interactions in the onset of thrombosis in blood vessels. This technology is promising because it permits inclusion of primary human cells and blood obtained from patients, which is currently lacking in other in vitro models of thrombosis. In this review, we summarize the current state-of-the-art and practices in microfluidics and expected improvements in this field that will impact basic understanding of thrombosis, drug discovery and personalized medicine.
•Thrombus functions as a living organ that constantly interacts with its environment.•Current models are inefficient in predicting thrombogenesis and for drug analysis.•3D co-culture microfluidic assays can assess organ-level thrombus regulation.•Study of patient-specific physiology possible with thrombosis-on-a-chip technology. |
---|---|
AbstractList | The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investigated with animal models, its exact pathobiology in different blood vessels is not yet fully understood and drug assessment remains unpredictable. This is primarily because the cause for thrombus formation is multifactorial and depends on the interplay of flow patterns within the blood vessel, the vessel wall or endothelium, extracellular matrix, parenchymal tissue, and the cellular and plasma components of the blood. Current in vitro and animal models do not mimic or dissect this organ-level complexity faithfully. However, microfluidic technology has recently been deployed to effectively recapitulate blood-endothelial-epithelial interactions in the onset of thrombosis in blood vessels. This technology is promising because it permits inclusion of primary human cells and blood obtained from patients, which is currently lacking in other in vitro models of thrombosis. In this review, we summarize the current state-of-the-art and practices in microfluidics and expected improvements in this field that will impact basic understanding of thrombosis, drug discovery and personalized medicine.The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investigated with animal models, its exact pathobiology in different blood vessels is not yet fully understood and drug assessment remains unpredictable. This is primarily because the cause for thrombus formation is multifactorial and depends on the interplay of flow patterns within the blood vessel, the vessel wall or endothelium, extracellular matrix, parenchymal tissue, and the cellular and plasma components of the blood. Current in vitro and animal models do not mimic or dissect this organ-level complexity faithfully. However, microfluidic technology has recently been deployed to effectively recapitulate blood-endothelial-epithelial interactions in the onset of thrombosis in blood vessels. This technology is promising because it permits inclusion of primary human cells and blood obtained from patients, which is currently lacking in other in vitro models of thrombosis. In this review, we summarize the current state-of-the-art and practices in microfluidics and expected improvements in this field that will impact basic understanding of thrombosis, drug discovery and personalized medicine. The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investigated with animal models, its exact pathobiology in different blood vessels is not yet fully understood and drug assessment remains unpredictable. This is primarily because the cause for thrombus formation is multifactorial and depends on the interplay of flow patterns within the blood vessel, the vessel wall or endothelium, extracellular matrix, parenchymal tissue, and the cellular and plasma components of the blood. Current in vitro and animal models do not mimic or dissect this organ-level complexity faithfully. However, microfluidic technology has recently been deployed to effectively recapitulate blood-endothelial–epithelial interactions in the onset of thrombosis in blood vessels. This technology is promising because it permits inclusion of primary human cells and blood obtained from patients, which is currently lacking in other in vitro models of thrombosis. In this review, we summarize the current state-of-the-art and practices in microfluidics and expected improvements in this field that will impact basic understanding of thrombosis, drug discovery and personalized medicine. The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investigated with animal models, its exact pathobiology in different blood vessels is not yet fully understood and drug assessment remains unpredictable. This is primarily because the cause for thrombus formation is multifactorial and depends on the interplay of flow patterns within the blood vessel, the vessel wall or endothelium, extracellular matrix, parenchymal tissue, and the cellular and plasma components of the blood. Current in vitro and animal models do not mimic or dissect this organ-level complexity faithfully. However, microfluidic technology has recently been deployed to effectively recapitulate blood-endothelial–epithelial interactions in the onset of thrombosis in blood vessels. This technology is promising because it permits inclusion of primary human cells and blood obtained from patients, which is currently lacking in other in vitro models of thrombosis. In this review, we summarize the current state-of-the-art and practices in microfluidics and expected improvements in this field that will impact basic understanding of thrombosis, drug discovery and personalized medicine. •Thrombus functions as a living organ that constantly interacts with its environment.•Current models are inefficient in predicting thrombogenesis and for drug analysis.•3D co-culture microfluidic assays can assess organ-level thrombus regulation.•Study of patient-specific physiology possible with thrombosis-on-a-chip technology. |
Author | Jain, Abhishek Mannino, Robert G. Pandian, Navaneeth K.R. Lam, Wilbur A. |
AuthorAffiliation | 5 Children’s Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, USA 6 Institute of Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA 3 The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA 2 The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA, USA 4 Emory University School of Medicine, Department of Pediatrics, Division of Pediatric Hematology/Oncology, Atlanta, GA, USA 1 Department of Biomedical Engineering, College of Engineering, Texas A&M University, USA |
AuthorAffiliation_xml | – name: 1 Department of Biomedical Engineering, College of Engineering, Texas A&M University, USA – name: 3 The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA – name: 6 Institute of Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA – name: 4 Emory University School of Medicine, Department of Pediatrics, Division of Pediatric Hematology/Oncology, Atlanta, GA, USA – name: 5 Children’s Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, USA – name: 2 The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA, USA |
Author_xml | – sequence: 1 givenname: Navaneeth K.R. surname: Pandian fullname: Pandian, Navaneeth K.R. organization: Department of Biomedical Engineering, College of Engineering, Texas A&M University, USA – sequence: 2 givenname: Robert G. surname: Mannino fullname: Mannino, Robert G. organization: The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA, USA – sequence: 3 givenname: Wilbur A. surname: Lam fullname: Lam, Wilbur A. organization: The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA, USA – sequence: 4 givenname: Abhishek surname: Jain fullname: Jain, Abhishek email: a.jain@tamu.edu organization: Department of Biomedical Engineering, College of Engineering, Texas A&M University, USA |
BookMark | eNp9kc1rFEEQxRuJmLjmL_AyRy8z9vf0CAoS_IKAHuJNaHp6arK19EyP3bML-e_T60ZRDzlVQdX78XjvOTmb4wyEvGS0YZTp17vGx36ChlPWNow3lLIn5IJLbWqpGDv7az8nlznvaPkwikqjnpFzIVutjOwuyI-bbYpTHzPmOs61q_0WlzfVtxTzAn7FA1Q4Lc6vVRyrCX2Ky_YuYwzxFr0L1RQHCPl4PLjs98Glav1DfEGeji5kuHyYG_L944ebq8_19ddPX67eX9deCr3WigvXc-M6rvwIuu_1KBQFPg7F5Cg85WB4qzsOLZNyFB11ho1yUEbzrlVUbMi7E3fZl0wGD_OaXLBLwsmlOxsd2n8vM27tbTxYowxloi2AVw-AFH_uIa92wuwhBDdD3GfLVddKo7vidEO602uJIucEo_W4uhXjkYzBMmqPBdmd_VWQPRZkGbcl_qIV_2l_W3xc9fakKkHDASHZ7BFmDwOmUpEdIj6qvwfuha2Q |
CitedBy_id | crossref_primary_10_1161_CIRCRESAHA_122_321877 crossref_primary_10_1152_ajpcell_00026_2020 crossref_primary_10_1038_s41467_020_19197_8 crossref_primary_10_1364_BOE_500434 crossref_primary_10_3389_fcvm_2023_1167884 crossref_primary_10_1039_C8LC00827B crossref_primary_10_1039_D0TB00544D crossref_primary_10_14797_mdcvj_1044 crossref_primary_10_1002_adhm_201901255 crossref_primary_10_12688_f1000research_158910_1 crossref_primary_10_3390_bioengineering9110685 crossref_primary_10_1002_admi_201900940 crossref_primary_10_1039_D4LC00216D crossref_primary_10_1039_D1LC00347J crossref_primary_10_1002_admt_202201778 crossref_primary_10_1109_ACCESS_2022_3184123 crossref_primary_10_1161_ATVBAHA_123_318233 crossref_primary_10_3390_gels9060477 crossref_primary_10_1016_j_addr_2018_06_007 crossref_primary_10_1016_j_bioactmat_2024_08_040 crossref_primary_10_1177_17474930241242266 crossref_primary_10_1007_s10544_023_00684_w crossref_primary_10_1097_MOH_0000000000000731 crossref_primary_10_3390_molecules25040833 crossref_primary_10_1016_j_cobme_2018_04_002 crossref_primary_10_1021_acssensors_4c02764 crossref_primary_10_1080_09537104_2022_2153823 crossref_primary_10_3390_mi13020326 crossref_primary_10_1016_j_biomaterials_2018_09_036 crossref_primary_10_1021_acsbiomaterials_0c01226 crossref_primary_10_1039_D0LC01283A crossref_primary_10_1002_advs_202307627 crossref_primary_10_1063_5_0094650 crossref_primary_10_20517_microstructures_2023_106 crossref_primary_10_1063_5_0011583 |
Cites_doi | 10.1111/jth.12646 10.1161/CIRCRESAHA.115.306823 10.1111/j.1365-2141.2008.07323.x 10.1182/blood.V128.22.3835.3835 10.1080/09537104.2017.1316483 10.1016/j.blre.2009.07.002 10.1586/17434440.5.2.167 10.1111/j.1538-7836.2008.03188.x 10.1111/j.1538-7836.2007.02515.x 10.12998/wjcc.v2.i5.126 10.1161/ATVBAHA.108.179705 10.1146/annurev-physiol-012110-142305 10.1177/0192623310378866 10.1063/1.3608137 10.1172/JCI58753 10.1073/pnas.1209905110 10.1039/C6LC00163G 10.1073/pnas.1201240109 10.4103/0019-5049.144643 10.1182/blood-2015-02-628594 10.1038/ncomms10176 10.1161/CIRCRESAHA.115.306824 10.1084/jem.20060217 10.1186/1756-0500-6-10 10.1017/S0963180115000079 10.4137/CMO.S18991 10.3233/BIR-130648 10.1111/j.1365-2141.2004.05057.x 10.1038/nm.1955 10.3109/09537104.2011.630848 10.1021/ja076301r 10.1007/s10544-016-0095-6 10.1038/srep12401 10.1152/physrev.00047.2009 10.21037/cdt.2017.08.10 10.1007/s00772-016-0227-6 10.1016/S0049-3848(16)30094-9 10.1039/C7LC00202E 10.1063/1.4789751 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. |
Copyright_xml | – notice: 2017 Elsevier Inc. |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.cobme.2017.12.001 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2468-4511 |
EndPage | 34 |
ExternalDocumentID | PMC8580137 10_1016_j_cobme_2017_12_001 S2468451117300739 |
GroupedDBID | --M 53G AABXZ AACTN AADPK AAEDW AAIAV AAKOC AALRI AAOAW AAXLA AAXUO ABLVK ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AEZYN AFKWA AFRZQ AFTJW AFXIZ AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BJAXD BKOJK BNPGV EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM ROL SPC SPCBC SSH SSM SSN SST SSZ T5K ~G- 0R~ AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACIEU ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION 7X8 ACLOT EFKBS 5PM |
ID | FETCH-LOGICAL-c436t-523ab28a925cfe6bb6f350e2fd658f3c02e827692e7144f390a81f4d586297503 |
IEDL.DBID | AIKHN |
ISSN | 2468-4511 |
IngestDate | Thu Aug 21 13:50:19 EDT 2025 Sun Sep 28 10:57:54 EDT 2025 Thu Apr 24 23:05:22 EDT 2025 Tue Jul 01 00:39:25 EDT 2025 Fri Feb 23 02:32:02 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Organ-on-a-chip Microphysiological systems Hemostasis Thrombosis Endothelium Disease model |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-523ab28a925cfe6bb6f350e2fd658f3c02e827692e7144f390a81f4d586297503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8580137 |
PMID | 34765849 |
PQID | 2597486952 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8580137 proquest_miscellaneous_2597486952 crossref_citationtrail_10_1016_j_cobme_2017_12_001 crossref_primary_10_1016_j_cobme_2017_12_001 elsevier_sciencedirect_doi_10_1016_j_cobme_2017_12_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Current opinion in biomedical engineering |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Akhtar (bib20) 2015; 24 Rennier, Ji (bib21) 2013; 6 Jain, Barrile, van der Meer, Mammoto, Mammoto, De Ceunynck, Aisiku, Otieno, Louden, Hamilton (bib26) 2017 Elyamany, Alzahrani, Bukhary (bib38) 2014; 8 Rumbaut (bib33) 2010 Ciciliano, Sakurai, Myers, Fay, Hechler, Meeks, Li, Dixon, Lyon, Gachet (bib18) 2015; 126 Nesbitt, Westein, Tovar-Lopez, Tolouei, Mitchell, Fu, Carberry, Fouras, Jackson (bib29) 2009; 15 Zheng, Chen, Craven, Choi, Totorica, Diaz-Santana, Kermani, Hempstead, Fischbach-Teschl, Lopez (bib37) 2012; 109 Costa, Albers, Linssen, Middelkamp, van der Hout, Passier, van den Berg, Malda, van der Meer (bib32) 2017 Bovill, van der Vliet (bib34) 2011; 73 Mannino, Myers, Ahn, Wang, Margo, Gole, Lin, Guldberg, Giddens, Timmins (bib10) 2015; 5 Vilahur, Padro, Badimon (bib13) 2011; 2011 Jain, Graveline, Waterhouse, Vernet, Flaumenhaft, Ingber (bib30) 2016; 7 De Ceunynck, Peters, Chaudhry, Jain, Higgins, Aisiku, Fitch-Tewfik, Dockendorff, Parikh, Ingber (bib40) 2016; 128 Streets, Huang (bib11) 2013; 7 Schonfelder, Jackel, Wenzel (bib15) 2017; 22 Van Kruchten, Cosemans, Heemskerk (bib23) 2012; 23 Diamond (bib25) 2016; 118 Chiu, Chien (bib28) 2011; 91 Bagot, Arya (bib2) 2008; 143 Estrada, Giridharan, Nguyen, Prabhu, Sethu (bib9) 2011; 5 Hastings, Griffin, Ku (bib42) 2017; 28 Violi, Cangemi, Calvieri (bib39) 2014; 12 Zhang, Defelice, Hanig, Colatsky (bib5) 2010; 38 Aird (bib6) 2007; 5 Albadawi, Witting, Pershad, Wallace, Fleck, Hoang, Khademhosseini, Oklu (bib14) 2017 Westein, van der Meer, Kuijpers, Frimat, van den Berg, Heemskerk (bib31) 2013; 110 Jagadeeswaran, Cooley, Gross, Mackman (bib12) 2016; 118 Mege, Mezouar, Dignat-George, Panicot-Dubois, Dubois (bib16) 2016; 140 Skilbeck, Walker, David, Nash (bib22) 2004; 126 Libby (bib27) 2012; 32 Neeves, Maloney, Fong, Schmaier, Kahn, Brass, Diamond (bib36) 2008; 6 Palta, Saroa, Palta (bib3) 2014; 58 Colman (bib1) 2006; 203 Tsai, Kita, Leach, Rounsevell, Huang, Moake, Ware, Fletcher, Lam (bib8) 2012; 122 Runyon, Kastrup, Johnson-Kerner, Ha, Ismagilov (bib35) 2008; 130 Bhattacharjee, Urrios, Kang, Folch (bib41) 2016; 16 Esmon (bib4) 2009; 23 Wang, Lindsey, Chen, Diacovo, King (bib17) 2014; 51 Jain, van der Meer, Papa, Barrile, Lai, Schlechter, Otieno, Louden, Hamilton, Michelson (bib7) 2016; 18 Kapourchali, Surendiran, Chen, Uitz, Bahadori, Moghadasian (bib19) 2014; 2 Girdhar, Bluestein (bib24) 2008; 5 Rennier (10.1016/j.cobme.2017.12.001_bib21) 2013; 6 Esmon (10.1016/j.cobme.2017.12.001_bib4) 2009; 23 Tsai (10.1016/j.cobme.2017.12.001_sref8) 2012; 122 Vilahur (10.1016/j.cobme.2017.12.001_bib13) 2011; 2011 Jagadeeswaran (10.1016/j.cobme.2017.12.001_bib12) 2016; 118 Chiu (10.1016/j.cobme.2017.12.001_bib28) 2011; 91 Palta (10.1016/j.cobme.2017.12.001_bib3) 2014; 58 Wang (10.1016/j.cobme.2017.12.001_bib17) 2014; 51 Bovill (10.1016/j.cobme.2017.12.001_bib34) 2011; 73 Schonfelder (10.1016/j.cobme.2017.12.001_bib15) 2017; 22 Costa (10.1016/j.cobme.2017.12.001_bib32) 2017 Runyon (10.1016/j.cobme.2017.12.001_bib35) 2008; 130 Colman (10.1016/j.cobme.2017.12.001_bib1) 2006; 203 Jain (10.1016/j.cobme.2017.12.001_sref30) 2016; 7 Estrada (10.1016/j.cobme.2017.12.001_bib9) 2011; 5 Kapourchali (10.1016/j.cobme.2017.12.001_bib19) 2014; 2 Diamond (10.1016/j.cobme.2017.12.001_bib25) 2016; 118 Albadawi (10.1016/j.cobme.2017.12.001_bib14) 2017 Rumbaut (10.1016/j.cobme.2017.12.001_bib33) 2010 Neeves (10.1016/j.cobme.2017.12.001_bib36) 2008; 6 Akhtar (10.1016/j.cobme.2017.12.001_bib20) 2015; 24 Streets (10.1016/j.cobme.2017.12.001_bib11) 2013; 7 Jain (10.1016/j.cobme.2017.12.001_bib7) 2016; 18 Skilbeck (10.1016/j.cobme.2017.12.001_bib22) 2004; 126 De Ceunynck (10.1016/j.cobme.2017.12.001_bib40) 2016; 128 Nesbitt (10.1016/j.cobme.2017.12.001_sref29) 2009; 15 Elyamany (10.1016/j.cobme.2017.12.001_bib38) 2014; 8 Mannino (10.1016/j.cobme.2017.12.001_bib10) 2015; 5 Mege (10.1016/j.cobme.2017.12.001_bib16) 2016; 140 Aird (10.1016/j.cobme.2017.12.001_bib6) 2007; 5 Girdhar (10.1016/j.cobme.2017.12.001_bib24) 2008; 5 Libby (10.1016/j.cobme.2017.12.001_bib27) 2012; 32 Zheng (10.1016/j.cobme.2017.12.001_bib37) 2012; 109 Jain (10.1016/j.cobme.2017.12.001_sref26) 2017 Zhang (10.1016/j.cobme.2017.12.001_bib5) 2010; 38 Violi (10.1016/j.cobme.2017.12.001_bib39) 2014; 12 Bhattacharjee (10.1016/j.cobme.2017.12.001_bib41) 2016; 16 Ciciliano (10.1016/j.cobme.2017.12.001_bib18) 2015; 126 Van Kruchten (10.1016/j.cobme.2017.12.001_bib23) 2012; 23 Bagot (10.1016/j.cobme.2017.12.001_bib2) 2008; 143 Westein (10.1016/j.cobme.2017.12.001_sref31) 2013; 110 Hastings (10.1016/j.cobme.2017.12.001_bib42) 2017; 28 |
References_xml | – volume: 24 start-page: 407 year: 2015 end-page: 419 ident: bib20 article-title: The flaws and human harms of animal experimentation publication-title: Camb Q Healthc Ethics – volume: 6 start-page: 10 year: 2013 ident: bib21 article-title: Effect of shear stress and substrate on endothelial DAPK expression, caspase activity, and apoptosis publication-title: BMC Res Notes – volume: 7 start-page: 10176 year: 2016 ident: bib30 article-title: A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function publication-title: Nat Commun – year: 2010 ident: bib33 article-title: TP: chapter 6, arterial, venous, and microvascular hemostasis/thrombosis publication-title: Platelet-Vessel Wall Interact Hemost Thromb – volume: 7 start-page: 11302 year: 2013 ident: bib11 article-title: Chip in a lab: microfluidics for next generation life science research publication-title: Biomicrofluidics – volume: 38 start-page: 856 year: 2010 end-page: 871 ident: bib5 article-title: Biomarkers of endothelial cell activation serve as potential surrogate markers for drug-induced vascular injury publication-title: Toxicol Pathol – volume: 118 start-page: 1363 year: 2016 end-page: 1379 ident: bib12 article-title: Animal models of thrombosis from Zebrafish to nonhuman primates: use in the elucidation of new pathologic pathways and the development of antithrombotic drugs publication-title: Circ Res – volume: 6 start-page: 2193 year: 2008 end-page: 2201 ident: bib36 article-title: Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates publication-title: J Thromb Haemost – volume: 2 start-page: 126 year: 2014 end-page: 132 ident: bib19 article-title: Animal models of atherosclerosis publication-title: World J Clin Cases – volume: 23 start-page: 229 year: 2012 end-page: 242 ident: bib23 article-title: Measurement of whole blood thrombus formation using parallel-plate flow chambers – a practical guide publication-title: Platelets – volume: 110 start-page: 1357 year: 2013 end-page: 1362 ident: bib31 article-title: Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner publication-title: Proc Natl Acad Sci USA – volume: 122 start-page: 408 year: 2012 end-page: 418 ident: bib8 article-title: In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology publication-title: J Clin Invest – volume: 23 start-page: 225 year: 2009 end-page: 229 ident: bib4 article-title: Basic mechanisms and pathogenesis of venous thrombosis publication-title: Blood Rev – volume: 16 start-page: 1720 year: 2016 end-page: 1742 ident: bib41 article-title: The upcoming 3D-printing revolution in microfluidics publication-title: Lab a Chip – volume: 5 start-page: 167 year: 2008 end-page: 181 ident: bib24 article-title: Biological effects of dynamic shear stress in cardiovascular pathologies and devices publication-title: Expet Rev Med Dev – volume: 203 start-page: 493 year: 2006 end-page: 495 ident: bib1 article-title: Are hemostasis and thrombosis two sides of the same coin? publication-title: J Exp Med – volume: 32 start-page: 2045 year: 2012 end-page: 2051 ident: bib27 article-title: Inflammation in atherosclerosis publication-title: Arterioscler Thromb Vasc Biol – volume: 118 start-page: 1348 year: 2016 end-page: 1362 ident: bib25 article-title: Systems analysis of thrombus formation publication-title: Circ Res – volume: 28 start-page: 427 year: 2017 end-page: 433 ident: bib42 article-title: Hemodynamic studies of platelet thrombosis using microfluidics publication-title: Platelets – volume: 143 start-page: 180 year: 2008 end-page: 190 ident: bib2 article-title: Virchow and his triad: a question of attribution publication-title: Br J Haematol – volume: 91 start-page: 327 year: 2011 end-page: 387 ident: bib28 article-title: Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives publication-title: Physiol Rev – volume: 12 start-page: 1391 year: 2014 end-page: 1400 ident: bib39 article-title: Pneumonia, thrombosis and vascular disease publication-title: J Thromb Haemost – volume: 58 start-page: 515 year: 2014 end-page: 523 ident: bib3 article-title: Overview of the coagulation system publication-title: Indian J Anaesth – volume: 109 start-page: 9342 year: 2012 end-page: 9347 ident: bib37 article-title: In vitro microvessels for the study of angiogenesis and thrombosis publication-title: Proc Natl Acad Sci USA – volume: 73 start-page: 527 year: 2011 end-page: 545 ident: bib34 article-title: Venous valvular stasis-associated hypoxia and thrombosis: what is the link? publication-title: Annu Rev Physiol – volume: 18 start-page: 73 year: 2016 ident: bib7 article-title: Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium publication-title: Biomed Microdevices – volume: 126 start-page: 418 year: 2004 end-page: 427 ident: bib22 article-title: Disturbed flow promotes deposition of leucocytes from flowing whole blood in a model of a damaged vessel wall publication-title: Br J Haematol – volume: 22 start-page: 28 year: 2017 end-page: 33 ident: bib15 article-title: Mouse models of deep vein thrombosis publication-title: Gefässchirurgie – volume: 128 year: 2016 ident: bib40 article-title: A chemical APC mimetic protects endothelium from thromboinflammatory injury publication-title: Blood – volume: 5 start-page: 283 year: 2007 end-page: 291 ident: bib6 article-title: Vascular bed-specific thrombosis publication-title: J Thromb Haemost – volume: 140 start-page: S21 year: 2016 end-page: S26 ident: bib16 article-title: Microparticles and cancer thrombosis in animal models publication-title: Thromb Res – volume: 51 start-page: 3 year: 2014 end-page: 14 ident: bib17 article-title: Analysis of early thrombus dynamics in a humanized mouse laser injury model publication-title: Biorheology – volume: 126 start-page: 817 year: 2015 end-page: 824 ident: bib18 article-title: Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach publication-title: Blood – volume: 130 start-page: 3458 year: 2008 end-page: 3464 ident: bib35 article-title: Effects of shear rate on propagation of blood clotting determined using microfluidics and numerical simulations publication-title: J Am Chem Soc – volume: 15 start-page: 665 year: 2009 end-page: 673 ident: bib29 article-title: A shear gradient-dependent platelet aggregation mechanism drives thrombus formation publication-title: Nat Med – volume: 5 start-page: 32006 year: 2011 end-page: 3200611 ident: bib9 article-title: Microfluidic endothelial cell culture model to replicate disturbed flow conditions seen in atherosclerosis susceptible regions publication-title: Biomicrofluidics – volume: 2011 start-page: 907575 year: 2011 ident: bib13 article-title: Atherosclerosis and thrombosis: insights from large animal models publication-title: J Biomed Biotechnol – year: 2017 ident: bib26 article-title: Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics publication-title: Clin Pharmacol Therapeut – year: 2017 ident: bib32 article-title: Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data publication-title: Lab a Chip – start-page: S197 year: 2017 end-page: S206 ident: bib14 article-title: Animal models of venous thrombosis publication-title: Cardiovasc Diagn Ther – volume: 5 start-page: 12401 year: 2015 ident: bib10 article-title: Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions publication-title: Sci Rep – volume: 8 start-page: 129 year: 2014 end-page: 137 ident: bib38 article-title: Cancer-associated thrombosis: an overview publication-title: Clin Med Insights Oncol – volume: 12 start-page: 1391 year: 2014 ident: 10.1016/j.cobme.2017.12.001_bib39 article-title: Pneumonia, thrombosis and vascular disease publication-title: J Thromb Haemost doi: 10.1111/jth.12646 – volume: 118 start-page: 1363 year: 2016 ident: 10.1016/j.cobme.2017.12.001_bib12 article-title: Animal models of thrombosis from Zebrafish to nonhuman primates: use in the elucidation of new pathologic pathways and the development of antithrombotic drugs publication-title: Circ Res doi: 10.1161/CIRCRESAHA.115.306823 – volume: 2011 start-page: 907575 year: 2011 ident: 10.1016/j.cobme.2017.12.001_bib13 article-title: Atherosclerosis and thrombosis: insights from large animal models publication-title: J Biomed Biotechnol – volume: 143 start-page: 180 year: 2008 ident: 10.1016/j.cobme.2017.12.001_bib2 article-title: Virchow and his triad: a question of attribution publication-title: Br J Haematol doi: 10.1111/j.1365-2141.2008.07323.x – volume: 128 year: 2016 ident: 10.1016/j.cobme.2017.12.001_bib40 article-title: A chemical APC mimetic protects endothelium from thromboinflammatory injury publication-title: Blood doi: 10.1182/blood.V128.22.3835.3835 – volume: 28 start-page: 427 year: 2017 ident: 10.1016/j.cobme.2017.12.001_bib42 article-title: Hemodynamic studies of platelet thrombosis using microfluidics publication-title: Platelets doi: 10.1080/09537104.2017.1316483 – volume: 23 start-page: 225 year: 2009 ident: 10.1016/j.cobme.2017.12.001_bib4 article-title: Basic mechanisms and pathogenesis of venous thrombosis publication-title: Blood Rev doi: 10.1016/j.blre.2009.07.002 – volume: 5 start-page: 167 year: 2008 ident: 10.1016/j.cobme.2017.12.001_bib24 article-title: Biological effects of dynamic shear stress in cardiovascular pathologies and devices publication-title: Expet Rev Med Dev doi: 10.1586/17434440.5.2.167 – volume: 6 start-page: 2193 year: 2008 ident: 10.1016/j.cobme.2017.12.001_bib36 article-title: Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates publication-title: J Thromb Haemost doi: 10.1111/j.1538-7836.2008.03188.x – volume: 5 start-page: 283 issue: Suppl 1 year: 2007 ident: 10.1016/j.cobme.2017.12.001_bib6 article-title: Vascular bed-specific thrombosis publication-title: J Thromb Haemost doi: 10.1111/j.1538-7836.2007.02515.x – volume: 2 start-page: 126 year: 2014 ident: 10.1016/j.cobme.2017.12.001_bib19 article-title: Animal models of atherosclerosis publication-title: World J Clin Cases doi: 10.12998/wjcc.v2.i5.126 – volume: 32 start-page: 2045 year: 2012 ident: 10.1016/j.cobme.2017.12.001_bib27 article-title: Inflammation in atherosclerosis publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.108.179705 – volume: 73 start-page: 527 year: 2011 ident: 10.1016/j.cobme.2017.12.001_bib34 article-title: Venous valvular stasis-associated hypoxia and thrombosis: what is the link? publication-title: Annu Rev Physiol doi: 10.1146/annurev-physiol-012110-142305 – year: 2010 ident: 10.1016/j.cobme.2017.12.001_bib33 article-title: TP: chapter 6, arterial, venous, and microvascular hemostasis/thrombosis publication-title: Platelet-Vessel Wall Interact Hemost Thromb – volume: 38 start-page: 856 year: 2010 ident: 10.1016/j.cobme.2017.12.001_bib5 article-title: Biomarkers of endothelial cell activation serve as potential surrogate markers for drug-induced vascular injury publication-title: Toxicol Pathol doi: 10.1177/0192623310378866 – volume: 5 start-page: 32006 year: 2011 ident: 10.1016/j.cobme.2017.12.001_bib9 article-title: Microfluidic endothelial cell culture model to replicate disturbed flow conditions seen in atherosclerosis susceptible regions publication-title: Biomicrofluidics doi: 10.1063/1.3608137 – volume: 122 start-page: 408 year: 2012 ident: 10.1016/j.cobme.2017.12.001_sref8 article-title: In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology publication-title: J Clin Invest doi: 10.1172/JCI58753 – volume: 110 start-page: 1357 year: 2013 ident: 10.1016/j.cobme.2017.12.001_sref31 article-title: Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1209905110 – volume: 16 start-page: 1720 year: 2016 ident: 10.1016/j.cobme.2017.12.001_bib41 article-title: The upcoming 3D-printing revolution in microfluidics publication-title: Lab a Chip doi: 10.1039/C6LC00163G – volume: 109 start-page: 9342 year: 2012 ident: 10.1016/j.cobme.2017.12.001_bib37 article-title: In vitro microvessels for the study of angiogenesis and thrombosis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1201240109 – volume: 58 start-page: 515 year: 2014 ident: 10.1016/j.cobme.2017.12.001_bib3 article-title: Overview of the coagulation system publication-title: Indian J Anaesth doi: 10.4103/0019-5049.144643 – volume: 126 start-page: 817 year: 2015 ident: 10.1016/j.cobme.2017.12.001_bib18 article-title: Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach publication-title: Blood doi: 10.1182/blood-2015-02-628594 – volume: 7 start-page: 10176 year: 2016 ident: 10.1016/j.cobme.2017.12.001_sref30 article-title: A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function publication-title: Nat Commun doi: 10.1038/ncomms10176 – volume: 118 start-page: 1348 year: 2016 ident: 10.1016/j.cobme.2017.12.001_bib25 article-title: Systems analysis of thrombus formation publication-title: Circ Res doi: 10.1161/CIRCRESAHA.115.306824 – volume: 203 start-page: 493 year: 2006 ident: 10.1016/j.cobme.2017.12.001_bib1 article-title: Are hemostasis and thrombosis two sides of the same coin? publication-title: J Exp Med doi: 10.1084/jem.20060217 – volume: 6 start-page: 10 year: 2013 ident: 10.1016/j.cobme.2017.12.001_bib21 article-title: Effect of shear stress and substrate on endothelial DAPK expression, caspase activity, and apoptosis publication-title: BMC Res Notes doi: 10.1186/1756-0500-6-10 – volume: 24 start-page: 407 year: 2015 ident: 10.1016/j.cobme.2017.12.001_bib20 article-title: The flaws and human harms of animal experimentation publication-title: Camb Q Healthc Ethics doi: 10.1017/S0963180115000079 – volume: 8 start-page: 129 year: 2014 ident: 10.1016/j.cobme.2017.12.001_bib38 article-title: Cancer-associated thrombosis: an overview publication-title: Clin Med Insights Oncol doi: 10.4137/CMO.S18991 – volume: 51 start-page: 3 year: 2014 ident: 10.1016/j.cobme.2017.12.001_bib17 article-title: Analysis of early thrombus dynamics in a humanized mouse laser injury model publication-title: Biorheology doi: 10.3233/BIR-130648 – volume: 126 start-page: 418 year: 2004 ident: 10.1016/j.cobme.2017.12.001_bib22 article-title: Disturbed flow promotes deposition of leucocytes from flowing whole blood in a model of a damaged vessel wall publication-title: Br J Haematol doi: 10.1111/j.1365-2141.2004.05057.x – volume: 15 start-page: 665 year: 2009 ident: 10.1016/j.cobme.2017.12.001_sref29 article-title: A shear gradient-dependent platelet aggregation mechanism drives thrombus formation publication-title: Nat Med doi: 10.1038/nm.1955 – volume: 23 start-page: 229 year: 2012 ident: 10.1016/j.cobme.2017.12.001_bib23 article-title: Measurement of whole blood thrombus formation using parallel-plate flow chambers – a practical guide publication-title: Platelets doi: 10.3109/09537104.2011.630848 – volume: 130 start-page: 3458 year: 2008 ident: 10.1016/j.cobme.2017.12.001_bib35 article-title: Effects of shear rate on propagation of blood clotting determined using microfluidics and numerical simulations publication-title: J Am Chem Soc doi: 10.1021/ja076301r – year: 2017 ident: 10.1016/j.cobme.2017.12.001_sref26 article-title: Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics publication-title: Clin Pharmacol Therapeut – volume: 18 start-page: 73 year: 2016 ident: 10.1016/j.cobme.2017.12.001_bib7 article-title: Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium publication-title: Biomed Microdevices doi: 10.1007/s10544-016-0095-6 – volume: 5 start-page: 12401 year: 2015 ident: 10.1016/j.cobme.2017.12.001_bib10 article-title: Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions publication-title: Sci Rep doi: 10.1038/srep12401 – volume: 91 start-page: 327 year: 2011 ident: 10.1016/j.cobme.2017.12.001_bib28 article-title: Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives publication-title: Physiol Rev doi: 10.1152/physrev.00047.2009 – start-page: S197 year: 2017 ident: 10.1016/j.cobme.2017.12.001_bib14 article-title: Animal models of venous thrombosis publication-title: Cardiovasc Diagn Ther doi: 10.21037/cdt.2017.08.10 – volume: 22 start-page: 28 year: 2017 ident: 10.1016/j.cobme.2017.12.001_bib15 article-title: Mouse models of deep vein thrombosis publication-title: Gefässchirurgie doi: 10.1007/s00772-016-0227-6 – volume: 140 start-page: S21 issue: Suppl 1 year: 2016 ident: 10.1016/j.cobme.2017.12.001_bib16 article-title: Microparticles and cancer thrombosis in animal models publication-title: Thromb Res doi: 10.1016/S0049-3848(16)30094-9 – year: 2017 ident: 10.1016/j.cobme.2017.12.001_bib32 article-title: Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data publication-title: Lab a Chip doi: 10.1039/C7LC00202E – volume: 7 start-page: 11302 year: 2013 ident: 10.1016/j.cobme.2017.12.001_bib11 article-title: Chip in a lab: microfluidics for next generation life science research publication-title: Biomicrofluidics doi: 10.1063/1.4789751 |
SSID | ssj0001850485 |
Score | 2.2421525 |
SecondaryResourceType | review_article |
Snippet | The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25%... |
SourceID | pubmedcentral proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 29 |
SubjectTerms | Disease model Endothelium Hemostasis Microphysiological systems Organ-on-a-chip Thrombosis |
Title | Thrombosis-on-a-chip: Prospective impact of microphysiological models of vascular thrombosis |
URI | https://dx.doi.org/10.1016/j.cobme.2017.12.001 https://www.proquest.com/docview/2597486952 https://pubmed.ncbi.nlm.nih.gov/PMC8580137 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7revEiiorriwoeDdumbZp4W0RZFUVwBQ9CaF5sxW2Xffx_M22zuiAePPYxJUzSeSTffIPQhTI6tVLnOExM4hIUrTGXRuNYU261Ui4ngeLkxyc6fE3u39K3Drr2tTAAq2xtf2PTa2vd3um32uxPi6L_QhLKgF0rAsr1LOYbaJM4b8-6aHNw9zB8-t5qYalbpwBmBBEMMp5_qEZ6qcp5HkB5ZfXOYNsf5hcf9SMGXUdQ_nBJtztou40lg0Ez3F3UMeUeeh-NZ9VEVvNijqsS51iNi-lV8DyrfFFl0FRGBpUNJgDHqzc3vA0M6tY4c3joQarBYvXFffR6ezO6HuK2hQJWSUwXkGbmkrCck1RZQ6WkNk5DQ6x2kYeNVUgMIxnlxGQus7IxD3MW2USnLtHhcMR5gLplVZpDFGSaRIm0nCjpvD6L8kSFzMRZHhEjZUZ7iHilCdXyi0Obi0_hgWQfota0AE2LiACcrocuV0LThl7j79epnw2xtkqEcwB_C577uRPu_4FDkbw01XIuCGRUjPKU9FC2NqmrAQED9_qTshjXTNwsZUDZePTfYR2jLXfFGkzbCeouZktz6oKchTxrF_EX03z-bQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzaG9lJa0dNu0daDHirVlWZZ6C6Fh81oK3UAOBWG9WIfGXnY3_z8a29pmoeSQq-UxYiTPQ_rmG4BvxtnCa1uRlDkWEhRridTOktxy6a0xISfB4uSrGZ9es_Ob4mYPTmItDMIqB9vf2_TOWg9PJoM2J8u6nvymjAtk18qQcr3M5QvYZ9jUegT7x2cX09m_oxZRhH2KYEYUISgT-Yc6pJdpg-dBlFfZnQwO_WH-46MexaC7CMpHLun0DbweYsnkuJ_uW9hzzQH8mS9W7Z1u1_WatA2piFnUyx_Jr1UbiyqTvjIyaX1yh3C87nAj2sCka42zxsEIUk022y--g-vTn_OTKRlaKBDDcr7BNLPSVFSSFsY7rjX3eZE66m2IPHxuUuoELbmkrgyZlc9lWonMM1uEREfiFed7GDVt4z5AUlqaMe0lNTp4fZFVzKTC5WWVUad1ycdAo9KUGfjFsc3FXxWBZLeq07RCTauMIpxuDN-3QsueXuPp13lcDbWzS1RwAE8LHsW1U-H_wUuRqnHt_VpRzKgElwUdQ7mzqNsJIQP37khTLzomblEIpGz8-NxpfYWX0_nVpbo8m118gldhRPT4tkMYbVb37nMIeDb6y7ChHwDQGQFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thrombosis-on-a-chip%3A+Prospective+impact+of+microphysiological+models+of+vascular+thrombosis&rft.jtitle=Current+opinion+in+biomedical+engineering&rft.au=Pandian%2C+Navaneeth+K.+R.&rft.au=Mannino%2C+Robert+G.&rft.au=Lam%2C+Wilbur+A.&rft.au=Jain%2C+Abhishek&rft.date=2018-03-01&rft.eissn=2468-4511&rft.volume=5&rft.spage=29&rft.epage=34&rft_id=info:doi/10.1016%2Fj.cobme.2017.12.001&rft_id=info%3Apmid%2F34765849&rft.externalDocID=PMC8580137 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-4511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-4511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-4511&client=summon |