Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy

The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanom...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 13; no. 16; p. 4164
Main Authors Madonna, Gabriele, Masucci, Giuseppe V., Capone, Mariaelena, Mallardo, Domenico, Grimaldi, Antonio Maria, Simeone, Ester, Vanella, Vito, Festino, Lucia, Palla, Marco, Scarpato, Luigi, Tuffanelli, Marilena, D'angelo, Grazia, Villabona, Lisa, Krakowski, Isabelle, Eriksson, Hanna, Simao, Felipe, Lewensohn, Rolf, Ascierto, Paolo Antonio
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.08.2021
MDPI
Subjects
Online AccessGet full text
ISSN2072-6694
2072-6694
DOI10.3390/cancers13164164

Cover

Abstract The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy (INT-NA). To compare patients’ clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil–lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm—survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy.
AbstractList The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale" of Napoli, Italy (INT-NA). To compare patients' clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil-lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm-survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy.The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale" of Napoli, Italy (INT-NA). To compare patients' clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil-lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm-survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy.
Simple SummaryImmune checkpoint inhibitors have improved the prognosis for patients with advanced melanoma. Despite the recent success of immunotherapy, many patients still do not benefit from these treatments, and their real-life application may yield different outcomes compared to the advantage presented in clinical trials. There is therefore a need to select patients who can really benefit from these treatments. We have focused our study on a real-life retrospective analysis of metastatic melanoma patients treated with immunotherapy at a single institution—the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy. With the help of AI and machine learning we validated an algorithm based on clinical variables of patients—namely, the Clinical Categorization Algorithm (CLICAL)—that defines five predictable cohorts of benefit to immunotherapy with 95% accuracy. It can be a useful tool for the stratification of metastatic melanoma patients who may or may not improve from immunotherapy treatment.AbstractThe real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy (INT-NA). To compare patients’ clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil–lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm—survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy.
The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy (INT-NA). To compare patients’ clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil–lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm—survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy.
Author Scarpato, Luigi
Simao, Felipe
Madonna, Gabriele
Lewensohn, Rolf
Vanella, Vito
Simeone, Ester
Masucci, Giuseppe V.
Mallardo, Domenico
Krakowski, Isabelle
Grimaldi, Antonio Maria
D'angelo, Grazia
Festino, Lucia
Palla, Marco
Eriksson, Hanna
Ascierto, Paolo Antonio
Tuffanelli, Marilena
Villabona, Lisa
Capone, Mariaelena
AuthorAffiliation 5 Genevia Technologies OY, 33100 Tampere, Finland; felipe.simao@geneviatechnologies.com
3 Department of Oncology and Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden; isabelle.krakowski@ki.se
4 Theme Inflammation, Karolinska University Hospital, 171 76 Stockholm, Sweden
1 Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; g.madonna@istitutotumori.na.it (G.M.); me.capone@istitutotumori.na.it (M.C.); d.mallardo@istitutotumori.na.it (D.M.); a.grimaldi@istitutotumori.na.it (A.M.G.); e.simeone@istitutotumori.na.it (E.S.); v.vanella@istitutotumori.na.it (V.V.); l.festino@istitutotumori.na.it (L.F.); m.palla@istitutotumori.na.it (M.P.); l.scarpato@istitutotumori.na.it (L.S.); m.tuffanelli@istitutotumori.na.it (M.T.); grazia.dangelo@istitutotumori.na.it (G.D.)
2 Theme Cancer, Karolinska University Hospital, 171 76 Stockholm, Sweden; giuseppe.masucci@ki.se (G.V.M.); lisa.villabona@ki.se (L.V.); hann
AuthorAffiliation_xml – name: 1 Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; g.madonna@istitutotumori.na.it (G.M.); me.capone@istitutotumori.na.it (M.C.); d.mallardo@istitutotumori.na.it (D.M.); a.grimaldi@istitutotumori.na.it (A.M.G.); e.simeone@istitutotumori.na.it (E.S.); v.vanella@istitutotumori.na.it (V.V.); l.festino@istitutotumori.na.it (L.F.); m.palla@istitutotumori.na.it (M.P.); l.scarpato@istitutotumori.na.it (L.S.); m.tuffanelli@istitutotumori.na.it (M.T.); grazia.dangelo@istitutotumori.na.it (G.D.)
– name: 2 Theme Cancer, Karolinska University Hospital, 171 76 Stockholm, Sweden; giuseppe.masucci@ki.se (G.V.M.); lisa.villabona@ki.se (L.V.); hanna.eriksson@sll.se (H.E.); rolf.lewensohn@ki.se (R.L.)
– name: 4 Theme Inflammation, Karolinska University Hospital, 171 76 Stockholm, Sweden
– name: 3 Department of Oncology and Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden; isabelle.krakowski@ki.se
– name: 5 Genevia Technologies OY, 33100 Tampere, Finland; felipe.simao@geneviatechnologies.com
Author_xml – sequence: 1
  givenname: Gabriele
  orcidid: 0000-0001-9395-3190
  surname: Madonna
  fullname: Madonna, Gabriele
– sequence: 2
  givenname: Giuseppe V.
  orcidid: 0000-0002-9583-2306
  surname: Masucci
  fullname: Masucci, Giuseppe V.
– sequence: 3
  givenname: Mariaelena
  orcidid: 0000-0002-1352-2532
  surname: Capone
  fullname: Capone, Mariaelena
– sequence: 4
  givenname: Domenico
  orcidid: 0000-0002-1081-5313
  surname: Mallardo
  fullname: Mallardo, Domenico
– sequence: 5
  givenname: Antonio Maria
  surname: Grimaldi
  fullname: Grimaldi, Antonio Maria
– sequence: 6
  givenname: Ester
  surname: Simeone
  fullname: Simeone, Ester
– sequence: 7
  givenname: Vito
  surname: Vanella
  fullname: Vanella, Vito
– sequence: 8
  givenname: Lucia
  surname: Festino
  fullname: Festino, Lucia
– sequence: 9
  givenname: Marco
  surname: Palla
  fullname: Palla, Marco
– sequence: 10
  givenname: Luigi
  surname: Scarpato
  fullname: Scarpato, Luigi
– sequence: 11
  givenname: Marilena
  surname: Tuffanelli
  fullname: Tuffanelli, Marilena
– sequence: 12
  givenname: Grazia
  surname: D'angelo
  fullname: D'angelo, Grazia
– sequence: 13
  givenname: Lisa
  orcidid: 0000-0001-7702-4754
  surname: Villabona
  fullname: Villabona, Lisa
– sequence: 14
  givenname: Isabelle
  surname: Krakowski
  fullname: Krakowski, Isabelle
– sequence: 15
  givenname: Hanna
  surname: Eriksson
  fullname: Eriksson, Hanna
– sequence: 16
  givenname: Felipe
  surname: Simao
  fullname: Simao, Felipe
– sequence: 17
  givenname: Rolf
  orcidid: 0000-0002-9941-9172
  surname: Lewensohn
  fullname: Lewensohn, Rolf
– sequence: 18
  givenname: Paolo Antonio
  orcidid: 0000-0002-8322-475X
  surname: Ascierto
  fullname: Ascierto, Paolo Antonio
BookMark eNqNUktvEzEQXqoiWkrPXC1xCVJD12vviwNSWDUQKYUqLeK4mnhnE1dee7G9Remvx0nLKxISliXPeL7vm4f9PDrURmMUvaTxG8bK-FyAFmgdZTTjYR9Ex0mcJ-MsK_nhH_ZRdOrcbRwWYzTP8mfREeOclYwWx08OKiW1FKBIBR5Xxsp78NJoMlFbx687Mqrms2oyf01AN-QSxFpqJHMEq6VekUnfWxMuyeh6MR3_hHpDriw2UnjyK8F71NhKv43Num7Qxq_RQr8hUpNL9OB8yCyCqUCbDshVcFF795YsENT4q7GqIRd3ssHQNmmt6UhQIDPnpR-C6Ce4D4WDQnIzdKF2MltU1TWZGt3sIhgUXSgEzwK0N0qekZkHtXkRPW1BOTx9PE-iL9OLm-rjeP75w7abseAs82PWpEmSCErzRLBYFElTtkWKTV7QEMeWL0uxZAxjWhZJ3ELDadEsk2LJoUizgrOTKH7QHXQPm--gVN1b2YHd1DSuty9a771ooLx7oPTDssNGhHFY-E0zIOu_I1qu65W5qwtW0pzmQWD0KGDNtwGdrzvpBKowYjSDq5M0y2LO45QG6Ks96K0ZbJjnDsXzPEvzLer8ASWscc5i-x89pHsMIf3uj4WKpfon7wd59emb
CitedBy_id crossref_primary_10_1016_j_prp_2024_155743
crossref_primary_10_3389_fimmu_2024_1281940
crossref_primary_10_1016_j_annonc_2023_10_125
crossref_primary_10_1186_s12967_022_03592_4
crossref_primary_10_3390_info14090513
crossref_primary_10_3390_cancers15102700
Cites_doi 10.1155/2019/5269062
10.1158/1078-0432.CCR-09-1624
10.1007/s00428-019-02538-4
10.1038/s41422-019-0224-x
10.18632/aging.102556
10.1007/s40257-017-0325-6
10.1038/s41591-020-0975-4
10.1007/s00262-017-1954-6
10.1080/14656566.2019.1601700
10.1186/s40425-019-0602-4
10.1158/1078-0432.CCR-16-0127
10.1056/NEJMoa1003466
10.1016/S0140-6736(17)31601-X
10.1080/2162402X.2017.1387706
10.1038/s41598-019-43525-8
10.1007/s00262-019-02311-1
10.1186/s40425-018-0367-1
10.1101/2021.06.22.448514
10.1097/CJI.0000000000000148
10.1002/ijc.31813
10.1056/NEJMoa1504030
10.1038/nrc3239
10.1002/cam4.2625
10.1172/JCI91190
10.1080/2162402X.2017.1405206
10.1038/nrclinonc.2017.43
10.1200/JCO.2016.71.8023
10.1016/j.ejca.2016.07.018
10.1111/jdv.16678
10.1200/EDBK_243071
10.18637/jss.v050.i11
10.3390/cancers11101425
10.1016/j.ejca.2017.08.032
10.1186/1479-5876-12-141
10.3390/cancers13030475
10.1016/j.ejca.2018.12.002
10.1016/j.ejca.2017.05.031
10.1186/s12967-020-02285-0
10.1007/s13555-021-00525-9
10.1136/jitc-2019-000260
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/cancers13164164
DatabaseName CrossRef
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Biological Sciences
Research Library
Biological Science Database (Proquest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest One Academic
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID 10.3390/cancers13164164
PMC8391717
10_3390_cancers13164164
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
TUS
3V.
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c436t-3d5222c1172c30c82d9f85ed781436ef4b9cb33e019820fad418db28b4a856843
IEDL.DBID M48
ISSN 2072-6694
IngestDate Sun Oct 26 02:44:48 EDT 2025
Tue Sep 30 16:37:33 EDT 2025
Wed Oct 01 13:59:39 EDT 2025
Fri Jul 25 11:55:11 EDT 2025
Thu Oct 16 04:43:22 EDT 2025
Thu Apr 24 23:01:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-3d5222c1172c30c82d9f85ed781436ef4b9cb33e019820fad418db28b4a856843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors equally contributed.
ORCID 0000-0002-8322-475X
0000-0001-9395-3190
0000-0002-1081-5313
0000-0001-7702-4754
0000-0002-9941-9172
0000-0002-9583-2306
0000-0002-1352-2532
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-6694/13/16/4164/pdf?version=1629363879
PMID 34439318
PQID 2564776571
PQPubID 2032421
ParticipantIDs unpaywall_primary_10_3390_cancers13164164
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8391717
proquest_miscellaneous_2566044051
proquest_journals_2564776571
crossref_primary_10_3390_cancers13164164
crossref_citationtrail_10_3390_cancers13164164
PublicationCentury 2000
PublicationDate 20210819
PublicationDateYYYYMMDD 2021-08-19
PublicationDate_xml – month: 8
  year: 2021
  text: 20210819
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Cancers
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Madonna (ref_7) 2018; 7
Balar (ref_11) 2017; 66
Ayers (ref_17) 2017; 127
Jacquelot (ref_19) 2019; 29
Rozeman (ref_40) 2017; 19
Larkin (ref_10) 2015; 373
Danaher (ref_45) 2018; 6
Nie (ref_43) 2019; 11
ref_33
Wolchok (ref_21) 2009; 15
Liu (ref_44) 2020; 26
Villani (ref_30) 2021; 11
Hodi (ref_9) 2010; 363
Schachter (ref_13) 2017; 390
Pardoll (ref_8) 2012; 12
Krakowski (ref_22) 2020; 35
Rogiers (ref_6) 2019; 2019
Luke (ref_31) 2017; 14
Tucci (ref_18) 2017; 7
Larkin (ref_12) 2018; 36
Pavlick (ref_38) 2019; 39
Petrella (ref_4) 2017; 86
ref_25
ref_24
Zhao (ref_42) 2018; 144
ref_23
Mason (ref_32) 2019; 20
Donia (ref_36) 2019; 108
Moser (ref_37) 2019; 8
Schadendorf (ref_2) 2016; 67
Madonna (ref_20) 2019; 7
Harder (ref_14) 2019; 9
Schilling (ref_16) 2019; 68
Mogensen (ref_26) 2012; 50
ref_29
Ascierto (ref_1) 2014; 12
ref_28
Johnson (ref_39) 2017; 40
Weide (ref_41) 2016; 22
ref_27
Mamoor (ref_5) 2019; 8
Bedognetti (ref_35) 2019; 7
Capone (ref_15) 2020; 18
Ottaviano (ref_34) 2019; 474
Schadendorf (ref_3) 2017; 82
References_xml – ident: ref_28
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_6
  article-title: Long-Term Survival, Quality of Life, and Psychosocial Outcomes in Advanced Melanoma Patients Treated with Immune Checkpoint Inhibitors
  publication-title: J. Oncol.
  doi: 10.1155/2019/5269062
– volume: 15
  start-page: 7412
  year: 2009
  ident: ref_21
  article-title: Guidelines for the Evaluation of Immune Therapy Activity in Solid Tumors: Immune-Related Response Criteria
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-09-1624
– volume: 474
  start-page: 421
  year: 2019
  ident: ref_34
  article-title: Recent success and limitations of immune checkpoint inhibitors for cancer: A lesson from melanoma
  publication-title: Virchows Arch.
  doi: 10.1007/s00428-019-02538-4
– volume: 29
  start-page: 846
  year: 2019
  ident: ref_19
  article-title: Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade
  publication-title: Cell Res.
  doi: 10.1038/s41422-019-0224-x
– volume: 7
  start-page: 272
  year: 2019
  ident: ref_20
  article-title: Real World data analysis related to metastatic melanoma patients treated with immunotherapy from 2012 to 2018 at Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy. 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): Part 1
  publication-title: J. Immunother. Cancer
– ident: ref_24
– volume: 11
  start-page: 11576
  year: 2019
  ident: ref_43
  article-title: Robust immunoscore model to predict the response to anti-PD1 therapy in melanoma
  publication-title: Aging
  doi: 10.18632/aging.102556
– volume: 19
  start-page: 303
  year: 2017
  ident: ref_40
  article-title: Advanced Melanoma: Current Treatment Options, Biomarkers, and Future Perspectives
  publication-title: Am. J. Clin. Dermatol.
  doi: 10.1007/s40257-017-0325-6
– volume: 26
  start-page: 1147
  year: 2020
  ident: ref_44
  article-title: Author Correction: Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0975-4
– volume: 66
  start-page: 551
  year: 2017
  ident: ref_11
  article-title: PD-1 and PD-L1 antibodies in cancer: Current status and future directions
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-017-1954-6
– volume: 20
  start-page: 1135
  year: 2019
  ident: ref_32
  article-title: Current and emerging systemic therapies for cutaneous metastatic melanoma
  publication-title: Expert Opin. Pharmacother.
  doi: 10.1080/14656566.2019.1601700
– volume: 7
  start-page: 131
  year: 2019
  ident: ref_35
  article-title: Toward a comprehensive view of cancer immune responsiveness: A synopsis from the SITC workshop
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-019-0602-4
– volume: 22
  start-page: 5487
  year: 2016
  ident: ref_41
  article-title: Baseline Biomarkers for Outcome of Melanoma Patients Treated with Pembrolizumab
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-0127
– volume: 363
  start-page: 711
  year: 2010
  ident: ref_9
  article-title: Improved Survival with Ipilimumab in Patients with Metastatic Melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1003466
– volume: 390
  start-page: 1853
  year: 2017
  ident: ref_13
  article-title: Pembrolizumab versus ipilimumab for advanced melanoma: Final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006)
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)31601-X
– volume: 7
  start-page: e1387706
  year: 2017
  ident: ref_18
  article-title: Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1387706
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_14
  article-title: Automatic discovery of image-based signatures for ipilimumab response prediction in malignant melanoma
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43525-8
– volume: 68
  start-page: 765
  year: 2019
  ident: ref_16
  article-title: First-line therapy-stratified survival in BRAF-mutant melanoma: A retrospective multicenter analysis
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-019-02311-1
– volume: 6
  start-page: 63
  year: 2018
  ident: ref_45
  article-title: Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): Results from The Cancer Genome Atlas (TCGA)
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-018-0367-1
– ident: ref_23
  doi: 10.1101/2021.06.22.448514
– volume: 40
  start-page: 31
  year: 2017
  ident: ref_39
  article-title: Sequencing Treatment in BRAF V600 Mutant Melanoma: Anti-PD-1 Before and After BRAF Inhibition
  publication-title: J. Immunother.
  doi: 10.1097/CJI.0000000000000148
– volume: 144
  start-page: 169
  year: 2018
  ident: ref_42
  article-title: Impact of clinicopathological characteristics on survival in patients treated with immune checkpoint inhibitors for metastatic melanoma
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31813
– volume: 373
  start-page: 23
  year: 2015
  ident: ref_10
  article-title: Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1504030
– volume: 12
  start-page: 252
  year: 2012
  ident: ref_8
  article-title: The blockade of immune checkpoints in cancer immunotherapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3239
– ident: ref_25
– volume: 8
  start-page: 7637
  year: 2019
  ident: ref_37
  article-title: Real-world survival of patients with advanced BRAF V600 mutated melanoma treated with front-line BRAF/MEK inhibitors, anti-PD-1 antibodies, or nivolumab/ipilimumab
  publication-title: Cancer Med.
  doi: 10.1002/cam4.2625
– volume: 127
  start-page: 2930
  year: 2017
  ident: ref_17
  article-title: IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI91190
– volume: 7
  start-page: e1405206
  year: 2018
  ident: ref_7
  article-title: PD-L1 expression with immune-infiltrate evaluation and outcome prediction in melanoma patients treated with ipilimumab
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1405206
– ident: ref_27
– volume: 14
  start-page: 463
  year: 2017
  ident: ref_31
  article-title: Targeted agents and immunotherapies: Optimizing outcomes in melanoma
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2017.43
– volume: 36
  start-page: 383
  year: 2018
  ident: ref_12
  article-title: Overall Survival in Patients with Advanced Melanoma Who Received Nivolumab Versus Investigator’s Choice Chemotherapy in CheckMate 037: A Randomized, Controlled, Open-Label Phase III Trial
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2016.71.8023
– volume: 67
  start-page: 46
  year: 2016
  ident: ref_2
  article-title: Health-related quality of life in the randomised KEYNOTE-002 study of pembrolizumab versus chemotherapy in patients with ipilimumab-refractory melanoma
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2016.07.018
– volume: 35
  start-page: 105
  year: 2020
  ident: ref_22
  article-title: Impact of modern systemic therapies and clinical markers on treatment outcome for metastatic melanoma in a real-world setting
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.16678
– volume: 39
  start-page: 564
  year: 2019
  ident: ref_38
  article-title: Frontline Therapy for BRAF-Mutated Metastatic Melanoma: How Do You Choose, and Is There One Correct Answer?
  publication-title: Am. Soc. Clin. Oncol. Educ. Book
  doi: 10.1200/EDBK_243071
– volume: 50
  start-page: 1
  year: 2012
  ident: ref_26
  article-title: Evaluating Random Forests for Survival Analysis Using Prediction Error Curves
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v050.i11
– ident: ref_29
  doi: 10.3390/cancers11101425
– volume: 86
  start-page: 115
  year: 2017
  ident: ref_4
  article-title: Patient-reported outcomes in KEYNOTE-006, a randomised study of pembrolizumab versus ipilimumab in patients with advanced melanoma
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2017.08.032
– volume: 12
  start-page: 141
  year: 2014
  ident: ref_1
  article-title: What have we learned from cancer immunotherapy in the last 3 years?
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-12-141
– ident: ref_33
  doi: 10.3390/cancers13030475
– volume: 108
  start-page: 25
  year: 2019
  ident: ref_36
  article-title: The real-world impact of modern treatments on the survival of patients with metastatic melanoma
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2018.12.002
– volume: 82
  start-page: 80
  year: 2017
  ident: ref_3
  article-title: Health-related quality of life results from the phase III CheckMate 067 study
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2017.05.031
– volume: 18
  start-page: 1
  year: 2020
  ident: ref_15
  article-title: Frequency of circulating CD8+CD73+T cells is associated with survival in nivolumab-treated melanoma patients
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-020-02285-0
– volume: 11
  start-page: 751
  year: 2021
  ident: ref_30
  article-title: Looking into a Better Future: Novel Therapies for Metastatic Melanoma
  publication-title: Dermatol. Ther.
  doi: 10.1007/s13555-021-00525-9
– volume: 8
  start-page: e000260
  year: 2019
  ident: ref_5
  article-title: Quality of life in long-term survivors of advanced melanoma treated with checkpoint inhibitors
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2019-000260
SSID ssj0000331767
Score 2.295828
Snippet The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this...
Simple SummaryImmune checkpoint inhibitors have improved the prognosis for patients with advanced melanoma. Despite the recent success of immunotherapy, many...
SourceID unpaywall
pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4164
SubjectTerms Algorithms
Antibodies
Artificial intelligence
Biomarkers
Clinical trials
Immune checkpoint inhibitors
Immunotherapy
L-Lactate dehydrogenase
Lactic acid
Learning algorithms
Leukocytes (eosinophilic)
Leukocytes (neutrophilic)
Lymphocytes
Machine learning
Melanoma
Metastases
Metastasis
Patients
Regression analysis
Signatures
Survival analysis
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swENeyFNa9jH3SbN24wR5SqNfa8udgjDQ0NGMJIW2hb0GW5DXg2FniMLK_fne27C6FbW8JulhyfL77nXT3O8Y-BDxK0M8qS8URBig6EFYoHWkhtPVjlXg89qg4eTT2L67drzfeTYuN61oYSqusbWJpqFUuaY_8BF2zGwS-F9hflj8s6hpFp6t1Cw1hWiuozyXF2EO25xAzVpvtnZ2PJ9Nm1-WUo7_0g4rjh2O8fyLpz12tbY5xg-27u-7pDnPez5jc32RLsf0p0vQPdzR4yp4YHAm96sE_Yy2dPWePRuak_MWDliH8TKFPXBB4J1W9JfRS-lLcLqDbpzLib0cgMgWjMqlSg-Fb_Q49QzYO3cvpwKpFixwmK5qkgGaCMzSXybygsSFVm5iari3MMxjpQlDN0lzix1Rk-ULApKJyXX-CKaJUq0zngbq7KVC9C-AVYFhlMeQwFr_K_UoNV5sFrh2G037_EgZ5psoRjVdc40L0MYpS04ljGGJIsX3JrgfnV_0Ly_R7sKTL_cLiCsGgI23EVJKfytBRURJ6WhErF_d14saRjDnXiEoRtyRCuXaoYieMXRF6fujyV6yd4awHDKjGFsGJcGMp0E2LMFYi8dB6RV6SxCLosI_1Y55JQ4ZOPTnSGQZFpBeze3rRYd3mB8uKB-Tvooe13syMQVjP7tS3w943w_gq0_mMyHS-KWV86gDuoUywo2_NlEQGvjuSzW9LUnAEujaG5h121Gjm_xb6-t8LfcMeO5TAQ_y_0SFrF6uNfosIrIjfmdfqN2NkNdg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF_PHqgvfp5YPWUEH3pwaS_ZZJP4IrVYrmJL6V3hfCr7Fa-YJqVNld5f72y6qdeCiPiWsJPdTZjM_CaZ-Q0h70IaJ-hnlaNEjAGKDrkTSU86CG2ZUElARWCKk_sDdj72P18FV7eq-E1aJYbi09JIe2eh5zAW-y2XtlzWQvDgt-Yq-fDDfktyGXor1KAwvksOWYBovEYOx4Nh-6vpKVddvWH0oRjdt6R5lIulS3Eml_m7zug3wtzPj7y_yuZ8_ZOn6S3n031EeLXtTc7J9-aqEE15s8fo-D_39Zg8tMgU2htVekIOdPaU3Ovbf-_P7hxYCtEUOoZdIl_YCk5op-akuJ5Bo2MKk7-cAM8U9Ms0TQ2WwfUbtC19OTQuRl2nEi1yGC7MIgVsF_iIBjiZFmasZ-pXbJXYGqYZ9HXBTRXUVOJhyrN8xmG4IYddvocR4l6nTBCCql8qmAoawBmgt8mLyGHAb8ovoBouVzPcO_RGnc4FdPNMlSMaZ1ziRvQpipo2FqfQwyBlfUTG3U-XnXPHdpBwpE9Z4VCF8NKTLqI0Sc9k5Kk4iQKtDM8XZTrxRSwFpRpxLiKhhCvfjZTwIuHzKGCRT5-TWoarviBgqnYR7nBfSI6On0dC8SRAexgHSSJ4WCfNSpUm0tKrmy4f6QTDLKN7kz3dq5PG9oL5hlnkz6LHlW5OrIlZThCr-mHIgtCtk7fbYTQO5o8Pz3S-KmWY6SkeoEy4o9PbJQ29-O5INr0uacYROrsY7NfJyVb7_7bRl_8g-4o88Ex-kKEXjo9JrVis9GsEeIV4Y9_hX899T2w
  priority: 102
  providerName: Unpaywall
Title Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
URI https://www.proquest.com/docview/2564776571
https://www.proquest.com/docview/2566044051
https://pubmed.ncbi.nlm.nih.gov/PMC8391717
https://www.mdpi.com/2072-6694/13/16/4164/pdf?version=1629363879
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: ABDBF
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M48
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxpBFJ7mAm1fSq_UNJVTKMVANs3u7LVQipHYWKqIiWCeZG6bCOtqdKW1v77n7K6mhpQWfNCdcWbcPTPnO86c72PsfcCjGP2strSMMEAxgbBC5SgLoa0vdexx6VFycrvjn_XdbwNvcCtVWt7A-b2hHelJ9WfJ0c-b5Rec8J8p4sSQ_aOi-zOb2xyhP74-TG8sUpWi3ddSYmOb7aLnikjaoV3C_3yl5ug9c5FZ5zhwLN-P3IL9575mNx3XLRq9e5by0SKdiuUPkSR_OKrmU_akRJhQL0ziGdsy6XP2sF3uob94sFVSgSbQIJYI_A1FJibUE_qQXY-h1qAE4-8HIFIN7fy4pYGSifUK6iUNOdTOe01rVTWbQHdGnWSw7uAEF9J4lFFZi_JQymyvJYxSaJtMUDbTSOHbRKSTsYBuQfI6_wQ9xK9WftAHVrqnQJkwgC1AqzjfMIGO-JX_k2ngYjHGsUOr12icQ3OS6rzEYItzHIg5xKokR3EILXzOy5es3zy9aJxZpRKEpVzuZxbXCBMdZSPaUvxYhY6O4tAzmvi6uG9iV0ZKcm4QryKiiYV27VBLJ5SuCD0_dPkrtpNir68ZUPYtwhbhSiXQgYtQahF7uK5FXhxLEVTY0eoxD1VJk05qHckQwyWyi-Edu6iw2voL04Ih5O9V91d2M1xZ-hAxpxsEvhfYFfZuXYyTnHZuRGomi7yOT9rgHtYJNuxt3SXRhG-WpKPrnC4cIbCNQXuFHawt818D3fuPkbxhjx0630P0wNE-28lmC_MWAVomq2z35LTT7VXZ9teBXc3nHF7rd7r1y9_zmUK-
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwEDdjkxhfEE9RGHBIIHXSsjVxnkgT6sqqhrVV1XXSvgXHdlilNCltqqn8cfxtnPManQR82rdEvtpOfb6Hffc7Qj441ItQzwpNhB46KNJhmssNrqFpa4cismhoqeTkwdDuXZhfL63LLfKryoVRYZWVTMwFtUi5OiM_QtVsOo5tOfrn-Q9NVY1St6tVCQ1WllYQxznEWJnYcSbX1-jCLY_9L7jeHw2jezrp9LSyyoDGTWpnGhVoghhcR03OaYu7hvAi15JCYUFRW0Zm6PGQUom2EGrLiAlTd0VouKHJXMt2TYr93ic7JjU9dP52Tk6Ho3F9ytOiqJ9tp8AUotRrHXG1mIulTtFP0W1zUx3e2Li3IzR3V8mcra9ZHP-h_rqPyaPSboV2wWhPyJZMnpIHg_Jm_tm9rRJgNIaOwp7Af67I74R2rF6yqxk0Oyptub8PLBEwyIM4JZT4rt-hXYKbQ_N83NUq0iyF0UINkkE9wAmK52iaqTZfZbeUOWRrmCYwkBlTOVJTjo8xS9IZg1EBHbv8BGO0irU8fAiqaqqg8msAewC_iJpIYch-5uejEiarGc4d_HGncw7dNBF5i8QelzgReYCkqsjFAfjowqyfk4s7WfkXZDvBUV8SUDm9aAwxM-QMzQLmhoJFFkpLz4qikDkNclgtc8BL8HVVAyQO0AlTfBHc4osGadY_mBe4I38n3av4JigF0DK42S4N8r5uRtGh7oNYItNVTmOriuMW0jgb_FYPqcDHN1uS6VUOQo6Gte7o-GH7NWf-b6Kv_j3Rd2S3Nxn0g74_PHtNHhoqeEhhD3t7ZDtbrOQbtP6y8G25xYB8u-td_RvAF3F4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwEDdlkwYviE9RGHBIIG3SQps4n0gT6rpVK1urqtukvQUndlilNiltqqn8ifxV3KVORicBT3tL5Kvt1Of7sO9-x9gHjwcJ6llpyChAB0V5wvBjKzbQtHUjmTg8cig5udd3jy_sr5fOZY39KnNhKKyylImFoJZZTGfkDVTNtue5jmc2Eh0WMTjsfJn-MKiCFN20luU0hC6zIPcLuDGd5HGiltfozs33u4e49h8tq3N03j42dMUBI7a5mxtcojlixSZq9Zg3Y9-SQeI7ShIuFHdVYkdBHHGu0C5CzZkIaZu-jCw_soXvuL7Nsd_7bJMuv1BIbB4c9QfD6sSnyVFXu94KX4jzoNmIaWFnc5Ojz2K69rpqvLF3b0drPlikU7G8FuPxH6qw85g90jYstFZM94TVVPqUbfX0Lf2zezUNNjqGNuFQ4D-3yvWE1phe8qsJ7LQphfl0F0QqoVcEdCrQWK_foaWBzmHnbNgxStI8g8GMBsmhGuAARXUyyqmtS5kuOp9sCaMUeioXlC81ivFxLNJsImCwgpGdf4YhWshGEUoEZWVVoFwbwB6gu4qgyKAvfhZnpQrOFxOcO3SH7fYZdLJUFi0Ke5zjRNQeklLBiz3oojuzfM4u7mTlX7CNFEd9yYDye9EwEnYUCzQRhB9JkTgoOQMnSSLh1dmncpnDWAOxUz2QcYgOGfFFeIsv6myn-sF0hUHyd9Ltkm9CLYzm4c3WqbP3VTOKEbobEqnKFgWNS9XHHaTx1vitGpKAyNdb0tFVAUiORrbpmfhhuxVn_m-ir_490XdsC3d3eNrtn7xmDy2KIyIY4mCbbeSzhXqDhmAevdU7DNi3u97UvwG3yXWn
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF_PHqgvfp5YPWUEH3pwaS_ZZJP4IrVYrmJL6V3hfCr7Fa-YJqVNld5f72y6qdeCiPiWsJPdTZjM_CaZ-Q0h70IaJ-hnlaNEjAGKDrkTSU86CG2ZUElARWCKk_sDdj72P18FV7eq-E1aJYbi09JIe2eh5zAW-y2XtlzWQvDgt-Yq-fDDfktyGXor1KAwvksOWYBovEYOx4Nh-6vpKVddvWH0oRjdt6R5lIulS3Eml_m7zug3wtzPj7y_yuZ8_ZOn6S3n031EeLXtTc7J9-aqEE15s8fo-D_39Zg8tMgU2htVekIOdPaU3Ovbf-_P7hxYCtEUOoZdIl_YCk5op-akuJ5Bo2MKk7-cAM8U9Ms0TQ2WwfUbtC19OTQuRl2nEi1yGC7MIgVsF_iIBjiZFmasZ-pXbJXYGqYZ9HXBTRXUVOJhyrN8xmG4IYddvocR4l6nTBCCql8qmAoawBmgt8mLyGHAb8ovoBouVzPcO_RGnc4FdPNMlSMaZ1ziRvQpipo2FqfQwyBlfUTG3U-XnXPHdpBwpE9Z4VCF8NKTLqI0Sc9k5Kk4iQKtDM8XZTrxRSwFpRpxLiKhhCvfjZTwIuHzKGCRT5-TWoarviBgqnYR7nBfSI6On0dC8SRAexgHSSJ4WCfNSpUm0tKrmy4f6QTDLKN7kz3dq5PG9oL5hlnkz6LHlW5OrIlZThCr-mHIgtCtk7fbYTQO5o8Pz3S-KmWY6SkeoEy4o9PbJQ29-O5INr0uacYROrsY7NfJyVb7_7bRl_8g-4o88Ex-kKEXjo9JrVis9GsEeIV4Y9_hX899T2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+Categorization+Algorithm+%28CLICAL%29+and+Machine+Learning+Approach+%28SRF-CLICAL%29+to+Predict+Clinical+Benefit+to+Immunotherapy+in+Metastatic+Melanoma+Patients%3A+Real-World+Evidence+from+the+Istituto+Nazionale+Tumori+IRCCS+Fondazione+Pascale%2C+Napoli%2C+Italy&rft.jtitle=Cancers&rft.au=Madonna%2C+Gabriele&rft.au=Masucci%2C+Giuseppe+V&rft.au=Capone%2C+Mariaelena&rft.au=Mallardo%2C+Domenico&rft.date=2021-08-19&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=13&rft.issue=16&rft_id=info:doi/10.3390%2Fcancers13164164&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon