Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanom...
Saved in:
| Published in | Cancers Vol. 13; no. 16; p. 4164 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
19.08.2021
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-6694 2072-6694 |
| DOI | 10.3390/cancers13164164 |
Cover
| Abstract | The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy (INT-NA). To compare patients’ clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil–lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm—survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy. |
|---|---|
| AbstractList | The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale" of Napoli, Italy (INT-NA). To compare patients' clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil-lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm-survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy.The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale" of Napoli, Italy (INT-NA). To compare patients' clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil-lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm-survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy. Simple SummaryImmune checkpoint inhibitors have improved the prognosis for patients with advanced melanoma. Despite the recent success of immunotherapy, many patients still do not benefit from these treatments, and their real-life application may yield different outcomes compared to the advantage presented in clinical trials. There is therefore a need to select patients who can really benefit from these treatments. We have focused our study on a real-life retrospective analysis of metastatic melanoma patients treated with immunotherapy at a single institution—the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy. With the help of AI and machine learning we validated an algorithm based on clinical variables of patients—namely, the Clinical Categorization Algorithm (CLICAL)—that defines five predictable cohorts of benefit to immunotherapy with 95% accuracy. It can be a useful tool for the stratification of metastatic melanoma patients who may or may not improve from immunotherapy treatment.AbstractThe real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy (INT-NA). To compare patients’ clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil–lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm—survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy. The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy (INT-NA). To compare patients’ clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil–lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm—survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy. |
| Author | Scarpato, Luigi Simao, Felipe Madonna, Gabriele Lewensohn, Rolf Vanella, Vito Simeone, Ester Masucci, Giuseppe V. Mallardo, Domenico Krakowski, Isabelle Grimaldi, Antonio Maria D'angelo, Grazia Festino, Lucia Palla, Marco Eriksson, Hanna Ascierto, Paolo Antonio Tuffanelli, Marilena Villabona, Lisa Capone, Mariaelena |
| AuthorAffiliation | 5 Genevia Technologies OY, 33100 Tampere, Finland; felipe.simao@geneviatechnologies.com 3 Department of Oncology and Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden; isabelle.krakowski@ki.se 4 Theme Inflammation, Karolinska University Hospital, 171 76 Stockholm, Sweden 1 Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; g.madonna@istitutotumori.na.it (G.M.); me.capone@istitutotumori.na.it (M.C.); d.mallardo@istitutotumori.na.it (D.M.); a.grimaldi@istitutotumori.na.it (A.M.G.); e.simeone@istitutotumori.na.it (E.S.); v.vanella@istitutotumori.na.it (V.V.); l.festino@istitutotumori.na.it (L.F.); m.palla@istitutotumori.na.it (M.P.); l.scarpato@istitutotumori.na.it (L.S.); m.tuffanelli@istitutotumori.na.it (M.T.); grazia.dangelo@istitutotumori.na.it (G.D.) 2 Theme Cancer, Karolinska University Hospital, 171 76 Stockholm, Sweden; giuseppe.masucci@ki.se (G.V.M.); lisa.villabona@ki.se (L.V.); hann |
| AuthorAffiliation_xml | – name: 1 Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; g.madonna@istitutotumori.na.it (G.M.); me.capone@istitutotumori.na.it (M.C.); d.mallardo@istitutotumori.na.it (D.M.); a.grimaldi@istitutotumori.na.it (A.M.G.); e.simeone@istitutotumori.na.it (E.S.); v.vanella@istitutotumori.na.it (V.V.); l.festino@istitutotumori.na.it (L.F.); m.palla@istitutotumori.na.it (M.P.); l.scarpato@istitutotumori.na.it (L.S.); m.tuffanelli@istitutotumori.na.it (M.T.); grazia.dangelo@istitutotumori.na.it (G.D.) – name: 2 Theme Cancer, Karolinska University Hospital, 171 76 Stockholm, Sweden; giuseppe.masucci@ki.se (G.V.M.); lisa.villabona@ki.se (L.V.); hanna.eriksson@sll.se (H.E.); rolf.lewensohn@ki.se (R.L.) – name: 4 Theme Inflammation, Karolinska University Hospital, 171 76 Stockholm, Sweden – name: 3 Department of Oncology and Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden; isabelle.krakowski@ki.se – name: 5 Genevia Technologies OY, 33100 Tampere, Finland; felipe.simao@geneviatechnologies.com |
| Author_xml | – sequence: 1 givenname: Gabriele orcidid: 0000-0001-9395-3190 surname: Madonna fullname: Madonna, Gabriele – sequence: 2 givenname: Giuseppe V. orcidid: 0000-0002-9583-2306 surname: Masucci fullname: Masucci, Giuseppe V. – sequence: 3 givenname: Mariaelena orcidid: 0000-0002-1352-2532 surname: Capone fullname: Capone, Mariaelena – sequence: 4 givenname: Domenico orcidid: 0000-0002-1081-5313 surname: Mallardo fullname: Mallardo, Domenico – sequence: 5 givenname: Antonio Maria surname: Grimaldi fullname: Grimaldi, Antonio Maria – sequence: 6 givenname: Ester surname: Simeone fullname: Simeone, Ester – sequence: 7 givenname: Vito surname: Vanella fullname: Vanella, Vito – sequence: 8 givenname: Lucia surname: Festino fullname: Festino, Lucia – sequence: 9 givenname: Marco surname: Palla fullname: Palla, Marco – sequence: 10 givenname: Luigi surname: Scarpato fullname: Scarpato, Luigi – sequence: 11 givenname: Marilena surname: Tuffanelli fullname: Tuffanelli, Marilena – sequence: 12 givenname: Grazia surname: D'angelo fullname: D'angelo, Grazia – sequence: 13 givenname: Lisa orcidid: 0000-0001-7702-4754 surname: Villabona fullname: Villabona, Lisa – sequence: 14 givenname: Isabelle surname: Krakowski fullname: Krakowski, Isabelle – sequence: 15 givenname: Hanna surname: Eriksson fullname: Eriksson, Hanna – sequence: 16 givenname: Felipe surname: Simao fullname: Simao, Felipe – sequence: 17 givenname: Rolf orcidid: 0000-0002-9941-9172 surname: Lewensohn fullname: Lewensohn, Rolf – sequence: 18 givenname: Paolo Antonio orcidid: 0000-0002-8322-475X surname: Ascierto fullname: Ascierto, Paolo Antonio |
| BookMark | eNqNUktvEzEQXqoiWkrPXC1xCVJD12vviwNSWDUQKYUqLeK4mnhnE1dee7G9Remvx0nLKxISliXPeL7vm4f9PDrURmMUvaTxG8bK-FyAFmgdZTTjYR9Ex0mcJ-MsK_nhH_ZRdOrcbRwWYzTP8mfREeOclYwWx08OKiW1FKBIBR5Xxsp78NJoMlFbx687Mqrms2oyf01AN-QSxFpqJHMEq6VekUnfWxMuyeh6MR3_hHpDriw2UnjyK8F71NhKv43Num7Qxq_RQr8hUpNL9OB8yCyCqUCbDshVcFF795YsENT4q7GqIRd3ssHQNmmt6UhQIDPnpR-C6Ce4D4WDQnIzdKF2MltU1TWZGt3sIhgUXSgEzwK0N0qekZkHtXkRPW1BOTx9PE-iL9OLm-rjeP75w7abseAs82PWpEmSCErzRLBYFElTtkWKTV7QEMeWL0uxZAxjWhZJ3ELDadEsk2LJoUizgrOTKH7QHXQPm--gVN1b2YHd1DSuty9a771ooLx7oPTDssNGhHFY-E0zIOu_I1qu65W5qwtW0pzmQWD0KGDNtwGdrzvpBKowYjSDq5M0y2LO45QG6Ks96K0ZbJjnDsXzPEvzLer8ASWscc5i-x89pHsMIf3uj4WKpfon7wd59emb |
| CitedBy_id | crossref_primary_10_1016_j_prp_2024_155743 crossref_primary_10_3389_fimmu_2024_1281940 crossref_primary_10_1016_j_annonc_2023_10_125 crossref_primary_10_1186_s12967_022_03592_4 crossref_primary_10_3390_info14090513 crossref_primary_10_3390_cancers15102700 |
| Cites_doi | 10.1155/2019/5269062 10.1158/1078-0432.CCR-09-1624 10.1007/s00428-019-02538-4 10.1038/s41422-019-0224-x 10.18632/aging.102556 10.1007/s40257-017-0325-6 10.1038/s41591-020-0975-4 10.1007/s00262-017-1954-6 10.1080/14656566.2019.1601700 10.1186/s40425-019-0602-4 10.1158/1078-0432.CCR-16-0127 10.1056/NEJMoa1003466 10.1016/S0140-6736(17)31601-X 10.1080/2162402X.2017.1387706 10.1038/s41598-019-43525-8 10.1007/s00262-019-02311-1 10.1186/s40425-018-0367-1 10.1101/2021.06.22.448514 10.1097/CJI.0000000000000148 10.1002/ijc.31813 10.1056/NEJMoa1504030 10.1038/nrc3239 10.1002/cam4.2625 10.1172/JCI91190 10.1080/2162402X.2017.1405206 10.1038/nrclinonc.2017.43 10.1200/JCO.2016.71.8023 10.1016/j.ejca.2016.07.018 10.1111/jdv.16678 10.1200/EDBK_243071 10.18637/jss.v050.i11 10.3390/cancers11101425 10.1016/j.ejca.2017.08.032 10.1186/1479-5876-12-141 10.3390/cancers13030475 10.1016/j.ejca.2018.12.002 10.1016/j.ejca.2017.05.031 10.1186/s12967-020-02285-0 10.1007/s13555-021-00525-9 10.1136/jitc-2019-000260 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.3390/cancers13164164 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection Biological Sciences Research Library Biological Science Database (Proquest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest One Academic url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2072-6694 |
| ExternalDocumentID | 10.3390/cancers13164164 PMC8391717 10_3390_cancers13164164 |
| GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM TUS 3V. 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADRAZ ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c436t-3d5222c1172c30c82d9f85ed781436ef4b9cb33e019820fad418db28b4a856843 |
| IEDL.DBID | M48 |
| ISSN | 2072-6694 |
| IngestDate | Sun Oct 26 02:44:48 EDT 2025 Tue Sep 30 16:37:33 EDT 2025 Wed Oct 01 13:59:39 EDT 2025 Fri Jul 25 11:55:11 EDT 2025 Thu Oct 16 04:43:22 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-3d5222c1172c30c82d9f85ed781436ef4b9cb33e019820fad418db28b4a856843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors equally contributed. |
| ORCID | 0000-0002-8322-475X 0000-0001-9395-3190 0000-0002-1081-5313 0000-0001-7702-4754 0000-0002-9941-9172 0000-0002-9583-2306 0000-0002-1352-2532 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-6694/13/16/4164/pdf?version=1629363879 |
| PMID | 34439318 |
| PQID | 2564776571 |
| PQPubID | 2032421 |
| ParticipantIDs | unpaywall_primary_10_3390_cancers13164164 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8391717 proquest_miscellaneous_2566044051 proquest_journals_2564776571 crossref_primary_10_3390_cancers13164164 crossref_citationtrail_10_3390_cancers13164164 |
| PublicationCentury | 2000 |
| PublicationDate | 20210819 |
| PublicationDateYYYYMMDD | 2021-08-19 |
| PublicationDate_xml | – month: 8 year: 2021 text: 20210819 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Cancers |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Madonna (ref_7) 2018; 7 Balar (ref_11) 2017; 66 Ayers (ref_17) 2017; 127 Jacquelot (ref_19) 2019; 29 Rozeman (ref_40) 2017; 19 Larkin (ref_10) 2015; 373 Danaher (ref_45) 2018; 6 Nie (ref_43) 2019; 11 ref_33 Wolchok (ref_21) 2009; 15 Liu (ref_44) 2020; 26 Villani (ref_30) 2021; 11 Hodi (ref_9) 2010; 363 Schachter (ref_13) 2017; 390 Pardoll (ref_8) 2012; 12 Krakowski (ref_22) 2020; 35 Rogiers (ref_6) 2019; 2019 Luke (ref_31) 2017; 14 Tucci (ref_18) 2017; 7 Larkin (ref_12) 2018; 36 Pavlick (ref_38) 2019; 39 Petrella (ref_4) 2017; 86 ref_25 ref_24 Zhao (ref_42) 2018; 144 ref_23 Mason (ref_32) 2019; 20 Donia (ref_36) 2019; 108 Moser (ref_37) 2019; 8 Schadendorf (ref_2) 2016; 67 Madonna (ref_20) 2019; 7 Harder (ref_14) 2019; 9 Schilling (ref_16) 2019; 68 Mogensen (ref_26) 2012; 50 ref_29 Ascierto (ref_1) 2014; 12 ref_28 Johnson (ref_39) 2017; 40 Weide (ref_41) 2016; 22 ref_27 Mamoor (ref_5) 2019; 8 Bedognetti (ref_35) 2019; 7 Capone (ref_15) 2020; 18 Ottaviano (ref_34) 2019; 474 Schadendorf (ref_3) 2017; 82 |
| References_xml | – ident: ref_28 – volume: 2019 start-page: 1 year: 2019 ident: ref_6 article-title: Long-Term Survival, Quality of Life, and Psychosocial Outcomes in Advanced Melanoma Patients Treated with Immune Checkpoint Inhibitors publication-title: J. Oncol. doi: 10.1155/2019/5269062 – volume: 15 start-page: 7412 year: 2009 ident: ref_21 article-title: Guidelines for the Evaluation of Immune Therapy Activity in Solid Tumors: Immune-Related Response Criteria publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-09-1624 – volume: 474 start-page: 421 year: 2019 ident: ref_34 article-title: Recent success and limitations of immune checkpoint inhibitors for cancer: A lesson from melanoma publication-title: Virchows Arch. doi: 10.1007/s00428-019-02538-4 – volume: 29 start-page: 846 year: 2019 ident: ref_19 article-title: Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade publication-title: Cell Res. doi: 10.1038/s41422-019-0224-x – volume: 7 start-page: 272 year: 2019 ident: ref_20 article-title: Real World data analysis related to metastatic melanoma patients treated with immunotherapy from 2012 to 2018 at Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy. 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): Part 1 publication-title: J. Immunother. Cancer – ident: ref_24 – volume: 11 start-page: 11576 year: 2019 ident: ref_43 article-title: Robust immunoscore model to predict the response to anti-PD1 therapy in melanoma publication-title: Aging doi: 10.18632/aging.102556 – volume: 19 start-page: 303 year: 2017 ident: ref_40 article-title: Advanced Melanoma: Current Treatment Options, Biomarkers, and Future Perspectives publication-title: Am. J. Clin. Dermatol. doi: 10.1007/s40257-017-0325-6 – volume: 26 start-page: 1147 year: 2020 ident: ref_44 article-title: Author Correction: Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma publication-title: Nat. Med. doi: 10.1038/s41591-020-0975-4 – volume: 66 start-page: 551 year: 2017 ident: ref_11 article-title: PD-1 and PD-L1 antibodies in cancer: Current status and future directions publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-017-1954-6 – volume: 20 start-page: 1135 year: 2019 ident: ref_32 article-title: Current and emerging systemic therapies for cutaneous metastatic melanoma publication-title: Expert Opin. Pharmacother. doi: 10.1080/14656566.2019.1601700 – volume: 7 start-page: 131 year: 2019 ident: ref_35 article-title: Toward a comprehensive view of cancer immune responsiveness: A synopsis from the SITC workshop publication-title: J. Immunother. Cancer doi: 10.1186/s40425-019-0602-4 – volume: 22 start-page: 5487 year: 2016 ident: ref_41 article-title: Baseline Biomarkers for Outcome of Melanoma Patients Treated with Pembrolizumab publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-0127 – volume: 363 start-page: 711 year: 2010 ident: ref_9 article-title: Improved Survival with Ipilimumab in Patients with Metastatic Melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1003466 – volume: 390 start-page: 1853 year: 2017 ident: ref_13 article-title: Pembrolizumab versus ipilimumab for advanced melanoma: Final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006) publication-title: Lancet doi: 10.1016/S0140-6736(17)31601-X – volume: 7 start-page: e1387706 year: 2017 ident: ref_18 article-title: Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma publication-title: OncoImmunology doi: 10.1080/2162402X.2017.1387706 – volume: 9 start-page: 1 year: 2019 ident: ref_14 article-title: Automatic discovery of image-based signatures for ipilimumab response prediction in malignant melanoma publication-title: Sci. Rep. doi: 10.1038/s41598-019-43525-8 – volume: 68 start-page: 765 year: 2019 ident: ref_16 article-title: First-line therapy-stratified survival in BRAF-mutant melanoma: A retrospective multicenter analysis publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-019-02311-1 – volume: 6 start-page: 63 year: 2018 ident: ref_45 article-title: Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): Results from The Cancer Genome Atlas (TCGA) publication-title: J. Immunother. Cancer doi: 10.1186/s40425-018-0367-1 – ident: ref_23 doi: 10.1101/2021.06.22.448514 – volume: 40 start-page: 31 year: 2017 ident: ref_39 article-title: Sequencing Treatment in BRAF V600 Mutant Melanoma: Anti-PD-1 Before and After BRAF Inhibition publication-title: J. Immunother. doi: 10.1097/CJI.0000000000000148 – volume: 144 start-page: 169 year: 2018 ident: ref_42 article-title: Impact of clinicopathological characteristics on survival in patients treated with immune checkpoint inhibitors for metastatic melanoma publication-title: Int. J. Cancer doi: 10.1002/ijc.31813 – volume: 373 start-page: 23 year: 2015 ident: ref_10 article-title: Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1504030 – volume: 12 start-page: 252 year: 2012 ident: ref_8 article-title: The blockade of immune checkpoints in cancer immunotherapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3239 – ident: ref_25 – volume: 8 start-page: 7637 year: 2019 ident: ref_37 article-title: Real-world survival of patients with advanced BRAF V600 mutated melanoma treated with front-line BRAF/MEK inhibitors, anti-PD-1 antibodies, or nivolumab/ipilimumab publication-title: Cancer Med. doi: 10.1002/cam4.2625 – volume: 127 start-page: 2930 year: 2017 ident: ref_17 article-title: IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade publication-title: J. Clin. Investig. doi: 10.1172/JCI91190 – volume: 7 start-page: e1405206 year: 2018 ident: ref_7 article-title: PD-L1 expression with immune-infiltrate evaluation and outcome prediction in melanoma patients treated with ipilimumab publication-title: OncoImmunology doi: 10.1080/2162402X.2017.1405206 – ident: ref_27 – volume: 14 start-page: 463 year: 2017 ident: ref_31 article-title: Targeted agents and immunotherapies: Optimizing outcomes in melanoma publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.43 – volume: 36 start-page: 383 year: 2018 ident: ref_12 article-title: Overall Survival in Patients with Advanced Melanoma Who Received Nivolumab Versus Investigator’s Choice Chemotherapy in CheckMate 037: A Randomized, Controlled, Open-Label Phase III Trial publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2016.71.8023 – volume: 67 start-page: 46 year: 2016 ident: ref_2 article-title: Health-related quality of life in the randomised KEYNOTE-002 study of pembrolizumab versus chemotherapy in patients with ipilimumab-refractory melanoma publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2016.07.018 – volume: 35 start-page: 105 year: 2020 ident: ref_22 article-title: Impact of modern systemic therapies and clinical markers on treatment outcome for metastatic melanoma in a real-world setting publication-title: J. Eur. Acad. Dermatol. Venereol. doi: 10.1111/jdv.16678 – volume: 39 start-page: 564 year: 2019 ident: ref_38 article-title: Frontline Therapy for BRAF-Mutated Metastatic Melanoma: How Do You Choose, and Is There One Correct Answer? publication-title: Am. Soc. Clin. Oncol. Educ. Book doi: 10.1200/EDBK_243071 – volume: 50 start-page: 1 year: 2012 ident: ref_26 article-title: Evaluating Random Forests for Survival Analysis Using Prediction Error Curves publication-title: J. Stat. Softw. doi: 10.18637/jss.v050.i11 – ident: ref_29 doi: 10.3390/cancers11101425 – volume: 86 start-page: 115 year: 2017 ident: ref_4 article-title: Patient-reported outcomes in KEYNOTE-006, a randomised study of pembrolizumab versus ipilimumab in patients with advanced melanoma publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2017.08.032 – volume: 12 start-page: 141 year: 2014 ident: ref_1 article-title: What have we learned from cancer immunotherapy in the last 3 years? publication-title: J. Transl. Med. doi: 10.1186/1479-5876-12-141 – ident: ref_33 doi: 10.3390/cancers13030475 – volume: 108 start-page: 25 year: 2019 ident: ref_36 article-title: The real-world impact of modern treatments on the survival of patients with metastatic melanoma publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2018.12.002 – volume: 82 start-page: 80 year: 2017 ident: ref_3 article-title: Health-related quality of life results from the phase III CheckMate 067 study publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2017.05.031 – volume: 18 start-page: 1 year: 2020 ident: ref_15 article-title: Frequency of circulating CD8+CD73+T cells is associated with survival in nivolumab-treated melanoma patients publication-title: J. Transl. Med. doi: 10.1186/s12967-020-02285-0 – volume: 11 start-page: 751 year: 2021 ident: ref_30 article-title: Looking into a Better Future: Novel Therapies for Metastatic Melanoma publication-title: Dermatol. Ther. doi: 10.1007/s13555-021-00525-9 – volume: 8 start-page: e000260 year: 2019 ident: ref_5 article-title: Quality of life in long-term survivors of advanced melanoma treated with checkpoint inhibitors publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2019-000260 |
| SSID | ssj0000331767 |
| Score | 2.295828 |
| Snippet | The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this... Simple SummaryImmune checkpoint inhibitors have improved the prognosis for patients with advanced melanoma. Despite the recent success of immunotherapy, many... |
| SourceID | unpaywall pubmedcentral proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4164 |
| SubjectTerms | Algorithms Antibodies Artificial intelligence Biomarkers Clinical trials Immune checkpoint inhibitors Immunotherapy L-Lactate dehydrogenase Lactic acid Learning algorithms Leukocytes (eosinophilic) Leukocytes (neutrophilic) Lymphocytes Machine learning Melanoma Metastases Metastasis Patients Regression analysis Signatures Survival analysis Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swENeyFNa9jH3SbN24wR5SqNfa8udgjDQ0NGMJIW2hb0GW5DXg2FniMLK_fne27C6FbW8JulhyfL77nXT3O8Y-BDxK0M8qS8URBig6EFYoHWkhtPVjlXg89qg4eTT2L67drzfeTYuN61oYSqusbWJpqFUuaY_8BF2zGwS-F9hflj8s6hpFp6t1Cw1hWiuozyXF2EO25xAzVpvtnZ2PJ9Nm1-WUo7_0g4rjh2O8fyLpz12tbY5xg-27u-7pDnPez5jc32RLsf0p0vQPdzR4yp4YHAm96sE_Yy2dPWePRuak_MWDliH8TKFPXBB4J1W9JfRS-lLcLqDbpzLib0cgMgWjMqlSg-Fb_Q49QzYO3cvpwKpFixwmK5qkgGaCMzSXybygsSFVm5iari3MMxjpQlDN0lzix1Rk-ULApKJyXX-CKaJUq0zngbq7KVC9C-AVYFhlMeQwFr_K_UoNV5sFrh2G037_EgZ5psoRjVdc40L0MYpS04ljGGJIsX3JrgfnV_0Ly_R7sKTL_cLiCsGgI23EVJKfytBRURJ6WhErF_d14saRjDnXiEoRtyRCuXaoYieMXRF6fujyV6yd4awHDKjGFsGJcGMp0E2LMFYi8dB6RV6SxCLosI_1Y55JQ4ZOPTnSGQZFpBeze3rRYd3mB8uKB-Tvooe13syMQVjP7tS3w943w_gq0_mMyHS-KWV86gDuoUywo2_NlEQGvjuSzW9LUnAEujaG5h121Gjm_xb6-t8LfcMeO5TAQ_y_0SFrF6uNfosIrIjfmdfqN2NkNdg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF_PHqgvfp5YPWUEH3pwaS_ZZJP4IrVYrmJL6V3hfCr7Fa-YJqVNld5f72y6qdeCiPiWsJPdTZjM_CaZ-Q0h70IaJ-hnlaNEjAGKDrkTSU86CG2ZUElARWCKk_sDdj72P18FV7eq-E1aJYbi09JIe2eh5zAW-y2XtlzWQvDgt-Yq-fDDfktyGXor1KAwvksOWYBovEYOx4Nh-6vpKVddvWH0oRjdt6R5lIulS3Eml_m7zug3wtzPj7y_yuZ8_ZOn6S3n031EeLXtTc7J9-aqEE15s8fo-D_39Zg8tMgU2htVekIOdPaU3Ovbf-_P7hxYCtEUOoZdIl_YCk5op-akuJ5Bo2MKk7-cAM8U9Ms0TQ2WwfUbtC19OTQuRl2nEi1yGC7MIgVsF_iIBjiZFmasZ-pXbJXYGqYZ9HXBTRXUVOJhyrN8xmG4IYddvocR4l6nTBCCql8qmAoawBmgt8mLyGHAb8ovoBouVzPcO_RGnc4FdPNMlSMaZ1ziRvQpipo2FqfQwyBlfUTG3U-XnXPHdpBwpE9Z4VCF8NKTLqI0Sc9k5Kk4iQKtDM8XZTrxRSwFpRpxLiKhhCvfjZTwIuHzKGCRT5-TWoarviBgqnYR7nBfSI6On0dC8SRAexgHSSJ4WCfNSpUm0tKrmy4f6QTDLKN7kz3dq5PG9oL5hlnkz6LHlW5OrIlZThCr-mHIgtCtk7fbYTQO5o8Pz3S-KmWY6SkeoEy4o9PbJQ29-O5INr0uacYROrsY7NfJyVb7_7bRl_8g-4o88Ex-kKEXjo9JrVis9GsEeIV4Y9_hX899T2w priority: 102 providerName: Unpaywall |
| Title | Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy |
| URI | https://www.proquest.com/docview/2564776571 https://www.proquest.com/docview/2566044051 https://pubmed.ncbi.nlm.nih.gov/PMC8391717 https://www.mdpi.com/2072-6694/13/16/4164/pdf?version=1629363879 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: ABDBF dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest One Academic customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2072-6694 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: M48 dateStart: 20091201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxpBFJ7mAm1fSq_UNJVTKMVANs3u7LVQipHYWKqIiWCeZG6bCOtqdKW1v77n7K6mhpQWfNCdcWbcPTPnO86c72PsfcCjGP2strSMMEAxgbBC5SgLoa0vdexx6VFycrvjn_XdbwNvcCtVWt7A-b2hHelJ9WfJ0c-b5Rec8J8p4sSQ_aOi-zOb2xyhP74-TG8sUpWi3ddSYmOb7aLnikjaoV3C_3yl5ug9c5FZ5zhwLN-P3IL9575mNx3XLRq9e5by0SKdiuUPkSR_OKrmU_akRJhQL0ziGdsy6XP2sF3uob94sFVSgSbQIJYI_A1FJibUE_qQXY-h1qAE4-8HIFIN7fy4pYGSifUK6iUNOdTOe01rVTWbQHdGnWSw7uAEF9J4lFFZi_JQymyvJYxSaJtMUDbTSOHbRKSTsYBuQfI6_wQ9xK9WftAHVrqnQJkwgC1AqzjfMIGO-JX_k2ngYjHGsUOr12icQ3OS6rzEYItzHIg5xKokR3EILXzOy5es3zy9aJxZpRKEpVzuZxbXCBMdZSPaUvxYhY6O4tAzmvi6uG9iV0ZKcm4QryKiiYV27VBLJ5SuCD0_dPkrtpNir68ZUPYtwhbhSiXQgYtQahF7uK5FXhxLEVTY0eoxD1VJk05qHckQwyWyi-Edu6iw2voL04Ih5O9V91d2M1xZ-hAxpxsEvhfYFfZuXYyTnHZuRGomi7yOT9rgHtYJNuxt3SXRhG-WpKPrnC4cIbCNQXuFHawt818D3fuPkbxhjx0630P0wNE-28lmC_MWAVomq2z35LTT7VXZ9teBXc3nHF7rd7r1y9_zmUK- |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwEDdjkxhfEE9RGHBIIHXSsjVxnkgT6sqqhrVV1XXSvgXHdlilNCltqqn8cfxtnPManQR82rdEvtpOfb6Hffc7Qj441ItQzwpNhB46KNJhmssNrqFpa4cismhoqeTkwdDuXZhfL63LLfKryoVRYZWVTMwFtUi5OiM_QtVsOo5tOfrn-Q9NVY1St6tVCQ1WllYQxznEWJnYcSbX1-jCLY_9L7jeHw2jezrp9LSyyoDGTWpnGhVoghhcR03OaYu7hvAi15JCYUFRW0Zm6PGQUom2EGrLiAlTd0VouKHJXMt2TYr93ic7JjU9dP52Tk6Ho3F9ytOiqJ9tp8AUotRrHXG1mIulTtFP0W1zUx3e2Li3IzR3V8mcra9ZHP-h_rqPyaPSboV2wWhPyJZMnpIHg_Jm_tm9rRJgNIaOwp7Af67I74R2rF6yqxk0Oyptub8PLBEwyIM4JZT4rt-hXYKbQ_N83NUq0iyF0UINkkE9wAmK52iaqTZfZbeUOWRrmCYwkBlTOVJTjo8xS9IZg1EBHbv8BGO0irU8fAiqaqqg8msAewC_iJpIYch-5uejEiarGc4d_HGncw7dNBF5i8QelzgReYCkqsjFAfjowqyfk4s7WfkXZDvBUV8SUDm9aAwxM-QMzQLmhoJFFkpLz4qikDkNclgtc8BL8HVVAyQO0AlTfBHc4osGadY_mBe4I38n3av4JigF0DK42S4N8r5uRtGh7oNYItNVTmOriuMW0jgb_FYPqcDHN1uS6VUOQo6Gte7o-GH7NWf-b6Kv_j3Rd2S3Nxn0g74_PHtNHhoqeEhhD3t7ZDtbrOQbtP6y8G25xYB8u-td_RvAF3F4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwEDdlkwYviE9RGHBIIG3SQps4n0gT6rpVK1urqtukvQUndlilNiltqqn8ifxV3KVORicBT3tL5Kvt1Of7sO9-x9gHjwcJ6llpyChAB0V5wvBjKzbQtHUjmTg8cig5udd3jy_sr5fOZY39KnNhKKyylImFoJZZTGfkDVTNtue5jmc2Eh0WMTjsfJn-MKiCFN20luU0hC6zIPcLuDGd5HGiltfozs33u4e49h8tq3N03j42dMUBI7a5mxtcojlixSZq9Zg3Y9-SQeI7ShIuFHdVYkdBHHGu0C5CzZkIaZu-jCw_soXvuL7Nsd_7bJMuv1BIbB4c9QfD6sSnyVFXu94KX4jzoNmIaWFnc5Ojz2K69rpqvLF3b0drPlikU7G8FuPxH6qw85g90jYstFZM94TVVPqUbfX0Lf2zezUNNjqGNuFQ4D-3yvWE1phe8qsJ7LQphfl0F0QqoVcEdCrQWK_foaWBzmHnbNgxStI8g8GMBsmhGuAARXUyyqmtS5kuOp9sCaMUeioXlC81ivFxLNJsImCwgpGdf4YhWshGEUoEZWVVoFwbwB6gu4qgyKAvfhZnpQrOFxOcO3SH7fYZdLJUFi0Ke5zjRNQeklLBiz3oojuzfM4u7mTlX7CNFEd9yYDye9EwEnYUCzQRhB9JkTgoOQMnSSLh1dmncpnDWAOxUz2QcYgOGfFFeIsv6myn-sF0hUHyd9Ltkm9CLYzm4c3WqbP3VTOKEbobEqnKFgWNS9XHHaTx1vitGpKAyNdb0tFVAUiORrbpmfhhuxVn_m-ir_490XdsC3d3eNrtn7xmDy2KIyIY4mCbbeSzhXqDhmAevdU7DNi3u97UvwG3yXWn |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF_PHqgvfp5YPWUEH3pwaS_ZZJP4IrVYrmJL6V3hfCr7Fa-YJqVNld5f72y6qdeCiPiWsJPdTZjM_CaZ-Q0h70IaJ-hnlaNEjAGKDrkTSU86CG2ZUElARWCKk_sDdj72P18FV7eq-E1aJYbi09JIe2eh5zAW-y2XtlzWQvDgt-Yq-fDDfktyGXor1KAwvksOWYBovEYOx4Nh-6vpKVddvWH0oRjdt6R5lIulS3Eml_m7zug3wtzPj7y_yuZ8_ZOn6S3n031EeLXtTc7J9-aqEE15s8fo-D_39Zg8tMgU2htVekIOdPaU3Ovbf-_P7hxYCtEUOoZdIl_YCk5op-akuJ5Bo2MKk7-cAM8U9Ms0TQ2WwfUbtC19OTQuRl2nEi1yGC7MIgVsF_iIBjiZFmasZ-pXbJXYGqYZ9HXBTRXUVOJhyrN8xmG4IYddvocR4l6nTBCCql8qmAoawBmgt8mLyGHAb8ovoBouVzPcO_RGnc4FdPNMlSMaZ1ziRvQpipo2FqfQwyBlfUTG3U-XnXPHdpBwpE9Z4VCF8NKTLqI0Sc9k5Kk4iQKtDM8XZTrxRSwFpRpxLiKhhCvfjZTwIuHzKGCRT5-TWoarviBgqnYR7nBfSI6On0dC8SRAexgHSSJ4WCfNSpUm0tKrmy4f6QTDLKN7kz3dq5PG9oL5hlnkz6LHlW5OrIlZThCr-mHIgtCtk7fbYTQO5o8Pz3S-KmWY6SkeoEy4o9PbJQ29-O5INr0uacYROrsY7NfJyVb7_7bRl_8g-4o88Ex-kKEXjo9JrVis9GsEeIV4Y9_hX899T2w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+Categorization+Algorithm+%28CLICAL%29+and+Machine+Learning+Approach+%28SRF-CLICAL%29+to+Predict+Clinical+Benefit+to+Immunotherapy+in+Metastatic+Melanoma+Patients%3A+Real-World+Evidence+from+the+Istituto+Nazionale+Tumori+IRCCS+Fondazione+Pascale%2C+Napoli%2C+Italy&rft.jtitle=Cancers&rft.au=Madonna%2C+Gabriele&rft.au=Masucci%2C+Giuseppe+V&rft.au=Capone%2C+Mariaelena&rft.au=Mallardo%2C+Domenico&rft.date=2021-08-19&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=13&rft.issue=16&rft_id=info:doi/10.3390%2Fcancers13164164&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |